url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.prod_mem_inf_of_mem_atInf
[353, 1]
[366, 13]
simp only [mem_prod_eq, mem_image, mem_union, mem_singleton_iff, mem_univ, true_and_iff, Prod.ext_iff] at yt m ⊢
case intro.intro.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T s : Set (X × ℂ) x : X f : s ∈ (𝓝 x).prod atInf t : Set X tx : t ∈ 𝓝 x u : Set ℂ ui : u ∈ atInf sub : t ×ˢ u ⊆ s y : X z : 𝕊 yt : (y, z).1 ∈ t m : (y, z).2 ∈ (fun z => ↑z) '' u ∪ {∞} ⊢ (y, z) ∈ (fun p => (p.1, ↑p.2)) '' s ∪ univ ×ˢ {∞}
case intro.intro.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T s : Set (X × ℂ) x : X f : s ∈ (𝓝 x).prod atInf t : Set X tx : t ∈ 𝓝 x u : Set ℂ ui : u ∈ atInf sub : t ×ˢ u ⊆ s y : X z : 𝕊 yt : y ∈ t m : (∃ x ∈ u, ↑x = z) ∨ z = ∞ ⊢ (∃ x ∈ s, x.1 = y ∧ ↑x.2 = z) ∨ z = ∞
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T s : Set (X × ℂ) x : X f : s ∈ (𝓝 x).prod atInf t : Set X tx : t ∈ 𝓝 x u : Set ℂ ui : u ∈ atInf sub : t ×ˢ u ⊆ s y : X z : 𝕊 yt : (y, z).1 ∈ t m : (y, z).2 ∈ (fun z => ↑z) '' u ∪ {∞} ⊢ (y, z) ∈ (fun p => (p.1, ↑p.2)) '' s ∪ univ ×ˢ {∞} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.prod_mem_inf_of_mem_atInf
[353, 1]
[366, 13]
induction' z using OnePoint.rec with z
case intro.intro.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T s : Set (X × ℂ) x : X f : s ∈ (𝓝 x).prod atInf t : Set X tx : t ∈ 𝓝 x u : Set ℂ ui : u ∈ atInf sub : t ×ˢ u ⊆ s y : X z : 𝕊 yt : y ∈ t m : (∃ x ∈ u, ↑x = z) ∨ z = ∞ ⊢ (∃ x ∈ s, x.1 = y ∧ ↑x.2 = z) ∨ z = ∞
case intro.intro.intro.intro.h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T s : Set (X × ℂ) x : X f : s ∈ (𝓝 x).prod atInf t : Set X tx : t ∈ 𝓝 x u : Set ℂ ui : u ∈ atInf sub : t ×ˢ u ⊆ s y : X yt : y ∈ t m : (∃ x ∈ u, ↑x = ∞) ∨ ∞ = ∞ ⊢ (∃ x ∈ s, x.1 = y ∧ ↑x.2 = ∞) ∨ ∞ = ∞ case intro.intro.intro.intro.h₂ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T s : Set (X × ℂ) x : X f : s ∈ (𝓝 x).prod atInf t : Set X tx : t ∈ 𝓝 x u : Set ℂ ui : u ∈ atInf sub : t ×ˢ u ⊆ s y : X yt : y ∈ t z : ℂ m : (∃ x ∈ u, ↑x = ↑z) ∨ ↑z = ∞ ⊢ (∃ x ∈ s, x.1 = y ∧ ↑x.2 = ↑z) ∨ ↑z = ∞
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T s : Set (X × ℂ) x : X f : s ∈ (𝓝 x).prod atInf t : Set X tx : t ∈ 𝓝 x u : Set ℂ ui : u ∈ atInf sub : t ×ˢ u ⊆ s y : X z : 𝕊 yt : y ∈ t m : (∃ x ∈ u, ↑x = z) ∨ z = ∞ ⊢ (∃ x ∈ s, x.1 = y ∧ ↑x.2 = z) ∨ z = ∞ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.prod_mem_inf_of_mem_atInf
[353, 1]
[366, 13]
simp only [eq_self_iff_true, or_true_iff]
case intro.intro.intro.intro.h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T s : Set (X × ℂ) x : X f : s ∈ (𝓝 x).prod atInf t : Set X tx : t ∈ 𝓝 x u : Set ℂ ui : u ∈ atInf sub : t ×ˢ u ⊆ s y : X yt : y ∈ t m : (∃ x ∈ u, ↑x = ∞) ∨ ∞ = ∞ ⊢ (∃ x ∈ s, x.1 = y ∧ ↑x.2 = ∞) ∨ ∞ = ∞
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T s : Set (X × ℂ) x : X f : s ∈ (𝓝 x).prod atInf t : Set X tx : t ∈ 𝓝 x u : Set ℂ ui : u ∈ atInf sub : t ×ˢ u ⊆ s y : X yt : y ∈ t m : (∃ x ∈ u, ↑x = ∞) ∨ ∞ = ∞ ⊢ (∃ x ∈ s, x.1 = y ∧ ↑x.2 = ∞) ∨ ∞ = ∞ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.prod_mem_inf_of_mem_atInf
[353, 1]
[366, 13]
simp only [coe_eq_inf_iff, or_false_iff, coe_eq_coe] at m ⊢
case intro.intro.intro.intro.h₂ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T s : Set (X × ℂ) x : X f : s ∈ (𝓝 x).prod atInf t : Set X tx : t ∈ 𝓝 x u : Set ℂ ui : u ∈ atInf sub : t ×ˢ u ⊆ s y : X yt : y ∈ t z : ℂ m : (∃ x ∈ u, ↑x = ↑z) ∨ ↑z = ∞ ⊢ (∃ x ∈ s, x.1 = y ∧ ↑x.2 = ↑z) ∨ ↑z = ∞
case intro.intro.intro.intro.h₂ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T s : Set (X × ℂ) x : X f : s ∈ (𝓝 x).prod atInf t : Set X tx : t ∈ 𝓝 x u : Set ℂ ui : u ∈ atInf sub : t ×ˢ u ⊆ s y : X yt : y ∈ t z : ℂ m : ∃ x ∈ u, x = z ⊢ ∃ x ∈ s, x.1 = y ∧ x.2 = z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.h₂ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T s : Set (X × ℂ) x : X f : s ∈ (𝓝 x).prod atInf t : Set X tx : t ∈ 𝓝 x u : Set ℂ ui : u ∈ atInf sub : t ×ˢ u ⊆ s y : X yt : y ∈ t z : ℂ m : (∃ x ∈ u, ↑x = ↑z) ∨ ↑z = ∞ ⊢ (∃ x ∈ s, x.1 = y ∧ ↑x.2 = ↑z) ∨ ↑z = ∞ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.prod_mem_inf_of_mem_atInf
[353, 1]
[366, 13]
rcases m with ⟨w, wu, wz⟩
case intro.intro.intro.intro.h₂ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T s : Set (X × ℂ) x : X f : s ∈ (𝓝 x).prod atInf t : Set X tx : t ∈ 𝓝 x u : Set ℂ ui : u ∈ atInf sub : t ×ˢ u ⊆ s y : X yt : y ∈ t z : ℂ m : ∃ x ∈ u, x = z ⊢ ∃ x ∈ s, x.1 = y ∧ x.2 = z
case intro.intro.intro.intro.h₂.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T s : Set (X × ℂ) x : X f : s ∈ (𝓝 x).prod atInf t : Set X tx : t ∈ 𝓝 x u : Set ℂ ui : u ∈ atInf sub : t ×ˢ u ⊆ s y : X yt : y ∈ t z w : ℂ wu : w ∈ u wz : w = z ⊢ ∃ x ∈ s, x.1 = y ∧ x.2 = z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.h₂ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T s : Set (X × ℂ) x : X f : s ∈ (𝓝 x).prod atInf t : Set X tx : t ∈ 𝓝 x u : Set ℂ ui : u ∈ atInf sub : t ×ˢ u ⊆ s y : X yt : y ∈ t z : ℂ m : ∃ x ∈ u, x = z ⊢ ∃ x ∈ s, x.1 = y ∧ x.2 = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.prod_mem_inf_of_mem_atInf
[353, 1]
[366, 13]
refine ⟨⟨y, z⟩, sub (mk_mem_prod yt ?_), rfl, rfl⟩
case intro.intro.intro.intro.h₂.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T s : Set (X × ℂ) x : X f : s ∈ (𝓝 x).prod atInf t : Set X tx : t ∈ 𝓝 x u : Set ℂ ui : u ∈ atInf sub : t ×ˢ u ⊆ s y : X yt : y ∈ t z w : ℂ wu : w ∈ u wz : w = z ⊢ ∃ x ∈ s, x.1 = y ∧ x.2 = z
case intro.intro.intro.intro.h₂.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T s : Set (X × ℂ) x : X f : s ∈ (𝓝 x).prod atInf t : Set X tx : t ∈ 𝓝 x u : Set ℂ ui : u ∈ atInf sub : t ×ˢ u ⊆ s y : X yt : y ∈ t z w : ℂ wu : w ∈ u wz : w = z ⊢ z ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.h₂.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T s : Set (X × ℂ) x : X f : s ∈ (𝓝 x).prod atInf t : Set X tx : t ∈ 𝓝 x u : Set ℂ ui : u ∈ atInf sub : t ×ˢ u ⊆ s y : X yt : y ∈ t z w : ℂ wu : w ∈ u wz : w = z ⊢ ∃ x ∈ s, x.1 = y ∧ x.2 = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.prod_mem_inf_of_mem_atInf
[353, 1]
[366, 13]
rw [← wz]
case intro.intro.intro.intro.h₂.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T s : Set (X × ℂ) x : X f : s ∈ (𝓝 x).prod atInf t : Set X tx : t ∈ 𝓝 x u : Set ℂ ui : u ∈ atInf sub : t ×ˢ u ⊆ s y : X yt : y ∈ t z w : ℂ wu : w ∈ u wz : w = z ⊢ z ∈ u
case intro.intro.intro.intro.h₂.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T s : Set (X × ℂ) x : X f : s ∈ (𝓝 x).prod atInf t : Set X tx : t ∈ 𝓝 x u : Set ℂ ui : u ∈ atInf sub : t ×ˢ u ⊆ s y : X yt : y ∈ t z w : ℂ wu : w ∈ u wz : w = z ⊢ w ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.h₂.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T s : Set (X × ℂ) x : X f : s ∈ (𝓝 x).prod atInf t : Set X tx : t ∈ 𝓝 x u : Set ℂ ui : u ∈ atInf sub : t ×ˢ u ⊆ s y : X yt : y ∈ t z w : ℂ wu : w ∈ u wz : w = z ⊢ z ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.prod_mem_inf_of_mem_atInf
[353, 1]
[366, 13]
exact wu
case intro.intro.intro.intro.h₂.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T s : Set (X × ℂ) x : X f : s ∈ (𝓝 x).prod atInf t : Set X tx : t ∈ 𝓝 x u : Set ℂ ui : u ∈ atInf sub : t ×ˢ u ⊆ s y : X yt : y ∈ t z w : ℂ wu : w ∈ u wz : w = z ⊢ w ∈ u
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.h₂.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T s : Set (X × ℂ) x : X f : s ∈ (𝓝 x).prod atInf t : Set X tx : t ∈ 𝓝 x u : Set ℂ ui : u ∈ atInf sub : t ×ˢ u ⊆ s y : X yt : y ∈ t z w : ℂ wu : w ∈ u wz : w = z ⊢ w ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_coe
[369, 1]
[373, 101]
rw [holomorphic_iff]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T ⊢ Holomorphic I I fun z => ↑z
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T ⊢ (Continuous fun z => ↑z) ∧ ∀ (x : ℂ), AnalyticAt ℂ (↑(extChartAt I ↑x) ∘ (fun z => ↑z) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T ⊢ Holomorphic I I fun z => ↑z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_coe
[369, 1]
[373, 101]
use continuous_coe
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T ⊢ (Continuous fun z => ↑z) ∧ ∀ (x : ℂ), AnalyticAt ℂ (↑(extChartAt I ↑x) ∘ (fun z => ↑z) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T ⊢ ∀ (x : ℂ), AnalyticAt ℂ (↑(extChartAt I ↑x) ∘ (fun z => ↑z) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T ⊢ (Continuous fun z => ↑z) ∧ ∀ (x : ℂ), AnalyticAt ℂ (↑(extChartAt I ↑x) ∘ (fun z => ↑z) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_coe
[369, 1]
[373, 101]
intro z
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T ⊢ ∀ (x : ℂ), AnalyticAt ℂ (↑(extChartAt I ↑x) ∘ (fun z => ↑z) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (↑(extChartAt I ↑z) ∘ (fun z => ↑z) ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) z)
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T ⊢ ∀ (x : ℂ), AnalyticAt ℂ (↑(extChartAt I ↑x) ∘ (fun z => ↑z) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_coe
[369, 1]
[373, 101]
simp only [extChartAt_coe, extChartAt_eq_refl, PartialEquiv.refl_symm, PartialEquiv.refl_coe, Function.comp_id, id_eq, Function.comp, PartialEquiv.invFun_as_coe]
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (↑(extChartAt I ↑z) ∘ (fun z => ↑z) ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) z)
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (fun x => ↑coePartialEquiv.symm ↑x) z
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (↑(extChartAt I ↑z) ∘ (fun z => ↑z) ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_coe
[369, 1]
[373, 101]
rw [← PartialEquiv.invFun_as_coe]
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (fun x => ↑coePartialEquiv.symm ↑x) z
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (fun x => coePartialEquiv.invFun ↑x) z
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (fun x => ↑coePartialEquiv.symm ↑x) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_coe
[369, 1]
[373, 101]
simp only [coePartialEquiv, toComplex_coe]
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (fun x => coePartialEquiv.invFun ↑x) z
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (fun x => x) z
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (fun x => coePartialEquiv.invFun ↑x) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_coe
[369, 1]
[373, 101]
apply analyticAt_id
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (fun x => x) z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (fun x => x) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_toComplex
[376, 1]
[380, 22]
rw [holomorphicAt_iff]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ HolomorphicAt I I OnePoint.toComplex ↑z
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ ContinuousAt OnePoint.toComplex ↑z ∧ AnalyticAt ℂ (↑(extChartAt I (↑z).toComplex) ∘ OnePoint.toComplex ∘ ↑(extChartAt I ↑z).symm) (↑(extChartAt I ↑z) ↑z)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ HolomorphicAt I I OnePoint.toComplex ↑z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_toComplex
[376, 1]
[380, 22]
use continuousAt_toComplex
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ ContinuousAt OnePoint.toComplex ↑z ∧ AnalyticAt ℂ (↑(extChartAt I (↑z).toComplex) ∘ OnePoint.toComplex ∘ ↑(extChartAt I ↑z).symm) (↑(extChartAt I ↑z) ↑z)
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (↑(extChartAt I (↑z).toComplex) ∘ OnePoint.toComplex ∘ ↑(extChartAt I ↑z).symm) (↑(extChartAt I ↑z) ↑z)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ ContinuousAt OnePoint.toComplex ↑z ∧ AnalyticAt ℂ (↑(extChartAt I (↑z).toComplex) ∘ OnePoint.toComplex ∘ ↑(extChartAt I ↑z).symm) (↑(extChartAt I ↑z) ↑z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_toComplex
[376, 1]
[380, 22]
simp only [toComplex_coe, Function.comp, extChartAt_coe, extChartAt_eq_refl, PartialEquiv.refl_coe, id, PartialEquiv.symm_symm, coePartialEquiv_apply, coePartialEquiv_symm_apply]
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (↑(extChartAt I (↑z).toComplex) ∘ OnePoint.toComplex ∘ ↑(extChartAt I ↑z).symm) (↑(extChartAt I ↑z) ↑z)
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (fun x => x) z
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (↑(extChartAt I (↑z).toComplex) ∘ OnePoint.toComplex ∘ ↑(extChartAt I ↑z).symm) (↑(extChartAt I ↑z) ↑z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_toComplex
[376, 1]
[380, 22]
apply analyticAt_id
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (fun x => x) z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (fun x => x) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_inv
[383, 1]
[399, 63]
rw [holomorphic_iff]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T ⊢ Holomorphic I I fun z => z⁻¹
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T ⊢ (Continuous fun z => z⁻¹) ∧ ∀ (x : 𝕊), AnalyticAt ℂ (↑(extChartAt I x⁻¹) ∘ (fun z => z⁻¹) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T ⊢ Holomorphic I I fun z => z⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_inv
[383, 1]
[399, 63]
use continuous_inv
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T ⊢ (Continuous fun z => z⁻¹) ∧ ∀ (x : 𝕊), AnalyticAt ℂ (↑(extChartAt I x⁻¹) ∘ (fun z => z⁻¹) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T ⊢ ∀ (x : 𝕊), AnalyticAt ℂ (↑(extChartAt I x⁻¹) ∘ (fun z => z⁻¹) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T ⊢ (Continuous fun z => z⁻¹) ∧ ∀ (x : 𝕊), AnalyticAt ℂ (↑(extChartAt I x⁻¹) ∘ (fun z => z⁻¹) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_inv
[383, 1]
[399, 63]
intro z
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T ⊢ ∀ (x : 𝕊), AnalyticAt ℂ (↑(extChartAt I x⁻¹) ∘ (fun z => z⁻¹) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : 𝕊 ⊢ AnalyticAt ℂ (↑(extChartAt I z⁻¹) ∘ (fun z => z⁻¹) ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) z)
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T ⊢ ∀ (x : 𝕊), AnalyticAt ℂ (↑(extChartAt I x⁻¹) ∘ (fun z => z⁻¹) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_inv
[383, 1]
[399, 63]
induction' z using OnePoint.rec with z
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : 𝕊 ⊢ AnalyticAt ℂ (↑(extChartAt I z⁻¹) ∘ (fun z => z⁻¹) ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) z)
case right.h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T ⊢ AnalyticAt ℂ (↑(extChartAt I ∞⁻¹) ∘ (fun z => z⁻¹) ∘ ↑(extChartAt I ∞).symm) (↑(extChartAt I ∞) ∞) case right.h₂ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (↑(extChartAt I (↑z)⁻¹) ∘ (fun z => z⁻¹) ∘ ↑(extChartAt I ↑z).symm) (↑(extChartAt I ↑z) ↑z)
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : 𝕊 ⊢ AnalyticAt ℂ (↑(extChartAt I z⁻¹) ∘ (fun z => z⁻¹) ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_inv
[383, 1]
[399, 63]
simp only [inv_inf, extChartAt_inf, ← coe_zero, extChartAt_coe, Function.comp, PartialEquiv.trans_apply, Equiv.toPartialEquiv_apply, invEquiv_apply, coePartialEquiv_symm_apply, toComplex_coe, PartialEquiv.coe_trans_symm, PartialEquiv.symm_symm, coePartialEquiv_apply, Equiv.toPartialEquiv_symm_apply, invEquiv_symm, inv_inv]
case right.h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T ⊢ AnalyticAt ℂ (↑(extChartAt I ∞⁻¹) ∘ (fun z => z⁻¹) ∘ ↑(extChartAt I ∞).symm) (↑(extChartAt I ∞) ∞)
case right.h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T ⊢ AnalyticAt ℂ (fun x => x) 0
Please generate a tactic in lean4 to solve the state. STATE: case right.h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T ⊢ AnalyticAt ℂ (↑(extChartAt I ∞⁻¹) ∘ (fun z => z⁻¹) ∘ ↑(extChartAt I ∞).symm) (↑(extChartAt I ∞) ∞) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_inv
[383, 1]
[399, 63]
apply analyticAt_id
case right.h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T ⊢ AnalyticAt ℂ (fun x => x) 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right.h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T ⊢ AnalyticAt ℂ (fun x => x) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_inv
[383, 1]
[399, 63]
simp only [extChartAt_coe, PartialEquiv.symm_symm, Function.comp, coePartialEquiv_apply, coePartialEquiv_symm_apply, toComplex_coe]
case right.h₂ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (↑(extChartAt I (↑z)⁻¹) ∘ (fun z => z⁻¹) ∘ ↑(extChartAt I ↑z).symm) (↑(extChartAt I ↑z) ↑z)
case right.h₂ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (fun x => ↑(extChartAt I (↑z)⁻¹) (↑x)⁻¹) z
Please generate a tactic in lean4 to solve the state. STATE: case right.h₂ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (↑(extChartAt I (↑z)⁻¹) ∘ (fun z => z⁻¹) ∘ ↑(extChartAt I ↑z).symm) (↑(extChartAt I ↑z) ↑z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_inv
[383, 1]
[399, 63]
by_cases z0 : z = 0
case right.h₂ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (fun x => ↑(extChartAt I (↑z)⁻¹) (↑x)⁻¹) z
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ z0 : z = 0 ⊢ AnalyticAt ℂ (fun x => ↑(extChartAt I (↑z)⁻¹) (↑x)⁻¹) z case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ z0 : ¬z = 0 ⊢ AnalyticAt ℂ (fun x => ↑(extChartAt I (↑z)⁻¹) (↑x)⁻¹) z
Please generate a tactic in lean4 to solve the state. STATE: case right.h₂ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ ⊢ AnalyticAt ℂ (fun x => ↑(extChartAt I (↑z)⁻¹) (↑x)⁻¹) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_inv
[383, 1]
[399, 63]
simp only [z0, coe_zero, extChartAt_inf, PartialEquiv.trans_apply, coePartialEquiv_symm_apply, invEquiv_apply, Equiv.toPartialEquiv_apply, inv_zero', inv_inv, toComplex_coe]
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ z0 : z = 0 ⊢ AnalyticAt ℂ (fun x => ↑(extChartAt I (↑z)⁻¹) (↑x)⁻¹) z
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ z0 : z = 0 ⊢ AnalyticAt ℂ (fun x => x) 0
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ z0 : z = 0 ⊢ AnalyticAt ℂ (fun x => ↑(extChartAt I (↑z)⁻¹) (↑x)⁻¹) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_inv
[383, 1]
[399, 63]
apply analyticAt_id
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ z0 : z = 0 ⊢ AnalyticAt ℂ (fun x => x) 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ z0 : z = 0 ⊢ AnalyticAt ℂ (fun x => x) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_inv
[383, 1]
[399, 63]
simp only [inv_coe z0, extChartAt_coe, coePartialEquiv_symm_apply]
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ z0 : ¬z = 0 ⊢ AnalyticAt ℂ (fun x => ↑(extChartAt I (↑z)⁻¹) (↑x)⁻¹) z
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ z0 : ¬z = 0 ⊢ AnalyticAt ℂ (fun x => (↑x)⁻¹.toComplex) z
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ z0 : ¬z = 0 ⊢ AnalyticAt ℂ (fun x => ↑(extChartAt I (↑z)⁻¹) (↑x)⁻¹) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_inv
[383, 1]
[399, 63]
refine ((analyticAt_id _ _).inv z0).congr ?_
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ z0 : ¬z = 0 ⊢ AnalyticAt ℂ (fun x => (↑x)⁻¹.toComplex) z
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ z0 : ¬z = 0 ⊢ (𝓝 z).EventuallyEq (fun x => (id x)⁻¹) fun x => (↑x)⁻¹.toComplex
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ z0 : ¬z = 0 ⊢ AnalyticAt ℂ (fun x => (↑x)⁻¹.toComplex) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_inv
[383, 1]
[399, 63]
refine (continuousAt_id.eventually_ne z0).mp (eventually_of_forall fun w w0 ↦ ?_)
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ z0 : ¬z = 0 ⊢ (𝓝 z).EventuallyEq (fun x => (id x)⁻¹) fun x => (↑x)⁻¹.toComplex
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ z0 : ¬z = 0 w : ℂ w0 : id w ≠ 0 ⊢ (fun x => (id x)⁻¹) w = (fun x => (↑x)⁻¹.toComplex) w
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ z0 : ¬z = 0 ⊢ (𝓝 z).EventuallyEq (fun x => (id x)⁻¹) fun x => (↑x)⁻¹.toComplex TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_inv
[383, 1]
[399, 63]
rw [id] at w0
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ z0 : ¬z = 0 w : ℂ w0 : id w ≠ 0 ⊢ (fun x => (id x)⁻¹) w = (fun x => (↑x)⁻¹.toComplex) w
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ z0 : ¬z = 0 w : ℂ w0 : w ≠ 0 ⊢ (fun x => (id x)⁻¹) w = (fun x => (↑x)⁻¹.toComplex) w
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ z0 : ¬z = 0 w : ℂ w0 : id w ≠ 0 ⊢ (fun x => (id x)⁻¹) w = (fun x => (↑x)⁻¹.toComplex) w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_inv
[383, 1]
[399, 63]
simp only [inv_coe w0, toComplex_coe, id]
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ z0 : ¬z = 0 w : ℂ w0 : w ≠ 0 ⊢ (fun x => (id x)⁻¹) w = (fun x => (↑x)⁻¹.toComplex) w
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T z : ℂ z0 : ¬z = 0 w : ℂ w0 : w ≠ 0 ⊢ (fun x => (id x)⁻¹) w = (fun x => (↑x)⁻¹.toComplex) w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuousAt_fill_coe
[426, 1]
[428, 69]
simp only [OnePoint.continuousAt_coe, Function.comp, fill_coe, fc]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → X y : X fc : ContinuousAt f z ⊢ ContinuousAt (fill f y) ↑z
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → X y : X fc : ContinuousAt f z ⊢ ContinuousAt (fill f y) ↑z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuousAt_fill_inf
[431, 1]
[434, 63]
simp only [OnePoint.continuousAt_infty', lift_inf, Filter.coclosedCompact_eq_cocompact, ← atInf_eq_cocompact, Function.comp, fill_coe, fill_inf, fi]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → X y : X fi : Tendsto f atInf (𝓝 y) ⊢ ContinuousAt (fill f y) ∞
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → X y : X fi : Tendsto f atInf (𝓝 y) ⊢ ContinuousAt (fill f y) ∞ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuous_fill
[437, 1]
[441, 48]
rw [continuous_iff_continuousAt]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → X y : X fc : Continuous f fi : Tendsto f atInf (𝓝 y) ⊢ Continuous (fill f y)
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → X y : X fc : Continuous f fi : Tendsto f atInf (𝓝 y) ⊢ ∀ (x : 𝕊), ContinuousAt (fill f y) x
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → X y : X fc : Continuous f fi : Tendsto f atInf (𝓝 y) ⊢ Continuous (fill f y) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuous_fill
[437, 1]
[441, 48]
intro z
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → X y : X fc : Continuous f fi : Tendsto f atInf (𝓝 y) ⊢ ∀ (x : 𝕊), ContinuousAt (fill f y) x
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → X y : X fc : Continuous f fi : Tendsto f atInf (𝓝 y) z : 𝕊 ⊢ ContinuousAt (fill f y) z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → X y : X fc : Continuous f fi : Tendsto f atInf (𝓝 y) ⊢ ∀ (x : 𝕊), ContinuousAt (fill f y) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuous_fill
[437, 1]
[441, 48]
induction z using OnePoint.rec
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → X y : X fc : Continuous f fi : Tendsto f atInf (𝓝 y) z : 𝕊 ⊢ ContinuousAt (fill f y) z
case h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → X y : X fc : Continuous f fi : Tendsto f atInf (𝓝 y) ⊢ ContinuousAt (fill f y) ∞ case h₂ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → X y : X fc : Continuous f fi : Tendsto f atInf (𝓝 y) x✝ : ℂ ⊢ ContinuousAt (fill f y) ↑x✝
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → X y : X fc : Continuous f fi : Tendsto f atInf (𝓝 y) z : 𝕊 ⊢ ContinuousAt (fill f y) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuous_fill
[437, 1]
[441, 48]
exact continuousAt_fill_inf fi
case h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → X y : X fc : Continuous f fi : Tendsto f atInf (𝓝 y) ⊢ ContinuousAt (fill f y) ∞
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → X y : X fc : Continuous f fi : Tendsto f atInf (𝓝 y) ⊢ ContinuousAt (fill f y) ∞ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuous_fill
[437, 1]
[441, 48]
exact continuousAt_fill_coe fc.continuousAt
case h₂ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → X y : X fc : Continuous f fi : Tendsto f atInf (𝓝 y) x✝ : ℂ ⊢ ContinuousAt (fill f y) ↑x✝
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h₂ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → X y : X fc : Continuous f fi : Tendsto f atInf (𝓝 y) x✝ : ℂ ⊢ ContinuousAt (fill f y) ↑x✝ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_coe
[444, 1]
[451, 28]
have e : (fun x : 𝕊 ↦ f x.toComplex) =ᶠ[𝓝 ↑z] fill f y := by simp only [OnePoint.nhds_coe_eq, Filter.EventuallyEq, Filter.eventually_map, toComplex_coe, fill_coe, eq_self_iff_true, Filter.eventually_true]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : HolomorphicAt I I f z ⊢ HolomorphicAt I I (fill f y) ↑z
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : HolomorphicAt I I f z e : (𝓝 ↑z).EventuallyEq (fun x => f x.toComplex) (fill f y) ⊢ HolomorphicAt I I (fill f y) ↑z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : HolomorphicAt I I f z ⊢ HolomorphicAt I I (fill f y) ↑z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_coe
[444, 1]
[451, 28]
refine HolomorphicAt.congr ?_ e
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : HolomorphicAt I I f z e : (𝓝 ↑z).EventuallyEq (fun x => f x.toComplex) (fill f y) ⊢ HolomorphicAt I I (fill f y) ↑z
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : HolomorphicAt I I f z e : (𝓝 ↑z).EventuallyEq (fun x => f x.toComplex) (fill f y) ⊢ HolomorphicAt I I (fun x => f x.toComplex) ↑z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : HolomorphicAt I I f z e : (𝓝 ↑z).EventuallyEq (fun x => f x.toComplex) (fill f y) ⊢ HolomorphicAt I I (fill f y) ↑z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_coe
[444, 1]
[451, 28]
refine fa.comp_of_eq holomorphicAt_toComplex ?_
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : HolomorphicAt I I f z e : (𝓝 ↑z).EventuallyEq (fun x => f x.toComplex) (fill f y) ⊢ HolomorphicAt I I (fun x => f x.toComplex) ↑z
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : HolomorphicAt I I f z e : (𝓝 ↑z).EventuallyEq (fun x => f x.toComplex) (fill f y) ⊢ (↑z).toComplex = z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : HolomorphicAt I I f z e : (𝓝 ↑z).EventuallyEq (fun x => f x.toComplex) (fill f y) ⊢ HolomorphicAt I I (fun x => f x.toComplex) ↑z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_coe
[444, 1]
[451, 28]
simp only [toComplex_coe]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : HolomorphicAt I I f z e : (𝓝 ↑z).EventuallyEq (fun x => f x.toComplex) (fill f y) ⊢ (↑z).toComplex = z
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : HolomorphicAt I I f z e : (𝓝 ↑z).EventuallyEq (fun x => f x.toComplex) (fill f y) ⊢ (↑z).toComplex = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_coe
[444, 1]
[451, 28]
simp only [OnePoint.nhds_coe_eq, Filter.EventuallyEq, Filter.eventually_map, toComplex_coe, fill_coe, eq_self_iff_true, Filter.eventually_true]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : HolomorphicAt I I f z ⊢ (𝓝 ↑z).EventuallyEq (fun x => f x.toComplex) (fill f y)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : HolomorphicAt I I f z ⊢ (𝓝 ↑z).EventuallyEq (fun x => f x.toComplex) (fill f y) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
rw [holomorphicAt_iff]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ HolomorphicAt I I (fill f y) ∞
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ContinuousAt (fill f y) ∞ ∧ AnalyticAt ℂ (↑(extChartAt I (fill f y ∞)) ∘ fill f y ∘ ↑(extChartAt I ∞).symm) (↑(extChartAt I ∞) ∞)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ HolomorphicAt I I (fill f y) ∞ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
use continuousAt_fill_inf fi
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ContinuousAt (fill f y) ∞ ∧ AnalyticAt ℂ (↑(extChartAt I (fill f y ∞)) ∘ fill f y ∘ ↑(extChartAt I ∞).symm) (↑(extChartAt I ∞) ∞)
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ AnalyticAt ℂ (↑(extChartAt I (fill f y ∞)) ∘ fill f y ∘ ↑(extChartAt I ∞).symm) (↑(extChartAt I ∞) ∞)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ContinuousAt (fill f y) ∞ ∧ AnalyticAt ℂ (↑(extChartAt I (fill f y ∞)) ∘ fill f y ∘ ↑(extChartAt I ∞).symm) (↑(extChartAt I ∞) ∞) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
simp only [Function.comp, extChartAt, PartialHomeomorph.extend, fill, rec_inf, modelWithCornersSelf_partialEquiv, PartialEquiv.trans_refl, chartAt_inf, PartialHomeomorph.symm_toPartialEquiv, PartialEquiv.symm_symm, PartialHomeomorph.toFun_eq_coe, invCoePartialHomeomorph_apply, PartialHomeomorph.coe_coe_symm, invCoePartialHomeomorph_symm_apply, inv_inf, toComplex_zero]
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ AnalyticAt ℂ (↑(extChartAt I (fill f y ∞)) ∘ fill f y ∘ ↑(extChartAt I ∞).symm) (↑(extChartAt I ∞) ∞)
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ AnalyticAt ℂ (fun x => ↑(chartAt ℂ y) (OnePoint.rec y f (↑x)⁻¹)) 0
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ AnalyticAt ℂ (↑(extChartAt I (fill f y ∞)) ∘ fill f y ∘ ↑(extChartAt I ∞).symm) (↑(extChartAt I ∞) ∞) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
rw [e]
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) e : (fun z => ↑(chartAt ℂ y) (OnePoint.rec y f (↑z)⁻¹)) = fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹) ⊢ AnalyticAt ℂ (fun x => ↑(chartAt ℂ y) (OnePoint.rec y f (↑x)⁻¹)) 0
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) e : (fun z => ↑(chartAt ℂ y) (OnePoint.rec y f (↑z)⁻¹)) = fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹) ⊢ AnalyticAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) 0
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) e : (fun z => ↑(chartAt ℂ y) (OnePoint.rec y f (↑z)⁻¹)) = fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹) ⊢ AnalyticAt ℂ (fun x => ↑(chartAt ℂ y) (OnePoint.rec y f (↑x)⁻¹)) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
clear e
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) e : (fun z => ↑(chartAt ℂ y) (OnePoint.rec y f (↑z)⁻¹)) = fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹) ⊢ AnalyticAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) 0
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ AnalyticAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) 0
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) e : (fun z => ↑(chartAt ℂ y) (OnePoint.rec y f (↑z)⁻¹)) = fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹) ⊢ AnalyticAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
apply Complex.analyticAt_of_differentiable_on_punctured_nhds_of_continuousAt
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ AnalyticAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) 0
case right.hd X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) z case right.hc X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ContinuousAt (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) 0
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ AnalyticAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
funext z
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ (fun z => ↑(chartAt ℂ y) (OnePoint.rec y f (↑z)⁻¹)) = fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ ⊢ ↑(chartAt ℂ y) (OnePoint.rec y f (↑z)⁻¹) = ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ (fun z => ↑(chartAt ℂ y) (OnePoint.rec y f (↑z)⁻¹)) = fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
by_cases z0 : z = 0
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ ⊢ ↑(chartAt ℂ y) (OnePoint.rec y f (↑z)⁻¹) = ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ z0 : z = 0 ⊢ ↑(chartAt ℂ y) (OnePoint.rec y f (↑z)⁻¹) = ↑(extChartAt I y) (if z = 0 then y else f z⁻¹) case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ z0 : ¬z = 0 ⊢ ↑(chartAt ℂ y) (OnePoint.rec y f (↑z)⁻¹) = ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ ⊢ ↑(chartAt ℂ y) (OnePoint.rec y f (↑z)⁻¹) = ↑(extChartAt I y) (if z = 0 then y else f z⁻¹) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
simp only [if_pos z0, z0, coe_zero, inv_zero', rec_inf, extChartAt, PartialHomeomorph.extend, modelWithCornersSelf_partialEquiv, PartialEquiv.trans_refl, PartialHomeomorph.toFun_eq_coe, if_true]
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ z0 : z = 0 ⊢ ↑(chartAt ℂ y) (OnePoint.rec y f (↑z)⁻¹) = ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ z0 : z = 0 ⊢ ↑(chartAt ℂ y) (OnePoint.rec y f (↑z)⁻¹) = ↑(extChartAt I y) (if z = 0 then y else f z⁻¹) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
simp only [inv_coe z0, rec_coe, extChartAt, PartialHomeomorph.extend, modelWithCornersSelf_partialEquiv, PartialEquiv.trans_refl, z0, ite_false, PartialHomeomorph.toFun_eq_coe]
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ z0 : ¬z = 0 ⊢ ↑(chartAt ℂ y) (OnePoint.rec y f (↑z)⁻¹) = ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ z0 : ¬z = 0 ⊢ ↑(chartAt ℂ y) (OnePoint.rec y f (↑z)⁻¹) = ↑(extChartAt I y) (if z = 0 then y else f z⁻¹) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
apply (inv_tendsto_atInf.eventually fa).mp
case right.hd X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) z
case right.hd X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ∀ᶠ (x : ℂ) in 𝓝[≠] 0, HolomorphicAt I I f x⁻¹ → DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) x
Please generate a tactic in lean4 to solve the state. STATE: case right.hd X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
apply (inv_tendsto_atInf.eventually (fi.eventually ((isOpen_extChartAt_source I y).eventually_mem (mem_extChartAt_source I y)))).mp
case right.hd X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ∀ᶠ (x : ℂ) in 𝓝[≠] 0, HolomorphicAt I I f x⁻¹ → DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) x
case right.hd X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ∀ᶠ (x : ℂ) in 𝓝[≠] 0, f x⁻¹ ∈ (extChartAt I y).source → HolomorphicAt I I f x⁻¹ → DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) x
Please generate a tactic in lean4 to solve the state. STATE: case right.hd X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ∀ᶠ (x : ℂ) in 𝓝[≠] 0, HolomorphicAt I I f x⁻¹ → DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
apply eventually_nhdsWithin_of_forall
case right.hd X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ∀ᶠ (x : ℂ) in 𝓝[≠] 0, f x⁻¹ ∈ (extChartAt I y).source → HolomorphicAt I I f x⁻¹ → DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) x
case right.hd.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ∀ x ∈ {0}ᶜ, f x⁻¹ ∈ (extChartAt I y).source → HolomorphicAt I I f x⁻¹ → DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) x
Please generate a tactic in lean4 to solve the state. STATE: case right.hd X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ∀ᶠ (x : ℂ) in 𝓝[≠] 0, f x⁻¹ ∈ (extChartAt I y).source → HolomorphicAt I I f x⁻¹ → DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
intro z z0 m fa
case right.hd.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ∀ x ∈ {0}ᶜ, f x⁻¹ ∈ (extChartAt I y).source → HolomorphicAt I I f x⁻¹ → DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) x
case right.hd.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ z0 : z ∈ {0}ᶜ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ ⊢ DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) z
Please generate a tactic in lean4 to solve the state. STATE: case right.hd.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ∀ x ∈ {0}ᶜ, f x⁻¹ ∈ (extChartAt I y).source → HolomorphicAt I I f x⁻¹ → DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
simp only [Set.mem_compl_iff, Set.mem_singleton_iff] at z0
case right.hd.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ z0 : z ∈ {0}ᶜ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ ⊢ DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) z
case right.hd.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 ⊢ DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) z
Please generate a tactic in lean4 to solve the state. STATE: case right.hd.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ z0 : z ∈ {0}ᶜ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ ⊢ DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
have e : (fun z ↦ extChartAt I y (if z = 0 then y else f z⁻¹)) =ᶠ[𝓝 z] fun z ↦ extChartAt I y (f z⁻¹) := by refine (continuousAt_id.eventually_ne z0).mp (eventually_of_forall fun w w0 ↦ ?_) simp only [Ne, id_eq] at w0; simp only [w0, if_false]
case right.hd.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 ⊢ DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) z
case right.hd.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 e : (𝓝 z).EventuallyEq (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) fun z => ↑(extChartAt I y) (f z⁻¹) ⊢ DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) z
Please generate a tactic in lean4 to solve the state. STATE: case right.hd.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 ⊢ DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
refine DifferentiableAt.congr_of_eventuallyEq ?_ e
case right.hd.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 e : (𝓝 z).EventuallyEq (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) fun z => ↑(extChartAt I y) (f z⁻¹) ⊢ DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) z
case right.hd.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 e : (𝓝 z).EventuallyEq (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) fun z => ↑(extChartAt I y) (f z⁻¹) ⊢ DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (f z⁻¹)) z
Please generate a tactic in lean4 to solve the state. STATE: case right.hd.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 e : (𝓝 z).EventuallyEq (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) fun z => ↑(extChartAt I y) (f z⁻¹) ⊢ DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
apply AnalyticAt.differentiableAt
case right.hd.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 e : (𝓝 z).EventuallyEq (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) fun z => ↑(extChartAt I y) (f z⁻¹) ⊢ DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (f z⁻¹)) z
case right.hd.h.a X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 e : (𝓝 z).EventuallyEq (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) fun z => ↑(extChartAt I y) (f z⁻¹) ⊢ AnalyticAt ℂ (fun z => ↑(extChartAt I y) (f z⁻¹)) z
Please generate a tactic in lean4 to solve the state. STATE: case right.hd.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 e : (𝓝 z).EventuallyEq (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) fun z => ↑(extChartAt I y) (f z⁻¹) ⊢ DifferentiableAt ℂ (fun z => ↑(extChartAt I y) (f z⁻¹)) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
apply HolomorphicAt.analyticAt I I
case right.hd.h.a X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 e : (𝓝 z).EventuallyEq (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) fun z => ↑(extChartAt I y) (f z⁻¹) ⊢ AnalyticAt ℂ (fun z => ↑(extChartAt I y) (f z⁻¹)) z
case right.hd.h.a X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 e : (𝓝 z).EventuallyEq (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) fun z => ↑(extChartAt I y) (f z⁻¹) ⊢ HolomorphicAt I I (fun z => ↑(extChartAt I y) (f z⁻¹)) z
Please generate a tactic in lean4 to solve the state. STATE: case right.hd.h.a X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 e : (𝓝 z).EventuallyEq (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) fun z => ↑(extChartAt I y) (f z⁻¹) ⊢ AnalyticAt ℂ (fun z => ↑(extChartAt I y) (f z⁻¹)) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
refine (HolomorphicAt.extChartAt ?_).comp ?_
case right.hd.h.a X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 e : (𝓝 z).EventuallyEq (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) fun z => ↑(extChartAt I y) (f z⁻¹) ⊢ HolomorphicAt I I (fun z => ↑(extChartAt I y) (f z⁻¹)) z
case right.hd.h.a.refine_1 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 e : (𝓝 z).EventuallyEq (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) fun z => ↑(extChartAt I y) (f z⁻¹) ⊢ f z⁻¹ ∈ (extChartAt I y).source case right.hd.h.a.refine_2 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 e : (𝓝 z).EventuallyEq (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) fun z => ↑(extChartAt I y) (f z⁻¹) ⊢ HolomorphicAt I I (fun z => f z⁻¹) z
Please generate a tactic in lean4 to solve the state. STATE: case right.hd.h.a X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 e : (𝓝 z).EventuallyEq (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) fun z => ↑(extChartAt I y) (f z⁻¹) ⊢ HolomorphicAt I I (fun z => ↑(extChartAt I y) (f z⁻¹)) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
exact m
case right.hd.h.a.refine_1 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 e : (𝓝 z).EventuallyEq (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) fun z => ↑(extChartAt I y) (f z⁻¹) ⊢ f z⁻¹ ∈ (extChartAt I y).source case right.hd.h.a.refine_2 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 e : (𝓝 z).EventuallyEq (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) fun z => ↑(extChartAt I y) (f z⁻¹) ⊢ HolomorphicAt I I (fun z => f z⁻¹) z
case right.hd.h.a.refine_2 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 e : (𝓝 z).EventuallyEq (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) fun z => ↑(extChartAt I y) (f z⁻¹) ⊢ HolomorphicAt I I (fun z => f z⁻¹) z
Please generate a tactic in lean4 to solve the state. STATE: case right.hd.h.a.refine_1 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 e : (𝓝 z).EventuallyEq (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) fun z => ↑(extChartAt I y) (f z⁻¹) ⊢ f z⁻¹ ∈ (extChartAt I y).source case right.hd.h.a.refine_2 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 e : (𝓝 z).EventuallyEq (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) fun z => ↑(extChartAt I y) (f z⁻¹) ⊢ HolomorphicAt I I (fun z => f z⁻¹) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
exact fa.comp (holomorphicAt_id.inv z0)
case right.hd.h.a.refine_2 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 e : (𝓝 z).EventuallyEq (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) fun z => ↑(extChartAt I y) (f z⁻¹) ⊢ HolomorphicAt I I (fun z => f z⁻¹) z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right.hd.h.a.refine_2 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 e : (𝓝 z).EventuallyEq (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) fun z => ↑(extChartAt I y) (f z⁻¹) ⊢ HolomorphicAt I I (fun z => f z⁻¹) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
refine (continuousAt_id.eventually_ne z0).mp (eventually_of_forall fun w w0 ↦ ?_)
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 ⊢ (𝓝 z).EventuallyEq (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) fun z => ↑(extChartAt I y) (f z⁻¹)
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 w : ℂ w0 : id w ≠ 0 ⊢ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) w = (fun z => ↑(extChartAt I y) (f z⁻¹)) w
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 ⊢ (𝓝 z).EventuallyEq (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) fun z => ↑(extChartAt I y) (f z⁻¹) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
simp only [Ne, id_eq] at w0
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 w : ℂ w0 : id w ≠ 0 ⊢ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) w = (fun z => ↑(extChartAt I y) (f z⁻¹)) w
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 w : ℂ w0 : ¬w = 0 ⊢ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) w = (fun z => ↑(extChartAt I y) (f z⁻¹)) w
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 w : ℂ w0 : id w ≠ 0 ⊢ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) w = (fun z => ↑(extChartAt I y) (f z⁻¹)) w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
simp only [w0, if_false]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 w : ℂ w0 : ¬w = 0 ⊢ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) w = (fun z => ↑(extChartAt I y) (f z⁻¹)) w
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa✝ : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ m : f z⁻¹ ∈ (extChartAt I y).source fa : HolomorphicAt I I f z⁻¹ z0 : ¬z = 0 w : ℂ w0 : ¬w = 0 ⊢ (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) w = (fun z => ↑(extChartAt I y) (f z⁻¹)) w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
refine (continuousAt_extChartAt' I ?_).comp ?_
case right.hc X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ContinuousAt (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) 0
case right.hc.refine_1 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ (if 0 = 0 then y else f 0⁻¹) ∈ (extChartAt I y).source case right.hc.refine_2 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ContinuousAt (fun z => if z = 0 then y else f z⁻¹) 0
Please generate a tactic in lean4 to solve the state. STATE: case right.hc X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ContinuousAt (fun z => ↑(extChartAt I y) (if z = 0 then y else f z⁻¹)) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
simp only [eq_self_iff_true, if_pos, mem_extChartAt_source]
case right.hc.refine_1 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ (if 0 = 0 then y else f 0⁻¹) ∈ (extChartAt I y).source
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right.hc.refine_1 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ (if 0 = 0 then y else f 0⁻¹) ∈ (extChartAt I y).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
simp only [← continuousWithinAt_compl_self, ContinuousWithinAt]
case right.hc.refine_2 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ContinuousAt (fun z => if z = 0 then y else f z⁻¹) 0
case right.hc.refine_2 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ Tendsto (fun z => if z = 0 then y else f z⁻¹) (𝓝[≠] 0) (𝓝 (if True then y else f 0⁻¹))
Please generate a tactic in lean4 to solve the state. STATE: case right.hc.refine_2 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ContinuousAt (fun z => if z = 0 then y else f z⁻¹) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
apply tendsto_nhdsWithin_congr (f := fun z ↦ f z⁻¹)
case right.hc.refine_2 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ Tendsto (fun z => if z = 0 then y else f z⁻¹) (𝓝[≠] 0) (𝓝 (if True then y else f 0⁻¹))
case right.hc.refine_2.hfg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ∀ x ∈ {0}ᶜ, f x⁻¹ = if x = 0 then y else f x⁻¹ case right.hc.refine_2.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ Tendsto (fun z => f z⁻¹) (𝓝[≠] 0) (𝓝 (if True then y else f 0⁻¹))
Please generate a tactic in lean4 to solve the state. STATE: case right.hc.refine_2 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ Tendsto (fun z => if z = 0 then y else f z⁻¹) (𝓝[≠] 0) (𝓝 (if True then y else f 0⁻¹)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
intro z z0
case right.hc.refine_2.hfg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ∀ x ∈ {0}ᶜ, f x⁻¹ = if x = 0 then y else f x⁻¹ case right.hc.refine_2.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ Tendsto (fun z => f z⁻¹) (𝓝[≠] 0) (𝓝 (if True then y else f 0⁻¹))
case right.hc.refine_2.hfg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ z0 : z ∈ {0}ᶜ ⊢ f z⁻¹ = if z = 0 then y else f z⁻¹ case right.hc.refine_2.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ Tendsto (fun z => f z⁻¹) (𝓝[≠] 0) (𝓝 (if True then y else f 0⁻¹))
Please generate a tactic in lean4 to solve the state. STATE: case right.hc.refine_2.hfg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ ∀ x ∈ {0}ᶜ, f x⁻¹ = if x = 0 then y else f x⁻¹ case right.hc.refine_2.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ Tendsto (fun z => f z⁻¹) (𝓝[≠] 0) (𝓝 (if True then y else f 0⁻¹)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
simp only [Set.mem_compl_iff, Set.mem_singleton_iff] at z0
case right.hc.refine_2.hfg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ z0 : z ∈ {0}ᶜ ⊢ f z⁻¹ = if z = 0 then y else f z⁻¹ case right.hc.refine_2.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ Tendsto (fun z => f z⁻¹) (𝓝[≠] 0) (𝓝 (if True then y else f 0⁻¹))
case right.hc.refine_2.hfg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ z0 : ¬z = 0 ⊢ f z⁻¹ = if z = 0 then y else f z⁻¹ case right.hc.refine_2.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ Tendsto (fun z => f z⁻¹) (𝓝[≠] 0) (𝓝 (if True then y else f 0⁻¹))
Please generate a tactic in lean4 to solve the state. STATE: case right.hc.refine_2.hfg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ z0 : z ∈ {0}ᶜ ⊢ f z⁻¹ = if z = 0 then y else f z⁻¹ case right.hc.refine_2.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ Tendsto (fun z => f z⁻¹) (𝓝[≠] 0) (𝓝 (if True then y else f 0⁻¹)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
simp only [z0, if_false]
case right.hc.refine_2.hfg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ z0 : ¬z = 0 ⊢ f z⁻¹ = if z = 0 then y else f z⁻¹ case right.hc.refine_2.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ Tendsto (fun z => f z⁻¹) (𝓝[≠] 0) (𝓝 (if True then y else f 0⁻¹))
case right.hc.refine_2.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ Tendsto (fun z => f z⁻¹) (𝓝[≠] 0) (𝓝 (if True then y else f 0⁻¹))
Please generate a tactic in lean4 to solve the state. STATE: case right.hc.refine_2.hfg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) z : ℂ z0 : ¬z = 0 ⊢ f z⁻¹ = if z = 0 then y else f z⁻¹ case right.hc.refine_2.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ Tendsto (fun z => f z⁻¹) (𝓝[≠] 0) (𝓝 (if True then y else f 0⁻¹)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_fill_inf
[454, 1]
[492, 53]
exact Filter.Tendsto.comp fi inv_tendsto_atInf
case right.hc.refine_2.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ Tendsto (fun z => f z⁻¹) (𝓝[≠] 0) (𝓝 (if True then y else f 0⁻¹))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right.hc.refine_2.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : ∀ᶠ (z : ℂ) in atInf, HolomorphicAt I I f z fi : Tendsto f atInf (𝓝 y) ⊢ Tendsto (fun z => f z⁻¹) (𝓝[≠] 0) (𝓝 (if True then y else f 0⁻¹)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_fill
[495, 1]
[499, 40]
intro z
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : Holomorphic I I f fi : Tendsto f atInf (𝓝 y) ⊢ Holomorphic I I (fill f y)
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa : Holomorphic I I f fi : Tendsto f atInf (𝓝 y) z : 𝕊 ⊢ HolomorphicAt I I (fill f y) z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : Holomorphic I I f fi : Tendsto f atInf (𝓝 y) ⊢ Holomorphic I I (fill f y) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_fill
[495, 1]
[499, 40]
induction z using OnePoint.rec
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa : Holomorphic I I f fi : Tendsto f atInf (𝓝 y) z : 𝕊 ⊢ HolomorphicAt I I (fill f y) z
case h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : Holomorphic I I f fi : Tendsto f atInf (𝓝 y) ⊢ HolomorphicAt I I (fill f y) ∞ case h₂ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : Holomorphic I I f fi : Tendsto f atInf (𝓝 y) x✝ : ℂ ⊢ HolomorphicAt I I (fill f y) ↑x✝
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z✝ : ℂ f : ℂ → T y : T fa : Holomorphic I I f fi : Tendsto f atInf (𝓝 y) z : 𝕊 ⊢ HolomorphicAt I I (fill f y) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_fill
[495, 1]
[499, 40]
exact holomorphicAt_fill_inf (eventually_of_forall fa) fi
case h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : Holomorphic I I f fi : Tendsto f atInf (𝓝 y) ⊢ HolomorphicAt I I (fill f y) ∞
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : Holomorphic I I f fi : Tendsto f atInf (𝓝 y) ⊢ HolomorphicAt I I (fill f y) ∞ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_fill
[495, 1]
[499, 40]
exact holomorphicAt_fill_coe (fa _)
case h₂ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : Holomorphic I I f fi : Tendsto f atInf (𝓝 y) x✝ : ℂ ⊢ HolomorphicAt I I (fill f y) ↑x✝
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h₂ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f✝ : ℂ → ℂ g : X → ℂ → ℂ y✝ : 𝕊 x : X z : ℂ f : ℂ → T y : T fa : Holomorphic I I f fi : Tendsto f atInf (𝓝 y) x✝ : ℂ ⊢ HolomorphicAt I I (fill f y) ↑x✝ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuousAt_lift_coe'
[502, 1]
[506, 50]
simp only [lift', ContinuousAt, uncurry, rec_coe, OnePoint.nhds_coe_eq, prod_nhds_eq, Filter.tendsto_map'_iff, Function.comp]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gc : ContinuousAt (uncurry g) (x, z) ⊢ ContinuousAt (uncurry (lift' g y)) (x, ↑z)
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gc : ContinuousAt (uncurry g) (x, z) ⊢ Tendsto (fun x => ↑(g x.1 x.2)) (𝓝 (x, z)) (Filter.map OnePoint.some (𝓝 (g x z)))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gc : ContinuousAt (uncurry g) (x, z) ⊢ ContinuousAt (uncurry (lift' g y)) (x, ↑z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuousAt_lift_coe'
[502, 1]
[506, 50]
exact Filter.Tendsto.comp Filter.tendsto_map gc
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gc : ContinuousAt (uncurry g) (x, z) ⊢ Tendsto (fun x => ↑(g x.1 x.2)) (𝓝 (x, z)) (Filter.map OnePoint.some (𝓝 (g x z)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gc : ContinuousAt (uncurry g) (x, z) ⊢ Tendsto (fun x => ↑(g x.1 x.2)) (𝓝 (x, z)) (Filter.map OnePoint.some (𝓝 (g x z))) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuousAt_lift_inf'
[509, 1]
[526, 45]
simp only [ContinuousAt, Filter.Tendsto, Filter.le_def, Filter.mem_map]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gi : Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf ⊢ ContinuousAt (uncurry (lift' g ∞)) (x, ∞)
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gi : Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf ⊢ ∀ x_1 ∈ 𝓝 (uncurry (lift' g ∞) (x, ∞)), uncurry (lift' g ∞) ⁻¹' x_1 ∈ 𝓝 (x, ∞)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gi : Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf ⊢ ContinuousAt (uncurry (lift' g ∞)) (x, ∞) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuousAt_lift_inf'
[509, 1]
[526, 45]
intro s m
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gi : Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf ⊢ ∀ x_1 ∈ 𝓝 (uncurry (lift' g ∞) (x, ∞)), uncurry (lift' g ∞) ⁻¹' x_1 ∈ 𝓝 (x, ∞)
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gi : Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf s : Set 𝕊 m : s ∈ 𝓝 (uncurry (lift' g ∞) (x, ∞)) ⊢ uncurry (lift' g ∞) ⁻¹' s ∈ 𝓝 (x, ∞)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gi : Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf ⊢ ∀ x_1 ∈ 𝓝 (uncurry (lift' g ∞) (x, ∞)), uncurry (lift' g ∞) ⁻¹' x_1 ∈ 𝓝 (x, ∞) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuousAt_lift_inf'
[509, 1]
[526, 45]
simp only [OnePoint.nhds_infty_eq, Filter.coclosedCompact_eq_cocompact, Filter.mem_sup, Filter.mem_map, Filter.mem_pure, ← atInf_eq_cocompact, lift', rec_inf, uncurry] at m
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gi : Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf s : Set 𝕊 m : s ∈ 𝓝 (uncurry (lift' g ∞) (x, ∞)) ⊢ uncurry (lift' g ∞) ⁻¹' s ∈ 𝓝 (x, ∞)
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gi : Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s ⊢ uncurry (lift' g ∞) ⁻¹' s ∈ 𝓝 (x, ∞)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gi : Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf s : Set 𝕊 m : s ∈ 𝓝 (uncurry (lift' g ∞) (x, ∞)) ⊢ uncurry (lift' g ∞) ⁻¹' s ∈ 𝓝 (x, ∞) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuousAt_lift_inf'
[509, 1]
[526, 45]
simp only [true_imp_iff, mem_setOf, uncurry, Tendsto] at gi
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gi : Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s ⊢ uncurry (lift' g ∞) ⁻¹' s ∈ 𝓝 (x, ∞)
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gi : Filter.map (uncurry g) ((𝓝 x).prod atInf) ≤ atInf s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s ⊢ uncurry (lift' g ∞) ⁻¹' s ∈ 𝓝 (x, ∞)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gi : Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s ⊢ uncurry (lift' g ∞) ⁻¹' s ∈ 𝓝 (x, ∞) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuousAt_lift_inf'
[509, 1]
[526, 45]
specialize gi m.1
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gi : Filter.map (uncurry g) ((𝓝 x).prod atInf) ≤ atInf s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s ⊢ uncurry (lift' g ∞) ⁻¹' s ∈ 𝓝 (x, ∞)
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s gi : OnePoint.some ⁻¹' s ∈ Filter.map (uncurry g) ((𝓝 x).prod atInf) ⊢ uncurry (lift' g ∞) ⁻¹' s ∈ 𝓝 (x, ∞)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gi : Filter.map (uncurry g) ((𝓝 x).prod atInf) ≤ atInf s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s ⊢ uncurry (lift' g ∞) ⁻¹' s ∈ 𝓝 (x, ∞) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuousAt_lift_inf'
[509, 1]
[526, 45]
simp only [Filter.mem_map, preimage_preimage] at gi
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s gi : OnePoint.some ⁻¹' s ∈ Filter.map (uncurry g) ((𝓝 x).prod atInf) ⊢ uncurry (lift' g ∞) ⁻¹' s ∈ 𝓝 (x, ∞)
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s gi : (fun x => ↑(uncurry g x)) ⁻¹' s ∈ (𝓝 x).prod atInf ⊢ uncurry (lift' g ∞) ⁻¹' s ∈ 𝓝 (x, ∞)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s gi : OnePoint.some ⁻¹' s ∈ Filter.map (uncurry g) ((𝓝 x).prod atInf) ⊢ uncurry (lift' g ∞) ⁻¹' s ∈ 𝓝 (x, ∞) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuousAt_lift_inf'
[509, 1]
[526, 45]
rw [e]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s gi : (fun x => ↑(uncurry g x)) ⁻¹' s ∈ (𝓝 x).prod atInf e : uncurry (lift' g ∞) ⁻¹' s = (fun x => (x.1, ↑x.2)) '' ((fun x => ↑(g x.1 x.2)) ⁻¹' s) ∪ univ ×ˢ {∞} ⊢ uncurry (lift' g ∞) ⁻¹' s ∈ 𝓝 (x, ∞)
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s gi : (fun x => ↑(uncurry g x)) ⁻¹' s ∈ (𝓝 x).prod atInf e : uncurry (lift' g ∞) ⁻¹' s = (fun x => (x.1, ↑x.2)) '' ((fun x => ↑(g x.1 x.2)) ⁻¹' s) ∪ univ ×ˢ {∞} ⊢ (fun x => (x.1, ↑x.2)) '' ((fun x => ↑(g x.1 x.2)) ⁻¹' s) ∪ univ ×ˢ {∞} ∈ 𝓝 (x, ∞)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s gi : (fun x => ↑(uncurry g x)) ⁻¹' s ∈ (𝓝 x).prod atInf e : uncurry (lift' g ∞) ⁻¹' s = (fun x => (x.1, ↑x.2)) '' ((fun x => ↑(g x.1 x.2)) ⁻¹' s) ∪ univ ×ˢ {∞} ⊢ uncurry (lift' g ∞) ⁻¹' s ∈ 𝓝 (x, ∞) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuousAt_lift_inf'
[509, 1]
[526, 45]
exact prod_mem_inf_of_mem_atInf gi
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s gi : (fun x => ↑(uncurry g x)) ⁻¹' s ∈ (𝓝 x).prod atInf e : uncurry (lift' g ∞) ⁻¹' s = (fun x => (x.1, ↑x.2)) '' ((fun x => ↑(g x.1 x.2)) ⁻¹' s) ∪ univ ×ˢ {∞} ⊢ (fun x => (x.1, ↑x.2)) '' ((fun x => ↑(g x.1 x.2)) ⁻¹' s) ∪ univ ×ˢ {∞} ∈ 𝓝 (x, ∞)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s gi : (fun x => ↑(uncurry g x)) ⁻¹' s ∈ (𝓝 x).prod atInf e : uncurry (lift' g ∞) ⁻¹' s = (fun x => (x.1, ↑x.2)) '' ((fun x => ↑(g x.1 x.2)) ⁻¹' s) ∪ univ ×ˢ {∞} ⊢ (fun x => (x.1, ↑x.2)) '' ((fun x => ↑(g x.1 x.2)) ⁻¹' s) ∪ univ ×ˢ {∞} ∈ 𝓝 (x, ∞) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuousAt_lift_inf'
[509, 1]
[526, 45]
apply Set.ext
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s gi : (fun x => ↑(uncurry g x)) ⁻¹' s ∈ (𝓝 x).prod atInf ⊢ uncurry (lift' g ∞) ⁻¹' s = (fun x => (x.1, ↑x.2)) '' ((fun x => ↑(g x.1 x.2)) ⁻¹' s) ∪ univ ×ˢ {∞}
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s gi : (fun x => ↑(uncurry g x)) ⁻¹' s ∈ (𝓝 x).prod atInf ⊢ ∀ (x : X × 𝕊), x ∈ uncurry (lift' g ∞) ⁻¹' s ↔ x ∈ (fun x => (x.1, ↑x.2)) '' ((fun x => ↑(g x.1 x.2)) ⁻¹' s) ∪ univ ×ˢ {∞}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s gi : (fun x => ↑(uncurry g x)) ⁻¹' s ∈ (𝓝 x).prod atInf ⊢ uncurry (lift' g ∞) ⁻¹' s = (fun x => (x.1, ↑x.2)) '' ((fun x => ↑(g x.1 x.2)) ⁻¹' s) ∪ univ ×ˢ {∞} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuousAt_lift_inf'
[509, 1]
[526, 45]
intro ⟨x, z⟩
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s gi : (fun x => ↑(uncurry g x)) ⁻¹' s ∈ (𝓝 x).prod atInf ⊢ ∀ (x : X × 𝕊), x ∈ uncurry (lift' g ∞) ⁻¹' s ↔ x ∈ (fun x => (x.1, ↑x.2)) '' ((fun x => ↑(g x.1 x.2)) ⁻¹' s) ∪ univ ×ˢ {∞}
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x✝ : X z✝ : ℂ s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s gi : (fun x => ↑(uncurry g x)) ⁻¹' s ∈ (𝓝 x✝).prod atInf x : X z : 𝕊 ⊢ (x, z) ∈ uncurry (lift' g ∞) ⁻¹' s ↔ (x, z) ∈ (fun x => (x.1, ↑x.2)) '' ((fun x => ↑(g x.1 x.2)) ⁻¹' s) ∪ univ ×ˢ {∞}
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s gi : (fun x => ↑(uncurry g x)) ⁻¹' s ∈ (𝓝 x).prod atInf ⊢ ∀ (x : X × 𝕊), x ∈ uncurry (lift' g ∞) ⁻¹' s ↔ x ∈ (fun x => (x.1, ↑x.2)) '' ((fun x => ↑(g x.1 x.2)) ⁻¹' s) ∪ univ ×ˢ {∞} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuousAt_lift_inf'
[509, 1]
[526, 45]
induction z using OnePoint.rec
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x✝ : X z✝ : ℂ s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s gi : (fun x => ↑(uncurry g x)) ⁻¹' s ∈ (𝓝 x✝).prod atInf x : X z : 𝕊 ⊢ (x, z) ∈ uncurry (lift' g ∞) ⁻¹' s ↔ (x, z) ∈ (fun x => (x.1, ↑x.2)) '' ((fun x => ↑(g x.1 x.2)) ⁻¹' s) ∪ univ ×ˢ {∞}
case h.h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x✝ : X z : ℂ s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s gi : (fun x => ↑(uncurry g x)) ⁻¹' s ∈ (𝓝 x✝).prod atInf x : X ⊢ (x, ∞) ∈ uncurry (lift' g ∞) ⁻¹' s ↔ (x, ∞) ∈ (fun x => (x.1, ↑x.2)) '' ((fun x => ↑(g x.1 x.2)) ⁻¹' s) ∪ univ ×ˢ {∞} case h.h₂ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x✝¹ : X z : ℂ s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s gi : (fun x => ↑(uncurry g x)) ⁻¹' s ∈ (𝓝 x✝¹).prod atInf x : X x✝ : ℂ ⊢ (x, ↑x✝) ∈ uncurry (lift' g ∞) ⁻¹' s ↔ (x, ↑x✝) ∈ (fun x => (x.1, ↑x.2)) '' ((fun x => ↑(g x.1 x.2)) ⁻¹' s) ∪ univ ×ˢ {∞}
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x✝ : X z✝ : ℂ s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s gi : (fun x => ↑(uncurry g x)) ⁻¹' s ∈ (𝓝 x✝).prod atInf x : X z : 𝕊 ⊢ (x, z) ∈ uncurry (lift' g ∞) ⁻¹' s ↔ (x, z) ∈ (fun x => (x.1, ↑x.2)) '' ((fun x => ↑(g x.1 x.2)) ⁻¹' s) ∪ univ ×ˢ {∞} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuousAt_lift_inf'
[509, 1]
[526, 45]
simp only [mem_preimage, mem_image, mem_union, mem_prod_eq, mem_univ, true_and_iff, mem_singleton_iff, eq_self_iff_true, or_true_iff, iff_true_iff, uncurry, lift', rec_inf, m.2]
case h.h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x✝ : X z : ℂ s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s gi : (fun x => ↑(uncurry g x)) ⁻¹' s ∈ (𝓝 x✝).prod atInf x : X ⊢ (x, ∞) ∈ uncurry (lift' g ∞) ⁻¹' s ↔ (x, ∞) ∈ (fun x => (x.1, ↑x.2)) '' ((fun x => ↑(g x.1 x.2)) ⁻¹' s) ∪ univ ×ˢ {∞}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x✝ : X z : ℂ s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s gi : (fun x => ↑(uncurry g x)) ⁻¹' s ∈ (𝓝 x✝).prod atInf x : X ⊢ (x, ∞) ∈ uncurry (lift' g ∞) ⁻¹' s ↔ (x, ∞) ∈ (fun x => (x.1, ↑x.2)) '' ((fun x => ↑(g x.1 x.2)) ⁻¹' s) ∪ univ ×ˢ {∞} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuousAt_lift_inf'
[509, 1]
[526, 45]
simp only [uncurry, lift', mem_preimage, rec_coe, prod_singleton, image_univ, mem_union, mem_image, Prod.ext_iff, coe_eq_coe, Prod.exists, exists_eq_right_right, exists_eq_right, mem_range, OnePoint.infty_ne_coe, and_false, exists_false, or_false]
case h.h₂ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x✝¹ : X z : ℂ s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s gi : (fun x => ↑(uncurry g x)) ⁻¹' s ∈ (𝓝 x✝¹).prod atInf x : X x✝ : ℂ ⊢ (x, ↑x✝) ∈ uncurry (lift' g ∞) ⁻¹' s ↔ (x, ↑x✝) ∈ (fun x => (x.1, ↑x.2)) '' ((fun x => ↑(g x.1 x.2)) ⁻¹' s) ∪ univ ×ˢ {∞}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.h₂ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x✝¹ : X z : ℂ s : Set 𝕊 m : OnePoint.some ⁻¹' s ∈ atInf ∧ ∞ ∈ s gi : (fun x => ↑(uncurry g x)) ⁻¹' s ∈ (𝓝 x✝¹).prod atInf x : X x✝ : ℂ ⊢ (x, ↑x✝) ∈ uncurry (lift' g ∞) ⁻¹' s ↔ (x, ↑x✝) ∈ (fun x => (x.1, ↑x.2)) '' ((fun x => ↑(g x.1 x.2)) ⁻¹' s) ∪ univ ×ˢ {∞} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuous_lift'
[529, 1]
[535, 49]
rw [continuous_iff_continuousOn_univ]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gc : Continuous (uncurry g) gi : ∀ (x : X), Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf ⊢ Continuous (uncurry (lift' g ∞))
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gc : Continuous (uncurry g) gi : ∀ (x : X), Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf ⊢ ContinuousOn (uncurry (lift' g ∞)) univ
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gc : Continuous (uncurry g) gi : ∀ (x : X), Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf ⊢ Continuous (uncurry (lift' g ∞)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuous_lift'
[529, 1]
[535, 49]
intro ⟨x, z⟩ _
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gc : Continuous (uncurry g) gi : ∀ (x : X), Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf ⊢ ContinuousOn (uncurry (lift' g ∞)) univ
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x✝ : X z✝ : ℂ gc : Continuous (uncurry g) gi : ∀ (x : X), Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf x : X z : 𝕊 a✝ : (x, z) ∈ univ ⊢ ContinuousWithinAt (uncurry (lift' g ∞)) univ (x, z)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ g : X → ℂ → ℂ y : 𝕊 x : X z : ℂ gc : Continuous (uncurry g) gi : ∀ (x : X), Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf ⊢ ContinuousOn (uncurry (lift' g ∞)) univ TACTIC: