url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
---|---|---|---|---|---|---|---|---|---|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | iter_error_le_log_log_abs | [245, 1] | [259, 83] | positivity | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
hl : 1.38 β€ (Complex.abs z).log
hll : 0.32 β€ (Complex.abs z).log.log
β’ 0 β€ 1.38 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
hl : 1.38 β€ (Complex.abs z).log
hll : 0.32 β€ (Complex.abs z).log.log
β’ 0 β€ 1.38
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | iter_error_le_log_log_abs | [245, 1] | [259, 83] | positivity | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
hl : 1.38 β€ (Complex.abs z).log
hll : 0.32 β€ (Complex.abs z).log.log
β’ 0 β€ Complex.abs z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
hl : 1.38 β€ (Complex.abs z).log
hll : 0.32 β€ (Complex.abs z).log.log
β’ 0 β€ Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | set s := superF d | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
β’ |β―.potential c βz - 1 / Complex.abs z| β€ potential_error d c z | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
β’ |s.potential c βz - 1 / Complex.abs z| β€ potential_error d c z | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
β’ |β―.potential c βz - 1 / Complex.abs z| β€ potential_error d c z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | have z3 : 3 β€ abs z := le_trans (by norm_num) z4 | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
β’ |s.potential c βz - 1 / Complex.abs z| β€ potential_error d c z | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
β’ |s.potential c βz - 1 / Complex.abs z| β€ potential_error d c z | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
β’ |s.potential c βz - 1 / Complex.abs z| β€ potential_error d c z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | have z0 : 0 < abs z := lt_of_lt_of_le (by norm_num) z3 | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
β’ |s.potential c βz - 1 / Complex.abs z| β€ potential_error d c z | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
β’ |s.potential c βz - 1 / Complex.abs z| β€ potential_error d c z | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
β’ |s.potential c βz - 1 / Complex.abs z| β€ potential_error d c z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | have l2 : 0 < log (abs z) := Real.log_pos (by linarith) | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
β’ |s.potential c βz - 1 / Complex.abs z| β€ potential_error d c z | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
β’ |s.potential c βz - 1 / Complex.abs z| β€ potential_error d c z | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
β’ |s.potential c βz - 1 / Complex.abs z| β€ potential_error d c z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | have h := log_neg_log_potential_approx d z3 cz | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
β’ |s.potential c βz - 1 / Complex.abs z| β€ potential_error d c z | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
h : |(-(β―.potential c βz).log).log - (Complex.abs z).log.log| β€ iter_error d c z
β’ |s.potential c βz - 1 / Complex.abs z| β€ potential_error d c z | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
β’ |s.potential c βz - 1 / Complex.abs z| β€ potential_error d c z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | have p0 : 0 < s.potential c z := potential_pos | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
h : |(-(β―.potential c βz).log).log - (Complex.abs z).log.log| β€ iter_error d c z
β’ |s.potential c βz - 1 / Complex.abs z| β€ potential_error d c z | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
h : |(-(β―.potential c βz).log).log - (Complex.abs z).log.log| β€ iter_error d c z
p0 : 0 < s.potential c βz
β’ |s.potential c βz - 1 / Complex.abs z| β€ potential_error d c z | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
h : |(-(β―.potential c βz).log).log - (Complex.abs z).log.log| β€ iter_error d c z
β’ |s.potential c βz - 1 / Complex.abs z| β€ potential_error d c z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | have lp0 : 0 < -log (s.potential c z) :=
neg_pos.mpr (Real.log_neg p0 (potential_lt_one_of_two_lt (by linarith) cz)) | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
h : |(-(β―.potential c βz).log).log - (Complex.abs z).log.log| β€ iter_error d c z
p0 : 0 < s.potential c βz
β’ |s.potential c βz - 1 / Complex.abs z| β€ potential_error d c z | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
h : |(-(β―.potential c βz).log).log - (Complex.abs z).log.log| β€ iter_error d c z
p0 : 0 < s.potential c βz
lp0 : 0 < -(s.potential c βz).log
β’ |s.potential c βz - 1 / Complex.abs z| β€ potential_error d c z | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
h : |(-(β―.potential c βz).log).log - (Complex.abs z).log.log| β€ iter_error d c z
p0 : 0 < s.potential c βz
β’ |s.potential c βz - 1 / Complex.abs z| β€ potential_error d c z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | generalize s.potential c z = p at h p0 lp0 | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
h : |(-(β―.potential c βz).log).log - (Complex.abs z).log.log| β€ iter_error d c z
p0 : 0 < s.potential c βz
lp0 : 0 < -(s.potential c βz).log
β’ |s.potential c βz - 1 / Complex.abs z| β€ potential_error d c z | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
h : |(-p.log).log - (Complex.abs z).log.log| β€ iter_error d c z
p0 : 0 < p
lp0 : 0 < -p.log
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
h : |(-(β―.potential c βz).log).log - (Complex.abs z).log.log| β€ iter_error d c z
p0 : 0 < s.potential c βz
lp0 : 0 < -(s.potential c βz).log
β’ |s.potential c βz - 1 / Complex.abs z| β€ potential_error d c z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | generalize hr : iter_error d c z = r at h | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
h : |(-p.log).log - (Complex.abs z).log.log| β€ iter_error d c z
p0 : 0 < p
lp0 : 0 < -p.log
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
h : |(-p.log).log - (Complex.abs z).log.log| β€ iter_error d c z
p0 : 0 < p
lp0 : 0 < -p.log
β’ |p - 1 / Complex.abs z| β€ potential_error d c z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | have r0 : 0 β€ r := le_trans (abs_nonneg _) h | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
β’ |p - 1 / Complex.abs z| β€ potential_error d c z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | set t := Ici (log (log (abs z)) - r) | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
β’ |p - 1 / Complex.abs z| β€ potential_error d c z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | have yt : log (-log p) β t := by
simp only [abs_le, neg_le_sub_iff_le_add, tsub_le_iff_right, add_comm r] at h
simp only [mem_Ici, tsub_le_iff_right, h, t] | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
β’ |p - 1 / Complex.abs z| β€ potential_error d c z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | have lt : log (log (abs z)) β t := by
simp only [mem_Ici, tsub_le_iff_right, le_add_iff_nonneg_right, r0, t] | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
β’ |p - 1 / Complex.abs z| β€ potential_error d c z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | generalize hb : dene (log (log (abs z)) - r) = b | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
β’ |p - 1 / Complex.abs z| β€ potential_error d c z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | have b0 : 0 β€ b := by rw [βhb]; exact dene_nonneg | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
β’ |p - 1 / Complex.abs z| β€ potential_error d c z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | have bound : β x, x β t β βderiv ene xβ β€ b := by
intro x m
simp only [Real.dist_eq, mem_Ici, βhr, t] at m
simp only [deriv_ene, norm_neg, Real.norm_of_nonneg dene_nonneg, βhb, βhr]
apply dene_anti (sub_nonneg.mpr (iter_error_le_log_log_abs d z4 cz)) m | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
bound : β x β t, βderiv ene xβ β€ b
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
β’ |p - 1 / Complex.abs z| β€ potential_error d c z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | have m := Convex.norm_image_sub_le_of_norm_deriv_le
(fun x _ β¦ (hasDerivAt_ene x).differentiableAt) bound (convex_Ici _) lt yt | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
bound : β x β t, βderiv ene xβ β€ b
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
bound : β x β t, βderiv ene xβ β€ b
m : βene (-p.log).log - ene (Complex.abs z).log.logβ β€ b * β(-p.log).log - (Complex.abs z).log.logβ
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
bound : β x β t, βderiv ene xβ β€ b
β’ |p - 1 / Complex.abs z| β€ potential_error d c z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | simp only [Real.norm_eq_abs] at m | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
bound : β x β t, βderiv ene xβ β€ b
m : βene (-p.log).log - ene (Complex.abs z).log.logβ β€ b * β(-p.log).log - (Complex.abs z).log.logβ
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
bound : β x β t, βderiv ene xβ β€ b
m : |ene (-p.log).log - ene (Complex.abs z).log.log| β€ b * |(-p.log).log - (Complex.abs z).log.log|
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
bound : β x β t, βderiv ene xβ β€ b
m : βene (-p.log).log - ene (Complex.abs z).log.logβ β€ b * β(-p.log).log - (Complex.abs z).log.logβ
β’ |p - 1 / Complex.abs z| β€ potential_error d c z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | replace m := le_trans m (mul_le_mul_of_nonneg_left h (by bound)) | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
bound : β x β t, βderiv ene xβ β€ b
m : |ene (-p.log).log - ene (Complex.abs z).log.log| β€ b * |(-p.log).log - (Complex.abs z).log.log|
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
bound : β x β t, βderiv ene xβ β€ b
m : |ene (-p.log).log - ene (Complex.abs z).log.log| β€ b * r
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
bound : β x β t, βderiv ene xβ β€ b
m : |ene (-p.log).log - ene (Complex.abs z).log.log| β€ b * |(-p.log).log - (Complex.abs z).log.log|
β’ |p - 1 / Complex.abs z| β€ potential_error d c z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | simp only [ene, Real.exp_log lp0, neg_neg, Real.exp_log p0, Real.exp_log l2, Real.exp_neg,
Real.exp_log z0, inv_eq_one_div] at m | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
bound : β x β t, βderiv ene xβ β€ b
m : |ene (-p.log).log - ene (Complex.abs z).log.log| β€ b * r
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
bound : β x β t, βderiv ene xβ β€ b
m : |p - 1 / Complex.abs z| β€ b * r
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
bound : β x β t, βderiv ene xβ β€ b
m : |ene (-p.log).log - ene (Complex.abs z).log.log| β€ b * r
β’ |p - 1 / Complex.abs z| β€ potential_error d c z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | refine le_trans m (le_of_eq ?_) | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
bound : β x β t, βderiv ene xβ β€ b
m : |p - 1 / Complex.abs z| β€ b * r
β’ |p - 1 / Complex.abs z| β€ potential_error d c z | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
bound : β x β t, βderiv ene xβ β€ b
m : |p - 1 / Complex.abs z| β€ b * r
β’ b * r = potential_error d c z | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
bound : β x β t, βderiv ene xβ β€ b
m : |p - 1 / Complex.abs z| β€ b * r
β’ |p - 1 / Complex.abs z| β€ potential_error d c z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | simp only [βhr, βhb, potential_error] | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
bound : β x β t, βderiv ene xβ β€ b
m : |p - 1 / Complex.abs z| β€ b * r
β’ b * r = potential_error d c z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
bound : β x β t, βderiv ene xβ β€ b
m : |p - 1 / Complex.abs z| β€ b * r
β’ b * r = potential_error d c z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | norm_num | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
β’ 3 β€ 4 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
β’ 3 β€ 4
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | norm_num | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
β’ 0 < 3 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
β’ 0 < 3
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | linarith | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
β’ 1 < Complex.abs z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
β’ 1 < Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | linarith | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
h : |(-(β―.potential c βz).log).log - (Complex.abs z).log.log| β€ iter_error d c z
p0 : 0 < s.potential c βz
β’ 2 < Complex.abs z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
h : |(-(β―.potential c βz).log).log - (Complex.abs z).log.log| β€ iter_error d c z
p0 : 0 < s.potential c βz
β’ 2 < Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | simp only [abs_le, neg_le_sub_iff_le_add, tsub_le_iff_right, add_comm r] at h | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
β’ (-p.log).log β t | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
h : (Complex.abs z).log.log β€ (-p.log).log + r β§ (-p.log).log β€ (Complex.abs z).log.log + r
β’ (-p.log).log β t | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
β’ (-p.log).log β t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | simp only [mem_Ici, tsub_le_iff_right, h, t] | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
h : (Complex.abs z).log.log β€ (-p.log).log + r β§ (-p.log).log β€ (Complex.abs z).log.log + r
β’ (-p.log).log β t | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
h : (Complex.abs z).log.log β€ (-p.log).log + r β§ (-p.log).log β€ (Complex.abs z).log.log + r
β’ (-p.log).log β t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | simp only [mem_Ici, tsub_le_iff_right, le_add_iff_nonneg_right, r0, t] | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
β’ (Complex.abs z).log.log β t | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
β’ (Complex.abs z).log.log β t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | rw [βhb] | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
β’ 0 β€ b | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
β’ 0 β€ dene ((Complex.abs z).log.log - r) | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
β’ 0 β€ b
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | exact dene_nonneg | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
β’ 0 β€ dene ((Complex.abs z).log.log - r) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
β’ 0 β€ dene ((Complex.abs z).log.log - r)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | intro x m | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
β’ β x β t, βderiv ene xβ β€ b | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
x : β
m : x β t
β’ βderiv ene xβ β€ b | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
β’ β x β t, βderiv ene xβ β€ b
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | simp only [Real.dist_eq, mem_Ici, βhr, t] at m | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
x : β
m : x β t
β’ βderiv ene xβ β€ b | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
x : β
m : (Complex.abs z).log.log - iter_error d c z β€ x
β’ βderiv ene xβ β€ b | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
x : β
m : x β t
β’ βderiv ene xβ β€ b
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | simp only [deriv_ene, norm_neg, Real.norm_of_nonneg dene_nonneg, βhb, βhr] | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
x : β
m : (Complex.abs z).log.log - iter_error d c z β€ x
β’ βderiv ene xβ β€ b | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
x : β
m : (Complex.abs z).log.log - iter_error d c z β€ x
β’ dene x β€ dene ((Complex.abs z).log.log - iter_error d c z) | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
x : β
m : (Complex.abs z).log.log - iter_error d c z β€ x
β’ βderiv ene xβ β€ b
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | apply dene_anti (sub_nonneg.mpr (iter_error_le_log_log_abs d z4 cz)) m | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
x : β
m : (Complex.abs z).log.log - iter_error d c z β€ x
β’ dene x β€ dene ((Complex.abs z).log.log - iter_error d c z) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
x : β
m : (Complex.abs z).log.log - iter_error d c z β€ x
β’ dene x β€ dene ((Complex.abs z).log.log - iter_error d c z)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multibrot/Potential.lean | potential_approx | [262, 1] | [295, 40] | bound | cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
bound : β x β t, βderiv ene xβ β€ b
m : |ene (-p.log).log - ene (Complex.abs z).log.log| β€ b * |(-p.log).log - (Complex.abs z).log.log|
β’ 0 β€ b | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
cβ zβ : β
dβ : β
instβΒΉ : Fact (2 β€ dβ)
d : β
instβ : Fact (2 β€ d)
c z : β
z4 : 4 β€ Complex.abs z
cz : Complex.abs c β€ Complex.abs z
s : Super (f d) d OnePoint.infty := superF d
z3 : 3 β€ Complex.abs z
z0 : 0 < Complex.abs z
l2 : 0 < (Complex.abs z).log
p : β
p0 : 0 < p
lp0 : 0 < -p.log
r : β
hr : iter_error d c z = r
h : |(-p.log).log - (Complex.abs z).log.log| β€ r
r0 : 0 β€ r
t : Set β := Ici ((Complex.abs z).log.log - r)
yt : (-p.log).log β t
lt : (Complex.abs z).log.log β t
b : β
hb : dene ((Complex.abs z).log.log - r) = b
b0 : 0 β€ b
bound : β x β t, βderiv ene xβ β€ b
m : |ene (-p.log).log - ene (Complex.abs z).log.log| β€ b * |(-p.log).log - (Complex.abs z).log.log|
β’ 0 β€ b
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_iff_disjoint_range | [27, 1] | [30, 83] | simp only [Late, ge_iff_le, Finset.disjoint_iff_ne, Finset.mem_range, ne_eq] | m : β
A : Finset β
β’ Late A m β Disjoint A (Finset.range m) | m : β
A : Finset β
β’ (β n β A, m β€ n) β β a β A, β b < m, Β¬a = b | Please generate a tactic in lean4 to solve the state.
STATE:
m : β
A : Finset β
β’ Late A m β Disjoint A (Finset.range m)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_iff_disjoint_range | [27, 1] | [30, 83] | constructor | m : β
A : Finset β
β’ (β n β A, m β€ n) β β a β A, β b < m, Β¬a = b | case mp
m : β
A : Finset β
β’ (β n β A, m β€ n) β β a β A, β b < m, Β¬a = b
case mpr
m : β
A : Finset β
β’ (β a β A, β b < m, Β¬a = b) β β n β A, m β€ n | Please generate a tactic in lean4 to solve the state.
STATE:
m : β
A : Finset β
β’ (β n β A, m β€ n) β β a β A, β b < m, Β¬a = b
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_iff_disjoint_range | [27, 1] | [30, 83] | intro h n na b bm | case mp
m : β
A : Finset β
β’ (β n β A, m β€ n) β β a β A, β b < m, Β¬a = b | case mp
m : β
A : Finset β
h : β n β A, m β€ n
n : β
na : n β A
b : β
bm : b < m
β’ Β¬n = b | Please generate a tactic in lean4 to solve the state.
STATE:
case mp
m : β
A : Finset β
β’ (β n β A, m β€ n) β β a β A, β b < m, Β¬a = b
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_iff_disjoint_range | [27, 1] | [30, 83] | linarith [h _ na] | case mp
m : β
A : Finset β
h : β n β A, m β€ n
n : β
na : n β A
b : β
bm : b < m
β’ Β¬n = b | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case mp
m : β
A : Finset β
h : β n β A, m β€ n
n : β
na : n β A
b : β
bm : b < m
β’ Β¬n = b
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_iff_disjoint_range | [27, 1] | [30, 83] | intro h n na | case mpr
m : β
A : Finset β
β’ (β a β A, β b < m, Β¬a = b) β β n β A, m β€ n | case mpr
m : β
A : Finset β
h : β a β A, β b < m, Β¬a = b
n : β
na : n β A
β’ m β€ n | Please generate a tactic in lean4 to solve the state.
STATE:
case mpr
m : β
A : Finset β
β’ (β a β A, β b < m, Β¬a = b) β β n β A, m β€ n
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_iff_disjoint_range | [27, 1] | [30, 83] | specialize h n na n | case mpr
m : β
A : Finset β
h : β a β A, β b < m, Β¬a = b
n : β
na : n β A
β’ m β€ n | case mpr
m : β
A : Finset β
n : β
na : n β A
h : n < m β Β¬n = n
β’ m β€ n | Please generate a tactic in lean4 to solve the state.
STATE:
case mpr
m : β
A : Finset β
h : β a β A, β b < m, Β¬a = b
n : β
na : n β A
β’ m β€ n
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_iff_disjoint_range | [27, 1] | [30, 83] | simpa [not_true, imp_false, not_lt] using h | case mpr
m : β
A : Finset β
n : β
na : n β A
h : n < m β Β¬n = n
β’ m β€ n | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case mpr
m : β
A : Finset β
n : β
na : n β A
h : n < m β Β¬n = n
β’ m β€ n
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | sdiff_late | [32, 1] | [38, 17] | intro Bm n nAB | m : β
B A : Finset β
β’ B β₯ Finset.range m β Late (A \ B) m | m : β
B A : Finset β
Bm : B β₯ Finset.range m
n : β
nAB : n β A \ B
β’ n β₯ m | Please generate a tactic in lean4 to solve the state.
STATE:
m : β
B A : Finset β
β’ B β₯ Finset.range m β Late (A \ B) m
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | sdiff_late | [32, 1] | [38, 17] | rw [Finset.mem_sdiff] at nAB | m : β
B A : Finset β
Bm : B β₯ Finset.range m
n : β
nAB : n β A \ B
β’ n β₯ m | m : β
B A : Finset β
Bm : B β₯ Finset.range m
n : β
nAB : n β A β§ n β B
β’ n β₯ m | Please generate a tactic in lean4 to solve the state.
STATE:
m : β
B A : Finset β
Bm : B β₯ Finset.range m
n : β
nAB : n β A \ B
β’ n β₯ m
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | sdiff_late | [32, 1] | [38, 17] | by_contra h | m : β
B A : Finset β
Bm : B β₯ Finset.range m
n : β
nAB : n β A β§ n β B
β’ n β₯ m | m : β
B A : Finset β
Bm : B β₯ Finset.range m
n : β
nAB : n β A β§ n β B
h : Β¬n β₯ m
β’ False | Please generate a tactic in lean4 to solve the state.
STATE:
m : β
B A : Finset β
Bm : B β₯ Finset.range m
n : β
nAB : n β A β§ n β B
β’ n β₯ m
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | sdiff_late | [32, 1] | [38, 17] | simp only [not_le] at h | m : β
B A : Finset β
Bm : B β₯ Finset.range m
n : β
nAB : n β A β§ n β B
h : Β¬n β₯ m
β’ False | m : β
B A : Finset β
Bm : B β₯ Finset.range m
n : β
nAB : n β A β§ n β B
h : n < m
β’ False | Please generate a tactic in lean4 to solve the state.
STATE:
m : β
B A : Finset β
Bm : B β₯ Finset.range m
n : β
nAB : n β A β§ n β B
h : Β¬n β₯ m
β’ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | sdiff_late | [32, 1] | [38, 17] | have nr := Finset.mem_range.mpr h | m : β
B A : Finset β
Bm : B β₯ Finset.range m
n : β
nAB : n β A β§ n β B
h : n < m
β’ False | m : β
B A : Finset β
Bm : B β₯ Finset.range m
n : β
nAB : n β A β§ n β B
h : n < m
nr : n β Finset.range m
β’ False | Please generate a tactic in lean4 to solve the state.
STATE:
m : β
B A : Finset β
Bm : B β₯ Finset.range m
n : β
nAB : n β A β§ n β B
h : n < m
β’ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | sdiff_late | [32, 1] | [38, 17] | have nB := Finset.mem_of_subset Bm nr | m : β
B A : Finset β
Bm : B β₯ Finset.range m
n : β
nAB : n β A β§ n β B
h : n < m
nr : n β Finset.range m
β’ False | m : β
B A : Finset β
Bm : B β₯ Finset.range m
n : β
nAB : n β A β§ n β B
h : n < m
nr : n β Finset.range m
nB : n β B
β’ False | Please generate a tactic in lean4 to solve the state.
STATE:
m : β
B A : Finset β
Bm : B β₯ Finset.range m
n : β
nAB : n β A β§ n β B
h : n < m
nr : n β Finset.range m
β’ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | sdiff_late | [32, 1] | [38, 17] | exact nAB.2 nB | m : β
B A : Finset β
Bm : B β₯ Finset.range m
n : β
nAB : n β A β§ n β B
h : n < m
nr : n β Finset.range m
nB : n β B
β’ False | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
m : β
B A : Finset β
Bm : B β₯ Finset.range m
n : β
nAB : n β A β§ n β B
h : n < m
nr : n β Finset.range m
nB : n β B
β’ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | partial_geometric_bound | [41, 1] | [44, 57] | intro n _ | a : β
N : Finset β
a0 : 0 β€ a
a1 : a < 1
β’ β n β N, 0 β€ a ^ n | a : β
N : Finset β
a0 : 0 β€ a
a1 : a < 1
n : β
aβ : n β N
β’ 0 β€ a ^ n | Please generate a tactic in lean4 to solve the state.
STATE:
a : β
N : Finset β
a0 : 0 β€ a
a1 : a < 1
β’ β n β N, 0 β€ a ^ n
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | partial_geometric_bound | [41, 1] | [44, 57] | bound | a : β
N : Finset β
a0 : 0 β€ a
a1 : a < 1
n : β
aβ : n β N
β’ 0 β€ a ^ n | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
a : β
N : Finset β
a0 : 0 β€ a
a1 : a < 1
n : β
aβ : n β N
β’ 0 β€ a ^ n
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | partial_scaled_geometric_bound | [46, 1] | [49, 42] | rw [βFinset.mul_sum] | a : β
c : ββ₯0
N : Finset β
a0 : 0 β€ a
a1 : a < 1
β’ (N.sum fun n => βc * a ^ n) β€ βc * (1 - a)β»ΒΉ | a : β
c : ββ₯0
N : Finset β
a0 : 0 β€ a
a1 : a < 1
β’ (βc * N.sum fun i => a ^ i) β€ βc * (1 - a)β»ΒΉ | Please generate a tactic in lean4 to solve the state.
STATE:
a : β
c : ββ₯0
N : Finset β
a0 : 0 β€ a
a1 : a < 1
β’ (N.sum fun n => βc * a ^ n) β€ βc * (1 - a)β»ΒΉ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | partial_scaled_geometric_bound | [46, 1] | [49, 42] | bound [partial_geometric_bound N a0 a1] | a : β
c : ββ₯0
N : Finset β
a0 : 0 β€ a
a1 : a < 1
β’ (βc * N.sum fun i => a ^ i) β€ βc * (1 - a)β»ΒΉ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
a : β
c : ββ₯0
N : Finset β
a0 : 0 β€ a
a1 : a < 1
β’ (βc * N.sum fun i => a ^ i) β€ βc * (1 - a)β»ΒΉ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_series_sum | [52, 1] | [66, 44] | set Ns := Finset.image (fun n β¦ n - m) N | m : β
N : Finset β
h : Late N m
f : β β β
β’ N.sum f = (Finset.image (fun n => n - m) N).sum fun n => f (n + m) | m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
β’ N.sum f = Ns.sum fun n => f (n + m) | Please generate a tactic in lean4 to solve the state.
STATE:
m : β
N : Finset β
h : Late N m
f : β β β
β’ N.sum f = (Finset.image (fun n => n - m) N).sum fun n => f (n + m)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_series_sum | [52, 1] | [66, 44] | rw [NNs] | m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
NNs : N = Finset.image (fun n => n + m) Ns
β’ N.sum f = Ns.sum fun n => f (n + m) | m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
NNs : N = Finset.image (fun n => n + m) Ns
β’ (Finset.image (fun n => n + m) Ns).sum f = Ns.sum fun n => f (n + m) | Please generate a tactic in lean4 to solve the state.
STATE:
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
NNs : N = Finset.image (fun n => n + m) Ns
β’ N.sum f = Ns.sum fun n => f (n + m)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_series_sum | [52, 1] | [66, 44] | apply Finset.sum_image | m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
NNs : N = Finset.image (fun n => n + m) Ns
β’ (Finset.image (fun n => n + m) Ns).sum f = Ns.sum fun n => f (n + m) | case a
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
NNs : N = Finset.image (fun n => n + m) Ns
β’ β x β Ns, β y β Ns, x + m = y + m β x = y | Please generate a tactic in lean4 to solve the state.
STATE:
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
NNs : N = Finset.image (fun n => n + m) Ns
β’ (Finset.image (fun n => n + m) Ns).sum f = Ns.sum fun n => f (n + m)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_series_sum | [52, 1] | [66, 44] | intro a _ b _ | case a
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
NNs : N = Finset.image (fun n => n + m) Ns
β’ β x β Ns, β y β Ns, x + m = y + m β x = y | case a
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
NNs : N = Finset.image (fun n => n + m) Ns
a : β
aβΒΉ : a β Ns
b : β
aβ : b β Ns
β’ a + m = b + m β a = b | Please generate a tactic in lean4 to solve the state.
STATE:
case a
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
NNs : N = Finset.image (fun n => n + m) Ns
β’ β x β Ns, β y β Ns, x + m = y + m β x = y
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_series_sum | [52, 1] | [66, 44] | exact Nat.add_right_cancel | case a
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
NNs : N = Finset.image (fun n => n + m) Ns
a : β
aβΒΉ : a β Ns
b : β
aβ : b β Ns
β’ a + m = b + m β a = b | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case a
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
NNs : N = Finset.image (fun n => n + m) Ns
a : β
aβΒΉ : a β Ns
b : β
aβ : b β Ns
β’ a + m = b + m β a = b
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_series_sum | [52, 1] | [66, 44] | apply Finset.ext | m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
β’ N = Finset.image (fun n => n + m) Ns | case a
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
β’ β (a : β), a β N β a β Finset.image (fun n => n + m) Ns | Please generate a tactic in lean4 to solve the state.
STATE:
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
β’ N = Finset.image (fun n => n + m) Ns
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_series_sum | [52, 1] | [66, 44] | intro k | case a
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
β’ β (a : β), a β N β a β Finset.image (fun n => n + m) Ns | case a
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
β’ k β N β k β Finset.image (fun n => n + m) Ns | Please generate a tactic in lean4 to solve the state.
STATE:
case a
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
β’ β (a : β), a β N β a β Finset.image (fun n => n + m) Ns
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_series_sum | [52, 1] | [66, 44] | rw [Finset.image_image, Finset.mem_image] | case a
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
β’ k β N β k β Finset.image (fun n => n + m) Ns | case a
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
β’ k β N β β a β N, ((fun n => n + m) β fun n => n - m) a = k | Please generate a tactic in lean4 to solve the state.
STATE:
case a
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
β’ k β N β k β Finset.image (fun n => n + m) Ns
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_series_sum | [52, 1] | [66, 44] | simp | case a
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
β’ k β N β β a β N, ((fun n => n + m) β fun n => n - m) a = k | case a
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
β’ k β N β β a β N, a - m + m = k | Please generate a tactic in lean4 to solve the state.
STATE:
case a
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
β’ k β N β β a β N, ((fun n => n + m) β fun n => n - m) a = k
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_series_sum | [52, 1] | [66, 44] | apply Iff.intro | case a
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
β’ k β N β β a β N, a - m + m = k | case a.mp
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
β’ k β N β β a β N, a - m + m = k
case a.mpr
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
β’ (β a β N, a - m + m = k) β k β N | Please generate a tactic in lean4 to solve the state.
STATE:
case a
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
β’ k β N β β a β N, a - m + m = k
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_series_sum | [52, 1] | [66, 44] | intro kN | case a.mp
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
β’ k β N β β a β N, a - m + m = k | case a.mp
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
kN : k β N
β’ β a β N, a - m + m = k | Please generate a tactic in lean4 to solve the state.
STATE:
case a.mp
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
β’ k β N β β a β N, a - m + m = k
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_series_sum | [52, 1] | [66, 44] | exists k | case a.mp
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
kN : k β N
β’ β a β N, a - m + m = k | case a.mp
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
kN : k β N
β’ k β N β§ k - m + m = k | Please generate a tactic in lean4 to solve the state.
STATE:
case a.mp
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
kN : k β N
β’ β a β N, a - m + m = k
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_series_sum | [52, 1] | [66, 44] | apply And.intro | case a.mp
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
kN : k β N
β’ k β N β§ k - m + m = k | case a.mp.left
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
kN : k β N
β’ k β N
case a.mp.right
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
kN : k β N
β’ k - m + m = k | Please generate a tactic in lean4 to solve the state.
STATE:
case a.mp
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
kN : k β N
β’ k β N β§ k - m + m = k
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_series_sum | [52, 1] | [66, 44] | assumption | case a.mp.left
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
kN : k β N
β’ k β N
case a.mp.right
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
kN : k β N
β’ k - m + m = k | case a.mp.right
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
kN : k β N
β’ k - m + m = k | Please generate a tactic in lean4 to solve the state.
STATE:
case a.mp.left
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
kN : k β N
β’ k β N
case a.mp.right
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
kN : k β N
β’ k - m + m = k
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_series_sum | [52, 1] | [66, 44] | exact Nat.sub_add_cancel (h k kN) | case a.mp.right
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
kN : k β N
β’ k - m + m = k | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case a.mp.right
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
kN : k β N
β’ k - m + m = k
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_series_sum | [52, 1] | [66, 44] | intro ha | case a.mpr
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
β’ (β a β N, a - m + m = k) β k β N | case a.mpr
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
ha : β a β N, a - m + m = k
β’ k β N | Please generate a tactic in lean4 to solve the state.
STATE:
case a.mpr
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
β’ (β a β N, a - m + m = k) β k β N
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_series_sum | [52, 1] | [66, 44] | rcases ha with β¨a, aN, akβ© | case a.mpr
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
ha : β a β N, a - m + m = k
β’ k β N | case a.mpr.intro.intro
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k a : β
aN : a β N
ak : a - m + m = k
β’ k β N | Please generate a tactic in lean4 to solve the state.
STATE:
case a.mpr
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k : β
ha : β a β N, a - m + m = k
β’ k β N
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_series_sum | [52, 1] | [66, 44] | rw [Nat.sub_add_cancel (h a aN)] at ak | case a.mpr.intro.intro
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k a : β
aN : a β N
ak : a - m + m = k
β’ k β N | case a.mpr.intro.intro
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k a : β
aN : a β N
ak : a = k
β’ k β N | Please generate a tactic in lean4 to solve the state.
STATE:
case a.mpr.intro.intro
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k a : β
aN : a β N
ak : a - m + m = k
β’ k β N
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_series_sum | [52, 1] | [66, 44] | rw [β ak] | case a.mpr.intro.intro
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k a : β
aN : a β N
ak : a = k
β’ k β N | case a.mpr.intro.intro
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k a : β
aN : a β N
ak : a = k
β’ a β N | Please generate a tactic in lean4 to solve the state.
STATE:
case a.mpr.intro.intro
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k a : β
aN : a β N
ak : a = k
β’ k β N
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_series_sum | [52, 1] | [66, 44] | assumption | case a.mpr.intro.intro
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k a : β
aN : a β N
ak : a = k
β’ a β N | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case a.mpr.intro.intro
m : β
N : Finset β
h : Late N m
f : β β β
Ns : Finset β := Finset.image (fun n => n - m) N
k a : β
aN : a β N
ak : a = k
β’ a β N
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_series_sum' | [69, 1] | [72, 28] | exists Finset.image (fun n β¦ n - m) N | m : β
N : Finset β
h : Late N m
f : β β β
β’ β M, N.sum f = M.sum fun n => f (n + m) | m : β
N : Finset β
h : Late N m
f : β β β
β’ N.sum f = (Finset.image (fun n => n - m) N).sum fun n => f (n + m) | Please generate a tactic in lean4 to solve the state.
STATE:
m : β
N : Finset β
h : Late N m
f : β β β
β’ β M, N.sum f = M.sum fun n => f (n + m)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_series_sum' | [69, 1] | [72, 28] | exact late_series_sum h f | m : β
N : Finset β
h : Late N m
f : β β β
β’ N.sum f = (Finset.image (fun n => n - m) N).sum fun n => f (n + m) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
m : β
N : Finset β
h : Late N m
f : β β β
β’ N.sum f = (Finset.image (fun n => n - m) N).sum fun n => f (n + m)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_geometric_bound | [74, 1] | [83, 35] | rcases late_series_sum' h (fun n β¦ a^n) with β¨M,Lβ© | m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
β’ (N.sum fun n => a ^ n) β€ a ^ m * (1 - a)β»ΒΉ | case intro
m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
L : (N.sum fun n => a ^ n) = M.sum fun n => a ^ (n + m)
β’ (N.sum fun n => a ^ n) β€ a ^ m * (1 - a)β»ΒΉ | Please generate a tactic in lean4 to solve the state.
STATE:
m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
β’ (N.sum fun n => a ^ n) β€ a ^ m * (1 - a)β»ΒΉ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_geometric_bound | [74, 1] | [83, 35] | rw [L] | case intro
m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
L : (N.sum fun n => a ^ n) = M.sum fun n => a ^ (n + m)
β’ (N.sum fun n => a ^ n) β€ a ^ m * (1 - a)β»ΒΉ | case intro
m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
L : (N.sum fun n => a ^ n) = M.sum fun n => a ^ (n + m)
β’ (M.sum fun n => a ^ (n + m)) β€ a ^ m * (1 - a)β»ΒΉ | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
L : (N.sum fun n => a ^ n) = M.sum fun n => a ^ (n + m)
β’ (N.sum fun n => a ^ n) β€ a ^ m * (1 - a)β»ΒΉ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_geometric_bound | [74, 1] | [83, 35] | clear L | case intro
m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
L : (N.sum fun n => a ^ n) = M.sum fun n => a ^ (n + m)
β’ (M.sum fun n => a ^ (n + m)) β€ a ^ m * (1 - a)β»ΒΉ | case intro
m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
β’ (M.sum fun n => a ^ (n + m)) β€ a ^ m * (1 - a)β»ΒΉ | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
L : (N.sum fun n => a ^ n) = M.sum fun n => a ^ (n + m)
β’ (M.sum fun n => a ^ (n + m)) β€ a ^ m * (1 - a)β»ΒΉ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_geometric_bound | [74, 1] | [83, 35] | have pa : (fun n β¦ a^(n + m)) = (fun n β¦ a^n * a^m) := by apply funext; intro n; rw [pow_add] | case intro
m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
β’ (M.sum fun n => a ^ (n + m)) β€ a ^ m * (1 - a)β»ΒΉ | case intro
m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
pa : (fun n => a ^ (n + m)) = fun n => a ^ n * a ^ m
β’ (M.sum fun n => a ^ (n + m)) β€ a ^ m * (1 - a)β»ΒΉ | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
β’ (M.sum fun n => a ^ (n + m)) β€ a ^ m * (1 - a)β»ΒΉ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_geometric_bound | [74, 1] | [83, 35] | calc
M.sum (fun n β¦ a^(n + m)) = M.sum (fun n β¦ a^n * a^m) := by rw [ pa ]
_ = M.sum (fun n β¦ a^n) * a^m := (Finset.sum_mul _ _ _).symm
_ β€ (1 - a)β»ΒΉ * a^m := by bound [partial_geometric_bound M a0 a1]
_ = a^m * (1 - a)β»ΒΉ := by ring | case intro
m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
pa : (fun n => a ^ (n + m)) = fun n => a ^ n * a ^ m
β’ (M.sum fun n => a ^ (n + m)) β€ a ^ m * (1 - a)β»ΒΉ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
pa : (fun n => a ^ (n + m)) = fun n => a ^ n * a ^ m
β’ (M.sum fun n => a ^ (n + m)) β€ a ^ m * (1 - a)β»ΒΉ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_geometric_bound | [74, 1] | [83, 35] | apply funext | m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
β’ (fun n => a ^ (n + m)) = fun n => a ^ n * a ^ m | case h
m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
β’ β (x : β), a ^ (x + m) = a ^ x * a ^ m | Please generate a tactic in lean4 to solve the state.
STATE:
m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
β’ (fun n => a ^ (n + m)) = fun n => a ^ n * a ^ m
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_geometric_bound | [74, 1] | [83, 35] | intro n | case h
m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
β’ β (x : β), a ^ (x + m) = a ^ x * a ^ m | case h
m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
n : β
β’ a ^ (n + m) = a ^ n * a ^ m | Please generate a tactic in lean4 to solve the state.
STATE:
case h
m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
β’ β (x : β), a ^ (x + m) = a ^ x * a ^ m
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_geometric_bound | [74, 1] | [83, 35] | rw [pow_add] | case h
m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
n : β
β’ a ^ (n + m) = a ^ n * a ^ m | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h
m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
n : β
β’ a ^ (n + m) = a ^ n * a ^ m
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_geometric_bound | [74, 1] | [83, 35] | rw [ pa ] | m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
pa : (fun n => a ^ (n + m)) = fun n => a ^ n * a ^ m
β’ (M.sum fun n => a ^ (n + m)) = M.sum fun n => a ^ n * a ^ m | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
pa : (fun n => a ^ (n + m)) = fun n => a ^ n * a ^ m
β’ (M.sum fun n => a ^ (n + m)) = M.sum fun n => a ^ n * a ^ m
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_geometric_bound | [74, 1] | [83, 35] | bound [partial_geometric_bound M a0 a1] | m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
pa : (fun n => a ^ (n + m)) = fun n => a ^ n * a ^ m
β’ (M.sum fun n => a ^ n) * a ^ m β€ (1 - a)β»ΒΉ * a ^ m | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
pa : (fun n => a ^ (n + m)) = fun n => a ^ n * a ^ m
β’ (M.sum fun n => a ^ n) * a ^ m β€ (1 - a)β»ΒΉ * a ^ m
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | late_geometric_bound | [74, 1] | [83, 35] | ring | m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
pa : (fun n => a ^ (n + m)) = fun n => a ^ n * a ^ m
β’ (1 - a)β»ΒΉ * a ^ m = a ^ m * (1 - a)β»ΒΉ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
m : β
a : β
N : Finset β
h : Late N m
a0 : 0 β€ a
a1 : a < 1
M : Finset β
pa : (fun n => a ^ (n + m)) = fun n => a ^ n * a ^ m
β’ (1 - a)β»ΒΉ * a ^ m = a ^ m * (1 - a)β»ΒΉ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | finset_partition | [85, 1] | [95, 21] | apply Finset.ext | A B : Finset β
β’ A = A \ B βͺ A β© B | case a
A B : Finset β
β’ β (a : β), a β A β a β A \ B βͺ A β© B | Please generate a tactic in lean4 to solve the state.
STATE:
A B : Finset β
β’ A = A \ B βͺ A β© B
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | finset_partition | [85, 1] | [95, 21] | simp only [Finset.mem_union, Finset.mem_sdiff, Finset.mem_inter] | case a
A B : Finset β
β’ β (a : β), a β A β a β A \ B βͺ A β© B | case a
A B : Finset β
β’ β (a : β), a β A β a β A β§ a β B β¨ a β A β§ a β B | Please generate a tactic in lean4 to solve the state.
STATE:
case a
A B : Finset β
β’ β (a : β), a β A β a β A \ B βͺ A β© B
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | finset_partition | [85, 1] | [95, 21] | intro x | case a
A B : Finset β
β’ β (a : β), a β A β a β A β§ a β B β¨ a β A β§ a β B | case a
A B : Finset β
x : β
β’ x β A β x β A β§ x β B β¨ x β A β§ x β B | Please generate a tactic in lean4 to solve the state.
STATE:
case a
A B : Finset β
β’ β (a : β), a β A β a β A β§ a β B β¨ a β A β§ a β B
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | finset_partition | [85, 1] | [95, 21] | constructor | case a
A B : Finset β
x : β
β’ x β A β x β A β§ x β B β¨ x β A β§ x β B | case a.mp
A B : Finset β
x : β
β’ x β A β x β A β§ x β B β¨ x β A β§ x β B
case a.mpr
A B : Finset β
x : β
β’ x β A β§ x β B β¨ x β A β§ x β B β x β A | Please generate a tactic in lean4 to solve the state.
STATE:
case a
A B : Finset β
x : β
β’ x β A β x β A β§ x β B β¨ x β A β§ x β B
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | finset_partition | [85, 1] | [95, 21] | intro a | case a.mp
A B : Finset β
x : β
β’ x β A β x β A β§ x β B β¨ x β A β§ x β B | case a.mp
A B : Finset β
x : β
a : x β A
β’ x β A β§ x β B β¨ x β A β§ x β B | Please generate a tactic in lean4 to solve the state.
STATE:
case a.mp
A B : Finset β
x : β
β’ x β A β x β A β§ x β B β¨ x β A β§ x β B
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | finset_partition | [85, 1] | [95, 21] | by_cases b : x β B | case a.mp
A B : Finset β
x : β
a : x β A
β’ x β A β§ x β B β¨ x β A β§ x β B | case pos
A B : Finset β
x : β
a : x β A
b : x β B
β’ x β A β§ x β B β¨ x β A β§ x β B
case neg
A B : Finset β
x : β
a : x β A
b : x β B
β’ x β A β§ x β B β¨ x β A β§ x β B | Please generate a tactic in lean4 to solve the state.
STATE:
case a.mp
A B : Finset β
x : β
a : x β A
β’ x β A β§ x β B β¨ x β A β§ x β B
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | finset_partition | [85, 1] | [95, 21] | right | case pos
A B : Finset β
x : β
a : x β A
b : x β B
β’ x β A β§ x β B β¨ x β A β§ x β B | case pos.h
A B : Finset β
x : β
a : x β A
b : x β B
β’ x β A β§ x β B | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
A B : Finset β
x : β
a : x β A
b : x β B
β’ x β A β§ x β B β¨ x β A β§ x β B
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | finset_partition | [85, 1] | [95, 21] | use a,b | case pos.h
A B : Finset β
x : β
a : x β A
b : x β B
β’ x β A β§ x β B | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case pos.h
A B : Finset β
x : β
a : x β A
b : x β B
β’ x β A β§ x β B
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | finset_partition | [85, 1] | [95, 21] | left | case neg
A B : Finset β
x : β
a : x β A
b : x β B
β’ x β A β§ x β B β¨ x β A β§ x β B | case neg.h
A B : Finset β
x : β
a : x β A
b : x β B
β’ x β A β§ x β B | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
A B : Finset β
x : β
a : x β A
b : x β B
β’ x β A β§ x β B β¨ x β A β§ x β B
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | finset_partition | [85, 1] | [95, 21] | use a,b | case neg.h
A B : Finset β
x : β
a : x β A
b : x β B
β’ x β A β§ x β B | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.h
A B : Finset β
x : β
a : x β A
b : x β B
β’ x β A β§ x β B
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Bounds.lean | finset_partition | [85, 1] | [95, 21] | intro h | case a.mpr
A B : Finset β
x : β
β’ x β A β§ x β B β¨ x β A β§ x β B β x β A | case a.mpr
A B : Finset β
x : β
h : x β A β§ x β B β¨ x β A β§ x β B
β’ x β A | Please generate a tactic in lean4 to solve the state.
STATE:
case a.mpr
A B : Finset β
x : β
β’ x β A β§ x β B β¨ x β A β§ x β B β x β A
TACTIC:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.