url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.inCharts
[183, 1]
[196, 77]
rw [PartialEquiv.left_inv _ m, PartialEquiv.left_inv _ (mem_extChartAt_source I z)] at fn
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z c : βˆ€αΆ  (a : S) in 𝓝 z, ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) a))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) w : S fm : f w ∈ (extChartAt π“˜(β„‚, β„‚) (f z)).source m : w ∈ (extChartAt π“˜(β„‚, β„‚) z).source fn : ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ⊒ f w = f z
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z c : βˆ€αΆ  (a : S) in 𝓝 z, ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) a))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) w : S fm : f w ∈ (extChartAt π“˜(β„‚, β„‚) (f z)).source m : w ∈ (extChartAt π“˜(β„‚, β„‚) z).source fn : ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f w) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f z) ⊒ f w = f z
Please generate a tactic in lean4 to solve the state. STATE: case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z c : βˆ€αΆ  (a : S) in 𝓝 z, ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) a))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) w : S fm : f w ∈ (extChartAt π“˜(β„‚, β„‚) (f z)).source m : w ∈ (extChartAt π“˜(β„‚, β„‚) z).source fn : ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ⊒ f w = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.inCharts
[183, 1]
[196, 77]
exact ((PartialEquiv.injOn _).eq_iff fm (mem_extChartAt_source _ _)).mp fn
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z c : βˆ€αΆ  (a : S) in 𝓝 z, ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) a))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) w : S fm : f w ∈ (extChartAt π“˜(β„‚, β„‚) (f z)).source m : w ∈ (extChartAt π“˜(β„‚, β„‚) z).source fn : ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f w) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f z) ⊒ f w = f z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z c : βˆ€αΆ  (a : S) in 𝓝 z, ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) a))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) w : S fm : f w ∈ (extChartAt π“˜(β„‚, β„‚) (f z)).source m : w ∈ (extChartAt π“˜(β„‚, β„‚) z).source fn : ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f w) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f z) ⊒ f w = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
refine le_antisymm ?_ n.holomorphicAt.continuousAt
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z ⊒ 𝓝 (f z) = Filter.map f (𝓝 z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z ⊒ 𝓝 (f z) = Filter.map f (𝓝 z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
generalize hg : (fun x ↦ extChartAt I (f z) (f ((extChartAt I z).symm x))) = g
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
have ga : AnalyticAt β„‚ g (extChartAt I z z) := by rw [← hg]; exact n.holomorphicAt.2
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
cases' ga.eventually_constant_or_nhds_le_map_nhds with h h
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : βˆ€αΆ  (z_1 : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), g z_1 = g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z) case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (g (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ≀ Filter.map g (𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
rw [← hg]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ AnalyticAt β„‚ (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) (↑(extChartAt π“˜(β„‚, β„‚) z) z)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
exact n.holomorphicAt.2
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ AnalyticAt β„‚ (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) (↑(extChartAt π“˜(β„‚, β„‚) z) z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ AnalyticAt β„‚ (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) (↑(extChartAt π“˜(β„‚, β„‚) z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
contrapose h
case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : βˆ€αΆ  (z_1 : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), g z_1 = g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : ¬𝓝 (f z) ≀ Filter.map f (𝓝 z) ⊒ Β¬βˆ€αΆ  (z_1 : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), g z_1 = g (↑(extChartAt π“˜(β„‚, β„‚) z) z)
Please generate a tactic in lean4 to solve the state. STATE: case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : βˆ€αΆ  (z_1 : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), g z_1 = g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
clear h
case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : ¬𝓝 (f z) ≀ Filter.map f (𝓝 z) ⊒ Β¬βˆ€αΆ  (z_1 : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), g z_1 = g (↑(extChartAt π“˜(β„‚, β„‚) z) z)
case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ Β¬βˆ€αΆ  (z_1 : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), g z_1 = g (↑(extChartAt π“˜(β„‚, β„‚) z) z)
Please generate a tactic in lean4 to solve the state. STATE: case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : ¬𝓝 (f z) ≀ Filter.map f (𝓝 z) ⊒ Β¬βˆ€αΆ  (z_1 : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), g z_1 = g (↑(extChartAt π“˜(β„‚, β„‚) z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
simp only [Filter.not_eventually]
case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ Β¬βˆ€αΆ  (z_1 : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), g z_1 = g (↑(extChartAt π“˜(β„‚, β„‚) z) z)
case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆƒαΆ  (x : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), Β¬g x = g (↑(extChartAt π“˜(β„‚, β„‚) z) z)
Please generate a tactic in lean4 to solve the state. STATE: case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ Β¬βˆ€αΆ  (z_1 : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), g z_1 = g (↑(extChartAt π“˜(β„‚, β„‚) z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
apply n.inCharts.nonconst.mp
case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆƒαΆ  (x : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), Β¬g x = g (↑(extChartAt π“˜(β„‚, β„‚) z) z)
case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆ€αΆ  (x : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x)) β‰  ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) β†’ Β¬g x = g (↑(extChartAt π“˜(β„‚, β„‚) z) z)
Please generate a tactic in lean4 to solve the state. STATE: case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆƒαΆ  (x : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), Β¬g x = g (↑(extChartAt π“˜(β„‚, β„‚) z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
simp only [← hg, Ne, imp_self, Filter.eventually_true]
case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆ€αΆ  (x : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x)) β‰  ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) β†’ Β¬g x = g (↑(extChartAt π“˜(β„‚, β„‚) z) z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆ€αΆ  (x : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x)) β‰  ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) β†’ Β¬g x = g (↑(extChartAt π“˜(β„‚, β„‚) z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
simp only [← extChartAt_map_nhds' I z, Filter.map_map] at h
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (g (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ≀ Filter.map g (𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (g (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ≀ Filter.map (g ∘ ↑(extChartAt π“˜(β„‚, β„‚) z)) (𝓝 z) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (g (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ≀ Filter.map g (𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
replace h := @Filter.map_mono _ _ (extChartAt I (f z)).symm _ _ h
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (g (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ≀ Filter.map (g ∘ ↑(extChartAt π“˜(β„‚, β„‚) z)) (𝓝 z) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (𝓝 (g (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ≀ Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (Filter.map (g ∘ ↑(extChartAt π“˜(β„‚, β„‚) z)) (𝓝 z)) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (g (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ≀ Filter.map (g ∘ ↑(extChartAt π“˜(β„‚, β„‚) z)) (𝓝 z) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
simp only [← hg] at h
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (𝓝 (g (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ≀ Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (Filter.map (g ∘ ↑(extChartAt π“˜(β„‚, β„‚) z)) (𝓝 z)) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))))) ≀ Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (Filter.map ((fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) ∘ ↑(extChartAt π“˜(β„‚, β„‚) z)) (𝓝 z)) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (𝓝 (g (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ≀ Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (Filter.map (g ∘ ↑(extChartAt π“˜(β„‚, β„‚) z)) (𝓝 z)) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
rw [PartialEquiv.left_inv _ (mem_extChartAt_source I z)] at h
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))))) ≀ Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (Filter.map ((fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) ∘ ↑(extChartAt π“˜(β„‚, β„‚) z)) (𝓝 z)) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f z))) ≀ Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (Filter.map ((fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) ∘ ↑(extChartAt π“˜(β„‚, β„‚) z)) (𝓝 z)) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))))) ≀ Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (Filter.map ((fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) ∘ ↑(extChartAt π“˜(β„‚, β„‚) z)) (𝓝 z)) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
simp only [extChartAt_symm_map_nhds' I (f z), Filter.map_map, Function.comp] at h
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f z))) ≀ Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (Filter.map ((fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) ∘ ↑(extChartAt π“˜(β„‚, β„‚) z)) (𝓝 z)) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f z))) ≀ Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (Filter.map ((fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) ∘ ↑(extChartAt π“˜(β„‚, β„‚) z)) (𝓝 z)) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
have e : (fun w ↦ (extChartAt I (f z)).symm (extChartAt I (f z) (f ((extChartAt I z).symm (extChartAt I z w))))) =αΆ [𝓝 z] f := by apply ((isOpen_extChartAt_source I z).eventually_mem (mem_extChartAt_source I z)).mp apply (n.holomorphicAt.continuousAt.eventually_mem (extChartAt_source_mem_nhds I (f z))).mp refine eventually_of_forall fun w fm m ↦ ?_ simp only [PartialEquiv.left_inv _ m, PartialEquiv.left_inv _ fm]
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) e : (𝓝 z).EventuallyEq (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) f ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
rw [Filter.map_congr e] at h
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) e : (𝓝 z).EventuallyEq (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) f ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map f (𝓝 z) e : (𝓝 z).EventuallyEq (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) f ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) e : (𝓝 z).EventuallyEq (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) f ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
exact h
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map f (𝓝 z) e : (𝓝 z).EventuallyEq (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) f ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map f (𝓝 z) e : (𝓝 z).EventuallyEq (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) f ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
apply ((isOpen_extChartAt_source I z).eventually_mem (mem_extChartAt_source I z)).mp
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) ⊒ (𝓝 z).EventuallyEq (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) f
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, x ∈ (extChartAt π“˜(β„‚, β„‚) z).source β†’ (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) x = f x
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) ⊒ (𝓝 z).EventuallyEq (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) f TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
apply (n.holomorphicAt.continuousAt.eventually_mem (extChartAt_source_mem_nhds I (f z))).mp
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, x ∈ (extChartAt π“˜(β„‚, β„‚) z).source β†’ (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) x = f x
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x ∈ (extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ x ∈ (extChartAt π“˜(β„‚, β„‚) z).source β†’ (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) x = f x
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, x ∈ (extChartAt π“˜(β„‚, β„‚) z).source β†’ (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) x = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
refine eventually_of_forall fun w fm m ↦ ?_
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x ∈ (extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ x ∈ (extChartAt π“˜(β„‚, β„‚) z).source β†’ (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) x = f x
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) w : S fm : f w ∈ (extChartAt π“˜(β„‚, β„‚) (f z)).source m : w ∈ (extChartAt π“˜(β„‚, β„‚) z).source ⊒ (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) w = f w
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x ∈ (extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ x ∈ (extChartAt π“˜(β„‚, β„‚) z).source β†’ (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) x = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
simp only [PartialEquiv.left_inv _ m, PartialEquiv.left_inv _ fm]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) w : S fm : f w ∈ (extChartAt π“˜(β„‚, β„‚) (f z)).source m : w ∈ (extChartAt π“˜(β„‚, β„‚) z).source ⊒ (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) w = f w
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) w : S fm : f w ∈ (extChartAt π“˜(β„‚, β„‚) (f z)).source m : w ∈ (extChartAt π“˜(β„‚, β„‚) z).source ⊒ (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) w = f w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
refine le_antisymm ?_ (continuousAt_fst.prod fa.continuousAt)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) ⊒ 𝓝 (c, f c z) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) ⊒ 𝓝 (c, f c z) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
generalize hg : (fun e x ↦ extChartAt I (f c z) (f e ((extChartAt I z).symm x))) = g
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
have ga : AnalyticAt β„‚ (uncurry g) (c, extChartAt I z z) := by rw [← hg]; exact (holomorphicAt_iff.mp fa).2
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
have gn : NontrivialHolomorphicAt (g c) (extChartAt I z z) := by rw [← hg]; exact n.inCharts
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
have h := gn.nhds_le_map_nhds_param' ga
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (c, g c (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ≀ Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z)) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
simp only [nhds_prod_eq, ← extChartAt_map_nhds' I z, Filter.map_map, Filter.prod_map_id_map_eq, Function.comp] at h
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (c, g c (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ≀ Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z)) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 c Γ—Λ’ 𝓝 (g c (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ≀ Filter.map (fun x => (x.1, g x.1 (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))) (𝓝 c Γ—Λ’ 𝓝 z) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (c, g c (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ≀ Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z)) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
replace h := @Filter.map_mono _ _ (fun p : β„‚ Γ— β„‚ ↦ (p.1, (extChartAt I (f c z)).symm p.2)) _ _ h
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 c Γ—Λ’ 𝓝 (g c (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ≀ Filter.map (fun x => (x.1, g x.1 (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))) (𝓝 c Γ—Λ’ 𝓝 z) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (g c (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, g x.1 (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))) (𝓝 c Γ—Λ’ 𝓝 z)) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 c Γ—Λ’ 𝓝 (g c (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ≀ Filter.map (fun x => (x.1, g x.1 (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))) (𝓝 c Γ—Λ’ 𝓝 z) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
simp only [← hg] at h
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (g c (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, g x.1 (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))) (𝓝 c Γ—Λ’ 𝓝 z)) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (g c (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, g x.1 (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))) (𝓝 c Γ—Λ’ 𝓝 z)) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
rw [PartialEquiv.left_inv _ (mem_extChartAt_source I z)] at h
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
have pe := Filter.prod_map_id_map_eq (f := 𝓝 c) (g := 𝓝 (extChartAt I (f c z) (f c z))) (m := fun x ↦ (extChartAt I (f c z)).symm x)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) pe : 𝓝 c Γ—Λ’ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm x) (𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) = Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
rw [extChartAt_symm_map_nhds', ←nhds_prod_eq] at pe
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) pe : 𝓝 c Γ—Λ’ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm x) (𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) = Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) pe : 𝓝 (c, f c z) = Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) pe : 𝓝 c Γ—Λ’ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm x) (𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) = Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
refine _root_.trans (le_of_eq pe) (_root_.trans h (le_of_eq ?_))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) pe : 𝓝 (c, f c z) = Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) pe : 𝓝 (c, f c z) = Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ⊒ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) pe : 𝓝 (c, f c z) = Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
clear h pe
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) pe : 𝓝 (c, f c z) = Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ⊒ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) pe : 𝓝 (c, f c z) = Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ⊒ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
rw [←nhds_prod_eq, Filter.map_map]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ Filter.map ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 (c, z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
apply Filter.map_congr
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ Filter.map ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 (c, z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ (𝓝 (c, z)).EventuallyEq ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) fun p => (p.1, f p.1 p.2)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ Filter.map ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 (c, z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
apply ((isOpen_extChartAt_source II (c, z)).eventually_mem (mem_extChartAt_source II (c, z))).mp
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ (𝓝 (c, z)).EventuallyEq ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) fun p => (p.1, f p.1 p.2)
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), x ∈ (extChartAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) (c, z)).source β†’ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ (𝓝 (c, z)).EventuallyEq ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) fun p => (p.1, f p.1 p.2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
apply (fa.continuousAt.eventually_mem (extChartAt_source_mem_nhds I (f c z))).mp
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), x ∈ (extChartAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) (c, z)).source β†’ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), uncurry f x ∈ (extChartAt π“˜(β„‚, β„‚) (f c z)).source β†’ x ∈ (extChartAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) (c, z)).source β†’ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), x ∈ (extChartAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) (c, z)).source β†’ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
apply eventually_of_forall
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), uncurry f x ∈ (extChartAt π“˜(β„‚, β„‚) (f c z)).source β†’ x ∈ (extChartAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) (c, z)).source β†’ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x
case h.hp X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆ€ (x : β„‚ Γ— S), uncurry f x ∈ (extChartAt π“˜(β„‚, β„‚) (f c z)).source β†’ x ∈ (extChartAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) (c, z)).source β†’ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), uncurry f x ∈ (extChartAt π“˜(β„‚, β„‚) (f c z)).source β†’ x ∈ (extChartAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) (c, z)).source β†’ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
intro ⟨e, w⟩ fm m
case h.hp X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆ€ (x : β„‚ Γ— S), uncurry f x ∈ (extChartAt π“˜(β„‚, β„‚) (f c z)).source β†’ x ∈ (extChartAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) (c, z)).source β†’ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x
case h.hp X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) e : β„‚ w : S fm : uncurry f (e, w) ∈ (extChartAt π“˜(β„‚, β„‚) (f c z)).source m : (e, w) ∈ (extChartAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) (c, z)).source ⊒ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (e, w) = (fun p => (p.1, f p.1 p.2)) (e, w)
Please generate a tactic in lean4 to solve the state. STATE: case h.hp X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆ€ (x : β„‚ Γ— S), uncurry f x ∈ (extChartAt π“˜(β„‚, β„‚) (f c z)).source β†’ x ∈ (extChartAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) (c, z)).source β†’ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
simp only [Function.comp, uncurry, extChartAt_prod, PartialEquiv.prod_source, mem_prod_eq] at fm m
case h.hp X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) e : β„‚ w : S fm : uncurry f (e, w) ∈ (extChartAt π“˜(β„‚, β„‚) (f c z)).source m : (e, w) ∈ (extChartAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) (c, z)).source ⊒ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (e, w) = (fun p => (p.1, f p.1 p.2)) (e, w)
case h.hp X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) e : β„‚ w : S fm : f e w ∈ (extChartAt π“˜(β„‚, β„‚) (f c z)).source m : e ∈ (extChartAt π“˜(β„‚, β„‚) c).source ∧ w ∈ (extChartAt π“˜(β„‚, β„‚) z).source ⊒ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (e, w) = (fun p => (p.1, f p.1 p.2)) (e, w)
Please generate a tactic in lean4 to solve the state. STATE: case h.hp X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) e : β„‚ w : S fm : uncurry f (e, w) ∈ (extChartAt π“˜(β„‚, β„‚) (f c z)).source m : (e, w) ∈ (extChartAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) (c, z)).source ⊒ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (e, w) = (fun p => (p.1, f p.1 p.2)) (e, w) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
simp only [Function.comp, PartialEquiv.left_inv _ m.2, PartialEquiv.left_inv _ fm]
case h.hp X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) e : β„‚ w : S fm : f e w ∈ (extChartAt π“˜(β„‚, β„‚) (f c z)).source m : e ∈ (extChartAt π“˜(β„‚, β„‚) c).source ∧ w ∈ (extChartAt π“˜(β„‚, β„‚) z).source ⊒ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (e, w) = (fun p => (p.1, f p.1 p.2)) (e, w)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.hp X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) e : β„‚ w : S fm : f e w ∈ (extChartAt π“˜(β„‚, β„‚) (f c z)).source m : e ∈ (extChartAt π“˜(β„‚, β„‚) c).source ∧ w ∈ (extChartAt π“˜(β„‚, β„‚) z).source ⊒ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (e, w) = (fun p => (p.1, f p.1 p.2)) (e, w) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
rw [← hg]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ AnalyticAt β„‚ (uncurry fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
exact (holomorphicAt_iff.mp fa).2
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ AnalyticAt β„‚ (uncurry fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ AnalyticAt β„‚ (uncurry fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
rw [← hg]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ NontrivialHolomorphicAt ((fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) c) (↑(extChartAt π“˜(β„‚, β„‚) z) z)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
exact n.inCharts
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ NontrivialHolomorphicAt ((fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) c) (↑(extChartAt π“˜(β„‚, β„‚) z) z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ NontrivialHolomorphicAt ((fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
set fl := fun n z ↦ log (f n z)
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
have near1 : βˆ€ n z, z ∈ s β†’ abs (f n z - 1) ≀ 1 / 2 := by intro n z zs calc abs (f n z - 1) _ ≀ c * a ^ n := hf n z zs _ ≀ (1 / 2 : ℝ) * (1:ℝ) ^ n := by bound _ = 1 / 2 := by norm_num
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
have near1' : βˆ€ n z, z ∈ s β†’ abs (f n z - 1) < 1 := fun n z zs ↦ lt_of_le_of_lt (near1 n z zs) (by linarith)
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
have expfl : βˆ€ n z, z ∈ s β†’ exp (fl n z) = f n z := by intro n z zs; refine Complex.exp_log ?_ exact near_one_avoids_zero (near1' n z zs)
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
have hl : βˆ€ n, AnalyticOn β„‚ (fl n) s := fun n ↦ (h n).log (fun z m ↦ mem_slitPlane_of_near_one (near1' n z m))
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
set c2 := 2 * c
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
have hfl : βˆ€ n z, z ∈ s β†’ abs (fl n z) ≀ c2 * a ^ n := by intro n z zs calc abs (fl n z) _ = abs (log (f n z)) := rfl _ ≀ 2 * abs (f n z - 1) := (log_small (near1 n z zs)) _ ≀ 2 * (c * a ^ n) := by linarith [hf n z zs] _ = 2 * c * a ^ n := by ring _ = c2 * a ^ n := rfl
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
rcases fast_series_converge o a0 a1 hl hfl with ⟨gl, gla, us⟩
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
case intro.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
generalize hg : (fun z ↦ exp (gl z)) = g
case intro.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
case intro.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
use g
case intro.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
refine ⟨?_, ?_, ?_⟩
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ HasProdOn f g s case h.refine_2 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ AnalyticOn β„‚ g s case h.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ βˆ€ z ∈ s, g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
intro n z zs
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log ⊒ βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log n : β„• z : β„‚ zs : z ∈ s ⊒ Complex.abs (f n z - 1) ≀ 1 / 2
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log ⊒ βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
calc abs (f n z - 1) _ ≀ c * a ^ n := hf n z zs _ ≀ (1 / 2 : ℝ) * (1:ℝ) ^ n := by bound _ = 1 / 2 := by norm_num
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log n : β„• z : β„‚ zs : z ∈ s ⊒ Complex.abs (f n z - 1) ≀ 1 / 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log n : β„• z : β„‚ zs : z ∈ s ⊒ Complex.abs (f n z - 1) ≀ 1 / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
bound
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log n : β„• z : β„‚ zs : z ∈ s ⊒ c * a ^ n ≀ 1 / 2 * 1 ^ n
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log n : β„• z : β„‚ zs : z ∈ s ⊒ c * a ^ n ≀ 1 / 2 * 1 ^ n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
norm_num
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log n : β„• z : β„‚ zs : z ∈ s ⊒ 1 / 2 * 1 ^ n = 1 / 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log n : β„• z : β„‚ zs : z ∈ s ⊒ 1 / 2 * 1 ^ n = 1 / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
linarith
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 n : β„• z : β„‚ zs : z ∈ s ⊒ 1 / 2 < 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 n : β„• z : β„‚ zs : z ∈ s ⊒ 1 / 2 < 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
intro n z zs
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 ⊒ βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 n : β„• z : β„‚ zs : z ∈ s ⊒ (fl n z).exp = f n z
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 ⊒ βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
refine Complex.exp_log ?_
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 n : β„• z : β„‚ zs : z ∈ s ⊒ (fl n z).exp = f n z
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 n : β„• z : β„‚ zs : z ∈ s ⊒ f n z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 n : β„• z : β„‚ zs : z ∈ s ⊒ (fl n z).exp = f n z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
exact near_one_avoids_zero (near1' n z zs)
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 n : β„• z : β„‚ zs : z ∈ s ⊒ f n z β‰  0
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 n : β„• z : β„‚ zs : z ∈ s ⊒ f n z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
intro n z zs
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c ⊒ βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c n : β„• z : β„‚ zs : z ∈ s ⊒ Complex.abs (fl n z) ≀ c2 * a ^ n
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c ⊒ βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
calc abs (fl n z) _ = abs (log (f n z)) := rfl _ ≀ 2 * abs (f n z - 1) := (log_small (near1 n z zs)) _ ≀ 2 * (c * a ^ n) := by linarith [hf n z zs] _ = 2 * c * a ^ n := by ring _ = c2 * a ^ n := rfl
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c n : β„• z : β„‚ zs : z ∈ s ⊒ Complex.abs (fl n z) ≀ c2 * a ^ n
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c n : β„• z : β„‚ zs : z ∈ s ⊒ Complex.abs (fl n z) ≀ c2 * a ^ n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
linarith [hf n z zs]
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c n : β„• z : β„‚ zs : z ∈ s ⊒ 2 * Complex.abs (f n z - 1) ≀ 2 * (c * a ^ n)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c n : β„• z : β„‚ zs : z ∈ s ⊒ 2 * Complex.abs (f n z - 1) ≀ 2 * (c * a ^ n) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
ring
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c n : β„• z : β„‚ zs : z ∈ s ⊒ 2 * (c * a ^ n) = 2 * c * a ^ n
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c n : β„• z : β„‚ zs : z ∈ s ⊒ 2 * (c * a ^ n) = 2 * c * a ^ n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
intro z zs
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ HasProdOn f g s
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s ⊒ HasProd (fun n => f n z) (g z)
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ HasProdOn f g s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
specialize us z zs
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s ⊒ HasProd (fun n => f n z) (g z)
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => (fun n => fl n) n z) (gl z) ⊒ HasProd (fun n => f n z) (g z)
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s ⊒ HasProd (fun n => f n z) (g z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
simp at us
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => (fun n => fl n) n z) (gl z) ⊒ HasProd (fun n => f n z) (g z)
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) ⊒ HasProd (fun n => f n z) (g z)
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => (fun n => fl n) n z) (gl z) ⊒ HasProd (fun n => f n z) (g z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
have comp : Filter.Tendsto (exp ∘ fun N : Finset β„• ↦ N.sum fun n ↦ fl n z) atTop (𝓝 (exp (gl z))) := Filter.Tendsto.comp (Continuous.tendsto Complex.continuous_exp _) us
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) ⊒ HasProd (fun n => f n z) (g z)
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) ⊒ HasProd (fun n => f n z) (g z)
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) ⊒ HasProd (fun n => f n z) (g z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
have expsum0 : (exp ∘ fun N : Finset β„• ↦ N.sum fun n ↦ fl n z) = fun N : Finset β„• ↦ N.prod fun n ↦ f n z := by apply funext; intro N; simp; rw [Complex.exp_sum]; simp_rw [expfl _ z zs]
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) ⊒ HasProd (fun n => f n z) (g z)
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) expsum0 : (exp ∘ fun N => N.sum fun n => fl n z) = fun N => N.prod fun n => f n z ⊒ HasProd (fun n => f n z) (g z)
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) ⊒ HasProd (fun n => f n z) (g z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
rw [expsum0] at comp
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) expsum0 : (exp ∘ fun N => N.sum fun n => fl n z) = fun N => N.prod fun n => f n z ⊒ HasProd (fun n => f n z) (g z)
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (fun N => N.prod fun n => f n z) atTop (𝓝 (gl z).exp) expsum0 : (exp ∘ fun N => N.sum fun n => fl n z) = fun N => N.prod fun n => f n z ⊒ HasProd (fun n => f n z) (g z)
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) expsum0 : (exp ∘ fun N => N.sum fun n => fl n z) = fun N => N.prod fun n => f n z ⊒ HasProd (fun n => f n z) (g z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
rw [← hg]
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (fun N => N.prod fun n => f n z) atTop (𝓝 (gl z).exp) expsum0 : (exp ∘ fun N => N.sum fun n => fl n z) = fun N => N.prod fun n => f n z ⊒ HasProd (fun n => f n z) (g z)
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (fun N => N.prod fun n => f n z) atTop (𝓝 (gl z).exp) expsum0 : (exp ∘ fun N => N.sum fun n => fl n z) = fun N => N.prod fun n => f n z ⊒ HasProd (fun n => f n z) ((fun z => (gl z).exp) z)
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (fun N => N.prod fun n => f n z) atTop (𝓝 (gl z).exp) expsum0 : (exp ∘ fun N => N.sum fun n => fl n z) = fun N => N.prod fun n => f n z ⊒ HasProd (fun n => f n z) (g z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
assumption
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (fun N => N.prod fun n => f n z) atTop (𝓝 (gl z).exp) expsum0 : (exp ∘ fun N => N.sum fun n => fl n z) = fun N => N.prod fun n => f n z ⊒ HasProd (fun n => f n z) ((fun z => (gl z).exp) z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (fun N => N.prod fun n => f n z) atTop (𝓝 (gl z).exp) expsum0 : (exp ∘ fun N => N.sum fun n => fl n z) = fun N => N.prod fun n => f n z ⊒ HasProd (fun n => f n z) ((fun z => (gl z).exp) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
apply funext
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) ⊒ (exp ∘ fun N => N.sum fun n => fl n z) = fun N => N.prod fun n => f n z
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) ⊒ βˆ€ (x : Finset β„•), (exp ∘ fun N => N.sum fun n => fl n z) x = x.prod fun n => f n z
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) ⊒ (exp ∘ fun N => N.sum fun n => fl n z) = fun N => N.prod fun n => f n z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
intro N
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) ⊒ βˆ€ (x : Finset β„•), (exp ∘ fun N => N.sum fun n => fl n z) x = x.prod fun n => f n z
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) N : Finset β„• ⊒ (exp ∘ fun N => N.sum fun n => fl n z) N = N.prod fun n => f n z
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) ⊒ βˆ€ (x : Finset β„•), (exp ∘ fun N => N.sum fun n => fl n z) x = x.prod fun n => f n z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
simp
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) N : Finset β„• ⊒ (exp ∘ fun N => N.sum fun n => fl n z) N = N.prod fun n => f n z
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) N : Finset β„• ⊒ (N.sum fun n => fl n z).exp = N.prod fun n => f n z
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) N : Finset β„• ⊒ (exp ∘ fun N => N.sum fun n => fl n z) N = N.prod fun n => f n z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
rw [Complex.exp_sum]
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) N : Finset β„• ⊒ (N.sum fun n => fl n z).exp = N.prod fun n => f n z
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) N : Finset β„• ⊒ (N.prod fun x => (fl x z).exp) = N.prod fun n => f n z
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) N : Finset β„• ⊒ (N.sum fun n => fl n z).exp = N.prod fun n => f n z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
simp_rw [expfl _ z zs]
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) N : Finset β„• ⊒ (N.prod fun x => (fl x z).exp) = N.prod fun n => f n z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) N : Finset β„• ⊒ (N.prod fun x => (fl x z).exp) = N.prod fun n => f n z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
rw [← hg]
case h.refine_2 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ AnalyticOn β„‚ g s
case h.refine_2 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ AnalyticOn β„‚ (fun z => (gl z).exp) s
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_2 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ AnalyticOn β„‚ g s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
exact fun z zs ↦ AnalyticAt.exp.comp (gla z zs)
case h.refine_2 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ AnalyticOn β„‚ (fun z => (gl z).exp) s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_2 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ AnalyticOn β„‚ (fun z => (gl z).exp) s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
simp only [Complex.exp_ne_zero, Ne, not_false_iff, imp_true_iff, ← hg]
case h.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ βˆ€ z ∈ s, g z β‰  0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge'
[101, 1]
[109, 55]
rcases fast_products_converge o c12 a0 a1 h hf with ⟨g, gp, ga, g0⟩
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n ⊒ ProdExistsOn f s ∧ AnalyticOn β„‚ (tprodOn f) s ∧ βˆ€ z ∈ s, tprodOn f z β‰  0
case intro.intro.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ ProdExistsOn f s ∧ AnalyticOn β„‚ (tprodOn f) s ∧ βˆ€ z ∈ s, tprodOn f z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n ⊒ ProdExistsOn f s ∧ AnalyticOn β„‚ (tprodOn f) s ∧ βˆ€ z ∈ s, tprodOn f z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge'
[101, 1]
[109, 55]
refine ⟨?_, ?_, ?_⟩
case intro.intro.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ ProdExistsOn f s ∧ AnalyticOn β„‚ (tprodOn f) s ∧ βˆ€ z ∈ s, tprodOn f z β‰  0
case intro.intro.intro.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ ProdExistsOn f s case intro.intro.intro.refine_2 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ AnalyticOn β„‚ (tprodOn f) s case intro.intro.intro.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ βˆ€ z ∈ s, tprodOn f z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ ProdExistsOn f s ∧ AnalyticOn β„‚ (tprodOn f) s ∧ βˆ€ z ∈ s, tprodOn f z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge'
[101, 1]
[109, 55]
exact fun z zs ↦ ⟨g z, gp z zs⟩
case intro.intro.intro.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ ProdExistsOn f s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ ProdExistsOn f s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge'
[101, 1]
[109, 55]
rwa [← analyticOn_congr o fun z zs ↦ (gp.tprodOn_eq z zs).symm]
case intro.intro.intro.refine_2 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ AnalyticOn β„‚ (tprodOn f) s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_2 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ AnalyticOn β„‚ (tprodOn f) s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge'
[101, 1]
[109, 55]
intro z zs
case intro.intro.intro.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ βˆ€ z ∈ s, tprodOn f z β‰  0
case intro.intro.intro.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 z : β„‚ zs : z ∈ s ⊒ tprodOn f z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ βˆ€ z ∈ s, tprodOn f z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge'
[101, 1]
[109, 55]
rw [gp.tprodOn_eq z zs]
case intro.intro.intro.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 z : β„‚ zs : z ∈ s ⊒ tprodOn f z β‰  0
case intro.intro.intro.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 z : β„‚ zs : z ∈ s ⊒ g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 z : β„‚ zs : z ∈ s ⊒ tprodOn f z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge'
[101, 1]
[109, 55]
exact g0 z zs
case intro.intro.intro.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 z : β„‚ zs : z ∈ s ⊒ g z β‰  0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 z : β„‚ zs : z ∈ s ⊒ g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_pow
[112, 1]
[115, 72]
rw [HasProd]
f : β„• β†’ β„‚ g : β„‚ p : β„• h : HasProd f g ⊒ HasProd (fun n => f n ^ p) (g ^ p)
f : β„• β†’ β„‚ g : β„‚ p : β„• h : HasProd f g ⊒ Filter.Tendsto (fun s => s.prod fun b => f b ^ p) atTop (𝓝 (g ^ p))
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ g : β„‚ p : β„• h : HasProd f g ⊒ HasProd (fun n => f n ^ p) (g ^ p) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_pow
[112, 1]
[115, 72]
simp_rw [Finset.prod_pow]
f : β„• β†’ β„‚ g : β„‚ p : β„• h : HasProd f g ⊒ Filter.Tendsto (fun s => s.prod fun b => f b ^ p) atTop (𝓝 (g ^ p))
f : β„• β†’ β„‚ g : β„‚ p : β„• h : HasProd f g ⊒ Filter.Tendsto (fun s => (s.prod fun x => f x) ^ p) atTop (𝓝 (g ^ p))
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ g : β„‚ p : β„• h : HasProd f g ⊒ Filter.Tendsto (fun s => s.prod fun b => f b ^ p) atTop (𝓝 (g ^ p)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_pow
[112, 1]
[115, 72]
exact Filter.Tendsto.comp (Continuous.tendsto (continuous_pow p) g) h
f : β„• β†’ β„‚ g : β„‚ p : β„• h : HasProd f g ⊒ Filter.Tendsto (fun s => (s.prod fun x => f x) ^ p) atTop (𝓝 (g ^ p))
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ g : β„‚ p : β„• h : HasProd f g ⊒ Filter.Tendsto (fun s => (s.prod fun x => f x) ^ p) atTop (𝓝 (g ^ p)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_pow'
[118, 1]
[120, 96]
rcases h with ⟨g, h⟩
f : β„• β†’ β„‚ p : β„• h : ProdExists f ⊒ tprod f ^ p = ∏' (n : β„•), f n ^ p
case intro f : β„• β†’ β„‚ p : β„• g : β„‚ h : HasProd f g ⊒ tprod f ^ p = ∏' (n : β„•), f n ^ p
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ p : β„• h : ProdExists f ⊒ tprod f ^ p = ∏' (n : β„•), f n ^ p TACTIC: