url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuous_lift'
[529, 1]
[535, 49]
apply ContinuousAt.continuousWithinAt
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝ : X z✝ : β„‚ gc : Continuous (uncurry g) gi : βˆ€ (x : X), Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf x : X z : π•Š a✝ : (x, z) ∈ univ ⊒ ContinuousWithinAt (uncurry (lift' g ∞)) univ (x, z)
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝ : X z✝ : β„‚ gc : Continuous (uncurry g) gi : βˆ€ (x : X), Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf x : X z : π•Š a✝ : (x, z) ∈ univ ⊒ ContinuousAt (uncurry (lift' g ∞)) (x, z)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝ : X z✝ : β„‚ gc : Continuous (uncurry g) gi : βˆ€ (x : X), Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf x : X z : π•Š a✝ : (x, z) ∈ univ ⊒ ContinuousWithinAt (uncurry (lift' g ∞)) univ (x, z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuous_lift'
[529, 1]
[535, 49]
induction z using OnePoint.rec
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝ : X z✝ : β„‚ gc : Continuous (uncurry g) gi : βˆ€ (x : X), Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf x : X z : π•Š a✝ : (x, z) ∈ univ ⊒ ContinuousAt (uncurry (lift' g ∞)) (x, z)
case h.h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝ : X z : β„‚ gc : Continuous (uncurry g) gi : βˆ€ (x : X), Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf x : X a✝ : (x, ∞) ∈ univ ⊒ ContinuousAt (uncurry (lift' g ∞)) (x, ∞) case h.hβ‚‚ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝¹ : X z : β„‚ gc : Continuous (uncurry g) gi : βˆ€ (x : X), Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf x : X x✝ : β„‚ a✝ : (x, ↑x✝) ∈ univ ⊒ ContinuousAt (uncurry (lift' g ∞)) (x, ↑x✝)
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝ : X z✝ : β„‚ gc : Continuous (uncurry g) gi : βˆ€ (x : X), Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf x : X z : π•Š a✝ : (x, z) ∈ univ ⊒ ContinuousAt (uncurry (lift' g ∞)) (x, z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuous_lift'
[529, 1]
[535, 49]
exact continuousAt_lift_inf' (gi x)
case h.h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝ : X z : β„‚ gc : Continuous (uncurry g) gi : βˆ€ (x : X), Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf x : X a✝ : (x, ∞) ∈ univ ⊒ ContinuousAt (uncurry (lift' g ∞)) (x, ∞)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝ : X z : β„‚ gc : Continuous (uncurry g) gi : βˆ€ (x : X), Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf x : X a✝ : (x, ∞) ∈ univ ⊒ ContinuousAt (uncurry (lift' g ∞)) (x, ∞) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuous_lift'
[529, 1]
[535, 49]
exact continuousAt_lift_coe' gc.continuousAt
case h.hβ‚‚ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝¹ : X z : β„‚ gc : Continuous (uncurry g) gi : βˆ€ (x : X), Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf x : X x✝ : β„‚ a✝ : (x, ↑x✝) ∈ univ ⊒ ContinuousAt (uncurry (lift' g ∞)) (x, ↑x✝)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.hβ‚‚ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝¹ : X z : β„‚ gc : Continuous (uncurry g) gi : βˆ€ (x : X), Tendsto (uncurry g) ((𝓝 x).prod atInf) atInf x : X x✝ : β„‚ a✝ : (x, ↑x✝) ∈ univ ⊒ ContinuousAt (uncurry (lift' g ∞)) (x, ↑x✝) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuousAt_lift_coe
[538, 1]
[541, 90]
refine ContinuousAt.comp fc ?_
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fc : ContinuousAt f z ⊒ ContinuousAt (uncurry fun x => f) ((), z)
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fc : ContinuousAt f z ⊒ ContinuousAt (fun a => a.2) ((), z)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fc : ContinuousAt f z ⊒ ContinuousAt (uncurry fun x => f) ((), z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuousAt_lift_coe
[538, 1]
[541, 90]
exact continuousAt_snd
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fc : ContinuousAt f z ⊒ ContinuousAt (fun a => a.2) ((), z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fc : ContinuousAt f z ⊒ ContinuousAt (fun a => a.2) ((), z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuous_lift
[550, 1]
[554, 48]
rw [continuous_iff_continuousAt]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fc : Continuous f fi : Tendsto f atInf atInf ⊒ Continuous (lift f ∞)
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fc : Continuous f fi : Tendsto f atInf atInf ⊒ βˆ€ (x : π•Š), ContinuousAt (lift f ∞) x
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fc : Continuous f fi : Tendsto f atInf atInf ⊒ Continuous (lift f ∞) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuous_lift
[550, 1]
[554, 48]
intro z
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fc : Continuous f fi : Tendsto f atInf atInf ⊒ βˆ€ (x : π•Š), ContinuousAt (lift f ∞) x
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z✝ : β„‚ fc : Continuous f fi : Tendsto f atInf atInf z : π•Š ⊒ ContinuousAt (lift f ∞) z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fc : Continuous f fi : Tendsto f atInf atInf ⊒ βˆ€ (x : π•Š), ContinuousAt (lift f ∞) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuous_lift
[550, 1]
[554, 48]
induction z using OnePoint.rec
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z✝ : β„‚ fc : Continuous f fi : Tendsto f atInf atInf z : π•Š ⊒ ContinuousAt (lift f ∞) z
case h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fc : Continuous f fi : Tendsto f atInf atInf ⊒ ContinuousAt (lift f ∞) ∞ case hβ‚‚ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fc : Continuous f fi : Tendsto f atInf atInf x✝ : β„‚ ⊒ ContinuousAt (lift f ∞) ↑x✝
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z✝ : β„‚ fc : Continuous f fi : Tendsto f atInf atInf z : π•Š ⊒ ContinuousAt (lift f ∞) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuous_lift
[550, 1]
[554, 48]
exact continuousAt_lift_inf fi
case h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fc : Continuous f fi : Tendsto f atInf atInf ⊒ ContinuousAt (lift f ∞) ∞
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fc : Continuous f fi : Tendsto f atInf atInf ⊒ ContinuousAt (lift f ∞) ∞ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.continuous_lift
[550, 1]
[554, 48]
exact continuousAt_lift_coe fc.continuousAt
case hβ‚‚ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fc : Continuous f fi : Tendsto f atInf atInf x✝ : β„‚ ⊒ ContinuousAt (lift f ∞) ↑x✝
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hβ‚‚ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fc : Continuous f fi : Tendsto f atInf atInf x✝ : β„‚ ⊒ ContinuousAt (lift f ∞) ↑x✝ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_lift_coe
[557, 1]
[558, 100]
rw [lift_eq_fill]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : AnalyticAt β„‚ f z ⊒ HolomorphicAt I I (lift f y) ↑z
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : AnalyticAt β„‚ f z ⊒ HolomorphicAt I I (fill (fun z => ↑(f z)) y) ↑z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : AnalyticAt β„‚ f z ⊒ HolomorphicAt I I (lift f y) ↑z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_lift_coe
[557, 1]
[558, 100]
exact holomorphicAt_fill_coe ((holomorphic_coe _).comp (fa.holomorphicAt I I))
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : AnalyticAt β„‚ f z ⊒ HolomorphicAt I I (fill (fun z => ↑(f z)) y) ↑z
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : AnalyticAt β„‚ f z ⊒ HolomorphicAt I I (fill (fun z => ↑(f z)) y) ↑z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_lift_inf
[561, 1]
[565, 32]
rw [lift_eq_fill]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : βˆ€αΆ  (z : β„‚) in atInf, AnalyticAt β„‚ f z fi : Tendsto f atInf atInf ⊒ HolomorphicAt I I (lift f ∞) ∞
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : βˆ€αΆ  (z : β„‚) in atInf, AnalyticAt β„‚ f z fi : Tendsto f atInf atInf ⊒ HolomorphicAt I I (fill (fun z => ↑(f z)) ∞) ∞
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : βˆ€αΆ  (z : β„‚) in atInf, AnalyticAt β„‚ f z fi : Tendsto f atInf atInf ⊒ HolomorphicAt I I (lift f ∞) ∞ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_lift_inf
[561, 1]
[565, 32]
apply holomorphicAt_fill_inf
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : βˆ€αΆ  (z : β„‚) in atInf, AnalyticAt β„‚ f z fi : Tendsto f atInf atInf ⊒ HolomorphicAt I I (fill (fun z => ↑(f z)) ∞) ∞
case fa X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : βˆ€αΆ  (z : β„‚) in atInf, AnalyticAt β„‚ f z fi : Tendsto f atInf atInf ⊒ βˆ€αΆ  (z : β„‚) in atInf, HolomorphicAt I I (fun z => ↑(f z)) z case fi X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : βˆ€αΆ  (z : β„‚) in atInf, AnalyticAt β„‚ f z fi : Tendsto f atInf atInf ⊒ Tendsto (fun z => ↑(f z)) atInf (𝓝 ∞)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : βˆ€αΆ  (z : β„‚) in atInf, AnalyticAt β„‚ f z fi : Tendsto f atInf atInf ⊒ HolomorphicAt I I (fill (fun z => ↑(f z)) ∞) ∞ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_lift_inf
[561, 1]
[565, 32]
exact fa.mp (eventually_of_forall fun z fa ↦ (holomorphic_coe _).comp (fa.holomorphicAt I I))
case fa X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : βˆ€αΆ  (z : β„‚) in atInf, AnalyticAt β„‚ f z fi : Tendsto f atInf atInf ⊒ βˆ€αΆ  (z : β„‚) in atInf, HolomorphicAt I I (fun z => ↑(f z)) z case fi X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : βˆ€αΆ  (z : β„‚) in atInf, AnalyticAt β„‚ f z fi : Tendsto f atInf atInf ⊒ Tendsto (fun z => ↑(f z)) atInf (𝓝 ∞)
case fi X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : βˆ€αΆ  (z : β„‚) in atInf, AnalyticAt β„‚ f z fi : Tendsto f atInf atInf ⊒ Tendsto (fun z => ↑(f z)) atInf (𝓝 ∞)
Please generate a tactic in lean4 to solve the state. STATE: case fa X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : βˆ€αΆ  (z : β„‚) in atInf, AnalyticAt β„‚ f z fi : Tendsto f atInf atInf ⊒ βˆ€αΆ  (z : β„‚) in atInf, HolomorphicAt I I (fun z => ↑(f z)) z case fi X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : βˆ€αΆ  (z : β„‚) in atInf, AnalyticAt β„‚ f z fi : Tendsto f atInf atInf ⊒ Tendsto (fun z => ↑(f z)) atInf (𝓝 ∞) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicAt_lift_inf
[561, 1]
[565, 32]
exact coe_tendsto_inf.comp fi
case fi X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : βˆ€αΆ  (z : β„‚) in atInf, AnalyticAt β„‚ f z fi : Tendsto f atInf atInf ⊒ Tendsto (fun z => ↑(f z)) atInf (𝓝 ∞)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case fi X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : βˆ€αΆ  (z : β„‚) in atInf, AnalyticAt β„‚ f z fi : Tendsto f atInf atInf ⊒ Tendsto (fun z => ↑(f z)) atInf (𝓝 ∞) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_lift
[568, 1]
[572, 53]
intro z
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : AnalyticOn β„‚ f univ fi : Tendsto f atInf atInf ⊒ Holomorphic I I (lift f ∞)
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z✝ : β„‚ fa : AnalyticOn β„‚ f univ fi : Tendsto f atInf atInf z : π•Š ⊒ HolomorphicAt I I (lift f ∞) z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : AnalyticOn β„‚ f univ fi : Tendsto f atInf atInf ⊒ Holomorphic I I (lift f ∞) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_lift
[568, 1]
[572, 53]
induction z using OnePoint.rec
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z✝ : β„‚ fa : AnalyticOn β„‚ f univ fi : Tendsto f atInf atInf z : π•Š ⊒ HolomorphicAt I I (lift f ∞) z
case h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : AnalyticOn β„‚ f univ fi : Tendsto f atInf atInf ⊒ HolomorphicAt I I (lift f ∞) ∞ case hβ‚‚ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : AnalyticOn β„‚ f univ fi : Tendsto f atInf atInf x✝ : β„‚ ⊒ HolomorphicAt I I (lift f ∞) ↑x✝
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z✝ : β„‚ fa : AnalyticOn β„‚ f univ fi : Tendsto f atInf atInf z : π•Š ⊒ HolomorphicAt I I (lift f ∞) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_lift
[568, 1]
[572, 53]
exact holomorphicAt_lift_inf (eventually_of_forall fun z ↦ fa z (mem_univ _)) fi
case h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : AnalyticOn β„‚ f univ fi : Tendsto f atInf atInf ⊒ HolomorphicAt I I (lift f ∞) ∞
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : AnalyticOn β„‚ f univ fi : Tendsto f atInf atInf ⊒ HolomorphicAt I I (lift f ∞) ∞ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphic_lift
[568, 1]
[572, 53]
exact holomorphicAt_lift_coe (fa _ (mem_univ _))
case hβ‚‚ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : AnalyticOn β„‚ f univ fi : Tendsto f atInf atInf x✝ : β„‚ ⊒ HolomorphicAt I I (lift f ∞) ↑x✝
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hβ‚‚ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ fa : AnalyticOn β„‚ f univ fi : Tendsto f atInf atInf x✝ : β„‚ ⊒ HolomorphicAt I I (lift f ∞) ↑x✝ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicLift'
[575, 1]
[585, 69]
apply osgoodManifold (continuous_lift' fa.continuous fi)
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f✝ : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ f : β„‚ β†’ β„‚ β†’ β„‚ fa : AnalyticOn β„‚ (uncurry f) univ fi : βˆ€ (x : β„‚), Tendsto (uncurry f) ((𝓝 x).prod atInf) atInf ⊒ Holomorphic (I.prod I) I (uncurry (lift' f ∞))
case f0 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f✝ : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ f : β„‚ β†’ β„‚ β†’ β„‚ fa : AnalyticOn β„‚ (uncurry f) univ fi : βˆ€ (x : β„‚), Tendsto (uncurry f) ((𝓝 x).prod atInf) atInf ⊒ βˆ€ (x : β„‚) (y : π•Š), HolomorphicAt I I (fun x => uncurry (lift' f ∞) (x, y)) x case f1 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f✝ : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ f : β„‚ β†’ β„‚ β†’ β„‚ fa : AnalyticOn β„‚ (uncurry f) univ fi : βˆ€ (x : β„‚), Tendsto (uncurry f) ((𝓝 x).prod atInf) atInf ⊒ βˆ€ (x : β„‚) (y : π•Š), HolomorphicAt I I (fun y => uncurry (lift' f ∞) (x, y)) y
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f✝ : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ f : β„‚ β†’ β„‚ β†’ β„‚ fa : AnalyticOn β„‚ (uncurry f) univ fi : βˆ€ (x : β„‚), Tendsto (uncurry f) ((𝓝 x).prod atInf) atInf ⊒ Holomorphic (I.prod I) I (uncurry (lift' f ∞)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicLift'
[575, 1]
[585, 69]
intro x z
case f0 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f✝ : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ f : β„‚ β†’ β„‚ β†’ β„‚ fa : AnalyticOn β„‚ (uncurry f) univ fi : βˆ€ (x : β„‚), Tendsto (uncurry f) ((𝓝 x).prod atInf) atInf ⊒ βˆ€ (x : β„‚) (y : π•Š), HolomorphicAt I I (fun x => uncurry (lift' f ∞) (x, y)) x
case f0 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f✝ : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝ : X z✝ : β„‚ f : β„‚ β†’ β„‚ β†’ β„‚ fa : AnalyticOn β„‚ (uncurry f) univ fi : βˆ€ (x : β„‚), Tendsto (uncurry f) ((𝓝 x).prod atInf) atInf x : β„‚ z : π•Š ⊒ HolomorphicAt I I (fun x => uncurry (lift' f ∞) (x, z)) x
Please generate a tactic in lean4 to solve the state. STATE: case f0 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f✝ : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ f : β„‚ β†’ β„‚ β†’ β„‚ fa : AnalyticOn β„‚ (uncurry f) univ fi : βˆ€ (x : β„‚), Tendsto (uncurry f) ((𝓝 x).prod atInf) atInf ⊒ βˆ€ (x : β„‚) (y : π•Š), HolomorphicAt I I (fun x => uncurry (lift' f ∞) (x, y)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicLift'
[575, 1]
[585, 69]
induction z using OnePoint.rec
case f0 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f✝ : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝ : X z✝ : β„‚ f : β„‚ β†’ β„‚ β†’ β„‚ fa : AnalyticOn β„‚ (uncurry f) univ fi : βˆ€ (x : β„‚), Tendsto (uncurry f) ((𝓝 x).prod atInf) atInf x : β„‚ z : π•Š ⊒ HolomorphicAt I I (fun x => uncurry (lift' f ∞) (x, z)) x
case f0.h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f✝ : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝ : X z : β„‚ f : β„‚ β†’ β„‚ β†’ β„‚ fa : AnalyticOn β„‚ (uncurry f) univ fi : βˆ€ (x : β„‚), Tendsto (uncurry f) ((𝓝 x).prod atInf) atInf x : β„‚ ⊒ HolomorphicAt I I (fun x => uncurry (lift' f ∞) (x, ∞)) x case f0.hβ‚‚ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f✝ : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝¹ : X z : β„‚ f : β„‚ β†’ β„‚ β†’ β„‚ fa : AnalyticOn β„‚ (uncurry f) univ fi : βˆ€ (x : β„‚), Tendsto (uncurry f) ((𝓝 x).prod atInf) atInf x x✝ : β„‚ ⊒ HolomorphicAt I I (fun x => uncurry (lift' f ∞) (x, ↑x✝)) x
Please generate a tactic in lean4 to solve the state. STATE: case f0 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f✝ : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝ : X z✝ : β„‚ f : β„‚ β†’ β„‚ β†’ β„‚ fa : AnalyticOn β„‚ (uncurry f) univ fi : βˆ€ (x : β„‚), Tendsto (uncurry f) ((𝓝 x).prod atInf) atInf x : β„‚ z : π•Š ⊒ HolomorphicAt I I (fun x => uncurry (lift' f ∞) (x, z)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicLift'
[575, 1]
[585, 69]
simp only [uncurry, lift_inf']
case f0.h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f✝ : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝ : X z : β„‚ f : β„‚ β†’ β„‚ β†’ β„‚ fa : AnalyticOn β„‚ (uncurry f) univ fi : βˆ€ (x : β„‚), Tendsto (uncurry f) ((𝓝 x).prod atInf) atInf x : β„‚ ⊒ HolomorphicAt I I (fun x => uncurry (lift' f ∞) (x, ∞)) x
case f0.h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f✝ : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝ : X z : β„‚ f : β„‚ β†’ β„‚ β†’ β„‚ fa : AnalyticOn β„‚ (uncurry f) univ fi : βˆ€ (x : β„‚), Tendsto (uncurry f) ((𝓝 x).prod atInf) atInf x : β„‚ ⊒ HolomorphicAt I I (fun x => ∞) x
Please generate a tactic in lean4 to solve the state. STATE: case f0.h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f✝ : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝ : X z : β„‚ f : β„‚ β†’ β„‚ β†’ β„‚ fa : AnalyticOn β„‚ (uncurry f) univ fi : βˆ€ (x : β„‚), Tendsto (uncurry f) ((𝓝 x).prod atInf) atInf x : β„‚ ⊒ HolomorphicAt I I (fun x => uncurry (lift' f ∞) (x, ∞)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicLift'
[575, 1]
[585, 69]
exact holomorphicAt_const
case f0.h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f✝ : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝ : X z : β„‚ f : β„‚ β†’ β„‚ β†’ β„‚ fa : AnalyticOn β„‚ (uncurry f) univ fi : βˆ€ (x : β„‚), Tendsto (uncurry f) ((𝓝 x).prod atInf) atInf x : β„‚ ⊒ HolomorphicAt I I (fun x => ∞) x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case f0.h₁ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f✝ : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝ : X z : β„‚ f : β„‚ β†’ β„‚ β†’ β„‚ fa : AnalyticOn β„‚ (uncurry f) univ fi : βˆ€ (x : β„‚), Tendsto (uncurry f) ((𝓝 x).prod atInf) atInf x : β„‚ ⊒ HolomorphicAt I I (fun x => ∞) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicLift'
[575, 1]
[585, 69]
exact (holomorphic_coe _).comp ((fa _ (mem_univ ⟨_,_⟩)).along_fst.holomorphicAt _ _)
case f0.hβ‚‚ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f✝ : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝¹ : X z : β„‚ f : β„‚ β†’ β„‚ β†’ β„‚ fa : AnalyticOn β„‚ (uncurry f) univ fi : βˆ€ (x : β„‚), Tendsto (uncurry f) ((𝓝 x).prod atInf) atInf x x✝ : β„‚ ⊒ HolomorphicAt I I (fun x => uncurry (lift' f ∞) (x, ↑x✝)) x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case f0.hβ‚‚ X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f✝ : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝¹ : X z : β„‚ f : β„‚ β†’ β„‚ β†’ β„‚ fa : AnalyticOn β„‚ (uncurry f) univ fi : βˆ€ (x : β„‚), Tendsto (uncurry f) ((𝓝 x).prod atInf) atInf x x✝ : β„‚ ⊒ HolomorphicAt I I (fun x => uncurry (lift' f ∞) (x, ↑x✝)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicLift'
[575, 1]
[585, 69]
intro x z
case f1 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f✝ : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ f : β„‚ β†’ β„‚ β†’ β„‚ fa : AnalyticOn β„‚ (uncurry f) univ fi : βˆ€ (x : β„‚), Tendsto (uncurry f) ((𝓝 x).prod atInf) atInf ⊒ βˆ€ (x : β„‚) (y : π•Š), HolomorphicAt I I (fun y => uncurry (lift' f ∞) (x, y)) y
case f1 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f✝ : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝ : X z✝ : β„‚ f : β„‚ β†’ β„‚ β†’ β„‚ fa : AnalyticOn β„‚ (uncurry f) univ fi : βˆ€ (x : β„‚), Tendsto (uncurry f) ((𝓝 x).prod atInf) atInf x : β„‚ z : π•Š ⊒ HolomorphicAt I I (fun y => uncurry (lift' f ∞) (x, y)) z
Please generate a tactic in lean4 to solve the state. STATE: case f1 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f✝ : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x : X z : β„‚ f : β„‚ β†’ β„‚ β†’ β„‚ fa : AnalyticOn β„‚ (uncurry f) univ fi : βˆ€ (x : β„‚), Tendsto (uncurry f) ((𝓝 x).prod atInf) atInf ⊒ βˆ€ (x : β„‚) (y : π•Š), HolomorphicAt I I (fun y => uncurry (lift' f ∞) (x, y)) y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/RiemannSphere.lean
RiemannSphere.holomorphicLift'
[575, 1]
[585, 69]
exact holomorphic_lift (fun _ _ ↦ (fa _ (mem_univ ⟨_,_⟩)).along_snd) ((fi x).comp (tendsto_const_nhds.prod_mk Filter.tendsto_id)) z
case f1 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f✝ : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝ : X z✝ : β„‚ f : β„‚ β†’ β„‚ β†’ β„‚ fa : AnalyticOn β„‚ (uncurry f) univ fi : βˆ€ (x : β„‚), Tendsto (uncurry f) ((𝓝 x).prod atInf) atInf x : β„‚ z : π•Š ⊒ HolomorphicAt I I (fun y => uncurry (lift' f ∞) (x, y)) z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case f1 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace β„‚ T inst✝ : AnalyticManifold I T f✝ : β„‚ β†’ β„‚ g : X β†’ β„‚ β†’ β„‚ y : π•Š x✝ : X z✝ : β„‚ f : β„‚ β†’ β„‚ β†’ β„‚ fa : AnalyticOn β„‚ (uncurry f) univ fi : βˆ€ (x : β„‚), Tendsto (uncurry f) ((𝓝 x).prod atInf) atInf x : β„‚ z : π•Š ⊒ HolomorphicAt I I (fun y => uncurry (lift' f ∞) (x, y)) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj
[24, 1]
[35, 61]
rcases complex_inverse_fun' fa nc with ⟨g, ga, gf, fg⟩
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 ⊒ βˆ€αΆ  (p : S Γ— S) in 𝓝 (z, z), f p.1 = f p.2 β†’ p.1 = p.2
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x ⊒ βˆ€αΆ  (p : S Γ— S) in 𝓝 (z, z), f p.1 = f p.2 β†’ p.1 = p.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 ⊒ βˆ€αΆ  (p : S Γ— S) in 𝓝 (z, z), f p.1 = f p.2 β†’ p.1 = p.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj
[24, 1]
[35, 61]
have n : NontrivialHolomorphicAt g (f z) := by rw [← gf.self_of_nhds] at fa refine (NontrivialHolomorphicAt.anti ?_ fa ga).2 exact (nontrivialHolomorphicAt_id _).congr (Filter.EventuallyEq.symm fg)
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x ⊒ βˆ€αΆ  (p : S Γ— S) in 𝓝 (z, z), f p.1 = f p.2 β†’ p.1 = p.2
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) ⊒ βˆ€αΆ  (p : S Γ— S) in 𝓝 (z, z), f p.1 = f p.2 β†’ p.1 = p.2
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x ⊒ βˆ€αΆ  (p : S Γ— S) in 𝓝 (z, z), f p.1 = f p.2 β†’ p.1 = p.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj
[24, 1]
[35, 61]
have o := n.nhds_eq_map_nhds
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) ⊒ βˆ€αΆ  (p : S Γ— S) in 𝓝 (z, z), f p.1 = f p.2 β†’ p.1 = p.2
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) o : 𝓝 (g (f z)) = Filter.map g (𝓝 (f z)) ⊒ βˆ€αΆ  (p : S Γ— S) in 𝓝 (z, z), f p.1 = f p.2 β†’ p.1 = p.2
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) ⊒ βˆ€αΆ  (p : S Γ— S) in 𝓝 (z, z), f p.1 = f p.2 β†’ p.1 = p.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj
[24, 1]
[35, 61]
rw [gf.self_of_nhds] at o
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) o : 𝓝 (g (f z)) = Filter.map g (𝓝 (f z)) ⊒ βˆ€αΆ  (p : S Γ— S) in 𝓝 (z, z), f p.1 = f p.2 β†’ p.1 = p.2
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) o : 𝓝 z = Filter.map g (𝓝 (f z)) ⊒ βˆ€αΆ  (p : S Γ— S) in 𝓝 (z, z), f p.1 = f p.2 β†’ p.1 = p.2
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) o : 𝓝 (g (f z)) = Filter.map g (𝓝 (f z)) ⊒ βˆ€αΆ  (p : S Γ— S) in 𝓝 (z, z), f p.1 = f p.2 β†’ p.1 = p.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj
[24, 1]
[35, 61]
simp only [nhds_prod_eq, o, Filter.prod_map_map_eq, Filter.eventually_map]
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) o : 𝓝 z = Filter.map g (𝓝 (f z)) ⊒ βˆ€αΆ  (p : S Γ— S) in 𝓝 (z, z), f p.1 = f p.2 β†’ p.1 = p.2
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) o : 𝓝 z = Filter.map g (𝓝 (f z)) ⊒ βˆ€αΆ  (a : T Γ— T) in 𝓝 (f z) Γ—Λ’ 𝓝 (f z), f (g a.1) = f (g a.2) β†’ g a.1 = g a.2
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) o : 𝓝 z = Filter.map g (𝓝 (f z)) ⊒ βˆ€αΆ  (p : S Γ— S) in 𝓝 (z, z), f p.1 = f p.2 β†’ p.1 = p.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj
[24, 1]
[35, 61]
refine (fg.prod_mk fg).mp (eventually_of_forall ?_)
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) o : 𝓝 z = Filter.map g (𝓝 (f z)) ⊒ βˆ€αΆ  (a : T Γ— T) in 𝓝 (f z) Γ—Λ’ 𝓝 (f z), f (g a.1) = f (g a.2) β†’ g a.1 = g a.2
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) o : 𝓝 z = Filter.map g (𝓝 (f z)) ⊒ βˆ€ (x : T Γ— T), f (g x.1) = x.1 ∧ f (g x.2) = x.2 β†’ f (g x.1) = f (g x.2) β†’ g x.1 = g x.2
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) o : 𝓝 z = Filter.map g (𝓝 (f z)) ⊒ βˆ€αΆ  (a : T Γ— T) in 𝓝 (f z) Γ—Λ’ 𝓝 (f z), f (g a.1) = f (g a.2) β†’ g a.1 = g a.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj
[24, 1]
[35, 61]
intro ⟨x, y⟩ ⟨ex, ey⟩ h
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) o : 𝓝 z = Filter.map g (𝓝 (f z)) ⊒ βˆ€ (x : T Γ— T), f (g x.1) = x.1 ∧ f (g x.2) = x.2 β†’ f (g x.1) = f (g x.2) β†’ g x.1 = g x.2
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) o : 𝓝 z = Filter.map g (𝓝 (f z)) x y : T ex : f (g (x, y).1) = (x, y).1 ey : f (g (x, y).2) = (x, y).2 h : f (g (x, y).1) = f (g (x, y).2) ⊒ g (x, y).1 = g (x, y).2
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) o : 𝓝 z = Filter.map g (𝓝 (f z)) ⊒ βˆ€ (x : T Γ— T), f (g x.1) = x.1 ∧ f (g x.2) = x.2 β†’ f (g x.1) = f (g x.2) β†’ g x.1 = g x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj
[24, 1]
[35, 61]
simp only at ex ey
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) o : 𝓝 z = Filter.map g (𝓝 (f z)) x y : T ex : f (g (x, y).1) = (x, y).1 ey : f (g (x, y).2) = (x, y).2 h : f (g (x, y).1) = f (g (x, y).2) ⊒ g (x, y).1 = g (x, y).2
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) o : 𝓝 z = Filter.map g (𝓝 (f z)) x y : T ex : f (g x) = x ey : f (g y) = y h : f (g (x, y).1) = f (g (x, y).2) ⊒ g (x, y).1 = g (x, y).2
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) o : 𝓝 z = Filter.map g (𝓝 (f z)) x y : T ex : f (g (x, y).1) = (x, y).1 ey : f (g (x, y).2) = (x, y).2 h : f (g (x, y).1) = f (g (x, y).2) ⊒ g (x, y).1 = g (x, y).2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj
[24, 1]
[35, 61]
simp only [ex, ey] at h
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) o : 𝓝 z = Filter.map g (𝓝 (f z)) x y : T ex : f (g x) = x ey : f (g y) = y h : f (g (x, y).1) = f (g (x, y).2) ⊒ g (x, y).1 = g (x, y).2
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) o : 𝓝 z = Filter.map g (𝓝 (f z)) x y : T ex : f (g x) = x ey : f (g y) = y h : x = y ⊒ g (x, y).1 = g (x, y).2
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) o : 𝓝 z = Filter.map g (𝓝 (f z)) x y : T ex : f (g x) = x ey : f (g y) = y h : f (g (x, y).1) = f (g (x, y).2) ⊒ g (x, y).1 = g (x, y).2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj
[24, 1]
[35, 61]
simp only [h]
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) o : 𝓝 z = Filter.map g (𝓝 (f z)) x y : T ex : f (g x) = x ey : f (g y) = y h : x = y ⊒ g (x, y).1 = g (x, y).2
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x n : NontrivialHolomorphicAt g (f z) o : 𝓝 z = Filter.map g (𝓝 (f z)) x y : T ex : f (g x) = x ey : f (g y) = y h : x = y ⊒ g (x, y).1 = g (x, y).2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj
[24, 1]
[35, 61]
rw [← gf.self_of_nhds] at fa
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x ⊒ NontrivialHolomorphicAt g (f z)
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S nc : mfderiv I I f z β‰  0 g : T β†’ S fa : HolomorphicAt I I f (g (f z)) ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x ⊒ NontrivialHolomorphicAt g (f z)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z β‰  0 g : T β†’ S ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x ⊒ NontrivialHolomorphicAt g (f z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj
[24, 1]
[35, 61]
refine (NontrivialHolomorphicAt.anti ?_ fa ga).2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S nc : mfderiv I I f z β‰  0 g : T β†’ S fa : HolomorphicAt I I f (g (f z)) ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x ⊒ NontrivialHolomorphicAt g (f z)
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S nc : mfderiv I I f z β‰  0 g : T β†’ S fa : HolomorphicAt I I f (g (f z)) ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x ⊒ NontrivialHolomorphicAt (fun z => f (g z)) (f z)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S nc : mfderiv I I f z β‰  0 g : T β†’ S fa : HolomorphicAt I I f (g (f z)) ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x ⊒ NontrivialHolomorphicAt g (f z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj
[24, 1]
[35, 61]
exact (nontrivialHolomorphicAt_id _).congr (Filter.EventuallyEq.symm fg)
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S nc : mfderiv I I f z β‰  0 g : T β†’ S fa : HolomorphicAt I I f (g (f z)) ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x ⊒ NontrivialHolomorphicAt (fun z => f (g z)) (f z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : S β†’ T z : S nc : mfderiv I I f z β‰  0 g : T β†’ S fa : HolomorphicAt I I f (g (f z)) ga : HolomorphicAt I I g (f z) gf : βˆ€αΆ  (x : S) in 𝓝 z, g (f x) = x fg : βˆ€αΆ  (x : T) in 𝓝 (f z), f (g x) = x ⊒ NontrivialHolomorphicAt (fun z => f (g z)) (f z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj''
[39, 1]
[54, 90]
rcases complex_inverse_fun fa nc with ⟨g, ga, gf, fg⟩
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 ⊒ βˆ€αΆ  (p : (β„‚ Γ— S) Γ— β„‚ Γ— S) in 𝓝 ((c, z), c, z), p.1.1 = p.2.1 β†’ f p.1.1 p.1.2 = f p.2.1 p.2.2 β†’ p.1 = p.2
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 ⊒ βˆ€αΆ  (p : (β„‚ Γ— S) Γ— β„‚ Γ— S) in 𝓝 ((c, z), c, z), p.1.1 = p.2.1 β†’ f p.1.1 p.1.2 = f p.2.1 p.2.2 β†’ p.1 = p.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 ⊒ βˆ€αΆ  (p : (β„‚ Γ— S) Γ— β„‚ Γ— S) in 𝓝 ((c, z), c, z), p.1.1 = p.2.1 β†’ f p.1.1 p.1.2 = f p.2.1 p.2.2 β†’ p.1 = p.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj''
[39, 1]
[54, 90]
have n : NontrivialHolomorphicAt (g c) (f c z) := by have e : (c, z) = (c, g c (f c z)) := by rw [gf.self_of_nhds] rw [e] at fa refine (NontrivialHolomorphicAt.anti ?_ fa.along_snd ga.along_snd).2 refine (nontrivialHolomorphicAt_id _).congr ?_ refine ((continuousAt_const.prod continuousAt_id).eventually fg).mp (eventually_of_forall ?_) exact fun _ e ↦ e.symm
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 ⊒ βˆ€αΆ  (p : (β„‚ Γ— S) Γ— β„‚ Γ— S) in 𝓝 ((c, z), c, z), p.1.1 = p.2.1 β†’ f p.1.1 p.1.2 = f p.2.1 p.2.2 β†’ p.1 = p.2
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) ⊒ βˆ€αΆ  (p : (β„‚ Γ— S) Γ— β„‚ Γ— S) in 𝓝 ((c, z), c, z), p.1.1 = p.2.1 β†’ f p.1.1 p.1.2 = f p.2.1 p.2.2 β†’ p.1 = p.2
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 ⊒ βˆ€αΆ  (p : (β„‚ Γ— S) Γ— β„‚ Γ— S) in 𝓝 ((c, z), c, z), p.1.1 = p.2.1 β†’ f p.1.1 p.1.2 = f p.2.1 p.2.2 β†’ p.1 = p.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj''
[39, 1]
[54, 90]
have o := n.nhds_eq_map_nhds_param ga
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) ⊒ βˆ€αΆ  (p : (β„‚ Γ— S) Γ— β„‚ Γ— S) in 𝓝 ((c, z), c, z), p.1.1 = p.2.1 β†’ f p.1.1 p.1.2 = f p.2.1 p.2.2 β†’ p.1 = p.2
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, g c (f c z)) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) ⊒ βˆ€αΆ  (p : (β„‚ Γ— S) Γ— β„‚ Γ— S) in 𝓝 ((c, z), c, z), p.1.1 = p.2.1 β†’ f p.1.1 p.1.2 = f p.2.1 p.2.2 β†’ p.1 = p.2
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) ⊒ βˆ€αΆ  (p : (β„‚ Γ— S) Γ— β„‚ Γ— S) in 𝓝 ((c, z), c, z), p.1.1 = p.2.1 β†’ f p.1.1 p.1.2 = f p.2.1 p.2.2 β†’ p.1 = p.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj''
[39, 1]
[54, 90]
rw [gf.self_of_nhds] at o
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, g c (f c z)) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) ⊒ βˆ€αΆ  (p : (β„‚ Γ— S) Γ— β„‚ Γ— S) in 𝓝 ((c, z), c, z), p.1.1 = p.2.1 β†’ f p.1.1 p.1.2 = f p.2.1 p.2.2 β†’ p.1 = p.2
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, (c, z).2) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) ⊒ βˆ€αΆ  (p : (β„‚ Γ— S) Γ— β„‚ Γ— S) in 𝓝 ((c, z), c, z), p.1.1 = p.2.1 β†’ f p.1.1 p.1.2 = f p.2.1 p.2.2 β†’ p.1 = p.2
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, g c (f c z)) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) ⊒ βˆ€αΆ  (p : (β„‚ Γ— S) Γ— β„‚ Γ— S) in 𝓝 ((c, z), c, z), p.1.1 = p.2.1 β†’ f p.1.1 p.1.2 = f p.2.1 p.2.2 β†’ p.1 = p.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj''
[39, 1]
[54, 90]
simp only at o
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, (c, z).2) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) ⊒ βˆ€αΆ  (p : (β„‚ Γ— S) Γ— β„‚ Γ— S) in 𝓝 ((c, z), c, z), p.1.1 = p.2.1 β†’ f p.1.1 p.1.2 = f p.2.1 p.2.2 β†’ p.1 = p.2
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) ⊒ βˆ€αΆ  (p : (β„‚ Γ— S) Γ— β„‚ Γ— S) in 𝓝 ((c, z), c, z), p.1.1 = p.2.1 β†’ f p.1.1 p.1.2 = f p.2.1 p.2.2 β†’ p.1 = p.2
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, (c, z).2) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) ⊒ βˆ€αΆ  (p : (β„‚ Γ— S) Γ— β„‚ Γ— S) in 𝓝 ((c, z), c, z), p.1.1 = p.2.1 β†’ f p.1.1 p.1.2 = f p.2.1 p.2.2 β†’ p.1 = p.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj''
[39, 1]
[54, 90]
rw [nhds_prod_eq, o]
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) ⊒ βˆ€αΆ  (p : (β„‚ Γ— S) Γ— β„‚ Γ— S) in 𝓝 ((c, z), c, z), p.1.1 = p.2.1 β†’ f p.1.1 p.1.2 = f p.2.1 p.2.2 β†’ p.1 = p.2
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) ⊒ βˆ€αΆ  (p : (β„‚ Γ— S) Γ— β„‚ Γ— S) in Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) Γ—Λ’ Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)), p.1.1 = p.2.1 β†’ f p.1.1 p.1.2 = f p.2.1 p.2.2 β†’ p.1 = p.2
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) ⊒ βˆ€αΆ  (p : (β„‚ Γ— S) Γ— β„‚ Γ— S) in 𝓝 ((c, z), c, z), p.1.1 = p.2.1 β†’ f p.1.1 p.1.2 = f p.2.1 p.2.2 β†’ p.1 = p.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj''
[39, 1]
[54, 90]
simp only [Filter.prod_map_map_eq, Filter.eventually_map]
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) ⊒ βˆ€αΆ  (p : (β„‚ Γ— S) Γ— β„‚ Γ— S) in Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) Γ—Λ’ Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)), p.1.1 = p.2.1 β†’ f p.1.1 p.1.2 = f p.2.1 p.2.2 β†’ p.1 = p.2
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) ⊒ βˆ€αΆ  (a : (β„‚ Γ— T) Γ— β„‚ Γ— T) in 𝓝 (c, f c z) Γ—Λ’ 𝓝 (c, f c z), a.1.1 = a.2.1 β†’ f a.1.1 (g a.1.1 a.1.2) = f a.2.1 (g a.2.1 a.2.2) β†’ (a.1.1, g a.1.1 a.1.2) = (a.2.1, g a.2.1 a.2.2)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) ⊒ βˆ€αΆ  (p : (β„‚ Γ— S) Γ— β„‚ Γ— S) in Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) Γ—Λ’ Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)), p.1.1 = p.2.1 β†’ f p.1.1 p.1.2 = f p.2.1 p.2.2 β†’ p.1 = p.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj''
[39, 1]
[54, 90]
refine (fg.prod_mk fg).mp (eventually_of_forall ?_)
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) ⊒ βˆ€αΆ  (a : (β„‚ Γ— T) Γ— β„‚ Γ— T) in 𝓝 (c, f c z) Γ—Λ’ 𝓝 (c, f c z), a.1.1 = a.2.1 β†’ f a.1.1 (g a.1.1 a.1.2) = f a.2.1 (g a.2.1 a.2.2) β†’ (a.1.1, g a.1.1 a.1.2) = (a.2.1, g a.2.1 a.2.2)
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) ⊒ βˆ€ (x : (β„‚ Γ— T) Γ— β„‚ Γ— T), f x.1.1 (g x.1.1 x.1.2) = x.1.2 ∧ f x.2.1 (g x.2.1 x.2.2) = x.2.2 β†’ x.1.1 = x.2.1 β†’ f x.1.1 (g x.1.1 x.1.2) = f x.2.1 (g x.2.1 x.2.2) β†’ (x.1.1, g x.1.1 x.1.2) = (x.2.1, g x.2.1 x.2.2)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) ⊒ βˆ€αΆ  (a : (β„‚ Γ— T) Γ— β„‚ Γ— T) in 𝓝 (c, f c z) Γ—Λ’ 𝓝 (c, f c z), a.1.1 = a.2.1 β†’ f a.1.1 (g a.1.1 a.1.2) = f a.2.1 (g a.2.1 a.2.2) β†’ (a.1.1, g a.1.1 a.1.2) = (a.2.1, g a.2.1 a.2.2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj''
[39, 1]
[54, 90]
intro ⟨x, y⟩ ⟨ex, ey⟩ h1 h2
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) ⊒ βˆ€ (x : (β„‚ Γ— T) Γ— β„‚ Γ— T), f x.1.1 (g x.1.1 x.1.2) = x.1.2 ∧ f x.2.1 (g x.2.1 x.2.2) = x.2.2 β†’ x.1.1 = x.2.1 β†’ f x.1.1 (g x.1.1 x.1.2) = f x.2.1 (g x.2.1 x.2.2) β†’ (x.1.1, g x.1.1 x.1.2) = (x.2.1, g x.2.1 x.2.2)
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) x y : β„‚ Γ— T ex : f (x, y).1.1 (g (x, y).1.1 (x, y).1.2) = (x, y).1.2 ey : f (x, y).2.1 (g (x, y).2.1 (x, y).2.2) = (x, y).2.2 h1 : (x, y).1.1 = (x, y).2.1 h2 : f (x, y).1.1 (g (x, y).1.1 (x, y).1.2) = f (x, y).2.1 (g (x, y).2.1 (x, y).2.2) ⊒ ((x, y).1.1, g (x, y).1.1 (x, y).1.2) = ((x, y).2.1, g (x, y).2.1 (x, y).2.2)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) ⊒ βˆ€ (x : (β„‚ Γ— T) Γ— β„‚ Γ— T), f x.1.1 (g x.1.1 x.1.2) = x.1.2 ∧ f x.2.1 (g x.2.1 x.2.2) = x.2.2 β†’ x.1.1 = x.2.1 β†’ f x.1.1 (g x.1.1 x.1.2) = f x.2.1 (g x.2.1 x.2.2) β†’ (x.1.1, g x.1.1 x.1.2) = (x.2.1, g x.2.1 x.2.2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj''
[39, 1]
[54, 90]
simp only at h1
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) x y : β„‚ Γ— T ex : f (x, y).1.1 (g (x, y).1.1 (x, y).1.2) = (x, y).1.2 ey : f (x, y).2.1 (g (x, y).2.1 (x, y).2.2) = (x, y).2.2 h1 : (x, y).1.1 = (x, y).2.1 h2 : f (x, y).1.1 (g (x, y).1.1 (x, y).1.2) = f (x, y).2.1 (g (x, y).2.1 (x, y).2.2) ⊒ ((x, y).1.1, g (x, y).1.1 (x, y).1.2) = ((x, y).2.1, g (x, y).2.1 (x, y).2.2)
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) x y : β„‚ Γ— T ex : f (x, y).1.1 (g (x, y).1.1 (x, y).1.2) = (x, y).1.2 ey : f (x, y).2.1 (g (x, y).2.1 (x, y).2.2) = (x, y).2.2 h1 : x.1 = y.1 h2 : f (x, y).1.1 (g (x, y).1.1 (x, y).1.2) = f (x, y).2.1 (g (x, y).2.1 (x, y).2.2) ⊒ ((x, y).1.1, g (x, y).1.1 (x, y).1.2) = ((x, y).2.1, g (x, y).2.1 (x, y).2.2)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) x y : β„‚ Γ— T ex : f (x, y).1.1 (g (x, y).1.1 (x, y).1.2) = (x, y).1.2 ey : f (x, y).2.1 (g (x, y).2.1 (x, y).2.2) = (x, y).2.2 h1 : (x, y).1.1 = (x, y).2.1 h2 : f (x, y).1.1 (g (x, y).1.1 (x, y).1.2) = f (x, y).2.1 (g (x, y).2.1 (x, y).2.2) ⊒ ((x, y).1.1, g (x, y).1.1 (x, y).1.2) = ((x, y).2.1, g (x, y).2.1 (x, y).2.2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj''
[39, 1]
[54, 90]
simp only [h1] at ex ey h2 ⊒
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) x y : β„‚ Γ— T ex : f (x, y).1.1 (g (x, y).1.1 (x, y).1.2) = (x, y).1.2 ey : f (x, y).2.1 (g (x, y).2.1 (x, y).2.2) = (x, y).2.2 h1 : x.1 = y.1 h2 : f (x, y).1.1 (g (x, y).1.1 (x, y).1.2) = f (x, y).2.1 (g (x, y).2.1 (x, y).2.2) ⊒ ((x, y).1.1, g (x, y).1.1 (x, y).1.2) = ((x, y).2.1, g (x, y).2.1 (x, y).2.2)
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) x y : β„‚ Γ— T ey : f y.1 (g y.1 y.2) = y.2 h1 : x.1 = y.1 ex : f y.1 (g y.1 x.2) = x.2 h2 : f y.1 (g y.1 x.2) = f y.1 (g y.1 y.2) ⊒ (y.1, g y.1 x.2) = (y.1, g y.1 y.2)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) x y : β„‚ Γ— T ex : f (x, y).1.1 (g (x, y).1.1 (x, y).1.2) = (x, y).1.2 ey : f (x, y).2.1 (g (x, y).2.1 (x, y).2.2) = (x, y).2.2 h1 : x.1 = y.1 h2 : f (x, y).1.1 (g (x, y).1.1 (x, y).1.2) = f (x, y).2.1 (g (x, y).2.1 (x, y).2.2) ⊒ ((x, y).1.1, g (x, y).1.1 (x, y).1.2) = ((x, y).2.1, g (x, y).2.1 (x, y).2.2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj''
[39, 1]
[54, 90]
simp only [ex, ey] at h2
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) x y : β„‚ Γ— T ey : f y.1 (g y.1 y.2) = y.2 h1 : x.1 = y.1 ex : f y.1 (g y.1 x.2) = x.2 h2 : f y.1 (g y.1 x.2) = f y.1 (g y.1 y.2) ⊒ (y.1, g y.1 x.2) = (y.1, g y.1 y.2)
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) x y : β„‚ Γ— T ey : f y.1 (g y.1 y.2) = y.2 h1 : x.1 = y.1 ex : f y.1 (g y.1 x.2) = x.2 h2 : x.2 = y.2 ⊒ (y.1, g y.1 x.2) = (y.1, g y.1 y.2)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) x y : β„‚ Γ— T ey : f y.1 (g y.1 y.2) = y.2 h1 : x.1 = y.1 ex : f y.1 (g y.1 x.2) = x.2 h2 : f y.1 (g y.1 x.2) = f y.1 (g y.1 y.2) ⊒ (y.1, g y.1 x.2) = (y.1, g y.1 y.2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj''
[39, 1]
[54, 90]
simp only [h2]
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) x y : β„‚ Γ— T ey : f y.1 (g y.1 y.2) = y.2 h1 : x.1 = y.1 ex : f y.1 (g y.1 x.2) = x.2 h2 : x.2 = y.2 ⊒ (y.1, g y.1 x.2) = (y.1, g y.1 y.2)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 n : NontrivialHolomorphicAt (g c) (f c z) o : 𝓝 (c, z) = Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, f c z)) x y : β„‚ Γ— T ey : f y.1 (g y.1 y.2) = y.2 h1 : x.1 = y.1 ex : f y.1 (g y.1 x.2) = x.2 h2 : x.2 = y.2 ⊒ (y.1, g y.1 x.2) = (y.1, g y.1 y.2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj''
[39, 1]
[54, 90]
have e : (c, z) = (c, g c (f c z)) := by rw [gf.self_of_nhds]
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 ⊒ NontrivialHolomorphicAt (g c) (f c z)
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 e : (c, z) = (c, g c (f c z)) ⊒ NontrivialHolomorphicAt (g c) (f c z)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 ⊒ NontrivialHolomorphicAt (g c) (f c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj''
[39, 1]
[54, 90]
rw [e] at fa
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 e : (c, z) = (c, g c (f c z)) ⊒ NontrivialHolomorphicAt (g c) (f c z)
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, g c (f c z)) ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 e : (c, z) = (c, g c (f c z)) ⊒ NontrivialHolomorphicAt (g c) (f c z)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 e : (c, z) = (c, g c (f c z)) ⊒ NontrivialHolomorphicAt (g c) (f c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj''
[39, 1]
[54, 90]
refine (NontrivialHolomorphicAt.anti ?_ fa.along_snd ga.along_snd).2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, g c (f c z)) ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 e : (c, z) = (c, g c (f c z)) ⊒ NontrivialHolomorphicAt (g c) (f c z)
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, g c (f c z)) ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 e : (c, z) = (c, g c (f c z)) ⊒ NontrivialHolomorphicAt (fun z => f c (g c z)) (f c z)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, g c (f c z)) ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 e : (c, z) = (c, g c (f c z)) ⊒ NontrivialHolomorphicAt (g c) (f c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj''
[39, 1]
[54, 90]
refine (nontrivialHolomorphicAt_id _).congr ?_
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, g c (f c z)) ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 e : (c, z) = (c, g c (f c z)) ⊒ NontrivialHolomorphicAt (fun z => f c (g c z)) (f c z)
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, g c (f c z)) ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 e : (c, z) = (c, g c (f c z)) ⊒ (𝓝 (f c z)).EventuallyEq (fun w => w) fun z => f c (g c z)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, g c (f c z)) ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 e : (c, z) = (c, g c (f c z)) ⊒ NontrivialHolomorphicAt (fun z => f c (g c z)) (f c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj''
[39, 1]
[54, 90]
refine ((continuousAt_const.prod continuousAt_id).eventually fg).mp (eventually_of_forall ?_)
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, g c (f c z)) ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 e : (c, z) = (c, g c (f c z)) ⊒ (𝓝 (f c z)).EventuallyEq (fun w => w) fun z => f c (g c z)
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, g c (f c z)) ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 e : (c, z) = (c, g c (f c z)) ⊒ βˆ€ (x : T), f (c, id x).1 (g (c, id x).1 (c, id x).2) = (c, id x).2 β†’ (fun w => w) x = (fun z => f c (g c z)) x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, g c (f c z)) ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 e : (c, z) = (c, g c (f c z)) ⊒ (𝓝 (f c z)).EventuallyEq (fun w => w) fun z => f c (g c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj''
[39, 1]
[54, 90]
exact fun _ e ↦ e.symm
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, g c (f c z)) ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 e : (c, z) = (c, g c (f c z)) ⊒ βˆ€ (x : T), f (c, id x).1 (g (c, id x).1 (c, id x).2) = (c, id x).2 β†’ (fun w => w) x = (fun z => f c (g c z)) x
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, g c (f c z)) ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 e : (c, z) = (c, g c (f c z)) ⊒ βˆ€ (x : T), f (c, id x).1 (g (c, id x).1 (c, id x).2) = (c, id x).2 β†’ (fun w => w) x = (fun z => f c (g c z)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj''
[39, 1]
[54, 90]
rw [gf.self_of_nhds]
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 ⊒ (c, z) = (c, g c (f c z))
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ β†’ T β†’ S ga : HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) gf : βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2 fg : βˆ€αΆ  (x : β„‚ Γ— T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 ⊒ (c, z) = (c, g c (f c z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj'
[58, 1]
[67, 65]
set g : β„‚ Γ— S Γ— S β†’ (β„‚ Γ— S) Γ— β„‚ Γ— S := fun p ↦ ((p.1, p.2.1), (p.1, p.2.2))
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 ⊒ βˆ€αΆ  (p : β„‚ Γ— S Γ— S) in 𝓝 (c, z, z), f p.1 p.2.1 = f p.1 p.2.2 β†’ p.2.1 = p.2.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ Γ— S Γ— S β†’ (β„‚ Γ— S) Γ— β„‚ Γ— S := fun p => ((p.1, p.2.1), p.1, p.2.2) ⊒ βˆ€αΆ  (p : β„‚ Γ— S Γ— S) in 𝓝 (c, z, z), f p.1 p.2.1 = f p.1 p.2.2 β†’ p.2.1 = p.2.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 ⊒ βˆ€αΆ  (p : β„‚ Γ— S Γ— S) in 𝓝 (c, z, z), f p.1 p.2.1 = f p.1 p.2.2 β†’ p.2.1 = p.2.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj'
[58, 1]
[67, 65]
refine (t.eventually (fa.local_inj'' nc)).mp (eventually_of_forall ?_)
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ Γ— S Γ— S β†’ (β„‚ Γ— S) Γ— β„‚ Γ— S := fun p => ((p.1, p.2.1), p.1, p.2.2) t : Tendsto g (𝓝 (c, z, z)) (𝓝 ((c, z), c, z)) ⊒ βˆ€αΆ  (p : β„‚ Γ— S Γ— S) in 𝓝 (c, z, z), f p.1 p.2.1 = f p.1 p.2.2 β†’ p.2.1 = p.2.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ Γ— S Γ— S β†’ (β„‚ Γ— S) Γ— β„‚ Γ— S := fun p => ((p.1, p.2.1), p.1, p.2.2) t : Tendsto g (𝓝 (c, z, z)) (𝓝 ((c, z), c, z)) ⊒ βˆ€ (x : β„‚ Γ— S Γ— S), ((g x).1.1 = (g x).2.1 β†’ f (g x).1.1 (g x).1.2 = f (g x).2.1 (g x).2.2 β†’ (g x).1 = (g x).2) β†’ f x.1 x.2.1 = f x.1 x.2.2 β†’ x.2.1 = x.2.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ Γ— S Γ— S β†’ (β„‚ Γ— S) Γ— β„‚ Γ— S := fun p => ((p.1, p.2.1), p.1, p.2.2) t : Tendsto g (𝓝 (c, z, z)) (𝓝 ((c, z), c, z)) ⊒ βˆ€αΆ  (p : β„‚ Γ— S Γ— S) in 𝓝 (c, z, z), f p.1 p.2.1 = f p.1 p.2.2 β†’ p.2.1 = p.2.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj'
[58, 1]
[67, 65]
intro ⟨e, x, y⟩ inj fe
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ Γ— S Γ— S β†’ (β„‚ Γ— S) Γ— β„‚ Γ— S := fun p => ((p.1, p.2.1), p.1, p.2.2) t : Tendsto g (𝓝 (c, z, z)) (𝓝 ((c, z), c, z)) ⊒ βˆ€ (x : β„‚ Γ— S Γ— S), ((g x).1.1 = (g x).2.1 β†’ f (g x).1.1 (g x).1.2 = f (g x).2.1 (g x).2.2 β†’ (g x).1 = (g x).2) β†’ f x.1 x.2.1 = f x.1 x.2.2 β†’ x.2.1 = x.2.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ Γ— S Γ— S β†’ (β„‚ Γ— S) Γ— β„‚ Γ— S := fun p => ((p.1, p.2.1), p.1, p.2.2) t : Tendsto g (𝓝 (c, z, z)) (𝓝 ((c, z), c, z)) e : β„‚ x y : S inj : (g (e, x, y)).1.1 = (g (e, x, y)).2.1 β†’ f (g (e, x, y)).1.1 (g (e, x, y)).1.2 = f (g (e, x, y)).2.1 (g (e, x, y)).2.2 β†’ (g (e, x, y)).1 = (g (e, x, y)).2 fe : f (e, x, y).1 (e, x, y).2.1 = f (e, x, y).1 (e, x, y).2.2 ⊒ (e, x, y).2.1 = (e, x, y).2.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ Γ— S Γ— S β†’ (β„‚ Γ— S) Γ— β„‚ Γ— S := fun p => ((p.1, p.2.1), p.1, p.2.2) t : Tendsto g (𝓝 (c, z, z)) (𝓝 ((c, z), c, z)) ⊒ βˆ€ (x : β„‚ Γ— S Γ— S), ((g x).1.1 = (g x).2.1 β†’ f (g x).1.1 (g x).1.2 = f (g x).2.1 (g x).2.2 β†’ (g x).1 = (g x).2) β†’ f x.1 x.2.1 = f x.1 x.2.2 β†’ x.2.1 = x.2.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj'
[58, 1]
[67, 65]
exact (Prod.ext_iff.mp (inj rfl fe)).2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ Γ— S Γ— S β†’ (β„‚ Γ— S) Γ— β„‚ Γ— S := fun p => ((p.1, p.2.1), p.1, p.2.2) t : Tendsto g (𝓝 (c, z, z)) (𝓝 ((c, z), c, z)) e : β„‚ x y : S inj : (g (e, x, y)).1.1 = (g (e, x, y)).2.1 β†’ f (g (e, x, y)).1.1 (g (e, x, y)).1.2 = f (g (e, x, y)).2.1 (g (e, x, y)).2.2 β†’ (g (e, x, y)).1 = (g (e, x, y)).2 fe : f (e, x, y).1 (e, x, y).2.1 = f (e, x, y).1 (e, x, y).2.2 ⊒ (e, x, y).2.1 = (e, x, y).2.2
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ Γ— S Γ— S β†’ (β„‚ Γ— S) Γ— β„‚ Γ— S := fun p => ((p.1, p.2.1), p.1, p.2.2) t : Tendsto g (𝓝 (c, z, z)) (𝓝 ((c, z), c, z)) e : β„‚ x y : S inj : (g (e, x, y)).1.1 = (g (e, x, y)).2.1 β†’ f (g (e, x, y)).1.1 (g (e, x, y)).1.2 = f (g (e, x, y)).2.1 (g (e, x, y)).2.2 β†’ (g (e, x, y)).1 = (g (e, x, y)).2 fe : f (e, x, y).1 (e, x, y).2.1 = f (e, x, y).1 (e, x, y).2.2 ⊒ (e, x, y).2.1 = (e, x, y).2.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj'
[58, 1]
[67, 65]
apply Continuous.continuousAt
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ Γ— S Γ— S β†’ (β„‚ Γ— S) Γ— β„‚ Γ— S := fun p => ((p.1, p.2.1), p.1, p.2.2) ⊒ Tendsto g (𝓝 (c, z, z)) (𝓝 ((c, z), c, z))
case h S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ Γ— S Γ— S β†’ (β„‚ Γ— S) Γ— β„‚ Γ— S := fun p => ((p.1, p.2.1), p.1, p.2.2) ⊒ Continuous g
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ Γ— S Γ— S β†’ (β„‚ Γ— S) Γ— β„‚ Γ— S := fun p => ((p.1, p.2.1), p.1, p.2.2) ⊒ Tendsto g (𝓝 (c, z, z)) (𝓝 ((c, z), c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj'
[58, 1]
[67, 65]
apply Continuous.prod_mk
case h S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ Γ— S Γ— S β†’ (β„‚ Γ— S) Γ— β„‚ Γ— S := fun p => ((p.1, p.2.1), p.1, p.2.2) ⊒ Continuous g
case h.hf S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ Γ— S Γ— S β†’ (β„‚ Γ— S) Γ— β„‚ Γ— S := fun p => ((p.1, p.2.1), p.1, p.2.2) ⊒ Continuous fun x => (x.1, x.2.1) case h.hg S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ Γ— S Γ— S β†’ (β„‚ Γ— S) Γ— β„‚ Γ— S := fun p => ((p.1, p.2.1), p.1, p.2.2) ⊒ Continuous fun x => (x.1, x.2.2)
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ Γ— S Γ— S β†’ (β„‚ Γ— S) Γ— β„‚ Γ— S := fun p => ((p.1, p.2.1), p.1, p.2.2) ⊒ Continuous g TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj'
[58, 1]
[67, 65]
exact continuous_fst.prod_mk (continuous_fst.comp continuous_snd)
case h.hf S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ Γ— S Γ— S β†’ (β„‚ Γ— S) Γ— β„‚ Γ— S := fun p => ((p.1, p.2.1), p.1, p.2.2) ⊒ Continuous fun x => (x.1, x.2.1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.hf S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ Γ— S Γ— S β†’ (β„‚ Γ— S) Γ— β„‚ Γ— S := fun p => ((p.1, p.2.1), p.1, p.2.2) ⊒ Continuous fun x => (x.1, x.2.1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/LocalInj.lean
HolomorphicAt.local_inj'
[58, 1]
[67, 65]
exact continuous_fst.prod_mk (continuous_snd.comp continuous_snd)
case h.hg S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ Γ— S Γ— S β†’ (β„‚ Γ— S) Γ— β„‚ Γ— S := fun p => ((p.1, p.2.1), p.1, p.2.2) ⊒ Continuous fun x => (x.1, x.2.2)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.hg S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace β„‚ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace β„‚ T cmt : AnalyticManifold I T f : β„‚ β†’ S β†’ T c : β„‚ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z β‰  0 g : β„‚ Γ— S Γ— S β†’ (β„‚ Γ— S) Γ— β„‚ Γ— S := fun p => ((p.1, p.2.1), p.1, p.2.2) ⊒ Continuous fun x => (x.1, x.2.2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
have fh : HolomorphicOn I I f (closedBall z r) := fun _ m ↦ (fa _ m).holomorphicAt I I
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– ⊒ NontrivialHolomorphicAt f z
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) ⊒ NontrivialHolomorphicAt f z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– ⊒ NontrivialHolomorphicAt f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
have zs : z ∈ closedBall z r := mem_closedBall_self rp.le
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) ⊒ NontrivialHolomorphicAt f z
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ⊒ NontrivialHolomorphicAt f z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) ⊒ NontrivialHolomorphicAt f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
use fh _ zs
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ⊒ NontrivialHolomorphicAt f z
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ⊒ βˆƒαΆ  (w : β„‚) in 𝓝 z, f w β‰  f z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ⊒ NontrivialHolomorphicAt f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
contrapose ef
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ⊒ βˆƒαΆ  (w : β„‚) in 𝓝 z, f w β‰  f z
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : Β¬βˆƒαΆ  (w : β„‚) in 𝓝 z, f w β‰  f z ⊒ Β¬βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€–
Please generate a tactic in lean4 to solve the state. STATE: case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ⊒ βˆƒαΆ  (w : β„‚) in 𝓝 z, f w β‰  f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
simp only [Filter.not_frequently, not_not] at ef
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : Β¬βˆƒαΆ  (w : β„‚) in 𝓝 z, f w β‰  f z ⊒ Β¬βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€–
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z ⊒ Β¬βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€–
Please generate a tactic in lean4 to solve the state. STATE: case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : Β¬βˆƒαΆ  (w : β„‚) in 𝓝 z, f w β‰  f z ⊒ Β¬βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
simp only [not_forall, not_le]
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z ⊒ Β¬βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€–
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z ⊒ βˆƒ x, βˆƒ (_ : x ∈ sphere z r), β€–f x - f zβ€– < e
Please generate a tactic in lean4 to solve the state. STATE: case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z ⊒ Β¬βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
have zrs : z + r ∈ sphere z r := by simp only [mem_sphere, Complex.dist_eq, add_sub_cancel_left, Complex.abs_ofReal, abs_of_pos rp]
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z ⊒ βˆƒ x, βˆƒ (_ : x ∈ sphere z r), β€–f x - f zβ€– < e
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z zrs : z + ↑r ∈ sphere z r ⊒ βˆƒ x, βˆƒ (_ : x ∈ sphere z r), β€–f x - f zβ€– < e
Please generate a tactic in lean4 to solve the state. STATE: case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z ⊒ βˆƒ x, βˆƒ (_ : x ∈ sphere z r), β€–f x - f zβ€– < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
use z + r, zrs
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z zrs : z + ↑r ∈ sphere z r ⊒ βˆƒ x, βˆƒ (_ : x ∈ sphere z r), β€–f x - f zβ€– < e
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z zrs : z + ↑r ∈ sphere z r ⊒ β€–f (z + ↑r) - f zβ€– < e
Please generate a tactic in lean4 to solve the state. STATE: case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z zrs : z + ↑r ∈ sphere z r ⊒ βˆƒ x, βˆƒ (_ : x ∈ sphere z r), β€–f x - f zβ€– < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
simp only [fh.const_of_locally_const' zs (convex_closedBall z r).isPreconnected ef (z + r) (Metric.sphere_subset_closedBall zrs), sub_self, norm_zero, ep]
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z zrs : z + ↑r ∈ sphere z r ⊒ β€–f (z + ↑r) - f zβ€– < e
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z zrs : z + ↑r ∈ sphere z r ⊒ β€–f (z + ↑r) - f zβ€– < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
simp only [mem_sphere, Complex.dist_eq, add_sub_cancel_left, Complex.abs_ofReal, abs_of_pos rp]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z ⊒ z + ↑r ∈ sphere z r
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z ⊒ z + ↑r ∈ sphere z r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
have fn : βˆ€ d, d ∈ u β†’ βˆƒαΆ  w in 𝓝 z, f d w β‰  f d z := by refine fun d m ↦ (nontrivial_local_of_global (fa.along_snd.mono ?_) rp ep (ef d m)).nonconst simp only [← closedBall_prod_same, mem_prod_eq, setOf_mem_eq, iff_true_iff.mpr m, true_and_iff, subset_refl]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– ⊒ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r ∈ 𝓝 (c, f c z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z ⊒ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r ∈ 𝓝 (c, f c z)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– ⊒ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r ∈ 𝓝 (c, f c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
have op : βˆ€ d, d ∈ u β†’ ball (f d z) (e / 2) βŠ† f d '' closedBall z r := by intro d du; refine DiffContOnCl.ball_subset_image_closedBall ?_ rp (ef d du) (fn d du) have e : f d = uncurry f ∘ fun w ↦ (d, w) := rfl rw [e]; apply DifferentiableOn.diffContOnCl; apply AnalyticOn.differentiableOn refine fa.comp (analyticOn_const.prod (analyticOn_id _)) ?_ intro w wr; simp only [closure_ball _ rp.ne'] at wr simp only [← closedBall_prod_same, mem_prod_eq, du, wr, true_and_iff, du]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z ⊒ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r ∈ 𝓝 (c, f c z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r ⊒ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r ∈ 𝓝 (c, f c z)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z ⊒ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r ∈ 𝓝 (c, f c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
rcases Metric.continuousAt_iff.mp (fa (c, z) (mk_mem_prod (mem_of_mem_nhds un) (mem_closedBall_self rp.le))).continuousAt (e / 4) (by linarith) with ⟨s, sp, sh⟩
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r ⊒ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r ∈ 𝓝 (c, f c z)
case intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r ∈ 𝓝 (c, f c z)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r ⊒ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r ∈ 𝓝 (c, f c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
rw [mem_nhds_prod_iff]
case intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r ∈ 𝓝 (c, f c z)
case intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ βˆƒ u_1 ∈ 𝓝 c, βˆƒ v ∈ 𝓝 (f c z), u_1 Γ—Λ’ v βŠ† (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r ∈ 𝓝 (c, f c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
refine ⟨u ∩ ball c s, Filter.inter_mem un (Metric.ball_mem_nhds c (by linarith)), ?_⟩
case intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ βˆƒ u_1 ∈ 𝓝 c, βˆƒ v ∈ 𝓝 (f c z), u_1 Γ—Λ’ v βŠ† (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r
case intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ βˆƒ v ∈ 𝓝 (f c z), (u ∩ ball c s) Γ—Λ’ v βŠ† (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ βˆƒ u_1 ∈ 𝓝 c, βˆƒ v ∈ 𝓝 (f c z), u_1 Γ—Λ’ v βŠ† (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
use ball (f c z) (e / 4), Metric.ball_mem_nhds _ (by linarith)
case intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ βˆƒ v ∈ 𝓝 (f c z), (u ∩ ball c s) Γ—Λ’ v βŠ† (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r
case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ (u ∩ ball c s) Γ—Λ’ ball (f c z) (e / 4) βŠ† (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ βˆƒ v ∈ 𝓝 (f c z), (u ∩ ball c s) Γ—Λ’ v βŠ† (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
intro ⟨d, w⟩ m
case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ (u ∩ ball c s) Γ—Λ’ ball (f c z) (e / 4) βŠ† (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r
case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d, w) ∈ (u ∩ ball c s) Γ—Λ’ ball (f c z) (e / 4) ⊒ (d, w) ∈ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ (u ∩ ball c s) Γ—Λ’ ball (f c z) (e / 4) βŠ† (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
simp only [mem_inter_iff, mem_prod_eq, mem_image, @mem_ball _ _ c, lt_min_iff] at m op ⊒
case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d, w) ∈ (u ∩ ball c s) Γ—Λ’ ball (f c z) (e / 4) ⊒ (d, w) ∈ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r
case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w)
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d, w) ∈ (u ∩ ball c s) Γ—Λ’ ball (f c z) (e / 4) ⊒ (d, w) ∈ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
have wm : w ∈ ball (f d z) (e / 2) := by simp only [mem_ball] at m ⊒ specialize @sh ⟨d, z⟩; simp only [Prod.dist_eq, dist_self, Function.uncurry] at sh specialize sh (max_lt m.1.2 sp); rw [dist_comm] at sh calc dist w (f d z) _ ≀ dist w (f c z) + dist (f c z) (f d z) := by bound _ < e / 4 + dist (f c z) (f d z) := by linarith [m.2] _ ≀ e / 4 + e / 4 := by linarith [sh] _ = e / 2 := by ring
case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w)
case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w)
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
specialize op d m.1.1 wm
case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w)
case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) op : w ∈ f d '' closedBall z r ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w)
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
rcases (mem_image _ _ _).mp op with ⟨y, yr, yw⟩
case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) op : w ∈ f d '' closedBall z r ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w)
case right.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) op : w ∈ f d '' closedBall z r y : β„‚ yr : y ∈ closedBall z r yw : f d y = w ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w)
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) op : w ∈ f d '' closedBall z r ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
use⟨d, y⟩
case right.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) op : w ∈ f d '' closedBall z r y : β„‚ yr : y ∈ closedBall z r yw : f d y = w ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w)
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) op : w ∈ f d '' closedBall z r y : β„‚ yr : y ∈ closedBall z r yw : f d y = w ⊒ ((d, y).1 ∈ u ∧ (d, y).2 ∈ closedBall z r) ∧ ((d, y).1, f (d, y).1 (d, y).2) = (d, w)
Please generate a tactic in lean4 to solve the state. STATE: case right.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) op : w ∈ f d '' closedBall z r y : β„‚ yr : y ∈ closedBall z r yw : f d y = w ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
simp only [mem_prod_eq, Prod.ext_iff, yw, and_true_iff, eq_self_iff_true, true_and_iff, yr, m.1.1]
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) op : w ∈ f d '' closedBall z r y : β„‚ yr : y ∈ closedBall z r yw : f d y = w ⊒ ((d, y).1 ∈ u ∧ (d, y).2 ∈ closedBall z r) ∧ ((d, y).1, f (d, y).1 (d, y).2) = (d, w)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) op : w ∈ f d '' closedBall z r y : β„‚ yr : y ∈ closedBall z r yw : f d y = w ⊒ ((d, y).1 ∈ u ∧ (d, y).2 ∈ closedBall z r) ∧ ((d, y).1, f (d, y).1 (d, y).2) = (d, w) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
refine fun d m ↦ (nontrivial_local_of_global (fa.along_snd.mono ?_) rp ep (ef d m)).nonconst
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– ⊒ βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– d : β„‚ m : d ∈ u ⊒ closedBall z r βŠ† {y | (d, y) ∈ u Γ—Λ’ closedBall z r}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– ⊒ βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
simp only [← closedBall_prod_same, mem_prod_eq, setOf_mem_eq, iff_true_iff.mpr m, true_and_iff, subset_refl]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– d : β„‚ m : d ∈ u ⊒ closedBall z r βŠ† {y | (d, y) ∈ u Γ—Λ’ closedBall z r}
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– d : β„‚ m : d ∈ u ⊒ closedBall z r βŠ† {y | (d, y) ∈ u Γ—Λ’ closedBall z r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
intro d du
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z ⊒ βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u ⊒ ball (f d z) (e / 2) βŠ† f d '' closedBall z r
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z ⊒ βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
refine DiffContOnCl.ball_subset_image_closedBall ?_ rp (ef d du) (fn d du)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u ⊒ ball (f d z) (e / 2) βŠ† f d '' closedBall z r
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u ⊒ DiffContOnCl β„‚ (f d) (ball z r)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u ⊒ ball (f d z) (e / 2) βŠ† f d '' closedBall z r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
have e : f d = uncurry f ∘ fun w ↦ (d, w) := rfl
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u ⊒ DiffContOnCl β„‚ (f d) (ball z r)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) ⊒ DiffContOnCl β„‚ (f d) (ball z r)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u ⊒ DiffContOnCl β„‚ (f d) (ball z r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
rw [e]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) ⊒ DiffContOnCl β„‚ (f d) (ball z r)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) ⊒ DiffContOnCl β„‚ (uncurry f ∘ fun w => (d, w)) (ball z r)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) ⊒ DiffContOnCl β„‚ (f d) (ball z r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
apply DifferentiableOn.diffContOnCl
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) ⊒ DiffContOnCl β„‚ (uncurry f ∘ fun w => (d, w)) (ball z r)
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) ⊒ DifferentiableOn β„‚ (uncurry f ∘ fun w => (d, w)) (closure (ball z r))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) ⊒ DiffContOnCl β„‚ (uncurry f ∘ fun w => (d, w)) (ball z r) TACTIC: