url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
---|---|---|---|---|---|---|---|---|---|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | finset_partition | [85, 1] | [95, 21] | cases' h with m m | case a.mpr
A B : Finset β
x : β
h : x β A β§ x β B β¨ x β A β§ x β B
β’ x β A | case a.mpr.inl
A B : Finset β
x : β
m : x β A β§ x β B
β’ x β A
case a.mpr.inr
A B : Finset β
x : β
m : x β A β§ x β B
β’ x β A | Please generate a tactic in lean4 to solve the state.
STATE:
case a.mpr
A B : Finset β
x : β
h : x β A β§ x β B β¨ x β A β§ x β B
β’ x β A
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | finset_partition | [85, 1] | [95, 21] | repeat exact m.1 | case a.mpr.inl
A B : Finset β
x : β
m : x β A β§ x β B
β’ x β A
case a.mpr.inr
A B : Finset β
x : β
m : x β A β§ x β B
β’ x β A | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case a.mpr.inl
A B : Finset β
x : β
m : x β A β§ x β B
β’ x β A
case a.mpr.inr
A B : Finset β
x : β
m : x β A β§ x β B
β’ x β A
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | finset_partition | [85, 1] | [95, 21] | exact m.1 | case a.mpr.inr
A B : Finset β
x : β
m : x β A β§ x β B
β’ x β A | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case a.mpr.inr
A B : Finset β
x : β
m : x β A β§ x β B
β’ x β A
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | finset_sum_partition | [97, 1] | [101, 59] | have ha : A = A \ B βͺ A β© B := finset_partition A B | A B : Finset β
f : β β β
β’ A.sum f = (A \ B).sum f + (A β© B).sum f | A B : Finset β
f : β β β
ha : A = A \ B βͺ A β© B
β’ A.sum f = (A \ B).sum f + (A β© B).sum f | Please generate a tactic in lean4 to solve the state.
STATE:
A B : Finset β
f : β β β
β’ A.sum f = (A \ B).sum f + (A β© B).sum f
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | finset_sum_partition | [97, 1] | [101, 59] | nth_rw 1 [ha] | A B : Finset β
f : β β β
ha : A = A \ B βͺ A β© B
β’ A.sum f = (A \ B).sum f + (A β© B).sum f | A B : Finset β
f : β β β
ha : A = A \ B βͺ A β© B
β’ (A \ B βͺ A β© B).sum f = (A \ B).sum f + (A β© B).sum f | Please generate a tactic in lean4 to solve the state.
STATE:
A B : Finset β
f : β β β
ha : A = A \ B βͺ A β© B
β’ A.sum f = (A \ B).sum f + (A β© B).sum f
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | finset_sum_partition | [97, 1] | [101, 59] | exact Finset.sum_union (Finset.disjoint_sdiff_inter A B) | A B : Finset β
f : β β β
ha : A = A \ B βͺ A β© B
β’ (A \ B βͺ A β© B).sum f = (A \ B).sum f + (A β© B).sum f | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
A B : Finset β
f : β β β
ha : A = A \ B βͺ A β© B
β’ (A \ B βͺ A β© B).sum f = (A \ B).sum f + (A β© B).sum f
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | symmDiff_union | [106, 1] | [107, 41] | rw [symmDiff_def, Finset.sup_eq_union] | A B : Finset β
β’ A β B = A \ B βͺ B \ A | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
A B : Finset β
β’ A β B = A \ B βͺ B \ A
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | symmDiff_bound | [109, 1] | [121, 70] | rw [finset_sum_partition A B f, finset_sum_partition B A f, Finset.inter_comm B A] | A B : Finset β
f : β β β
β’ dist (A.sum f) (B.sum f) β€ (A β B).sum fun n => Complex.abs (f n) | A B : Finset β
f : β β β
β’ dist ((A \ B).sum f + (A β© B).sum f) ((B \ A).sum f + (A β© B).sum f) β€ (A β B).sum fun n => Complex.abs (f n) | Please generate a tactic in lean4 to solve the state.
STATE:
A B : Finset β
f : β β β
β’ dist (A.sum f) (B.sum f) β€ (A β B).sum fun n => Complex.abs (f n)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | symmDiff_bound | [109, 1] | [121, 70] | rw [dist_add_right ((A \ B).sum f) ((B \ A).sum f) ((A β© B).sum f)] | A B : Finset β
f : β β β
β’ dist ((A \ B).sum f + (A β© B).sum f) ((B \ A).sum f + (A β© B).sum f) β€ (A β B).sum fun n => Complex.abs (f n) | A B : Finset β
f : β β β
β’ dist ((A \ B).sum f) ((B \ A).sum f) β€ (A β B).sum fun n => Complex.abs (f n) | Please generate a tactic in lean4 to solve the state.
STATE:
A B : Finset β
f : β β β
β’ dist ((A \ B).sum f + (A β© B).sum f) ((B \ A).sum f + (A β© B).sum f) β€ (A β B).sum fun n => Complex.abs (f n)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | symmDiff_bound | [109, 1] | [121, 70] | rw [Complex.dist_eq] | A B : Finset β
f : β β β
β’ dist ((A \ B).sum f) ((B \ A).sum f) β€ (A β B).sum fun n => Complex.abs (f n) | A B : Finset β
f : β β β
β’ Complex.abs ((A \ B).sum f - (B \ A).sum f) β€ (A β B).sum fun n => Complex.abs (f n) | Please generate a tactic in lean4 to solve the state.
STATE:
A B : Finset β
f : β β β
β’ dist ((A \ B).sum f) ((B \ A).sum f) β€ (A β B).sum fun n => Complex.abs (f n)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | symmDiff_bound | [109, 1] | [121, 70] | trans (A \ B).sum (fun n β¦ abs (f n)) + (B \ A).sum (fun n β¦ abs (f n)) | A B : Finset β
f : β β β
β’ Complex.abs ((A \ B).sum f - (B \ A).sum f) β€ (A β B).sum fun n => Complex.abs (f n) | A B : Finset β
f : β β β
β’ Complex.abs ((A \ B).sum f - (B \ A).sum f) β€
((A \ B).sum fun n => Complex.abs (f n)) + (B \ A).sum fun n => Complex.abs (f n)
A B : Finset β
f : β β β
β’ (((A \ B).sum fun n => Complex.abs (f n)) + (B \ A).sum fun n => Complex.abs (f n)) β€
(A β B).sum fun n => Complex.abs (f n) | Please generate a tactic in lean4 to solve the state.
STATE:
A B : Finset β
f : β β β
β’ Complex.abs ((A \ B).sum f - (B \ A).sum f) β€ (A β B).sum fun n => Complex.abs (f n)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | symmDiff_bound | [109, 1] | [121, 70] | have ha := finset_complex_abs_sum_le (A \ B) f | A B : Finset β
f : β β β
β’ Complex.abs ((A \ B).sum f - (B \ A).sum f) β€
((A \ B).sum fun n => Complex.abs (f n)) + (B \ A).sum fun n => Complex.abs (f n) | A B : Finset β
f : β β β
ha : Complex.abs ((A \ B).sum fun n => f n) β€ (A \ B).sum fun n => Complex.abs (f n)
β’ Complex.abs ((A \ B).sum f - (B \ A).sum f) β€
((A \ B).sum fun n => Complex.abs (f n)) + (B \ A).sum fun n => Complex.abs (f n) | Please generate a tactic in lean4 to solve the state.
STATE:
A B : Finset β
f : β β β
β’ Complex.abs ((A \ B).sum f - (B \ A).sum f) β€
((A \ B).sum fun n => Complex.abs (f n)) + (B \ A).sum fun n => Complex.abs (f n)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | symmDiff_bound | [109, 1] | [121, 70] | have hb := finset_complex_abs_sum_le (B \ A) f | A B : Finset β
f : β β β
ha : Complex.abs ((A \ B).sum fun n => f n) β€ (A \ B).sum fun n => Complex.abs (f n)
β’ Complex.abs ((A \ B).sum f - (B \ A).sum f) β€
((A \ B).sum fun n => Complex.abs (f n)) + (B \ A).sum fun n => Complex.abs (f n) | A B : Finset β
f : β β β
ha : Complex.abs ((A \ B).sum fun n => f n) β€ (A \ B).sum fun n => Complex.abs (f n)
hb : Complex.abs ((B \ A).sum fun n => f n) β€ (B \ A).sum fun n => Complex.abs (f n)
β’ Complex.abs ((A \ B).sum f - (B \ A).sum f) β€
((A \ B).sum fun n => Complex.abs (f n)) + (B \ A).sum fun n => Complex.abs (f n) | Please generate a tactic in lean4 to solve the state.
STATE:
A B : Finset β
f : β β β
ha : Complex.abs ((A \ B).sum fun n => f n) β€ (A \ B).sum fun n => Complex.abs (f n)
β’ Complex.abs ((A \ B).sum f - (B \ A).sum f) β€
((A \ B).sum fun n => Complex.abs (f n)) + (B \ A).sum fun n => Complex.abs (f n)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | symmDiff_bound | [109, 1] | [121, 70] | calc abs ((A \ B).sum f - (B \ A).sum f)
_ β€ abs ((A \ B).sum f) + abs ((B \ A).sum f) := by bound
_ β€ (A \ B).sum (fun n β¦ abs (f n)) + (B \ A).sum (fun n β¦ abs (f n)) := by bound | A B : Finset β
f : β β β
ha : Complex.abs ((A \ B).sum fun n => f n) β€ (A \ B).sum fun n => Complex.abs (f n)
hb : Complex.abs ((B \ A).sum fun n => f n) β€ (B \ A).sum fun n => Complex.abs (f n)
β’ Complex.abs ((A \ B).sum f - (B \ A).sum f) β€
((A \ B).sum fun n => Complex.abs (f n)) + (B \ A).sum fun n => Complex.abs (f n) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
A B : Finset β
f : β β β
ha : Complex.abs ((A \ B).sum fun n => f n) β€ (A \ B).sum fun n => Complex.abs (f n)
hb : Complex.abs ((B \ A).sum fun n => f n) β€ (B \ A).sum fun n => Complex.abs (f n)
β’ Complex.abs ((A \ B).sum f - (B \ A).sum f) β€
((A \ B).sum fun n => Complex.abs (f n)) + (B \ A).sum fun n => Complex.abs (f n)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | symmDiff_bound | [109, 1] | [121, 70] | bound | A B : Finset β
f : β β β
ha : Complex.abs ((A \ B).sum fun n => f n) β€ (A \ B).sum fun n => Complex.abs (f n)
hb : Complex.abs ((B \ A).sum fun n => f n) β€ (B \ A).sum fun n => Complex.abs (f n)
β’ Complex.abs ((A \ B).sum f - (B \ A).sum f) β€ Complex.abs ((A \ B).sum f) + Complex.abs ((B \ A).sum f) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
A B : Finset β
f : β β β
ha : Complex.abs ((A \ B).sum fun n => f n) β€ (A \ B).sum fun n => Complex.abs (f n)
hb : Complex.abs ((B \ A).sum fun n => f n) β€ (B \ A).sum fun n => Complex.abs (f n)
β’ Complex.abs ((A \ B).sum f - (B \ A).sum f) β€ Complex.abs ((A \ B).sum f) + Complex.abs ((B \ A).sum f)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | symmDiff_bound | [109, 1] | [121, 70] | bound | A B : Finset β
f : β β β
ha : Complex.abs ((A \ B).sum fun n => f n) β€ (A \ B).sum fun n => Complex.abs (f n)
hb : Complex.abs ((B \ A).sum fun n => f n) β€ (B \ A).sum fun n => Complex.abs (f n)
β’ Complex.abs ((A \ B).sum f) + Complex.abs ((B \ A).sum f) β€
((A \ B).sum fun n => Complex.abs (f n)) + (B \ A).sum fun n => Complex.abs (f n) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
A B : Finset β
f : β β β
ha : Complex.abs ((A \ B).sum fun n => f n) β€ (A \ B).sum fun n => Complex.abs (f n)
hb : Complex.abs ((B \ A).sum fun n => f n) β€ (B \ A).sum fun n => Complex.abs (f n)
β’ Complex.abs ((A \ B).sum f) + Complex.abs ((B \ A).sum f) β€
((A \ B).sum fun n => Complex.abs (f n)) + (B \ A).sum fun n => Complex.abs (f n)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | symmDiff_bound | [109, 1] | [121, 70] | apply le_of_eq | A B : Finset β
f : β β β
β’ (((A \ B).sum fun n => Complex.abs (f n)) + (B \ A).sum fun n => Complex.abs (f n)) β€
(A β B).sum fun n => Complex.abs (f n) | case a
A B : Finset β
f : β β β
β’ (((A \ B).sum fun n => Complex.abs (f n)) + (B \ A).sum fun n => Complex.abs (f n)) =
(A β B).sum fun n => Complex.abs (f n) | Please generate a tactic in lean4 to solve the state.
STATE:
A B : Finset β
f : β β β
β’ (((A \ B).sum fun n => Complex.abs (f n)) + (B \ A).sum fun n => Complex.abs (f n)) β€
(A β B).sum fun n => Complex.abs (f n)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | symmDiff_bound | [109, 1] | [121, 70] | rw [βFinset.sum_union (sdiff_sdiff_disjoint A B), symmDiff_union] | case a
A B : Finset β
f : β β β
β’ (((A \ B).sum fun n => Complex.abs (f n)) + (B \ A).sum fun n => Complex.abs (f n)) =
(A β B).sum fun n => Complex.abs (f n) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case a
A B : Finset β
f : β β β
β’ (((A \ B).sum fun n => Complex.abs (f n)) + (B \ A).sum fun n => Complex.abs (f n)) =
(A β B).sum fun n => Complex.abs (f n)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | symmDiff_late | [124, 1] | [135, 16] | intro n ab | A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
β’ Late (A β B) m | A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
ab : n β A β B
β’ n β₯ m | Please generate a tactic in lean4 to solve the state.
STATE:
A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
β’ Late (A β B) m
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | symmDiff_late | [124, 1] | [135, 16] | rw [symmDiff_def, Finset.sup_eq_union, Finset.mem_union] at ab | A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
ab : n β A β B
β’ n β₯ m | A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
ab : n β A \ B β¨ n β B \ A
β’ n β₯ m | Please generate a tactic in lean4 to solve the state.
STATE:
A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
ab : n β A β B
β’ n β₯ m
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | symmDiff_late | [124, 1] | [135, 16] | by_contra h | A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
ab : n β A \ B β¨ n β B \ A
β’ n β₯ m | A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
ab : n β A \ B β¨ n β B \ A
h : Β¬n β₯ m
β’ False | Please generate a tactic in lean4 to solve the state.
STATE:
A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
ab : n β A \ B β¨ n β B \ A
β’ n β₯ m
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | symmDiff_late | [124, 1] | [135, 16] | simp at h | A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
ab : n β A \ B β¨ n β B \ A
h : Β¬n β₯ m
β’ False | A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
ab : n β A \ B β¨ n β B \ A
h : n < m
β’ False | Please generate a tactic in lean4 to solve the state.
STATE:
A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
ab : n β A \ B β¨ n β B \ A
h : Β¬n β₯ m
β’ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | symmDiff_late | [124, 1] | [135, 16] | cases' ab with a b | A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
ab : n β A \ B β¨ n β B \ A
h : n < m
β’ False | case inl
A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
h : n < m
a : n β A \ B
β’ False
case inr
A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
h : n < m
b : n β B \ A
β’ False | Please generate a tactic in lean4 to solve the state.
STATE:
A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
ab : n β A \ B β¨ n β B \ A
h : n < m
β’ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | symmDiff_late | [124, 1] | [135, 16] | rw [Finset.mem_sdiff] at a | case inl
A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
h : n < m
a : n β A \ B
β’ False | case inl
A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
h : n < m
a : n β A β§ n β B
β’ False | Please generate a tactic in lean4 to solve the state.
STATE:
case inl
A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
h : n < m
a : n β A \ B
β’ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | symmDiff_late | [124, 1] | [135, 16] | have h := Finset.mem_of_subset hb (Finset.mem_range.mpr h) | case inl
A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
h : n < m
a : n β A β§ n β B
β’ False | case inl
A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
hβ : n < m
a : n β A β§ n β B
h : n β B
β’ False | Please generate a tactic in lean4 to solve the state.
STATE:
case inl
A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
h : n < m
a : n β A β§ n β B
β’ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | symmDiff_late | [124, 1] | [135, 16] | exact a.2 h | case inl
A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
hβ : n < m
a : n β A β§ n β B
h : n β B
β’ False | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case inl
A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
hβ : n < m
a : n β A β§ n β B
h : n β B
β’ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | symmDiff_late | [124, 1] | [135, 16] | rw [Finset.mem_sdiff] at b | case inr
A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
h : n < m
b : n β B \ A
β’ False | case inr
A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
h : n < m
b : n β B β§ n β A
β’ False | Please generate a tactic in lean4 to solve the state.
STATE:
case inr
A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
h : n < m
b : n β B \ A
β’ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | symmDiff_late | [124, 1] | [135, 16] | have h := Finset.mem_of_subset ha (Finset.mem_range.mpr h) | case inr
A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
h : n < m
b : n β B β§ n β A
β’ False | case inr
A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
hβ : n < m
b : n β B β§ n β A
h : n β A
β’ False | Please generate a tactic in lean4 to solve the state.
STATE:
case inr
A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
h : n < m
b : n β B β§ n β A
β’ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | symmDiff_late | [124, 1] | [135, 16] | exact b.2 h | case inr
A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
hβ : n < m
b : n β B β§ n β A
h : n β A
β’ False | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case inr
A B : Finset β
m : β
ha : A β₯ Finset.range m
hb : B β₯ Finset.range m
n : β
hβ : n < m
b : n β B β§ n β A
h : n β A
β’ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | sub_near | [138, 1] | [147, 54] | rw [abs_le] | a z : β
β’ |Complex.abs (a - z) - Complex.abs a| β€ Complex.abs z | a z : β
β’ -Complex.abs z β€ Complex.abs (a - z) - Complex.abs a β§ Complex.abs (a - z) - Complex.abs a β€ Complex.abs z | Please generate a tactic in lean4 to solve the state.
STATE:
a z : β
β’ |Complex.abs (a - z) - Complex.abs a| β€ Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | sub_near | [138, 1] | [147, 54] | constructor | a z : β
β’ -Complex.abs z β€ Complex.abs (a - z) - Complex.abs a β§ Complex.abs (a - z) - Complex.abs a β€ Complex.abs z | case left
a z : β
β’ -Complex.abs z β€ Complex.abs (a - z) - Complex.abs a
case right
a z : β
β’ Complex.abs (a - z) - Complex.abs a β€ Complex.abs z | Please generate a tactic in lean4 to solve the state.
STATE:
a z : β
β’ -Complex.abs z β€ Complex.abs (a - z) - Complex.abs a β§ Complex.abs (a - z) - Complex.abs a β€ Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | sub_near | [138, 1] | [147, 54] | simp only [neg_le_sub_iff_le_add] | case left
a z : β
β’ -Complex.abs z β€ Complex.abs (a - z) - Complex.abs a | case left
a z : β
β’ Complex.abs a β€ Complex.abs (a - z) + Complex.abs z | Please generate a tactic in lean4 to solve the state.
STATE:
case left
a z : β
β’ -Complex.abs z β€ Complex.abs (a - z) - Complex.abs a
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | sub_near | [138, 1] | [147, 54] | calc abs (a - z) + abs z
_ β₯ |abs a - abs z| + abs z := by bound
_ β₯ abs a - abs z + abs z := by bound
_ = abs a := by simp only [sub_add_cancel] | case left
a z : β
β’ Complex.abs a β€ Complex.abs (a - z) + Complex.abs z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case left
a z : β
β’ Complex.abs a β€ Complex.abs (a - z) + Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | sub_near | [138, 1] | [147, 54] | bound | a z : β
β’ Complex.abs (a - z) + Complex.abs z β₯ |Complex.abs a - Complex.abs z| + Complex.abs z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
a z : β
β’ Complex.abs (a - z) + Complex.abs z β₯ |Complex.abs a - Complex.abs z| + Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | sub_near | [138, 1] | [147, 54] | bound | a z : β
β’ |Complex.abs a - Complex.abs z| + Complex.abs z β₯ Complex.abs a - Complex.abs z + Complex.abs z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
a z : β
β’ |Complex.abs a - Complex.abs z| + Complex.abs z β₯ Complex.abs a - Complex.abs z + Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | sub_near | [138, 1] | [147, 54] | simp only [sub_add_cancel] | a z : β
β’ Complex.abs a - Complex.abs z + Complex.abs z = Complex.abs a | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
a z : β
β’ Complex.abs a - Complex.abs z + Complex.abs z = Complex.abs a
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | sub_near | [138, 1] | [147, 54] | calc
abs (a - z) - abs a β€ abs a + abs z - abs a := by bound
_ = abs z := by simp only [add_sub_cancel_left] | case right
a z : β
β’ Complex.abs (a - z) - Complex.abs a β€ Complex.abs z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case right
a z : β
β’ Complex.abs (a - z) - Complex.abs a β€ Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | sub_near | [138, 1] | [147, 54] | bound | a z : β
β’ Complex.abs (a - z) - Complex.abs a β€ Complex.abs a + Complex.abs z - Complex.abs a | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
a z : β
β’ Complex.abs (a - z) - Complex.abs a β€ Complex.abs a + Complex.abs z - Complex.abs a
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | sub_near | [138, 1] | [147, 54] | simp only [add_sub_cancel_left] | a z : β
β’ Complex.abs a + Complex.abs z - Complex.abs a = Complex.abs z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
a z : β
β’ Complex.abs a + Complex.abs z - Complex.abs a = Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | add_near | [149, 1] | [152, 13] | have h := sub_near a (-z) | a z : β
β’ |Complex.abs (a + z) - Complex.abs a| β€ Complex.abs z | a z : β
h : |Complex.abs (a - -z) - Complex.abs a| β€ Complex.abs (-z)
β’ |Complex.abs (a + z) - Complex.abs a| β€ Complex.abs z | Please generate a tactic in lean4 to solve the state.
STATE:
a z : β
β’ |Complex.abs (a + z) - Complex.abs a| β€ Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | add_near | [149, 1] | [152, 13] | simp only [sub_neg_eq_add, map_neg_eq_map] at h | a z : β
h : |Complex.abs (a - -z) - Complex.abs a| β€ Complex.abs (-z)
β’ |Complex.abs (a + z) - Complex.abs a| β€ Complex.abs z | a z : β
h : |Complex.abs (a + z) - Complex.abs a| β€ Complex.abs z
β’ |Complex.abs (a + z) - Complex.abs a| β€ Complex.abs z | Please generate a tactic in lean4 to solve the state.
STATE:
a z : β
h : |Complex.abs (a - -z) - Complex.abs a| β€ Complex.abs (-z)
β’ |Complex.abs (a + z) - Complex.abs a| β€ Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | add_near | [149, 1] | [152, 13] | assumption | a z : β
h : |Complex.abs (a + z) - Complex.abs a| β€ Complex.abs z
β’ |Complex.abs (a + z) - Complex.abs a| β€ Complex.abs z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
a z : β
h : |Complex.abs (a + z) - Complex.abs a| β€ Complex.abs z
β’ |Complex.abs (a + z) - Complex.abs a| β€ Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | mem_slitPlane_of_near_one | [154, 1] | [163, 13] | intro h | z : β
β’ Complex.abs (z - 1) < 1 β z β slitPlane | z : β
h : Complex.abs (z - 1) < 1
β’ z β slitPlane | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
β’ Complex.abs (z - 1) < 1 β z β slitPlane
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | mem_slitPlane_of_near_one | [154, 1] | [163, 13] | apply Or.inl | z : β
h : Complex.abs (z - 1) < 1
β’ z β slitPlane | case h
z : β
h : Complex.abs (z - 1) < 1
β’ 0 < z.re | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
h : Complex.abs (z - 1) < 1
β’ z β slitPlane
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | mem_slitPlane_of_near_one | [154, 1] | [163, 13] | have hr : (1 - z).re < 1 := by
calc
(1 - z).re β€ |(1 - z).re| := le_abs_self (1 - z).re
_ β€ abs (1 - z) := (Complex.abs_re_le_abs _)
_ = abs (z - 1) := by rw [βComplex.abs.map_neg (1 - z)]; simp only [neg_sub]
_ < 1 := h | case h
z : β
h : Complex.abs (z - 1) < 1
β’ 0 < z.re | case h
z : β
h : Complex.abs (z - 1) < 1
hr : (1 - z).re < 1
β’ 0 < z.re | Please generate a tactic in lean4 to solve the state.
STATE:
case h
z : β
h : Complex.abs (z - 1) < 1
β’ 0 < z.re
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | mem_slitPlane_of_near_one | [154, 1] | [163, 13] | simp only [Complex.sub_re, Complex.one_re, sub_lt_self_iff] at hr | case h
z : β
h : Complex.abs (z - 1) < 1
hr : (1 - z).re < 1
β’ 0 < z.re | case h
z : β
h : Complex.abs (z - 1) < 1
hr : 0 < z.re
β’ 0 < z.re | Please generate a tactic in lean4 to solve the state.
STATE:
case h
z : β
h : Complex.abs (z - 1) < 1
hr : (1 - z).re < 1
β’ 0 < z.re
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | mem_slitPlane_of_near_one | [154, 1] | [163, 13] | assumption | case h
z : β
h : Complex.abs (z - 1) < 1
hr : 0 < z.re
β’ 0 < z.re | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h
z : β
h : Complex.abs (z - 1) < 1
hr : 0 < z.re
β’ 0 < z.re
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | mem_slitPlane_of_near_one | [154, 1] | [163, 13] | calc
(1 - z).re β€ |(1 - z).re| := le_abs_self (1 - z).re
_ β€ abs (1 - z) := (Complex.abs_re_le_abs _)
_ = abs (z - 1) := by rw [βComplex.abs.map_neg (1 - z)]; simp only [neg_sub]
_ < 1 := h | z : β
h : Complex.abs (z - 1) < 1
β’ (1 - z).re < 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
h : Complex.abs (z - 1) < 1
β’ (1 - z).re < 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | mem_slitPlane_of_near_one | [154, 1] | [163, 13] | rw [βComplex.abs.map_neg (1 - z)] | z : β
h : Complex.abs (z - 1) < 1
β’ Complex.abs (1 - z) = Complex.abs (z - 1) | z : β
h : Complex.abs (z - 1) < 1
β’ Complex.abs (-(1 - z)) = Complex.abs (z - 1) | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
h : Complex.abs (z - 1) < 1
β’ Complex.abs (1 - z) = Complex.abs (z - 1)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | mem_slitPlane_of_near_one | [154, 1] | [163, 13] | simp only [neg_sub] | z : β
h : Complex.abs (z - 1) < 1
β’ Complex.abs (-(1 - z)) = Complex.abs (z - 1) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
h : Complex.abs (z - 1) < 1
β’ Complex.abs (-(1 - z)) = Complex.abs (z - 1)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | near_one_avoids_zero | [165, 1] | [166, 73] | intro h | z : β
β’ Complex.abs (z - 1) < 1 β z β 0 | z : β
h : Complex.abs (z - 1) < 1
β’ z β 0 | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
β’ Complex.abs (z - 1) < 1 β z β 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | near_one_avoids_zero | [165, 1] | [166, 73] | exact Complex.slitPlane_ne_zero (mem_slitPlane_of_near_one h) | z : β
h : Complex.abs (z - 1) < 1
β’ z β 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
h : Complex.abs (z - 1) < 1
β’ z β 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | derivWithin.clog | [172, 1] | [178, 40] | have hz := DifferentiableWithinAt.hasDerivWithinAt hf | f : β β β
z : β
s : Set β
o : IsOpen s
zs : z β s
hf : DifferentiableWithinAt β f s z
hx : (f z).re > 0 β¨ (f z).im β 0
β’ derivWithin (fun z => (f z).log) s z = derivWithin f s z / f z | f : β β β
z : β
s : Set β
o : IsOpen s
zs : z β s
hf : DifferentiableWithinAt β f s z
hx : (f z).re > 0 β¨ (f z).im β 0
hz : HasDerivWithinAt f (derivWithin f s z) s z
β’ derivWithin (fun z => (f z).log) s z = derivWithin f s z / f z | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
s : Set β
o : IsOpen s
zs : z β s
hf : DifferentiableWithinAt β f s z
hx : (f z).re > 0 β¨ (f z).im β 0
β’ derivWithin (fun z => (f z).log) s z = derivWithin f s z / f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | derivWithin.clog | [172, 1] | [178, 40] | have h := HasDerivWithinAt.clog hz hx | f : β β β
z : β
s : Set β
o : IsOpen s
zs : z β s
hf : DifferentiableWithinAt β f s z
hx : (f z).re > 0 β¨ (f z).im β 0
hz : HasDerivWithinAt f (derivWithin f s z) s z
β’ derivWithin (fun z => (f z).log) s z = derivWithin f s z / f z | f : β β β
z : β
s : Set β
o : IsOpen s
zs : z β s
hf : DifferentiableWithinAt β f s z
hx : (f z).re > 0 β¨ (f z).im β 0
hz : HasDerivWithinAt f (derivWithin f s z) s z
h : HasDerivWithinAt (fun t => (f t).log) (derivWithin f s z / f z) s z
β’ derivWithin (fun z => (f z).log) s z = derivWithin f s z / f z | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
s : Set β
o : IsOpen s
zs : z β s
hf : DifferentiableWithinAt β f s z
hx : (f z).re > 0 β¨ (f z).im β 0
hz : HasDerivWithinAt f (derivWithin f s z) s z
β’ derivWithin (fun z => (f z).log) s z = derivWithin f s z / f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | derivWithin.clog | [172, 1] | [178, 40] | have u := o.uniqueDiffWithinAt (π := β) zs | f : β β β
z : β
s : Set β
o : IsOpen s
zs : z β s
hf : DifferentiableWithinAt β f s z
hx : (f z).re > 0 β¨ (f z).im β 0
hz : HasDerivWithinAt f (derivWithin f s z) s z
h : HasDerivWithinAt (fun t => (f t).log) (derivWithin f s z / f z) s z
β’ derivWithin (fun z => (f z).log) s z = derivWithin f s z / f z | f : β β β
z : β
s : Set β
o : IsOpen s
zs : z β s
hf : DifferentiableWithinAt β f s z
hx : (f z).re > 0 β¨ (f z).im β 0
hz : HasDerivWithinAt f (derivWithin f s z) s z
h : HasDerivWithinAt (fun t => (f t).log) (derivWithin f s z / f z) s z
u : UniqueDiffWithinAt β s z
β’ derivWithin (fun z => (f z).log) s z = derivWithin f s z / f z | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
s : Set β
o : IsOpen s
zs : z β s
hf : DifferentiableWithinAt β f s z
hx : (f z).re > 0 β¨ (f z).im β 0
hz : HasDerivWithinAt f (derivWithin f s z) s z
h : HasDerivWithinAt (fun t => (f t).log) (derivWithin f s z / f z) s z
β’ derivWithin (fun z => (f z).log) s z = derivWithin f s z / f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | derivWithin.clog | [172, 1] | [178, 40] | rw [HasDerivWithinAt.derivWithin h u] | f : β β β
z : β
s : Set β
o : IsOpen s
zs : z β s
hf : DifferentiableWithinAt β f s z
hx : (f z).re > 0 β¨ (f z).im β 0
hz : HasDerivWithinAt f (derivWithin f s z) s z
h : HasDerivWithinAt (fun t => (f t).log) (derivWithin f s z / f z) s z
u : UniqueDiffWithinAt β s z
β’ derivWithin (fun z => (f z).log) s z = derivWithin f s z / f z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
s : Set β
o : IsOpen s
zs : z β s
hf : DifferentiableWithinAt β f s z
hx : (f z).re > 0 β¨ (f z).im β 0
hz : HasDerivWithinAt f (derivWithin f s z) s z
h : HasDerivWithinAt (fun t => (f t).log) (derivWithin f s z / f z) s z
u : UniqueDiffWithinAt β s z
β’ derivWithin (fun z => (f z).log) s z = derivWithin f s z / f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | by_cases rp : r β€ 0 | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
β’ Complex.abs (1 + z).log β€ 1 / (1 - r) * Complex.abs z | case pos
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : r β€ 0
β’ Complex.abs (1 + z).log β€ 1 / (1 - r) * Complex.abs z
case neg
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : Β¬r β€ 0
β’ Complex.abs (1 + z).log β€ 1 / (1 - r) * Complex.abs z | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
β’ Complex.abs (1 + z).log β€ 1 / (1 - r) * Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | have a0 : abs z < 0 := lt_of_lt_of_le h rp | case pos
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : r β€ 0
β’ Complex.abs (1 + z).log β€ 1 / (1 - r) * Complex.abs z | case pos
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : r β€ 0
a0 : Complex.abs z < 0
β’ Complex.abs (1 + z).log β€ 1 / (1 - r) * Complex.abs z | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : r β€ 0
β’ Complex.abs (1 + z).log β€ 1 / (1 - r) * Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | have a0' : abs z β₯ 0 := by bound | case pos
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : r β€ 0
a0 : Complex.abs z < 0
β’ Complex.abs (1 + z).log β€ 1 / (1 - r) * Complex.abs z | case pos
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : r β€ 0
a0 : Complex.abs z < 0
a0' : Complex.abs z β₯ 0
β’ Complex.abs (1 + z).log β€ 1 / (1 - r) * Complex.abs z | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : r β€ 0
a0 : Complex.abs z < 0
β’ Complex.abs (1 + z).log β€ 1 / (1 - r) * Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | exfalso | case pos
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : r β€ 0
a0 : Complex.abs z < 0
a0' : Complex.abs z β₯ 0
β’ Complex.abs (1 + z).log β€ 1 / (1 - r) * Complex.abs z | case pos
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : r β€ 0
a0 : Complex.abs z < 0
a0' : Complex.abs z β₯ 0
β’ False | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : r β€ 0
a0 : Complex.abs z < 0
a0' : Complex.abs z β₯ 0
β’ Complex.abs (1 + z).log β€ 1 / (1 - r) * Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | linarith [a0, a0'] | case pos
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : r β€ 0
a0 : Complex.abs z < 0
a0' : Complex.abs z β₯ 0
β’ False | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : r β€ 0
a0 : Complex.abs z < 0
a0' : Complex.abs z β₯ 0
β’ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | bound | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : r β€ 0
a0 : Complex.abs z < 0
β’ Complex.abs z β₯ 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : r β€ 0
a0 : Complex.abs z < 0
β’ Complex.abs z β₯ 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | simp only [not_le] at rp | case neg
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : Β¬r β€ 0
β’ Complex.abs (1 + z).log β€ 1 / (1 - r) * Complex.abs z | case neg
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
β’ Complex.abs (1 + z).log β€ 1 / (1 - r) * Complex.abs z | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : Β¬r β€ 0
β’ Complex.abs (1 + z).log β€ 1 / (1 - r) * Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | simp only [Complex.log_one, sub_zero, Complex.norm_eq_abs, one_div, add_sub_cancel_left] at L | case neg
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
L : β(1 + z).log - log 1β β€ 1 / (1 - r) * β1 + z - 1β
β’ Complex.abs (1 + z).log β€ 1 / (1 - r) * Complex.abs z | case neg
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
L : Complex.abs (1 + z).log β€ (1 - r)β»ΒΉ * Complex.abs z
β’ Complex.abs (1 + z).log β€ 1 / (1 - r) * Complex.abs z | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
L : β(1 + z).log - log 1β β€ 1 / (1 - r) * β1 + z - 1β
β’ Complex.abs (1 + z).log β€ 1 / (1 - r) * Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | simpa only [one_div, ge_iff_le] | case neg
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
L : Complex.abs (1 + z).log β€ (1 - r)β»ΒΉ * Complex.abs z
β’ Complex.abs (1 + z).log β€ 1 / (1 - r) * Complex.abs z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
L : Complex.abs (1 + z).log β€ (1 - r)β»ΒΉ * Complex.abs z
β’ Complex.abs (1 + z).log β€ 1 / (1 - r) * Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | generalize hs : Metric.ball (1:β) r = s | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
β’ β(1 + z).log - log 1β β€ 1 / (1 - r) * β1 + z - 1β | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
β’ β(1 + z).log - log 1β β€ 1 / (1 - r) * β1 + z - 1β | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
β’ β(1 + z).log - log 1β β€ 1 / (1 - r) * β1 + z - 1β
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | have o : IsOpen s := by rw [β hs]; exact Metric.isOpen_ball | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
β’ β(1 + z).log - log 1β β€ 1 / (1 - r) * β1 + z - 1β | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
β’ β(1 + z).log - log 1β β€ 1 / (1 - r) * β1 + z - 1β | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
β’ β(1 + z).log - log 1β β€ 1 / (1 - r) * β1 + z - 1β
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | have s1z : 1 + z β s := by simp [β hs]; assumption | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
β’ β(1 + z).log - log 1β β€ 1 / (1 - r) * β1 + z - 1β | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
β’ β(1 + z).log - log 1β β€ 1 / (1 - r) * β1 + z - 1β | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
β’ β(1 + z).log - log 1β β€ 1 / (1 - r) * β1 + z - 1β
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | have s1 : (1:β) β s := by simp [β hs]; assumption | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
β’ β(1 + z).log - log 1β β€ 1 / (1 - r) * β1 + z - 1β | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
β’ β(1 + z).log - log 1β β€ 1 / (1 - r) * β1 + z - 1β | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
β’ β(1 + z).log - log 1β β€ 1 / (1 - r) * β1 + z - 1β
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | have sp : β w : β, w β s β w.re > 0 β¨ w.im β 0 := by
intro w ws
apply mem_slitPlane_of_near_one
simp only [Metric.mem_ball, Complex.dist_eq, β hs] at ws
calc abs (w - 1) < r := by assumption
_ < 1 := r1 | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
β’ β(1 + z).log - log 1β β€ 1 / (1 - r) * β1 + z - 1β | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
β’ β(1 + z).log - log 1β β€ 1 / (1 - r) * β1 + z - 1β | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
β’ β(1 + z).log - log 1β β€ 1 / (1 - r) * β1 + z - 1β
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | have sa : β w : β, w β s β abs w β₯ 1 - r := by
intro w ws
simp only [Metric.mem_ball, Complex.dist_eq, β hs] at ws
calc abs w = abs (1 + (w - 1)) := by ring_nf
_ β₯ abs (1 : β) - abs (w - 1) := by bound
_ β₯ abs (1 : β) - r := by bound
_ = 1 - r := by rw [Complex.abs.map_one] | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
β’ β(1 + z).log - log 1β β€ 1 / (1 - r) * β1 + z - 1β | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
β’ β(1 + z).log - log 1β β€ 1 / (1 - r) * β1 + z - 1β | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
β’ β(1 + z).log - log 1β β€ 1 / (1 - r) * β1 + z - 1β
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | refine Convex.norm_image_sub_le_of_norm_derivWithin_le ?_ ?_ ?_ s1 s1z | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
β’ β(1 + z).log - log 1β β€ 1 / (1 - r) * β1 + z - 1β | case refine_1
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
β’ DifferentiableOn β log s
case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
β’ β x β s, βderivWithin log s xβ β€ 1 / (1 - r)
case refine_3
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
β’ Convex β s | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
β’ β(1 + z).log - log 1β β€ 1 / (1 - r) * β1 + z - 1β
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | rw [β hs] | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
β’ IsOpen s | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
β’ IsOpen (Metric.ball 1 r) | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
β’ IsOpen s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | exact Metric.isOpen_ball | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
β’ IsOpen (Metric.ball 1 r) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
β’ IsOpen (Metric.ball 1 r)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | simp [β hs] | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
β’ 1 + z β s | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
β’ Complex.abs z < r | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
β’ 1 + z β s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | assumption | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
β’ Complex.abs z < r | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
β’ Complex.abs z < r
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | simp [β hs] | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
β’ 1 β s | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
β’ 0 < r | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
β’ 1 β s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | assumption | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
β’ 0 < r | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
β’ 0 < r
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | intro w ws | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
β’ β w β s, w.re > 0 β¨ w.im β 0 | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0 | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
β’ β w β s, w.re > 0 β¨ w.im β 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | apply mem_slitPlane_of_near_one | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0 | case a
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
w : β
ws : w β s
β’ Complex.abs (w - 1) < 1 | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | simp only [Metric.mem_ball, Complex.dist_eq, β hs] at ws | case a
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
w : β
ws : w β s
β’ Complex.abs (w - 1) < 1 | case a
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
w : β
ws : Complex.abs (w - 1) < r
β’ Complex.abs (w - 1) < 1 | Please generate a tactic in lean4 to solve the state.
STATE:
case a
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
w : β
ws : w β s
β’ Complex.abs (w - 1) < 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | calc abs (w - 1) < r := by assumption
_ < 1 := r1 | case a
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
w : β
ws : Complex.abs (w - 1) < r
β’ Complex.abs (w - 1) < 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case a
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
w : β
ws : Complex.abs (w - 1) < r
β’ Complex.abs (w - 1) < 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | assumption | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
w : β
ws : Complex.abs (w - 1) < r
β’ Complex.abs (w - 1) < r | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
w : β
ws : Complex.abs (w - 1) < r
β’ Complex.abs (w - 1) < r
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | intro w ws | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
β’ β w β s, Complex.abs w β₯ 1 - r | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
w : β
ws : w β s
β’ Complex.abs w β₯ 1 - r | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
β’ β w β s, Complex.abs w β₯ 1 - r
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | simp only [Metric.mem_ball, Complex.dist_eq, β hs] at ws | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
w : β
ws : w β s
β’ Complex.abs w β₯ 1 - r | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
w : β
ws : Complex.abs (w - 1) < r
β’ Complex.abs w β₯ 1 - r | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
w : β
ws : w β s
β’ Complex.abs w β₯ 1 - r
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | calc abs w = abs (1 + (w - 1)) := by ring_nf
_ β₯ abs (1 : β) - abs (w - 1) := by bound
_ β₯ abs (1 : β) - r := by bound
_ = 1 - r := by rw [Complex.abs.map_one] | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
w : β
ws : Complex.abs (w - 1) < r
β’ Complex.abs w β₯ 1 - r | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
w : β
ws : Complex.abs (w - 1) < r
β’ Complex.abs w β₯ 1 - r
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | ring_nf | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
w : β
ws : Complex.abs (w - 1) < r
β’ Complex.abs w = Complex.abs (1 + (w - 1)) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
w : β
ws : Complex.abs (w - 1) < r
β’ Complex.abs w = Complex.abs (1 + (w - 1))
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | bound | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
w : β
ws : Complex.abs (w - 1) < r
β’ Complex.abs (1 + (w - 1)) β₯ Complex.abs 1 - Complex.abs (w - 1) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
w : β
ws : Complex.abs (w - 1) < r
β’ Complex.abs (1 + (w - 1)) β₯ Complex.abs 1 - Complex.abs (w - 1)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | bound | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
w : β
ws : Complex.abs (w - 1) < r
β’ Complex.abs 1 - Complex.abs (w - 1) β₯ Complex.abs 1 - r | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
w : β
ws : Complex.abs (w - 1) < r
β’ Complex.abs 1 - Complex.abs (w - 1) β₯ Complex.abs 1 - r
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | rw [Complex.abs.map_one] | z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
w : β
ws : Complex.abs (w - 1) < r
β’ Complex.abs 1 - r = 1 - r | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
w : β
ws : Complex.abs (w - 1) < r
β’ Complex.abs 1 - r = 1 - r
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | exact DifferentiableOn.clog differentiableOn_id sp | case refine_1
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
β’ DifferentiableOn β log s | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
β’ DifferentiableOn β log s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | intro w ws | case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
β’ β x β s, βderivWithin log s xβ β€ 1 / (1 - r) | case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ βderivWithin log s wβ β€ 1 / (1 - r) | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
β’ β x β s, βderivWithin log s xβ β€ 1 / (1 - r)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | rw [derivWithin.clog o ws, derivWithin.cid o ws] | case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ βderivWithin log s wβ β€ 1 / (1 - r) | case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ β1 / wβ β€ 1 / (1 - r)
case refine_2.hf
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ DifferentiableWithinAt β (fun z => z) s w
case refine_2.hx
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ βderivWithin log s wβ β€ 1 / (1 - r)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | simp only [one_div, norm_inv, Complex.norm_eq_abs] | case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ β1 / wβ β€ 1 / (1 - r)
case refine_2.hf
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ DifferentiableWithinAt β (fun z => z) s w
case refine_2.hx
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0 | case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ (Complex.abs w)β»ΒΉ β€ (1 - r)β»ΒΉ
case refine_2.hf
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ DifferentiableWithinAt β (fun z => z) s w
case refine_2.hx
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ β1 / wβ β€ 1 / (1 - r)
case refine_2.hf
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ DifferentiableWithinAt β (fun z => z) s w
case refine_2.hx
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | rw [inv_le] | case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ (Complex.abs w)β»ΒΉ β€ (1 - r)β»ΒΉ
case refine_2.hf
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ DifferentiableWithinAt β (fun z => z) s w
case refine_2.hx
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0 | case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ (1 - r)β»ΒΉβ»ΒΉ β€ Complex.abs w
case refine_2.ha
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < Complex.abs w
case refine_2.hb
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < (1 - r)β»ΒΉ
case refine_2.hf
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ DifferentiableWithinAt β (fun z => z) s w
case refine_2.hx
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ (Complex.abs w)β»ΒΉ β€ (1 - r)β»ΒΉ
case refine_2.hf
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ DifferentiableWithinAt β (fun z => z) s w
case refine_2.hx
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | have aw := sa w ws | case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ (1 - r)β»ΒΉβ»ΒΉ β€ Complex.abs w
case refine_2.ha
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < Complex.abs w
case refine_2.hb
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < (1 - r)β»ΒΉ
case refine_2.hf
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ DifferentiableWithinAt β (fun z => z) s w
case refine_2.hx
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0 | case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
aw : Complex.abs w β₯ 1 - r
β’ (1 - r)β»ΒΉβ»ΒΉ β€ Complex.abs w
case refine_2.ha
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < Complex.abs w
case refine_2.hb
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < (1 - r)β»ΒΉ
case refine_2.hf
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ DifferentiableWithinAt β (fun z => z) s w
case refine_2.hx
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ (1 - r)β»ΒΉβ»ΒΉ β€ Complex.abs w
case refine_2.ha
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < Complex.abs w
case refine_2.hb
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < (1 - r)β»ΒΉ
case refine_2.hf
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ DifferentiableWithinAt β (fun z => z) s w
case refine_2.hx
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | simp at aw | case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
aw : Complex.abs w β₯ 1 - r
β’ (1 - r)β»ΒΉβ»ΒΉ β€ Complex.abs w
case refine_2.ha
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < Complex.abs w
case refine_2.hb
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < (1 - r)β»ΒΉ
case refine_2.hf
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ DifferentiableWithinAt β (fun z => z) s w
case refine_2.hx
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0 | case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
aw : 1 β€ Complex.abs w + r
β’ (1 - r)β»ΒΉβ»ΒΉ β€ Complex.abs w
case refine_2.ha
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < Complex.abs w
case refine_2.hb
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < (1 - r)β»ΒΉ
case refine_2.hf
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ DifferentiableWithinAt β (fun z => z) s w
case refine_2.hx
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
aw : Complex.abs w β₯ 1 - r
β’ (1 - r)β»ΒΉβ»ΒΉ β€ Complex.abs w
case refine_2.ha
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < Complex.abs w
case refine_2.hb
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < (1 - r)β»ΒΉ
case refine_2.hf
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ DifferentiableWithinAt β (fun z => z) s w
case refine_2.hx
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | field_simp | case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
aw : 1 β€ Complex.abs w + r
β’ (1 - r)β»ΒΉβ»ΒΉ β€ Complex.abs w
case refine_2.ha
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < Complex.abs w
case refine_2.hb
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < (1 - r)β»ΒΉ
case refine_2.hf
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ DifferentiableWithinAt β (fun z => z) s w
case refine_2.hx
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0 | case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
aw : 1 β€ Complex.abs w + r
β’ 1 β€ Complex.abs w + r
case refine_2.ha
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < Complex.abs w
case refine_2.hb
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < (1 - r)β»ΒΉ
case refine_2.hf
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ DifferentiableWithinAt β (fun z => z) s w
case refine_2.hx
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
aw : 1 β€ Complex.abs w + r
β’ (1 - r)β»ΒΉβ»ΒΉ β€ Complex.abs w
case refine_2.ha
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < Complex.abs w
case refine_2.hb
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < (1 - r)β»ΒΉ
case refine_2.hf
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ DifferentiableWithinAt β (fun z => z) s w
case refine_2.hx
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | assumption | case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
aw : 1 β€ Complex.abs w + r
β’ 1 β€ Complex.abs w + r
case refine_2.ha
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < Complex.abs w
case refine_2.hb
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < (1 - r)β»ΒΉ
case refine_2.hf
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ DifferentiableWithinAt β (fun z => z) s w
case refine_2.hx
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0 | case refine_2.ha
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < Complex.abs w
case refine_2.hb
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < (1 - r)β»ΒΉ
case refine_2.hf
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ DifferentiableWithinAt β (fun z => z) s w
case refine_2.hx
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
aw : 1 β€ Complex.abs w + r
β’ 1 β€ Complex.abs w + r
case refine_2.ha
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < Complex.abs w
case refine_2.hb
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < (1 - r)β»ΒΉ
case refine_2.hf
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ DifferentiableWithinAt β (fun z => z) s w
case refine_2.hx
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | weak_log1p_small | [180, 1] | [218, 36] | have aw := sa w ws | case refine_2.ha
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < Complex.abs w
case refine_2.hb
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < (1 - r)β»ΒΉ
case refine_2.hf
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ DifferentiableWithinAt β (fun z => z) s w
case refine_2.hx
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0 | case refine_2.ha
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
aw : Complex.abs w β₯ 1 - r
β’ 0 < Complex.abs w
case refine_2.hb
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < (1 - r)β»ΒΉ
case refine_2.hf
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ DifferentiableWithinAt β (fun z => z) s w
case refine_2.hx
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2.ha
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < Complex.abs w
case refine_2.hb
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ 0 < (1 - r)β»ΒΉ
case refine_2.hf
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ DifferentiableWithinAt β (fun z => z) s w
case refine_2.hx
z : β
r : β
r1 : r < 1
h : Complex.abs z < r
rp : 0 < r
s : Set β
hs : Metric.ball 1 r = s
o : IsOpen s
s1z : 1 + z β s
s1 : 1 β s
sp : β w β s, w.re > 0 β¨ w.im β 0
sa : β w β s, Complex.abs w β₯ 1 - r
w : β
ws : w β s
β’ w.re > 0 β¨ w.im β 0
TACTIC:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.