url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
---|---|---|---|---|---|---|---|---|---|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.inv_eq_inf | [102, 9] | [105, 89] | simp only [inv_inf] | case h₁
⊢ ∞⁻¹ = ∞ ↔ ∞ = 0 | case h₁
⊢ 0 = ∞ ↔ ∞ = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case h₁
⊢ ∞⁻¹ = ∞ ↔ ∞ = 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.inv_eq_inf | [102, 9] | [105, 89] | exact ⟨Eq.symm, Eq.symm⟩ | case h₁
⊢ 0 = ∞ ↔ ∞ = 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h₁
⊢ 0 = ∞ ↔ ∞ = 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.inv_eq_inf | [102, 9] | [105, 89] | simp only [inv_def, inv, not_not, imp_false, ite_eq_left_iff, OnePoint.coe_ne_infty] | case h₂
x✝ : ℂ
⊢ (↑x✝)⁻¹ = ∞ ↔ ↑x✝ = 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h₂
x✝ : ℂ
⊢ (↑x✝)⁻¹ = ∞ ↔ ↑x✝ = 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.inv_eq_zero | [106, 9] | [112, 38] | induction' z using OnePoint.rec with z | z : 𝕊
⊢ z⁻¹ = 0 ↔ z = ∞ | case h₁
⊢ ∞⁻¹ = 0 ↔ ∞ = ∞
case h₂
z : ℂ
⊢ (↑z)⁻¹ = 0 ↔ ↑z = ∞ | Please generate a tactic in lean4 to solve the state.
STATE:
z : 𝕊
⊢ z⁻¹ = 0 ↔ z = ∞
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.inv_eq_zero | [106, 9] | [112, 38] | simp only [inv_inf, eq_self_iff_true] | case h₁
⊢ ∞⁻¹ = 0 ↔ ∞ = ∞ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h₁
⊢ ∞⁻¹ = 0 ↔ ∞ = ∞
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.inv_eq_zero | [106, 9] | [112, 38] | simp only [inv_def, inv, toComplex_coe] | case h₂
z : ℂ
⊢ (↑z)⁻¹ = 0 ↔ ↑z = ∞ | case h₂
z : ℂ
⊢ (if ↑z = 0 then ∞ else ↑z⁻¹) = 0 ↔ ↑z = ∞ | Please generate a tactic in lean4 to solve the state.
STATE:
case h₂
z : ℂ
⊢ (↑z)⁻¹ = 0 ↔ ↑z = ∞
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.inv_eq_zero | [106, 9] | [112, 38] | by_cases z0 : (z : 𝕊) = 0 | case h₂
z : ℂ
⊢ (if ↑z = 0 then ∞ else ↑z⁻¹) = 0 ↔ ↑z = ∞ | case pos
z : ℂ
z0 : ↑z = 0
⊢ (if ↑z = 0 then ∞ else ↑z⁻¹) = 0 ↔ ↑z = ∞
case neg
z : ℂ
z0 : ¬↑z = 0
⊢ (if ↑z = 0 then ∞ else ↑z⁻¹) = 0 ↔ ↑z = ∞ | Please generate a tactic in lean4 to solve the state.
STATE:
case h₂
z : ℂ
⊢ (if ↑z = 0 then ∞ else ↑z⁻¹) = 0 ↔ ↑z = ∞
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.inv_eq_zero | [106, 9] | [112, 38] | simp only [if_pos, z0, inf_ne_zero, inf_ne_zero.symm] | case pos
z : ℂ
z0 : ↑z = 0
⊢ (if ↑z = 0 then ∞ else ↑z⁻¹) = 0 ↔ ↑z = ∞
case neg
z : ℂ
z0 : ¬↑z = 0
⊢ (if ↑z = 0 then ∞ else ↑z⁻¹) = 0 ↔ ↑z = ∞ | case neg
z : ℂ
z0 : ¬↑z = 0
⊢ (if ↑z = 0 then ∞ else ↑z⁻¹) = 0 ↔ ↑z = ∞ | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
z : ℂ
z0 : ↑z = 0
⊢ (if ↑z = 0 then ∞ else ↑z⁻¹) = 0 ↔ ↑z = ∞
case neg
z : ℂ
z0 : ¬↑z = 0
⊢ (if ↑z = 0 then ∞ else ↑z⁻¹) = 0 ↔ ↑z = ∞
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.inv_eq_zero | [106, 9] | [112, 38] | simp only [if_neg z0, coe_ne_inf, iff_false_iff] | case neg
z : ℂ
z0 : ¬↑z = 0
⊢ (if ↑z = 0 then ∞ else ↑z⁻¹) = 0 ↔ ↑z = ∞ | case neg
z : ℂ
z0 : ¬↑z = 0
⊢ ¬↑z⁻¹ = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
z : ℂ
z0 : ¬↑z = 0
⊢ (if ↑z = 0 then ∞ else ↑z⁻¹) = 0 ↔ ↑z = ∞
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.inv_eq_zero | [106, 9] | [112, 38] | rw [coe_eq_zero, _root_.inv_eq_zero] | case neg
z : ℂ
z0 : ¬↑z = 0
⊢ ¬↑z⁻¹ = 0 | case neg
z : ℂ
z0 : ¬↑z = 0
⊢ ¬z = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
z : ℂ
z0 : ¬↑z = 0
⊢ ¬↑z⁻¹ = 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.inv_eq_zero | [106, 9] | [112, 38] | simpa only [coe_eq_zero] using z0 | case neg
z : ℂ
z0 : ¬↑z = 0
⊢ ¬z = 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
z : ℂ
z0 : ¬↑z = 0
⊢ ¬z = 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.toComplex_inv | [113, 1] | [118, 64] | induction' z using OnePoint.rec with z | z : 𝕊
⊢ z⁻¹.toComplex = z.toComplex⁻¹ | case h₁
⊢ ∞⁻¹.toComplex = ∞.toComplex⁻¹
case h₂
z : ℂ
⊢ (↑z)⁻¹.toComplex = (↑z).toComplex⁻¹ | Please generate a tactic in lean4 to solve the state.
STATE:
z : 𝕊
⊢ z⁻¹.toComplex = z.toComplex⁻¹
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.toComplex_inv | [113, 1] | [118, 64] | simp only [inv_inf, toComplex_zero, toComplex_inf, inv_zero', inv_zero, eq_self_iff_true] | case h₁
⊢ ∞⁻¹.toComplex = ∞.toComplex⁻¹ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h₁
⊢ ∞⁻¹.toComplex = ∞.toComplex⁻¹
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.toComplex_inv | [113, 1] | [118, 64] | by_cases z0 : z = 0 | case h₂
z : ℂ
⊢ (↑z)⁻¹.toComplex = (↑z).toComplex⁻¹ | case pos
z : ℂ
z0 : z = 0
⊢ (↑z)⁻¹.toComplex = (↑z).toComplex⁻¹
case neg
z : ℂ
z0 : ¬z = 0
⊢ (↑z)⁻¹.toComplex = (↑z).toComplex⁻¹ | Please generate a tactic in lean4 to solve the state.
STATE:
case h₂
z : ℂ
⊢ (↑z)⁻¹.toComplex = (↑z).toComplex⁻¹
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.toComplex_inv | [113, 1] | [118, 64] | simp only [z0, coe_zero, inv_zero', toComplex_inf, toComplex_zero, inv_zero] | case pos
z : ℂ
z0 : z = 0
⊢ (↑z)⁻¹.toComplex = (↑z).toComplex⁻¹ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
z : ℂ
z0 : z = 0
⊢ (↑z)⁻¹.toComplex = (↑z).toComplex⁻¹
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.toComplex_inv | [113, 1] | [118, 64] | simp only [z0, inv_coe, Ne, not_false_iff, toComplex_coe] | case neg
z : ℂ
z0 : ¬z = 0
⊢ (↑z)⁻¹.toComplex = (↑z).toComplex⁻¹ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
z : ℂ
z0 : ¬z = 0
⊢ (↑z)⁻¹.toComplex = (↑z).toComplex⁻¹
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.coe_tendsto_inf | [121, 1] | [123, 27] | rw [Filter.tendsto_iff_comap, OnePoint.comap_coe_nhds_infty, Filter.coclosedCompact_eq_cocompact] | ⊢ Tendsto (fun z => ↑z) atInf (𝓝 ∞) | ⊢ atInf ≤ Filter.cocompact ℂ | Please generate a tactic in lean4 to solve the state.
STATE:
⊢ Tendsto (fun z => ↑z) atInf (𝓝 ∞)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.coe_tendsto_inf | [121, 1] | [123, 27] | exact atInf_le_cocompact | ⊢ atInf ≤ Filter.cocompact ℂ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
⊢ atInf ≤ Filter.cocompact ℂ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.coe_tendsto_inf' | [126, 1] | [133, 59] | simp only [e, tendsto_nhdsWithin_range, coe_tendsto_inf] | e : {∞}ᶜ = range fun z => ↑z
⊢ Tendsto (fun z => ↑z) atInf (𝓝[≠] ∞) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
e : {∞}ᶜ = range fun z => ↑z
⊢ Tendsto (fun z => ↑z) atInf (𝓝[≠] ∞)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.coe_tendsto_inf' | [126, 1] | [133, 59] | ext z | ⊢ {∞}ᶜ = range fun z => ↑z | case h
z : 𝕊
⊢ z ∈ {∞}ᶜ ↔ z ∈ range fun z => ↑z | Please generate a tactic in lean4 to solve the state.
STATE:
⊢ {∞}ᶜ = range fun z => ↑z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.coe_tendsto_inf' | [126, 1] | [133, 59] | induction' z using OnePoint.rec with z | case h
z : 𝕊
⊢ z ∈ {∞}ᶜ ↔ z ∈ range fun z => ↑z | case h.h₁
⊢ ∞ ∈ {∞}ᶜ ↔ ∞ ∈ range fun z => ↑z
case h.h₂
z : ℂ
⊢ ↑z ∈ {∞}ᶜ ↔ ↑z ∈ range fun z => ↑z | Please generate a tactic in lean4 to solve the state.
STATE:
case h
z : 𝕊
⊢ z ∈ {∞}ᶜ ↔ z ∈ range fun z => ↑z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.coe_tendsto_inf' | [126, 1] | [133, 59] | simp only [mem_compl_iff, mem_singleton_iff, not_true, mem_range, OnePoint.coe_ne_infty,
exists_false] | case h.h₁
⊢ ∞ ∈ {∞}ᶜ ↔ ∞ ∈ range fun z => ↑z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h₁
⊢ ∞ ∈ {∞}ᶜ ↔ ∞ ∈ range fun z => ↑z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.coe_tendsto_inf' | [126, 1] | [133, 59] | simp only [mem_compl_iff, mem_singleton_iff, OnePoint.coe_ne_infty, not_false_eq_true,
mem_range, coe_eq_coe, exists_eq] | case h.h₂
z : ℂ
⊢ ↑z ∈ {∞}ᶜ ↔ ↑z ∈ range fun z => ↑z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h₂
z : ℂ
⊢ ↑z ∈ {∞}ᶜ ↔ ↑z ∈ range fun z => ↑z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | rw [continuous_iff_continuousOn_univ] | ⊢ Continuous fun z => z⁻¹ | ⊢ ContinuousOn (fun z => z⁻¹) univ | Please generate a tactic in lean4 to solve the state.
STATE:
⊢ Continuous fun z => z⁻¹
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | intro z _ | ⊢ ContinuousOn (fun z => z⁻¹) univ | z : 𝕊
a✝ : z ∈ univ
⊢ ContinuousWithinAt (fun z => z⁻¹) univ z | Please generate a tactic in lean4 to solve the state.
STATE:
⊢ ContinuousOn (fun z => z⁻¹) univ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | apply ContinuousAt.continuousWithinAt | z : 𝕊
a✝ : z ∈ univ
⊢ ContinuousWithinAt (fun z => z⁻¹) univ z | case h
z : 𝕊
a✝ : z ∈ univ
⊢ ContinuousAt (fun z => z⁻¹) z | Please generate a tactic in lean4 to solve the state.
STATE:
z : 𝕊
a✝ : z ∈ univ
⊢ ContinuousWithinAt (fun z => z⁻¹) univ z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | induction' z using OnePoint.rec with z | case h
z : 𝕊
a✝ : z ∈ univ
⊢ ContinuousAt (fun z => z⁻¹) z | case h.h₁
a✝ : ∞ ∈ univ
⊢ ContinuousAt (fun z => z⁻¹) ∞
case h.h₂
z : ℂ
a✝ : ↑z ∈ univ
⊢ ContinuousAt (fun z => z⁻¹) ↑z | Please generate a tactic in lean4 to solve the state.
STATE:
case h
z : 𝕊
a✝ : z ∈ univ
⊢ ContinuousAt (fun z => z⁻¹) z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | simp only [OnePoint.continuousAt_infty', Function.comp, Filter.coclosedCompact_eq_cocompact,
inv_inf, ← atInf_eq_cocompact] | case h.h₁
a✝ : ∞ ∈ univ
⊢ ContinuousAt (fun z => z⁻¹) ∞ | case h.h₁
a✝ : ∞ ∈ univ
⊢ Tendsto (fun x => (↑x)⁻¹) atInf (𝓝 0) | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h₁
a✝ : ∞ ∈ univ
⊢ ContinuousAt (fun z => z⁻¹) ∞
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | have e : ∀ᶠ z : ℂ in atInf, ↑z⁻¹ = (↑z : 𝕊)⁻¹ := by
refine (eventually_atInf 0).mp (eventually_of_forall fun z z0 ↦ ?_)
simp only [gt_iff_lt, Complex.norm_eq_abs, AbsoluteValue.pos_iff] at z0; rw [inv_coe z0] | case h.h₁
a✝ : ∞ ∈ univ
⊢ Tendsto (fun x => (↑x)⁻¹) atInf (𝓝 0) | case h.h₁
a✝ : ∞ ∈ univ
e : ∀ᶠ (z : ℂ) in atInf, ↑z⁻¹ = (↑z)⁻¹
⊢ Tendsto (fun x => (↑x)⁻¹) atInf (𝓝 0) | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h₁
a✝ : ∞ ∈ univ
⊢ Tendsto (fun x => (↑x)⁻¹) atInf (𝓝 0)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | apply Filter.Tendsto.congr' e | case h.h₁
a✝ : ∞ ∈ univ
e : ∀ᶠ (z : ℂ) in atInf, ↑z⁻¹ = (↑z)⁻¹
⊢ Tendsto (fun x => (↑x)⁻¹) atInf (𝓝 0) | case h.h₁
a✝ : ∞ ∈ univ
e : ∀ᶠ (z : ℂ) in atInf, ↑z⁻¹ = (↑z)⁻¹
⊢ Tendsto (fun x => ↑x⁻¹) atInf (𝓝 0) | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h₁
a✝ : ∞ ∈ univ
e : ∀ᶠ (z : ℂ) in atInf, ↑z⁻¹ = (↑z)⁻¹
⊢ Tendsto (fun x => (↑x)⁻¹) atInf (𝓝 0)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | exact Filter.Tendsto.comp continuous_coe.continuousAt inv_tendsto_atInf' | case h.h₁
a✝ : ∞ ∈ univ
e : ∀ᶠ (z : ℂ) in atInf, ↑z⁻¹ = (↑z)⁻¹
⊢ Tendsto (fun x => ↑x⁻¹) atInf (𝓝 0) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h₁
a✝ : ∞ ∈ univ
e : ∀ᶠ (z : ℂ) in atInf, ↑z⁻¹ = (↑z)⁻¹
⊢ Tendsto (fun x => ↑x⁻¹) atInf (𝓝 0)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | refine (eventually_atInf 0).mp (eventually_of_forall fun z z0 ↦ ?_) | a✝ : ∞ ∈ univ
⊢ ∀ᶠ (z : ℂ) in atInf, ↑z⁻¹ = (↑z)⁻¹ | a✝ : ∞ ∈ univ
z : ℂ
z0 : ‖z‖ > 0
⊢ ↑z⁻¹ = (↑z)⁻¹ | Please generate a tactic in lean4 to solve the state.
STATE:
a✝ : ∞ ∈ univ
⊢ ∀ᶠ (z : ℂ) in atInf, ↑z⁻¹ = (↑z)⁻¹
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | simp only [gt_iff_lt, Complex.norm_eq_abs, AbsoluteValue.pos_iff] at z0 | a✝ : ∞ ∈ univ
z : ℂ
z0 : ‖z‖ > 0
⊢ ↑z⁻¹ = (↑z)⁻¹ | a✝ : ∞ ∈ univ
z : ℂ
z0 : z ≠ 0
⊢ ↑z⁻¹ = (↑z)⁻¹ | Please generate a tactic in lean4 to solve the state.
STATE:
a✝ : ∞ ∈ univ
z : ℂ
z0 : ‖z‖ > 0
⊢ ↑z⁻¹ = (↑z)⁻¹
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | rw [inv_coe z0] | a✝ : ∞ ∈ univ
z : ℂ
z0 : z ≠ 0
⊢ ↑z⁻¹ = (↑z)⁻¹ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
a✝ : ∞ ∈ univ
z : ℂ
z0 : z ≠ 0
⊢ ↑z⁻¹ = (↑z)⁻¹
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | simp only [OnePoint.continuousAt_coe, Function.comp, inv_def, inv, WithTop.coe_eq_zero,
toComplex_coe] | case h.h₂
z : ℂ
a✝ : ↑z ∈ univ
⊢ ContinuousAt (fun z => z⁻¹) ↑z | case h.h₂
z : ℂ
a✝ : ↑z ∈ univ
⊢ ContinuousAt (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) z | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h₂
z : ℂ
a✝ : ↑z ∈ univ
⊢ ContinuousAt (fun z => z⁻¹) ↑z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | by_cases z0 : z = 0 | case h.h₂
z : ℂ
a✝ : ↑z ∈ univ
⊢ ContinuousAt (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) z | case pos
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ ContinuousAt (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) z
case neg
z : ℂ
a✝ : ↑z ∈ univ
z0 : ¬z = 0
⊢ ContinuousAt (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) z | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h₂
z : ℂ
a✝ : ↑z ∈ univ
⊢ ContinuousAt (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | simp only [z0, ContinuousAt, OnePoint.nhds_infty_eq, eq_self_iff_true, if_true,
Filter.coclosedCompact_eq_cocompact] | case pos
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ ContinuousAt (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) z | case pos
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) (𝓝 0) (𝓝 (if ↑0 = 0 then ∞ else ↑0⁻¹)) | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ ContinuousAt (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | simp only [← nhdsWithin_compl_singleton_sup_pure, Filter.tendsto_sup] | case pos
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) (𝓝 0) (𝓝 (if ↑0 = 0 then ∞ else ↑0⁻¹)) | case pos
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) (𝓝[≠] 0)
((𝓝[≠] if ↑0 = 0 then ∞ else ↑0⁻¹) ⊔ pure (if ↑0 = 0 then ∞ else ↑0⁻¹)) ∧
Tendsto (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) (pure 0)
((𝓝[≠] if ↑0 = 0 then ∞ else ↑0⁻¹) ⊔ pure (if ↑0 = 0 then ∞ else ↑0⁻¹)) | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) (𝓝 0) (𝓝 (if ↑0 = 0 then ∞ else ↑0⁻¹))
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | constructor | case pos
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) (𝓝[≠] 0)
((𝓝[≠] if ↑0 = 0 then ∞ else ↑0⁻¹) ⊔ pure (if ↑0 = 0 then ∞ else ↑0⁻¹)) ∧
Tendsto (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) (pure 0)
((𝓝[≠] if ↑0 = 0 then ∞ else ↑0⁻¹) ⊔ pure (if ↑0 = 0 then ∞ else ↑0⁻¹)) | case pos.left
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) (𝓝[≠] 0)
((𝓝[≠] if ↑0 = 0 then ∞ else ↑0⁻¹) ⊔ pure (if ↑0 = 0 then ∞ else ↑0⁻¹))
case pos.right
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) (pure 0)
((𝓝[≠] if ↑0 = 0 then ∞ else ↑0⁻¹) ⊔ pure (if ↑0 = 0 then ∞ else ↑0⁻¹)) | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) (𝓝[≠] 0)
((𝓝[≠] if ↑0 = 0 then ∞ else ↑0⁻¹) ⊔ pure (if ↑0 = 0 then ∞ else ↑0⁻¹)) ∧
Tendsto (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) (pure 0)
((𝓝[≠] if ↑0 = 0 then ∞ else ↑0⁻¹) ⊔ pure (if ↑0 = 0 then ∞ else ↑0⁻¹))
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | refine Filter.Tendsto.mono_right ?_ le_sup_left | case pos.left
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) (𝓝[≠] 0)
((𝓝[≠] if ↑0 = 0 then ∞ else ↑0⁻¹) ⊔ pure (if ↑0 = 0 then ∞ else ↑0⁻¹)) | case pos.left
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) (𝓝[≠] 0) (𝓝[≠] if ↑0 = 0 then ∞ else ↑0⁻¹) | Please generate a tactic in lean4 to solve the state.
STATE:
case pos.left
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) (𝓝[≠] 0)
((𝓝[≠] if ↑0 = 0 then ∞ else ↑0⁻¹) ⊔ pure (if ↑0 = 0 then ∞ else ↑0⁻¹))
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | apply tendsto_nhdsWithin_congr (f := fun z : ℂ ↦ (↑z⁻¹ : 𝕊)) | case pos.left
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) (𝓝[≠] 0) (𝓝[≠] if ↑0 = 0 then ∞ else ↑0⁻¹) | case pos.left.hfg
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ ∀ x ∈ {0}ᶜ, ↑x⁻¹ = if ↑x = 0 then ∞ else ↑x⁻¹
case pos.left.hf
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun z => ↑z⁻¹) (𝓝[≠] 0) (𝓝[≠] if ↑0 = 0 then ∞ else ↑0⁻¹) | Please generate a tactic in lean4 to solve the state.
STATE:
case pos.left
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) (𝓝[≠] 0) (𝓝[≠] if ↑0 = 0 then ∞ else ↑0⁻¹)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | intro z m | case pos.left.hfg
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ ∀ x ∈ {0}ᶜ, ↑x⁻¹ = if ↑x = 0 then ∞ else ↑x⁻¹ | case pos.left.hfg
z✝ : ℂ
a✝ : ↑z✝ ∈ univ
z0 : z✝ = 0
z : ℂ
m : z ∈ {0}ᶜ
⊢ ↑z⁻¹ = if ↑z = 0 then ∞ else ↑z⁻¹ | Please generate a tactic in lean4 to solve the state.
STATE:
case pos.left.hfg
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ ∀ x ∈ {0}ᶜ, ↑x⁻¹ = if ↑x = 0 then ∞ else ↑x⁻¹
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | rw [mem_compl_singleton_iff] at m | case pos.left.hfg
z✝ : ℂ
a✝ : ↑z✝ ∈ univ
z0 : z✝ = 0
z : ℂ
m : z ∈ {0}ᶜ
⊢ ↑z⁻¹ = if ↑z = 0 then ∞ else ↑z⁻¹ | case pos.left.hfg
z✝ : ℂ
a✝ : ↑z✝ ∈ univ
z0 : z✝ = 0
z : ℂ
m : z ≠ 0
⊢ ↑z⁻¹ = if ↑z = 0 then ∞ else ↑z⁻¹ | Please generate a tactic in lean4 to solve the state.
STATE:
case pos.left.hfg
z✝ : ℂ
a✝ : ↑z✝ ∈ univ
z0 : z✝ = 0
z : ℂ
m : z ∈ {0}ᶜ
⊢ ↑z⁻¹ = if ↑z = 0 then ∞ else ↑z⁻¹
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | simp only [coe_eq_zero, m, ite_false] | case pos.left.hfg
z✝ : ℂ
a✝ : ↑z✝ ∈ univ
z0 : z✝ = 0
z : ℂ
m : z ≠ 0
⊢ ↑z⁻¹ = if ↑z = 0 then ∞ else ↑z⁻¹ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case pos.left.hfg
z✝ : ℂ
a✝ : ↑z✝ ∈ univ
z0 : z✝ = 0
z : ℂ
m : z ≠ 0
⊢ ↑z⁻¹ = if ↑z = 0 then ∞ else ↑z⁻¹
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | simp only [coe_zero, ite_true] | case pos.left.hf
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun z => ↑z⁻¹) (𝓝[≠] 0) (𝓝[≠] if ↑0 = 0 then ∞ else ↑0⁻¹) | case pos.left.hf
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun z => ↑z⁻¹) (𝓝[≠] 0) (𝓝[≠] ∞) | Please generate a tactic in lean4 to solve the state.
STATE:
case pos.left.hf
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun z => ↑z⁻¹) (𝓝[≠] 0) (𝓝[≠] if ↑0 = 0 then ∞ else ↑0⁻¹)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | apply coe_tendsto_inf'.comp | case pos.left.hf
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun z => ↑z⁻¹) (𝓝[≠] 0) (𝓝[≠] ∞) | case pos.left.hf
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun z => z⁻¹) (𝓝[≠] 0) atInf | Please generate a tactic in lean4 to solve the state.
STATE:
case pos.left.hf
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun z => ↑z⁻¹) (𝓝[≠] 0) (𝓝[≠] ∞)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | rw [← @tendsto_atInf_iff_tendsto_nhds_zero ℂ ℂ _ _ fun z : ℂ ↦ z] | case pos.left.hf
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun z => z⁻¹) (𝓝[≠] 0) atInf | case pos.left.hf
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun z => z) atInf atInf | Please generate a tactic in lean4 to solve the state.
STATE:
case pos.left.hf
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun z => z⁻¹) (𝓝[≠] 0) atInf
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | exact Filter.tendsto_id | case pos.left.hf
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun z => z) atInf atInf | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case pos.left.hf
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun z => z) atInf atInf
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | refine Filter.Tendsto.mono_right ?_ le_sup_right | case pos.right
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) (pure 0)
((𝓝[≠] if ↑0 = 0 then ∞ else ↑0⁻¹) ⊔ pure (if ↑0 = 0 then ∞ else ↑0⁻¹)) | case pos.right
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) (pure 0) (pure (if ↑0 = 0 then ∞ else ↑0⁻¹)) | Please generate a tactic in lean4 to solve the state.
STATE:
case pos.right
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) (pure 0)
((𝓝[≠] if ↑0 = 0 then ∞ else ↑0⁻¹) ⊔ pure (if ↑0 = 0 then ∞ else ↑0⁻¹))
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | simp only [Filter.pure_zero, Filter.tendsto_pure, ite_eq_left_iff, Filter.eventually_zero,
eq_self_iff_true, not_true, IsEmpty.forall_iff] | case pos.right
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) (pure 0) (pure (if ↑0 = 0 then ∞ else ↑0⁻¹)) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case pos.right
z : ℂ
a✝ : ↑z ∈ univ
z0 : z = 0
⊢ Tendsto (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) (pure 0) (pure (if ↑0 = 0 then ∞ else ↑0⁻¹))
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | have e : ∀ᶠ w : ℂ in 𝓝 z, (if w = 0 then ∞ else ↑w⁻¹ : 𝕊) = ↑w⁻¹ := by
refine (continuousAt_id.eventually_ne z0).mp (eventually_of_forall fun w w0 ↦ ?_)
simp only [Ne, id_eq] at w0; simp only [w0, if_false] | case neg
z : ℂ
a✝ : ↑z ∈ univ
z0 : ¬z = 0
⊢ ContinuousAt (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) z | case neg
z : ℂ
a✝ : ↑z ∈ univ
z0 : ¬z = 0
e : ∀ᶠ (w : ℂ) in 𝓝 z, (if w = 0 then ∞ else ↑w⁻¹) = ↑w⁻¹
⊢ ContinuousAt (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) z | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
z : ℂ
a✝ : ↑z ∈ univ
z0 : ¬z = 0
⊢ ContinuousAt (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | simp only [coe_eq_zero, continuousAt_congr e] | case neg
z : ℂ
a✝ : ↑z ∈ univ
z0 : ¬z = 0
e : ∀ᶠ (w : ℂ) in 𝓝 z, (if w = 0 then ∞ else ↑w⁻¹) = ↑w⁻¹
⊢ ContinuousAt (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) z | case neg
z : ℂ
a✝ : ↑z ∈ univ
z0 : ¬z = 0
e : ∀ᶠ (w : ℂ) in 𝓝 z, (if w = 0 then ∞ else ↑w⁻¹) = ↑w⁻¹
⊢ ContinuousAt (fun x => ↑x⁻¹) z | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
z : ℂ
a✝ : ↑z ∈ univ
z0 : ¬z = 0
e : ∀ᶠ (w : ℂ) in 𝓝 z, (if w = 0 then ∞ else ↑w⁻¹) = ↑w⁻¹
⊢ ContinuousAt (fun x => if ↑x = 0 then ∞ else ↑x⁻¹) z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | exact continuous_coe.continuousAt.comp (tendsto_inv₀ z0) | case neg
z : ℂ
a✝ : ↑z ∈ univ
z0 : ¬z = 0
e : ∀ᶠ (w : ℂ) in 𝓝 z, (if w = 0 then ∞ else ↑w⁻¹) = ↑w⁻¹
⊢ ContinuousAt (fun x => ↑x⁻¹) z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
z : ℂ
a✝ : ↑z ∈ univ
z0 : ¬z = 0
e : ∀ᶠ (w : ℂ) in 𝓝 z, (if w = 0 then ∞ else ↑w⁻¹) = ↑w⁻¹
⊢ ContinuousAt (fun x => ↑x⁻¹) z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | refine (continuousAt_id.eventually_ne z0).mp (eventually_of_forall fun w w0 ↦ ?_) | z : ℂ
a✝ : ↑z ∈ univ
z0 : ¬z = 0
⊢ ∀ᶠ (w : ℂ) in 𝓝 z, (if w = 0 then ∞ else ↑w⁻¹) = ↑w⁻¹ | z : ℂ
a✝ : ↑z ∈ univ
z0 : ¬z = 0
w : ℂ
w0 : id w ≠ 0
⊢ (if w = 0 then ∞ else ↑w⁻¹) = ↑w⁻¹ | Please generate a tactic in lean4 to solve the state.
STATE:
z : ℂ
a✝ : ↑z ∈ univ
z0 : ¬z = 0
⊢ ∀ᶠ (w : ℂ) in 𝓝 z, (if w = 0 then ∞ else ↑w⁻¹) = ↑w⁻¹
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | simp only [Ne, id_eq] at w0 | z : ℂ
a✝ : ↑z ∈ univ
z0 : ¬z = 0
w : ℂ
w0 : id w ≠ 0
⊢ (if w = 0 then ∞ else ↑w⁻¹) = ↑w⁻¹ | z : ℂ
a✝ : ↑z ∈ univ
z0 : ¬z = 0
w : ℂ
w0 : ¬w = 0
⊢ (if w = 0 then ∞ else ↑w⁻¹) = ↑w⁻¹ | Please generate a tactic in lean4 to solve the state.
STATE:
z : ℂ
a✝ : ↑z ∈ univ
z0 : ¬z = 0
w : ℂ
w0 : id w ≠ 0
⊢ (if w = 0 then ∞ else ↑w⁻¹) = ↑w⁻¹
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.continuous_inv | [136, 1] | [166, 63] | simp only [w0, if_false] | z : ℂ
a✝ : ↑z ∈ univ
z0 : ¬z = 0
w : ℂ
w0 : ¬w = 0
⊢ (if w = 0 then ∞ else ↑w⁻¹) = ↑w⁻¹ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
z : ℂ
a✝ : ↑z ∈ univ
z0 : ¬z = 0
w : ℂ
w0 : ¬w = 0
⊢ (if w = 0 then ∞ else ↑w⁻¹) = ↑w⁻¹
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.invEquiv_apply | [181, 9] | [182, 40] | simp only [invEquiv, Equiv.coe_fn_mk] | z : 𝕊
⊢ invEquiv z = z⁻¹ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
z : 𝕊
⊢ invEquiv z = z⁻¹
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.invEquiv_symm | [183, 9] | [185, 18] | simp only [Equiv.ext_iff, invEquiv, Equiv.coe_fn_symm_mk, Equiv.coe_fn_mk, eq_self_iff_true,
forall_const] | ⊢ invEquiv.symm = invEquiv | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
⊢ invEquiv.symm = invEquiv
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.invHomeomorph_apply | [186, 9] | [187, 74] | simp only [invHomeomorph, Homeomorph.homeomorph_mk_coe, invEquiv_apply] | z : 𝕊
⊢ invHomeomorph z = z⁻¹ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
z : 𝕊
⊢ invHomeomorph z = z⁻¹
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.invHomeomorph_symm | [188, 9] | [190, 67] | simp only [invHomeomorph, Homeomorph.homeomorph_mk_coe_symm, invEquiv_symm,
Homeomorph.homeomorph_mk_coe, eq_self_iff_true, forall_const] | ⊢ ∀ (x : 𝕊), invHomeomorph.symm x = invHomeomorph x | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
⊢ ∀ (x : 𝕊), invHomeomorph.symm x = invHomeomorph x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.coePartialHomeomorph_target | [217, 1] | [218, 59] | simp only [coePartialHomeomorph, coePartialEquiv_target] | ⊢ coePartialHomeomorph.target = {∞}ᶜ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
⊢ coePartialHomeomorph.target = {∞}ᶜ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.invCoePartialHomeomorph_target | [219, 1] | [224, 16] | ext z | ⊢ invCoePartialHomeomorph.target = {0}ᶜ | case h
z : 𝕊
⊢ z ∈ invCoePartialHomeomorph.target ↔ z ∈ {0}ᶜ | Please generate a tactic in lean4 to solve the state.
STATE:
⊢ invCoePartialHomeomorph.target = {0}ᶜ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.invCoePartialHomeomorph_target | [219, 1] | [224, 16] | simp only [invCoePartialHomeomorph, PartialHomeomorph.trans_toPartialEquiv,
PartialEquiv.trans_target, Homeomorph.toPartialHomeomorph_target, PartialHomeomorph.coe_coe_symm,
Homeomorph.toPartialHomeomorph_symm_apply, invHomeomorph_symm, coePartialHomeomorph_target,
preimage_compl, univ_inter, mem_compl_iff, mem_preimage, invHomeomorph_apply, mem_singleton_iff,
inv_eq_inf] | case h
z : 𝕊
⊢ z ∈ invCoePartialHomeomorph.target ↔ z ∈ {0}ᶜ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h
z : 𝕊
⊢ z ∈ invCoePartialHomeomorph.target ↔ z ∈ {0}ᶜ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.extChartAt_coe | [255, 1] | [258, 29] | simp only [coePartialHomeomorph, extChartAt, PartialHomeomorph.extend, chartAt_coe,
PartialHomeomorph.symm_toPartialEquiv, modelWithCornersSelf_partialEquiv,
PartialEquiv.trans_refl] | z : ℂ
⊢ extChartAt I ↑z = coePartialEquiv.symm | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
z : ℂ
⊢ extChartAt I ↑z = coePartialEquiv.symm
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.extChartAt_zero | [259, 1] | [260, 41] | simp only [← coe_zero, extChartAt_coe] | ⊢ extChartAt I 0 = coePartialEquiv.symm | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
⊢ extChartAt I 0 = coePartialEquiv.symm
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.extChartAt_inf | [261, 1] | [285, 63] | apply PartialEquiv.ext | ⊢ extChartAt I ∞ = invEquiv.toPartialEquiv.trans coePartialEquiv.symm | case h
⊢ ∀ (x : 𝕊), ↑(extChartAt I ∞) x = ↑(invEquiv.toPartialEquiv.trans coePartialEquiv.symm) x
case hsymm
⊢ ∀ (x : ℂ), ↑(extChartAt I ∞).symm x = ↑(invEquiv.toPartialEquiv.trans coePartialEquiv.symm).symm x
case hs
⊢ (extChartAt I ∞).source = (invEquiv.toPartialEquiv.trans coePartialEquiv.symm).source | Please generate a tactic in lean4 to solve the state.
STATE:
⊢ extChartAt I ∞ = invEquiv.toPartialEquiv.trans coePartialEquiv.symm
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.extChartAt_inf | [261, 1] | [285, 63] | intro z | case h
⊢ ∀ (x : 𝕊), ↑(extChartAt I ∞) x = ↑(invEquiv.toPartialEquiv.trans coePartialEquiv.symm) x | case h
z : 𝕊
⊢ ↑(extChartAt I ∞) z = ↑(invEquiv.toPartialEquiv.trans coePartialEquiv.symm) z | Please generate a tactic in lean4 to solve the state.
STATE:
case h
⊢ ∀ (x : 𝕊), ↑(extChartAt I ∞) x = ↑(invEquiv.toPartialEquiv.trans coePartialEquiv.symm) x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.extChartAt_inf | [261, 1] | [285, 63] | simp only [extChartAt, invCoePartialHomeomorph, coePartialHomeomorph, invHomeomorph,
PartialHomeomorph.extend, chartAt_inf, PartialHomeomorph.symm_toPartialEquiv,
PartialHomeomorph.trans_toPartialEquiv, modelWithCornersSelf_partialEquiv,
PartialEquiv.trans_refl, PartialEquiv.coe_trans_symm, PartialHomeomorph.coe_coe_symm,
Homeomorph.toPartialHomeomorph_symm_apply, Homeomorph.homeomorph_mk_coe_symm, invEquiv_symm,
PartialEquiv.coe_trans, Equiv.toPartialEquiv_apply] | case h
z : 𝕊
⊢ ↑(extChartAt I ∞) z = ↑(invEquiv.toPartialEquiv.trans coePartialEquiv.symm) z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h
z : 𝕊
⊢ ↑(extChartAt I ∞) z = ↑(invEquiv.toPartialEquiv.trans coePartialEquiv.symm) z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.extChartAt_inf | [261, 1] | [285, 63] | intro z | case hsymm
⊢ ∀ (x : ℂ), ↑(extChartAt I ∞).symm x = ↑(invEquiv.toPartialEquiv.trans coePartialEquiv.symm).symm x | case hsymm
z : ℂ
⊢ ↑(extChartAt I ∞).symm z = ↑(invEquiv.toPartialEquiv.trans coePartialEquiv.symm).symm z | Please generate a tactic in lean4 to solve the state.
STATE:
case hsymm
⊢ ∀ (x : ℂ), ↑(extChartAt I ∞).symm x = ↑(invEquiv.toPartialEquiv.trans coePartialEquiv.symm).symm x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.extChartAt_inf | [261, 1] | [285, 63] | simp only [extChartAt, invCoePartialHomeomorph, coePartialHomeomorph, invHomeomorph,
invEquiv, PartialHomeomorph.extend, chartAt_inf, PartialHomeomorph.symm_toPartialEquiv,
PartialHomeomorph.trans_toPartialEquiv, modelWithCornersSelf_partialEquiv,
PartialEquiv.trans_refl, PartialEquiv.symm_symm, PartialEquiv.coe_trans,
PartialHomeomorph.coe_coe, Homeomorph.toPartialHomeomorph_apply, Homeomorph.homeomorph_mk_coe,
Equiv.coe_fn_mk, PartialEquiv.coe_trans_symm, Equiv.toPartialEquiv_symm_apply,
Equiv.coe_fn_symm_mk] | case hsymm
z : ℂ
⊢ ↑(extChartAt I ∞).symm z = ↑(invEquiv.toPartialEquiv.trans coePartialEquiv.symm).symm z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case hsymm
z : ℂ
⊢ ↑(extChartAt I ∞).symm z = ↑(invEquiv.toPartialEquiv.trans coePartialEquiv.symm).symm z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.extChartAt_inf | [261, 1] | [285, 63] | simp only [extChartAt, invCoePartialHomeomorph, coePartialHomeomorph, invHomeomorph,
PartialHomeomorph.extend, chartAt_inf, PartialHomeomorph.symm_toPartialEquiv,
PartialHomeomorph.trans_toPartialEquiv, modelWithCornersSelf_partialEquiv,
PartialEquiv.trans_refl,
PartialEquiv.symm_source, PartialEquiv.trans_target, Homeomorph.toPartialHomeomorph_target,
PartialHomeomorph.coe_coe_symm, Homeomorph.toPartialHomeomorph_symm_apply,
Homeomorph.homeomorph_mk_coe_symm, invEquiv_symm, PartialEquiv.trans_source,
Equiv.toPartialEquiv_source, Equiv.toPartialEquiv_apply] | case hs
⊢ (extChartAt I ∞).source = (invEquiv.toPartialEquiv.trans coePartialEquiv.symm).source | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case hs
⊢ (extChartAt I ∞).source = (invEquiv.toPartialEquiv.trans coePartialEquiv.symm).source
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.extChartAt_inf_apply | [286, 1] | [288, 48] | simp only [extChartAt_inf, PartialEquiv.trans_apply, coePartialEquiv_symm_apply,
Equiv.toPartialEquiv_apply, invEquiv_apply] | x : 𝕊
⊢ ↑(extChartAt I ∞) x = x⁻¹.toComplex | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
x : 𝕊
⊢ ↑(extChartAt I ∞) x = x⁻¹.toComplex
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.tendsto_inf_iff_tendsto_atInf | [318, 1] | [325, 41] | constructor | X : Type
f : Filter X
g : X → ℂ
⊢ Tendsto (fun x => ↑(g x)) f (𝓝 ∞) ↔ Tendsto (fun x => g x) f atInf | case mp
X : Type
f : Filter X
g : X → ℂ
⊢ Tendsto (fun x => ↑(g x)) f (𝓝 ∞) → Tendsto (fun x => g x) f atInf
case mpr
X : Type
f : Filter X
g : X → ℂ
⊢ Tendsto (fun x => g x) f atInf → Tendsto (fun x => ↑(g x)) f (𝓝 ∞) | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
f : Filter X
g : X → ℂ
⊢ Tendsto (fun x => ↑(g x)) f (𝓝 ∞) ↔ Tendsto (fun x => g x) f atInf
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.tendsto_inf_iff_tendsto_atInf | [318, 1] | [325, 41] | intro t | case mp
X : Type
f : Filter X
g : X → ℂ
⊢ Tendsto (fun x => ↑(g x)) f (𝓝 ∞) → Tendsto (fun x => g x) f atInf | case mp
X : Type
f : Filter X
g : X → ℂ
t : Tendsto (fun x => ↑(g x)) f (𝓝 ∞)
⊢ Tendsto (fun x => g x) f atInf | Please generate a tactic in lean4 to solve the state.
STATE:
case mp
X : Type
f : Filter X
g : X → ℂ
⊢ Tendsto (fun x => ↑(g x)) f (𝓝 ∞) → Tendsto (fun x => g x) f atInf
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.tendsto_inf_iff_tendsto_atInf | [318, 1] | [325, 41] | simp only [Filter.tendsto_iff_comap] at t ⊢ | case mp
X : Type
f : Filter X
g : X → ℂ
t : Tendsto (fun x => ↑(g x)) f (𝓝 ∞)
⊢ Tendsto (fun x => g x) f atInf | case mp
X : Type
f : Filter X
g : X → ℂ
t : f ≤ Filter.comap (fun x => ↑(g x)) (𝓝 ∞)
⊢ f ≤ Filter.comap (fun x => g x) atInf | Please generate a tactic in lean4 to solve the state.
STATE:
case mp
X : Type
f : Filter X
g : X → ℂ
t : Tendsto (fun x => ↑(g x)) f (𝓝 ∞)
⊢ Tendsto (fun x => g x) f atInf
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.tendsto_inf_iff_tendsto_atInf | [318, 1] | [325, 41] | rw [←Function.comp_def, ←Filter.comap_comap, OnePoint.comap_coe_nhds_infty,
Filter.coclosedCompact_eq_cocompact, ←atInf_eq_cocompact] at t | case mp
X : Type
f : Filter X
g : X → ℂ
t : f ≤ Filter.comap (fun x => ↑(g x)) (𝓝 ∞)
⊢ f ≤ Filter.comap (fun x => g x) atInf | case mp
X : Type
f : Filter X
g : X → ℂ
t : f ≤ Filter.comap (fun x => g x) atInf
⊢ f ≤ Filter.comap (fun x => g x) atInf | Please generate a tactic in lean4 to solve the state.
STATE:
case mp
X : Type
f : Filter X
g : X → ℂ
t : f ≤ Filter.comap (fun x => ↑(g x)) (𝓝 ∞)
⊢ f ≤ Filter.comap (fun x => g x) atInf
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.tendsto_inf_iff_tendsto_atInf | [318, 1] | [325, 41] | exact t | case mp
X : Type
f : Filter X
g : X → ℂ
t : f ≤ Filter.comap (fun x => g x) atInf
⊢ f ≤ Filter.comap (fun x => g x) atInf | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case mp
X : Type
f : Filter X
g : X → ℂ
t : f ≤ Filter.comap (fun x => g x) atInf
⊢ f ≤ Filter.comap (fun x => g x) atInf
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.tendsto_inf_iff_tendsto_atInf | [318, 1] | [325, 41] | exact fun h ↦ coe_tendsto_inf.comp h | case mpr
X : Type
f : Filter X
g : X → ℂ
⊢ Tendsto (fun x => g x) f atInf → Tendsto (fun x => ↑(g x)) f (𝓝 ∞) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case mpr
X : Type
f : Filter X
g : X → ℂ
⊢ Tendsto (fun x => g x) f atInf → Tendsto (fun x => ↑(g x)) f (𝓝 ∞)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.isOpenMap_coe | [332, 1] | [340, 86] | intro s o | X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
⊢ IsOpenMap fun z => ↑z | X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
⊢ IsOpen ((fun z => ↑z) '' s) | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
⊢ IsOpenMap fun z => ↑z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.isOpenMap_coe | [332, 1] | [340, 86] | have e : (fun z : ℂ ↦ (z : 𝕊)) '' s = {∞}ᶜ ∩ OnePoint.toComplex ⁻¹' s := by
apply Set.ext; intro z
simp only [mem_image, mem_inter_iff, mem_compl_singleton_iff, mem_preimage]
constructor
intro ⟨x, m, e⟩; simp only [← e, toComplex_coe, m, and_true_iff]; exact inf_ne_coe.symm
intro ⟨n, m⟩; use z.toComplex, m, coe_toComplex n | X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
⊢ IsOpen ((fun z => ↑z) '' s) | X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
e : (fun z => ↑z) '' s = {∞}ᶜ ∩ OnePoint.toComplex ⁻¹' s
⊢ IsOpen ((fun z => ↑z) '' s) | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
⊢ IsOpen ((fun z => ↑z) '' s)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.isOpenMap_coe | [332, 1] | [340, 86] | rw [e] | X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
e : (fun z => ↑z) '' s = {∞}ᶜ ∩ OnePoint.toComplex ⁻¹' s
⊢ IsOpen ((fun z => ↑z) '' s) | X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
e : (fun z => ↑z) '' s = {∞}ᶜ ∩ OnePoint.toComplex ⁻¹' s
⊢ IsOpen ({∞}ᶜ ∩ OnePoint.toComplex ⁻¹' s) | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
e : (fun z => ↑z) '' s = {∞}ᶜ ∩ OnePoint.toComplex ⁻¹' s
⊢ IsOpen ((fun z => ↑z) '' s)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.isOpenMap_coe | [332, 1] | [340, 86] | exact continuousOn_toComplex.isOpen_inter_preimage isOpen_compl_singleton o | X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
e : (fun z => ↑z) '' s = {∞}ᶜ ∩ OnePoint.toComplex ⁻¹' s
⊢ IsOpen ({∞}ᶜ ∩ OnePoint.toComplex ⁻¹' s) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
e : (fun z => ↑z) '' s = {∞}ᶜ ∩ OnePoint.toComplex ⁻¹' s
⊢ IsOpen ({∞}ᶜ ∩ OnePoint.toComplex ⁻¹' s)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.isOpenMap_coe | [332, 1] | [340, 86] | apply Set.ext | X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
⊢ (fun z => ↑z) '' s = {∞}ᶜ ∩ OnePoint.toComplex ⁻¹' s | case h
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
⊢ ∀ (x : 𝕊), x ∈ (fun z => ↑z) '' s ↔ x ∈ {∞}ᶜ ∩ OnePoint.toComplex ⁻¹' s | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
⊢ (fun z => ↑z) '' s = {∞}ᶜ ∩ OnePoint.toComplex ⁻¹' s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.isOpenMap_coe | [332, 1] | [340, 86] | intro z | case h
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
⊢ ∀ (x : 𝕊), x ∈ (fun z => ↑z) '' s ↔ x ∈ {∞}ᶜ ∩ OnePoint.toComplex ⁻¹' s | case h
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
⊢ z ∈ (fun z => ↑z) '' s ↔ z ∈ {∞}ᶜ ∩ OnePoint.toComplex ⁻¹' s | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
⊢ ∀ (x : 𝕊), x ∈ (fun z => ↑z) '' s ↔ x ∈ {∞}ᶜ ∩ OnePoint.toComplex ⁻¹' s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.isOpenMap_coe | [332, 1] | [340, 86] | simp only [mem_image, mem_inter_iff, mem_compl_singleton_iff, mem_preimage] | case h
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
⊢ z ∈ (fun z => ↑z) '' s ↔ z ∈ {∞}ᶜ ∩ OnePoint.toComplex ⁻¹' s | case h
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
⊢ (∃ x ∈ s, ↑x = z) ↔ z ≠ ∞ ∧ z.toComplex ∈ s | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
⊢ z ∈ (fun z => ↑z) '' s ↔ z ∈ {∞}ᶜ ∩ OnePoint.toComplex ⁻¹' s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.isOpenMap_coe | [332, 1] | [340, 86] | constructor | case h
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
⊢ (∃ x ∈ s, ↑x = z) ↔ z ≠ ∞ ∧ z.toComplex ∈ s | case h.mp
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
⊢ (∃ x ∈ s, ↑x = z) → z ≠ ∞ ∧ z.toComplex ∈ s
case h.mpr
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
⊢ z ≠ ∞ ∧ z.toComplex ∈ s → ∃ x ∈ s, ↑x = z | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
⊢ (∃ x ∈ s, ↑x = z) ↔ z ≠ ∞ ∧ z.toComplex ∈ s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.isOpenMap_coe | [332, 1] | [340, 86] | intro ⟨x, m, e⟩ | case h.mp
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
⊢ (∃ x ∈ s, ↑x = z) → z ≠ ∞ ∧ z.toComplex ∈ s
case h.mpr
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
⊢ z ≠ ∞ ∧ z.toComplex ∈ s → ∃ x ∈ s, ↑x = z | case h.mp
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
x : ℂ
m : x ∈ s
e : ↑x = z
⊢ z ≠ ∞ ∧ z.toComplex ∈ s
case h.mpr
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
⊢ z ≠ ∞ ∧ z.toComplex ∈ s → ∃ x ∈ s, ↑x = z | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mp
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
⊢ (∃ x ∈ s, ↑x = z) → z ≠ ∞ ∧ z.toComplex ∈ s
case h.mpr
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
⊢ z ≠ ∞ ∧ z.toComplex ∈ s → ∃ x ∈ s, ↑x = z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.isOpenMap_coe | [332, 1] | [340, 86] | simp only [← e, toComplex_coe, m, and_true_iff] | case h.mp
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
x : ℂ
m : x ∈ s
e : ↑x = z
⊢ z ≠ ∞ ∧ z.toComplex ∈ s
case h.mpr
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
⊢ z ≠ ∞ ∧ z.toComplex ∈ s → ∃ x ∈ s, ↑x = z | case h.mp
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
x : ℂ
m : x ∈ s
e : ↑x = z
⊢ ↑x ≠ ∞
case h.mpr
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
⊢ z ≠ ∞ ∧ z.toComplex ∈ s → ∃ x ∈ s, ↑x = z | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mp
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
x : ℂ
m : x ∈ s
e : ↑x = z
⊢ z ≠ ∞ ∧ z.toComplex ∈ s
case h.mpr
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
⊢ z ≠ ∞ ∧ z.toComplex ∈ s → ∃ x ∈ s, ↑x = z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.isOpenMap_coe | [332, 1] | [340, 86] | exact inf_ne_coe.symm | case h.mp
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
x : ℂ
m : x ∈ s
e : ↑x = z
⊢ ↑x ≠ ∞
case h.mpr
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
⊢ z ≠ ∞ ∧ z.toComplex ∈ s → ∃ x ∈ s, ↑x = z | case h.mpr
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
⊢ z ≠ ∞ ∧ z.toComplex ∈ s → ∃ x ∈ s, ↑x = z | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mp
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
x : ℂ
m : x ∈ s
e : ↑x = z
⊢ ↑x ≠ ∞
case h.mpr
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
⊢ z ≠ ∞ ∧ z.toComplex ∈ s → ∃ x ∈ s, ↑x = z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.isOpenMap_coe | [332, 1] | [340, 86] | intro ⟨n, m⟩ | case h.mpr
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
⊢ z ≠ ∞ ∧ z.toComplex ∈ s → ∃ x ∈ s, ↑x = z | case h.mpr
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
n : z ≠ ∞
m : z.toComplex ∈ s
⊢ ∃ x ∈ s, ↑x = z | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mpr
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
⊢ z ≠ ∞ ∧ z.toComplex ∈ s → ∃ x ∈ s, ↑x = z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.isOpenMap_coe | [332, 1] | [340, 86] | use z.toComplex, m, coe_toComplex n | case h.mpr
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
n : z ≠ ∞
m : z.toComplex ∈ s
⊢ ∃ x ∈ s, ↑x = z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mpr
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
o : IsOpen s
z : 𝕊
n : z ≠ ∞
m : z.toComplex ∈ s
⊢ ∃ x ∈ s, ↑x = z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.prod_nhds_eq | [342, 1] | [345, 65] | refine le_antisymm ?_ (continuousAt_fst.prod (continuous_coe.continuousAt.comp continuousAt_snd)) | X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
x : X
z : ℂ
⊢ 𝓝 (x, ↑z) = Filter.map (fun p => (p.1, ↑p.2)) (𝓝 (x, z)) | X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
x : X
z : ℂ
⊢ 𝓝 (x, ↑z) ≤ Filter.map (fun p => (p.1, ↑p.2)) (𝓝 (x, z)) | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
x : X
z : ℂ
⊢ 𝓝 (x, ↑z) = Filter.map (fun p => (p.1, ↑p.2)) (𝓝 (x, z))
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.prod_nhds_eq | [342, 1] | [345, 65] | apply IsOpenMap.nhds_le | X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
x : X
z : ℂ
⊢ 𝓝 (x, ↑z) ≤ Filter.map (fun p => (p.1, ↑p.2)) (𝓝 (x, z)) | case hf
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
x : X
z : ℂ
⊢ IsOpenMap fun p => (p.1, ↑p.2) | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
x : X
z : ℂ
⊢ 𝓝 (x, ↑z) ≤ Filter.map (fun p => (p.1, ↑p.2)) (𝓝 (x, z))
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.prod_nhds_eq | [342, 1] | [345, 65] | exact IsOpenMap.id.prod isOpenMap_coe | case hf
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
x : X
z : ℂ
⊢ IsOpenMap fun p => (p.1, ↑p.2) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case hf
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
x : X
z : ℂ
⊢ IsOpenMap fun p => (p.1, ↑p.2)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.mem_inf_of_mem_atInf | [347, 1] | [351, 87] | simp only [OnePoint.nhds_infty_eq, Filter.mem_sup, Filter.coclosedCompact_eq_cocompact, ←
atInf_eq_cocompact, Filter.mem_map] | X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
f : s ∈ atInf
⊢ (fun z => ↑z) '' s ∪ {∞} ∈ 𝓝 ∞ | X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
f : s ∈ atInf
⊢ OnePoint.some ⁻¹' ((fun z => ↑z) '' s ∪ {∞}) ∈ atInf ∧ (fun z => ↑z) '' s ∪ {∞} ∈ pure ∞ | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
f : s ∈ atInf
⊢ (fun z => ↑z) '' s ∪ {∞} ∈ 𝓝 ∞
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.mem_inf_of_mem_atInf | [347, 1] | [351, 87] | exact ⟨Filter.mem_of_superset f fun _ m ↦ Or.inl (mem_image_of_mem _ m), Or.inr rfl⟩ | X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
f : s ∈ atInf
⊢ OnePoint.some ⁻¹' ((fun z => ↑z) '' s ∪ {∞}) ∈ atInf ∧ (fun z => ↑z) '' s ∪ {∞} ∈ pure ∞ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set ℂ
f : s ∈ atInf
⊢ OnePoint.some ⁻¹' ((fun z => ↑z) '' s ∪ {∞}) ∈ atInf ∧ (fun z => ↑z) '' s ∪ {∞} ∈ pure ∞
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.prod_mem_inf_of_mem_atInf | [353, 1] | [366, 13] | rcases Filter.mem_prod_iff.mp f with ⟨t, tx, u, ui, sub⟩ | X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set (X × ℂ)
x : X
f : s ∈ (𝓝 x).prod atInf
⊢ (fun p => (p.1, ↑p.2)) '' s ∪ univ ×ˢ {∞} ∈ 𝓝 (x, ∞) | case intro.intro.intro.intro
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set (X × ℂ)
x : X
f : s ∈ (𝓝 x).prod atInf
t : Set X
tx : t ∈ 𝓝 x
u : Set ℂ
ui : u ∈ atInf
sub : t ×ˢ u ⊆ s
⊢ (fun p => (p.1, ↑p.2)) '' s ∪ univ ×ˢ {∞} ∈ 𝓝 (x, ∞) | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set (X × ℂ)
x : X
f : s ∈ (𝓝 x).prod atInf
⊢ (fun p => (p.1, ↑p.2)) '' s ∪ univ ×ˢ {∞} ∈ 𝓝 (x, ∞)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.prod_mem_inf_of_mem_atInf | [353, 1] | [366, 13] | rw [nhds_prod_eq] | case intro.intro.intro.intro
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set (X × ℂ)
x : X
f : s ∈ (𝓝 x).prod atInf
t : Set X
tx : t ∈ 𝓝 x
u : Set ℂ
ui : u ∈ atInf
sub : t ×ˢ u ⊆ s
⊢ (fun p => (p.1, ↑p.2)) '' s ∪ univ ×ˢ {∞} ∈ 𝓝 (x, ∞) | case intro.intro.intro.intro
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set (X × ℂ)
x : X
f : s ∈ (𝓝 x).prod atInf
t : Set X
tx : t ∈ 𝓝 x
u : Set ℂ
ui : u ∈ atInf
sub : t ×ˢ u ⊆ s
⊢ (fun p => (p.1, ↑p.2)) '' s ∪ univ ×ˢ {∞} ∈ 𝓝 x ×ˢ 𝓝 ∞ | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set (X × ℂ)
x : X
f : s ∈ (𝓝 x).prod atInf
t : Set X
tx : t ∈ 𝓝 x
u : Set ℂ
ui : u ∈ atInf
sub : t ×ˢ u ⊆ s
⊢ (fun p => (p.1, ↑p.2)) '' s ∪ univ ×ˢ {∞} ∈ 𝓝 (x, ∞)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.prod_mem_inf_of_mem_atInf | [353, 1] | [366, 13] | refine Filter.mem_prod_iff.mpr ⟨t, tx, (fun z : ℂ ↦ (z : 𝕊)) '' u ∪ {∞}, mem_inf_of_mem_atInf ui,
?_⟩ | case intro.intro.intro.intro
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set (X × ℂ)
x : X
f : s ∈ (𝓝 x).prod atInf
t : Set X
tx : t ∈ 𝓝 x
u : Set ℂ
ui : u ∈ atInf
sub : t ×ˢ u ⊆ s
⊢ (fun p => (p.1, ↑p.2)) '' s ∪ univ ×ˢ {∞} ∈ 𝓝 x ×ˢ 𝓝 ∞ | case intro.intro.intro.intro
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set (X × ℂ)
x : X
f : s ∈ (𝓝 x).prod atInf
t : Set X
tx : t ∈ 𝓝 x
u : Set ℂ
ui : u ∈ atInf
sub : t ×ˢ u ⊆ s
⊢ t ×ˢ ((fun z => ↑z) '' u ∪ {∞}) ⊆ (fun p => (p.1, ↑p.2)) '' s ∪ univ ×ˢ {∞} | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set (X × ℂ)
x : X
f : s ∈ (𝓝 x).prod atInf
t : Set X
tx : t ∈ 𝓝 x
u : Set ℂ
ui : u ∈ atInf
sub : t ×ˢ u ⊆ s
⊢ (fun p => (p.1, ↑p.2)) '' s ∪ univ ×ˢ {∞} ∈ 𝓝 x ×ˢ 𝓝 ∞
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/RiemannSphere.lean | RiemannSphere.prod_mem_inf_of_mem_atInf | [353, 1] | [366, 13] | intro ⟨y, z⟩ ⟨yt, m⟩ | case intro.intro.intro.intro
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set (X × ℂ)
x : X
f : s ∈ (𝓝 x).prod atInf
t : Set X
tx : t ∈ 𝓝 x
u : Set ℂ
ui : u ∈ atInf
sub : t ×ˢ u ⊆ s
⊢ t ×ˢ ((fun z => ↑z) '' u ∪ {∞}) ⊆ (fun p => (p.1, ↑p.2)) '' s ∪ univ ×ˢ {∞} | case intro.intro.intro.intro
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set (X × ℂ)
x : X
f : s ∈ (𝓝 x).prod atInf
t : Set X
tx : t ∈ 𝓝 x
u : Set ℂ
ui : u ∈ atInf
sub : t ×ˢ u ⊆ s
y : X
z : 𝕊
yt : (y, z).1 ∈ t
m : (y, z).2 ∈ (fun z => ↑z) '' u ∪ {∞}
⊢ (y, z) ∈ (fun p => (p.1, ↑p.2)) '' s ∪ univ ×ˢ {∞} | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro
X : Type
inst✝⁴ : TopologicalSpace X
Y : Type
inst✝³ : TopologicalSpace Y
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
s : Set (X × ℂ)
x : X
f : s ∈ (𝓝 x).prod atInf
t : Set X
tx : t ∈ 𝓝 x
u : Set ℂ
ui : u ∈ atInf
sub : t ×ˢ u ⊆ s
⊢ t ×ˢ ((fun z => ↑z) '' u ∪ {∞}) ⊆ (fun p => (p.1, ↑p.2)) '' s ∪ univ ×ˢ {∞}
TACTIC:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.