url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.ga
[296, 1]
[303, 19]
refine holomorphicAt_snd.comp (i.he_symm_holomorphic.comp_of_eq ?_ ?_)
case gh S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ HolomorphicAt (I.prod I) I (fun x => (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) (c, f c z)
case gh.refine_1 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ HolomorphicAt (I.prod I) (I.prod I) (fun x => (x.1, ↑(extChartAt I (f c z)) x.2)) (c, f c z) case gh.refine_2 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ ((c, f c z).1, ↑(extChartAt I (f c z)) (c, f c z).2) = (c, i.fz')
Please generate a tactic in lean4 to solve the state. STATE: case gh S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ HolomorphicAt (I.prod I) I (fun x => (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) (c, f c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.ga
[296, 1]
[303, 19]
apply holomorphicAt_fst.prod
case gh.refine_1 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ HolomorphicAt (I.prod I) (I.prod I) (fun x => (x.1, ↑(extChartAt I (f c z)) x.2)) (c, f c z)
case gh.refine_1 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ HolomorphicAt (I.prod I) I (fun x => ↑(extChartAt I (f c z)) x.2) (c, f c z)
Please generate a tactic in lean4 to solve the state. STATE: case gh.refine_1 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ HolomorphicAt (I.prod I) (I.prod I) (fun x => (x.1, ↑(extChartAt I (f c z)) x.2)) (c, f c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.ga
[296, 1]
[303, 19]
refine (HolomorphicAt.extChartAt ?_).comp holomorphicAt_snd
case gh.refine_1 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ HolomorphicAt (I.prod I) I (fun x => ↑(extChartAt I (f c z)) x.2) (c, f c z)
case gh.refine_1 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ (c, f c z).2 ∈ (extChartAt I (f c z)).source
Please generate a tactic in lean4 to solve the state. STATE: case gh.refine_1 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ HolomorphicAt (I.prod I) I (fun x => ↑(extChartAt I (f c z)) x.2) (c, f c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.ga
[296, 1]
[303, 19]
exact mem_extChartAt_source _ _
case gh.refine_1 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ (c, f c z).2 ∈ (extChartAt I (f c z)).source
no goals
Please generate a tactic in lean4 to solve the state. STATE: case gh.refine_1 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ (c, f c z).2 ∈ (extChartAt I (f c z)).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.ga
[296, 1]
[303, 19]
rfl
case gh.refine_2 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ ((c, f c z).1, ↑(extChartAt I (f c z)) (c, f c z).2) = (c, i.fz')
no goals
Please generate a tactic in lean4 to solve the state. STATE: case gh.refine_2 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ ((c, f c z).1, ↑(extChartAt I (f c z)) (c, f c z).2) = (c, i.fz') TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.ga
[296, 1]
[303, 19]
exact i.inv_at
case e S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ (↑i.he.symm ((c, f c z).1, ↑(extChartAt I (f c z)) (c, f c z).2)).2 = ↑(extChartAt I z) z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case e S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ (↑i.he.symm ((c, f c z).1, ↑(extChartAt I (f c z)) (c, f c z).2)).2 = ↑(extChartAt I z) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
complex_inverse_fun
[311, 1]
[320, 41]
have i : ComplexInverseFun.Cinv f c z := { fa nc }
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z ≠ 0 ⊢ ∃ g, HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) ∧ (∀ᶠ (x : ℂ × S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2) ∧ ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z ≠ 0 i : ComplexInverseFun.Cinv f c z ⊢ ∃ g, HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) ∧ (∀ᶠ (x : ℂ × S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2) ∧ ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z ≠ 0 ⊢ ∃ g, HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) ∧ (∀ᶠ (x : ℂ × S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2) ∧ ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
complex_inverse_fun
[311, 1]
[320, 41]
use i.g, i.ga, i.left_inv, i.right_inv
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z ≠ 0 i : ComplexInverseFun.Cinv f c z ⊢ ∃ g, HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) ∧ (∀ᶠ (x : ℂ × S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2) ∧ ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) nc : mfderiv I I (f c) z ≠ 0 i : ComplexInverseFun.Cinv f c z ⊢ ∃ g, HolomorphicAt (I.prod I) I (uncurry g) (c, f c z) ∧ (∀ᶠ (x : ℂ × S) in 𝓝 (c, z), g x.1 (f x.1 x.2) = x.2) ∧ ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (g x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
complex_inverse_fun'
[324, 1]
[333, 60]
set f' : ℂ → S → T := fun _ z ↦ f z
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : S → T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z ≠ 0 ⊢ ∃ g, HolomorphicAt I I g (f z) ∧ (∀ᶠ (x : S) in 𝓝 z, g (f x) = x) ∧ ∀ᶠ (x : T) in 𝓝 (f z), f (g x) = x
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : S → T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z ≠ 0 f' : ℂ → S → T := fun x z => f z ⊢ ∃ g, HolomorphicAt I I g (f z) ∧ (∀ᶠ (x : S) in 𝓝 z, g (f x) = x) ∧ ∀ᶠ (x : T) in 𝓝 (f z), f (g x) = x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : S → T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z ≠ 0 ⊢ ∃ g, HolomorphicAt I I g (f z) ∧ (∀ᶠ (x : S) in 𝓝 z, g (f x) = x) ∧ ∀ᶠ (x : T) in 𝓝 (f z), f (g x) = x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
complex_inverse_fun'
[324, 1]
[333, 60]
have fa' : HolomorphicAt II I (uncurry f') (0, z) := fa.comp_of_eq holomorphicAt_snd rfl
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : S → T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z ≠ 0 f' : ℂ → S → T := fun x z => f z ⊢ ∃ g, HolomorphicAt I I g (f z) ∧ (∀ᶠ (x : S) in 𝓝 z, g (f x) = x) ∧ ∀ᶠ (x : T) in 𝓝 (f z), f (g x) = x
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : S → T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z ≠ 0 f' : ℂ → S → T := fun x z => f z fa' : HolomorphicAt (I.prod I) I (uncurry f') (0, z) ⊢ ∃ g, HolomorphicAt I I g (f z) ∧ (∀ᶠ (x : S) in 𝓝 z, g (f x) = x) ∧ ∀ᶠ (x : T) in 𝓝 (f z), f (g x) = x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : S → T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z ≠ 0 f' : ℂ → S → T := fun x z => f z ⊢ ∃ g, HolomorphicAt I I g (f z) ∧ (∀ᶠ (x : S) in 𝓝 z, g (f x) = x) ∧ ∀ᶠ (x : T) in 𝓝 (f z), f (g x) = x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
complex_inverse_fun'
[324, 1]
[333, 60]
rcases complex_inverse_fun fa' nc with ⟨g, ga, gf, fg⟩
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : S → T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z ≠ 0 f' : ℂ → S → T := fun x z => f z fa' : HolomorphicAt (I.prod I) I (uncurry f') (0, z) ⊢ ∃ g, HolomorphicAt I I g (f z) ∧ (∀ᶠ (x : S) in 𝓝 z, g (f x) = x) ∧ ∀ᶠ (x : T) in 𝓝 (f z), f (g x) = x
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : S → T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z ≠ 0 f' : ℂ → S → T := fun x z => f z fa' : HolomorphicAt (I.prod I) I (uncurry f') (0, z) g : ℂ → T → S ga : HolomorphicAt (I.prod I) I (uncurry g) (0, f' 0 z) gf : ∀ᶠ (x : ℂ × S) in 𝓝 (0, z), g x.1 (f' x.1 x.2) = x.2 fg : ∀ᶠ (x : ℂ × T) in 𝓝 (0, f' 0 z), f' x.1 (g x.1 x.2) = x.2 ⊢ ∃ g, HolomorphicAt I I g (f z) ∧ (∀ᶠ (x : S) in 𝓝 z, g (f x) = x) ∧ ∀ᶠ (x : T) in 𝓝 (f z), f (g x) = x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : S → T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z ≠ 0 f' : ℂ → S → T := fun x z => f z fa' : HolomorphicAt (I.prod I) I (uncurry f') (0, z) ⊢ ∃ g, HolomorphicAt I I g (f z) ∧ (∀ᶠ (x : S) in 𝓝 z, g (f x) = x) ∧ ∀ᶠ (x : T) in 𝓝 (f z), f (g x) = x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
complex_inverse_fun'
[324, 1]
[333, 60]
use g 0, ga.comp (holomorphicAt_const.prod holomorphicAt_id), (continuousAt_const.prod continuousAt_id).eventually gf, (continuousAt_const.prod continuousAt_id).eventually fg
case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : S → T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z ≠ 0 f' : ℂ → S → T := fun x z => f z fa' : HolomorphicAt (I.prod I) I (uncurry f') (0, z) g : ℂ → T → S ga : HolomorphicAt (I.prod I) I (uncurry g) (0, f' 0 z) gf : ∀ᶠ (x : ℂ × S) in 𝓝 (0, z), g x.1 (f' x.1 x.2) = x.2 fg : ∀ᶠ (x : ℂ × T) in 𝓝 (0, f' 0 z), f' x.1 (g x.1 x.2) = x.2 ⊢ ∃ g, HolomorphicAt I I g (f z) ∧ (∀ᶠ (x : S) in 𝓝 z, g (f x) = x) ∧ ∀ᶠ (x : T) in 𝓝 (f z), f (g x) = x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : S → T z : S fa : HolomorphicAt I I f z nc : mfderiv I I f z ≠ 0 f' : ℂ → S → T := fun x z => f z fa' : HolomorphicAt (I.prod I) I (uncurry f') (0, z) g : ℂ → T → S ga : HolomorphicAt (I.prod I) I (uncurry g) (0, f' 0 z) gf : ∀ᶠ (x : ℂ × S) in 𝓝 (0, z), g x.1 (f' x.1 x.2) = x.2 fg : ∀ᶠ (x : ℂ × T) in 𝓝 (0, f' 0 z), f' x.1 (g x.1 x.2) = x.2 ⊢ ∃ g, HolomorphicAt I I g (f z) ∧ (∀ᶠ (x : S) in 𝓝 z, g (f x) = x) ∧ ∀ᶠ (x : T) in 𝓝 (f z), f (g x) = x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
set s := superF d
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z ⊢ Tendsto (fun n => Complex.abs ((f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 (⋯.potential c ↑z))
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d ⊢ Tendsto (fun n => Complex.abs ((f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 (s.potential c ↑z))
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z ⊢ Tendsto (fun n => Complex.abs ((f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 (⋯.potential c ↑z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
suffices h : Tendsto (fun n ↦ (abs ((f' d c)^[n] z) * s.potential c ↑((f' d c)^[n] z)) ^ (-((d ^ n : ℕ) : ℝ)⁻¹)) atTop (𝓝 1) by replace h := h.mul_const (s.potential c z) simp only [div_mul_cancel₀ _ potential_pos.ne', one_mul, ← f_f'_iter, s.potential_eqn_iter, Real.mul_rpow (Complex.abs.nonneg _) (pow_nonneg s.potential_nonneg _), Real.pow_rpow_inv_natCast s.potential_nonneg (pow_ne_zero _ (d_ne_zero d)), Real.rpow_neg (pow_nonneg s.potential_nonneg _), ← div_eq_mul_inv] at h exact h
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d ⊢ Tendsto (fun n => Complex.abs ((f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 (s.potential c ↑z))
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z) * s.potential c ↑((f' d c)^[n] z)) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 1)
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d ⊢ Tendsto (fun n => Complex.abs ((f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 (s.potential c ↑z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
simp only [← s.abs_bottcher, ← Complex.abs.map_mul, mul_comm _ (s.bottcher _ _)]
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z) * s.potential c ↑((f' d c)^[n] z)) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 1)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d ⊢ Tendsto (fun n => Complex.abs (s.bottcher c ↑((f' d c)^[n] z) * (f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 1)
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z) * s.potential c ↑((f' d c)^[n] z)) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
rw [Metric.tendsto_atTop]
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d ⊢ Tendsto (fun n => Complex.abs (s.bottcher c ↑((f' d c)^[n] z) * (f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 1)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d ⊢ ∀ ε > 0, ∃ N, ∀ n ≥ N, dist (Complex.abs (s.bottcher c ↑((f' d c)^[n] z) * (f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) 1 < ε
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d ⊢ Tendsto (fun n => Complex.abs (s.bottcher c ↑((f' d c)^[n] z) * (f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
intro r rp
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d ⊢ ∀ ε > 0, ∃ N, ∀ n ≥ N, dist (Complex.abs (s.bottcher c ↑((f' d c)^[n] z) * (f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) 1 < ε
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 ⊢ ∃ N, ∀ n ≥ N, dist (Complex.abs (s.bottcher c ↑((f' d c)^[n] z) * (f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) 1 < r
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d ⊢ ∀ ε > 0, ∃ N, ∀ n ≥ N, dist (Complex.abs (s.bottcher c ↑((f' d c)^[n] z) * (f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) 1 < ε TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
rcases Metric.tendsto_atTop.mp ((bottcher_large_approx d c).comp (tendsto_iter_atInf d z3 cz)) (min (1 / 2) (r / 4)) (by bound) with ⟨n, h⟩
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 ⊢ ∃ N, ∀ n ≥ N, dist (Complex.abs (s.bottcher c ↑((f' d c)^[n] z) * (f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) 1 < r
case intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 n : ℕ h : ∀ n_1 ≥ n, dist (((fun z => ⋯.bottcher c ↑z * z) ∘ fun n => (f' d c)^[n] z) n_1) 1 < min (1 / 2) (r / 4) ⊢ ∃ N, ∀ n ≥ N, dist (Complex.abs (s.bottcher c ↑((f' d c)^[n] z) * (f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) 1 < r
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 ⊢ ∃ N, ∀ n ≥ N, dist (Complex.abs (s.bottcher c ↑((f' d c)^[n] z) * (f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) 1 < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
use n
case intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 n : ℕ h : ∀ n_1 ≥ n, dist (((fun z => ⋯.bottcher c ↑z * z) ∘ fun n => (f' d c)^[n] z) n_1) 1 < min (1 / 2) (r / 4) ⊢ ∃ N, ∀ n ≥ N, dist (Complex.abs (s.bottcher c ↑((f' d c)^[n] z) * (f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) 1 < r
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 n : ℕ h : ∀ n_1 ≥ n, dist (((fun z => ⋯.bottcher c ↑z * z) ∘ fun n => (f' d c)^[n] z) n_1) 1 < min (1 / 2) (r / 4) ⊢ ∀ n_1 ≥ n, dist (Complex.abs (s.bottcher c ↑((f' d c)^[n_1] z) * (f' d c)^[n_1] z) ^ (-(↑(d ^ n_1))⁻¹)) 1 < r
Please generate a tactic in lean4 to solve the state. STATE: case intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 n : ℕ h : ∀ n_1 ≥ n, dist (((fun z => ⋯.bottcher c ↑z * z) ∘ fun n => (f' d c)^[n] z) n_1) 1 < min (1 / 2) (r / 4) ⊢ ∃ N, ∀ n ≥ N, dist (Complex.abs (s.bottcher c ↑((f' d c)^[n] z) * (f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) 1 < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
intro k nk
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 n : ℕ h : ∀ n_1 ≥ n, dist (((fun z => ⋯.bottcher c ↑z * z) ∘ fun n => (f' d c)^[n] z) n_1) 1 < min (1 / 2) (r / 4) ⊢ ∀ n_1 ≥ n, dist (Complex.abs (s.bottcher c ↑((f' d c)^[n_1] z) * (f' d c)^[n_1] z) ^ (-(↑(d ^ n_1))⁻¹)) 1 < r
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 n : ℕ h : ∀ n_1 ≥ n, dist (((fun z => ⋯.bottcher c ↑z * z) ∘ fun n => (f' d c)^[n] z) n_1) 1 < min (1 / 2) (r / 4) k : ℕ nk : k ≥ n ⊢ dist (Complex.abs (s.bottcher c ↑((f' d c)^[k] z) * (f' d c)^[k] z) ^ (-(↑(d ^ k))⁻¹)) 1 < r
Please generate a tactic in lean4 to solve the state. STATE: case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 n : ℕ h : ∀ n_1 ≥ n, dist (((fun z => ⋯.bottcher c ↑z * z) ∘ fun n => (f' d c)^[n] z) n_1) 1 < min (1 / 2) (r / 4) ⊢ ∀ n_1 ≥ n, dist (Complex.abs (s.bottcher c ↑((f' d c)^[n_1] z) * (f' d c)^[n_1] z) ^ (-(↑(d ^ n_1))⁻¹)) 1 < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
specialize h k nk
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 n : ℕ h : ∀ n_1 ≥ n, dist (((fun z => ⋯.bottcher c ↑z * z) ∘ fun n => (f' d c)^[n] z) n_1) 1 < min (1 / 2) (r / 4) k : ℕ nk : k ≥ n ⊢ dist (Complex.abs (s.bottcher c ↑((f' d c)^[k] z) * (f' d c)^[k] z) ^ (-(↑(d ^ k))⁻¹)) 1 < r
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 n k : ℕ nk : k ≥ n h : dist (((fun z => ⋯.bottcher c ↑z * z) ∘ fun n => (f' d c)^[n] z) k) 1 < min (1 / 2) (r / 4) ⊢ dist (Complex.abs (s.bottcher c ↑((f' d c)^[k] z) * (f' d c)^[k] z) ^ (-(↑(d ^ k))⁻¹)) 1 < r
Please generate a tactic in lean4 to solve the state. STATE: case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 n : ℕ h : ∀ n_1 ≥ n, dist (((fun z => ⋯.bottcher c ↑z * z) ∘ fun n => (f' d c)^[n] z) n_1) 1 < min (1 / 2) (r / 4) k : ℕ nk : k ≥ n ⊢ dist (Complex.abs (s.bottcher c ↑((f' d c)^[k] z) * (f' d c)^[k] z) ^ (-(↑(d ^ k))⁻¹)) 1 < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
generalize hw : (f' d c)^[k] z = w
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 n k : ℕ nk : k ≥ n h : dist (((fun z => ⋯.bottcher c ↑z * z) ∘ fun n => (f' d c)^[n] z) k) 1 < min (1 / 2) (r / 4) ⊢ dist (Complex.abs (s.bottcher c ↑((f' d c)^[k] z) * (f' d c)^[k] z) ^ (-(↑(d ^ k))⁻¹)) 1 < r
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 n k : ℕ nk : k ≥ n h : dist (((fun z => ⋯.bottcher c ↑z * z) ∘ fun n => (f' d c)^[n] z) k) 1 < min (1 / 2) (r / 4) w : ℂ hw : (f' d c)^[k] z = w ⊢ dist (Complex.abs (s.bottcher c ↑w * w) ^ (-(↑(d ^ k))⁻¹)) 1 < r
Please generate a tactic in lean4 to solve the state. STATE: case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 n k : ℕ nk : k ≥ n h : dist (((fun z => ⋯.bottcher c ↑z * z) ∘ fun n => (f' d c)^[n] z) k) 1 < min (1 / 2) (r / 4) ⊢ dist (Complex.abs (s.bottcher c ↑((f' d c)^[k] z) * (f' d c)^[k] z) ^ (-(↑(d ^ k))⁻¹)) 1 < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
generalize hp : s.bottcher c w * w = p
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 n k : ℕ nk : k ≥ n h : dist (((fun z => ⋯.bottcher c ↑z * z) ∘ fun n => (f' d c)^[n] z) k) 1 < min (1 / 2) (r / 4) w : ℂ hw : (f' d c)^[k] z = w ⊢ dist (Complex.abs (s.bottcher c ↑w * w) ^ (-(↑(d ^ k))⁻¹)) 1 < r
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 n k : ℕ nk : k ≥ n h : dist (((fun z => ⋯.bottcher c ↑z * z) ∘ fun n => (f' d c)^[n] z) k) 1 < min (1 / 2) (r / 4) w : ℂ hw : (f' d c)^[k] z = w p : ℂ hp : s.bottcher c ↑w * w = p ⊢ dist (Complex.abs p ^ (-(↑(d ^ k))⁻¹)) 1 < r
Please generate a tactic in lean4 to solve the state. STATE: case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 n k : ℕ nk : k ≥ n h : dist (((fun z => ⋯.bottcher c ↑z * z) ∘ fun n => (f' d c)^[n] z) k) 1 < min (1 / 2) (r / 4) w : ℂ hw : (f' d c)^[k] z = w ⊢ dist (Complex.abs (s.bottcher c ↑w * w) ^ (-(↑(d ^ k))⁻¹)) 1 < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
simp only [hw, hp, Function.comp, Complex.dist_eq, Real.dist_eq] at h ⊢
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 n k : ℕ nk : k ≥ n h : dist (((fun z => ⋯.bottcher c ↑z * z) ∘ fun n => (f' d c)^[n] z) k) 1 < min (1 / 2) (r / 4) w : ℂ hw : (f' d c)^[k] z = w p : ℂ hp : s.bottcher c ↑w * w = p ⊢ dist (Complex.abs p ^ (-(↑(d ^ k))⁻¹)) 1 < r
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 n k : ℕ nk : k ≥ n w : ℂ hw : (f' d c)^[k] z = w p : ℂ hp : s.bottcher c ↑w * w = p h : Complex.abs (p - 1) < min (1 / 2) (r / 4) ⊢ |Complex.abs p ^ (-(↑(d ^ k))⁻¹) - 1| < r
Please generate a tactic in lean4 to solve the state. STATE: case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 n k : ℕ nk : k ≥ n h : dist (((fun z => ⋯.bottcher c ↑z * z) ∘ fun n => (f' d c)^[n] z) k) 1 < min (1 / 2) (r / 4) w : ℂ hw : (f' d c)^[k] z = w p : ℂ hp : s.bottcher c ↑w * w = p ⊢ dist (Complex.abs p ^ (-(↑(d ^ k))⁻¹)) 1 < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
clear hp w hw nk n s cz z3
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 n k : ℕ nk : k ≥ n w : ℂ hw : (f' d c)^[k] z = w p : ℂ hp : s.bottcher c ↑w * w = p h : Complex.abs (p - 1) < min (1 / 2) (r / 4) ⊢ |Complex.abs p ^ (-(↑(d ^ k))⁻¹) - 1| < r
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) ⊢ |Complex.abs p ^ (-(↑(d ^ k))⁻¹) - 1| < r
Please generate a tactic in lean4 to solve the state. STATE: case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 n k : ℕ nk : k ≥ n w : ℂ hw : (f' d c)^[k] z = w p : ℂ hp : s.bottcher c ↑w * w = p h : Complex.abs (p - 1) < min (1 / 2) (r / 4) ⊢ |Complex.abs p ^ (-(↑(d ^ k))⁻¹) - 1| < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
generalize ha : abs p = a
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) ⊢ |Complex.abs p ^ (-(↑(d ^ k))⁻¹) - 1| < r
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a ⊢ |a ^ (-(↑(d ^ k))⁻¹) - 1| < r
Please generate a tactic in lean4 to solve the state. STATE: case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) ⊢ |Complex.abs p ^ (-(↑(d ^ k))⁻¹) - 1| < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
generalize hb : ((d ^ k : ℕ) : ℝ)⁻¹ = b
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a ⊢ |a ^ (-(↑(d ^ k))⁻¹) - 1| < r
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b ⊢ |a ^ (-b) - 1| < r
Please generate a tactic in lean4 to solve the state. STATE: case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a ⊢ |a ^ (-(↑(d ^ k))⁻¹) - 1| < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
have a1 : |a - 1| < min (1 / 2) (r / 4) := by rw [← ha]; refine lt_of_le_of_lt ?_ h rw [← Complex.abs.map_one]; apply Complex.abs.abs_abv_sub_le_abv_sub
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b ⊢ |a ^ (-b) - 1| < r
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) ⊢ |a ^ (-b) - 1| < r
Please generate a tactic in lean4 to solve the state. STATE: case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b ⊢ |a ^ (-b) - 1| < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
have am : a ∈ ball (1 : ℝ) (1 / 2) := by simp only [mem_ball, Real.dist_eq]; exact (lt_min_iff.mp a1).1
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) ⊢ |a ^ (-b) - 1| < r
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) ⊢ |a ^ (-b) - 1| < r
Please generate a tactic in lean4 to solve the state. STATE: case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) ⊢ |a ^ (-b) - 1| < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
have b0 : 0 ≤ b := by rw [← hb]; bound
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) ⊢ |a ^ (-b) - 1| < r
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b ⊢ |a ^ (-b) - 1| < r
Please generate a tactic in lean4 to solve the state. STATE: case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) ⊢ |a ^ (-b) - 1| < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
have b1 : b ≤ 1 := by rw [← hb]; bound
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b ⊢ |a ^ (-b) - 1| < r
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 ⊢ |a ^ (-b) - 1| < r
Please generate a tactic in lean4 to solve the state. STATE: case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b ⊢ |a ^ (-b) - 1| < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
have hd : ∀ x, x ∈ ball (1 : ℝ) (1 / 2) → HasDerivAt (fun x ↦ x ^ (-b)) (1 * -b * x ^ (-b - 1) + 0 * x ^ (-b) * log x) x := by intro x m; apply HasDerivAt.rpow (hasDerivAt_id _) (hasDerivAt_const _ _) simp only [mem_ball, Real.dist_eq, id] at m ⊢; linarith [abs_lt.mp m]
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 ⊢ |a ^ (-b) - 1| < r
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (1 * -b * x ^ (-b - 1) + 0 * x ^ (-b) * x.log) x ⊢ |a ^ (-b) - 1| < r
Please generate a tactic in lean4 to solve the state. STATE: case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 ⊢ |a ^ (-b) - 1| < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
simp only [MulZeroClass.zero_mul, add_zero, one_mul] at hd
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (1 * -b * x ^ (-b - 1) + 0 * x ^ (-b) * x.log) x ⊢ |a ^ (-b) - 1| < r
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x ⊢ |a ^ (-b) - 1| < r
Please generate a tactic in lean4 to solve the state. STATE: case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (1 * -b * x ^ (-b - 1) + 0 * x ^ (-b) * x.log) x ⊢ |a ^ (-b) - 1| < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
have bound : ∀ x, x ∈ ball (1 : ℝ) (1 / 2) → ‖deriv (fun x ↦ x ^ (-b)) x‖ ≤ 4 := by intro x m simp only [(hd x m).deriv, Real.norm_eq_abs, abs_mul, abs_neg, abs_of_nonneg b0] simp only [mem_ball, Real.dist_eq, abs_lt, lt_sub_iff_add_lt, sub_lt_iff_lt_add] at m norm_num at m have x0 : 0 < x := by linarith calc b * |x ^ (-b - 1)| _ ≤ 1 * |x| ^ (-b - 1) := by bound _ = (x ^ (b + 1))⁻¹ := by rw [← Real.rpow_neg x0.le, neg_add', one_mul, abs_of_pos x0] _ ≤ ((1 / 2 : ℝ) ^ (b + 1))⁻¹ := by bound _ = 2 ^ (b + 1) := by rw [one_div, Real.inv_rpow zero_le_two, inv_inv] _ ≤ 2 ^ (1 + 1 : ℝ) := by bound _ ≤ 4 := by norm_num
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x ⊢ |a ^ (-b) - 1| < r
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x bound : ∀ x ∈ ball 1 (1 / 2), ‖deriv (fun x => x ^ (-b)) x‖ ≤ 4 ⊢ |a ^ (-b) - 1| < r
Please generate a tactic in lean4 to solve the state. STATE: case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x ⊢ |a ^ (-b) - 1| < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
have le := Convex.norm_image_sub_le_of_norm_deriv_le (fun x m ↦ (hd x m).differentiableAt) bound (convex_ball _ _) (mem_ball_self (by norm_num)) am
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x bound : ∀ x ∈ ball 1 (1 / 2), ‖deriv (fun x => x ^ (-b)) x‖ ≤ 4 ⊢ |a ^ (-b) - 1| < r
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x bound : ∀ x ∈ ball 1 (1 / 2), ‖deriv (fun x => x ^ (-b)) x‖ ≤ 4 le : ‖a ^ (-b) - 1 ^ (-b)‖ ≤ 4 * ‖a - 1‖ ⊢ |a ^ (-b) - 1| < r
Please generate a tactic in lean4 to solve the state. STATE: case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x bound : ∀ x ∈ ball 1 (1 / 2), ‖deriv (fun x => x ^ (-b)) x‖ ≤ 4 ⊢ |a ^ (-b) - 1| < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
simp only [Real.norm_eq_abs, Real.one_rpow] at le
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x bound : ∀ x ∈ ball 1 (1 / 2), ‖deriv (fun x => x ^ (-b)) x‖ ≤ 4 le : ‖a ^ (-b) - 1 ^ (-b)‖ ≤ 4 * ‖a - 1‖ ⊢ |a ^ (-b) - 1| < r
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x bound : ∀ x ∈ ball 1 (1 / 2), ‖deriv (fun x => x ^ (-b)) x‖ ≤ 4 le : |a ^ (-b) - 1| ≤ 4 * |a - 1| ⊢ |a ^ (-b) - 1| < r
Please generate a tactic in lean4 to solve the state. STATE: case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x bound : ∀ x ∈ ball 1 (1 / 2), ‖deriv (fun x => x ^ (-b)) x‖ ≤ 4 le : ‖a ^ (-b) - 1 ^ (-b)‖ ≤ 4 * ‖a - 1‖ ⊢ |a ^ (-b) - 1| < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
calc |a ^ (-b) - 1| _ ≤ 4 * |a - 1| := le _ < 4 * (r / 4) := by linarith [(lt_min_iff.mp a1).2] _ = r := by ring
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x bound : ∀ x ∈ ball 1 (1 / 2), ‖deriv (fun x => x ^ (-b)) x‖ ≤ 4 le : |a ^ (-b) - 1| ≤ 4 * |a - 1| ⊢ |a ^ (-b) - 1| < r
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x bound : ∀ x ∈ ball 1 (1 / 2), ‖deriv (fun x => x ^ (-b)) x‖ ≤ 4 le : |a ^ (-b) - 1| ≤ 4 * |a - 1| ⊢ |a ^ (-b) - 1| < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
replace h := h.mul_const (s.potential c z)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d h : Tendsto (fun n => (Complex.abs ((f' d c)^[n] z) * s.potential c ↑((f' d c)^[n] z)) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 1) ⊢ Tendsto (fun n => Complex.abs ((f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 (s.potential c ↑z))
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d h : Tendsto (fun k => (Complex.abs ((f' d c)^[k] z) * s.potential c ↑((f' d c)^[k] z)) ^ (-(↑(d ^ k))⁻¹) * s.potential c ↑z) atTop (𝓝 (1 * s.potential c ↑z)) ⊢ Tendsto (fun n => Complex.abs ((f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 (s.potential c ↑z))
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d h : Tendsto (fun n => (Complex.abs ((f' d c)^[n] z) * s.potential c ↑((f' d c)^[n] z)) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 1) ⊢ Tendsto (fun n => Complex.abs ((f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 (s.potential c ↑z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
simp only [div_mul_cancel₀ _ potential_pos.ne', one_mul, ← f_f'_iter, s.potential_eqn_iter, Real.mul_rpow (Complex.abs.nonneg _) (pow_nonneg s.potential_nonneg _), Real.pow_rpow_inv_natCast s.potential_nonneg (pow_ne_zero _ (d_ne_zero d)), Real.rpow_neg (pow_nonneg s.potential_nonneg _), ← div_eq_mul_inv] at h
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d h : Tendsto (fun k => (Complex.abs ((f' d c)^[k] z) * s.potential c ↑((f' d c)^[k] z)) ^ (-(↑(d ^ k))⁻¹) * s.potential c ↑z) atTop (𝓝 (1 * s.potential c ↑z)) ⊢ Tendsto (fun n => Complex.abs ((f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 (s.potential c ↑z))
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d h : Tendsto (fun k => Complex.abs ((f' d c)^[k] z) ^ (-(↑(d ^ k))⁻¹)) atTop (𝓝 (s.potential c ↑z)) ⊢ Tendsto (fun n => Complex.abs ((f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 (s.potential c ↑z))
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d h : Tendsto (fun k => (Complex.abs ((f' d c)^[k] z) * s.potential c ↑((f' d c)^[k] z)) ^ (-(↑(d ^ k))⁻¹) * s.potential c ↑z) atTop (𝓝 (1 * s.potential c ↑z)) ⊢ Tendsto (fun n => Complex.abs ((f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 (s.potential c ↑z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
exact h
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d h : Tendsto (fun k => Complex.abs ((f' d c)^[k] z) ^ (-(↑(d ^ k))⁻¹)) atTop (𝓝 (s.potential c ↑z)) ⊢ Tendsto (fun n => Complex.abs ((f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 (s.potential c ↑z))
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d h : Tendsto (fun k => Complex.abs ((f' d c)^[k] z) ^ (-(↑(d ^ k))⁻¹)) atTop (𝓝 (s.potential c ↑z)) ⊢ Tendsto (fun n => Complex.abs ((f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 (s.potential c ↑z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
bound
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 ⊢ min (1 / 2) (r / 4) > 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d r : ℝ rp : r > 0 ⊢ min (1 / 2) (r / 4) > 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
rw [← ha]
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b ⊢ |a - 1| < min (1 / 2) (r / 4)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b ⊢ |Complex.abs p - 1| < min (1 / 2) (r / 4)
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b ⊢ |a - 1| < min (1 / 2) (r / 4) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
refine lt_of_le_of_lt ?_ h
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b ⊢ |Complex.abs p - 1| < min (1 / 2) (r / 4)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b ⊢ |Complex.abs p - 1| ≤ Complex.abs (p - 1)
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b ⊢ |Complex.abs p - 1| < min (1 / 2) (r / 4) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
rw [← Complex.abs.map_one]
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b ⊢ |Complex.abs p - 1| ≤ Complex.abs (p - 1)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b ⊢ |Complex.abs p - Complex.abs 1| ≤ Complex.abs (p - 1)
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b ⊢ |Complex.abs p - 1| ≤ Complex.abs (p - 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
apply Complex.abs.abs_abv_sub_le_abv_sub
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b ⊢ |Complex.abs p - Complex.abs 1| ≤ Complex.abs (p - 1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b ⊢ |Complex.abs p - Complex.abs 1| ≤ Complex.abs (p - 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
simp only [mem_ball, Real.dist_eq]
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) ⊢ a ∈ ball 1 (1 / 2)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) ⊢ |a - 1| < 1 / 2
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) ⊢ a ∈ ball 1 (1 / 2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
exact (lt_min_iff.mp a1).1
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) ⊢ |a - 1| < 1 / 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) ⊢ |a - 1| < 1 / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
rw [← hb]
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) ⊢ 0 ≤ b
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) ⊢ 0 ≤ (↑(d ^ k))⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) ⊢ 0 ≤ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
bound
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) ⊢ 0 ≤ (↑(d ^ k))⁻¹
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) ⊢ 0 ≤ (↑(d ^ k))⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
rw [← hb]
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b ⊢ b ≤ 1
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b ⊢ (↑(d ^ k))⁻¹ ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b ⊢ b ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
bound
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b ⊢ (↑(d ^ k))⁻¹ ≤ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b ⊢ (↑(d ^ k))⁻¹ ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
intro x m
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 ⊢ ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (1 * -b * x ^ (-b - 1) + 0 * x ^ (-b) * x.log) x
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 x : ℝ m : x ∈ ball 1 (1 / 2) ⊢ HasDerivAt (fun x => x ^ (-b)) (1 * -b * x ^ (-b - 1) + 0 * x ^ (-b) * x.log) x
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 ⊢ ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (1 * -b * x ^ (-b - 1) + 0 * x ^ (-b) * x.log) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
apply HasDerivAt.rpow (hasDerivAt_id _) (hasDerivAt_const _ _)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 x : ℝ m : x ∈ ball 1 (1 / 2) ⊢ HasDerivAt (fun x => x ^ (-b)) (1 * -b * x ^ (-b - 1) + 0 * x ^ (-b) * x.log) x
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 x : ℝ m : x ∈ ball 1 (1 / 2) ⊢ 0 < id x
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 x : ℝ m : x ∈ ball 1 (1 / 2) ⊢ HasDerivAt (fun x => x ^ (-b)) (1 * -b * x ^ (-b - 1) + 0 * x ^ (-b) * x.log) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
simp only [mem_ball, Real.dist_eq, id] at m ⊢
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 x : ℝ m : x ∈ ball 1 (1 / 2) ⊢ 0 < id x
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 x : ℝ m : |x - 1| < 1 / 2 ⊢ 0 < x
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 x : ℝ m : x ∈ ball 1 (1 / 2) ⊢ 0 < id x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
linarith [abs_lt.mp m]
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 x : ℝ m : |x - 1| < 1 / 2 ⊢ 0 < x
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 x : ℝ m : |x - 1| < 1 / 2 ⊢ 0 < x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
intro x m
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x ⊢ ∀ x ∈ ball 1 (1 / 2), ‖deriv (fun x => x ^ (-b)) x‖ ≤ 4
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : x ∈ ball 1 (1 / 2) ⊢ ‖deriv (fun x => x ^ (-b)) x‖ ≤ 4
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x ⊢ ∀ x ∈ ball 1 (1 / 2), ‖deriv (fun x => x ^ (-b)) x‖ ≤ 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
simp only [(hd x m).deriv, Real.norm_eq_abs, abs_mul, abs_neg, abs_of_nonneg b0]
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : x ∈ ball 1 (1 / 2) ⊢ ‖deriv (fun x => x ^ (-b)) x‖ ≤ 4
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : x ∈ ball 1 (1 / 2) ⊢ b * |x ^ (-b - 1)| ≤ 4
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : x ∈ ball 1 (1 / 2) ⊢ ‖deriv (fun x => x ^ (-b)) x‖ ≤ 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
simp only [mem_ball, Real.dist_eq, abs_lt, lt_sub_iff_add_lt, sub_lt_iff_lt_add] at m
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : x ∈ ball 1 (1 / 2) ⊢ b * |x ^ (-b - 1)| ≤ 4
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : -(1 / 2) + 1 < x ∧ x < 1 / 2 + 1 ⊢ b * |x ^ (-b - 1)| ≤ 4
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : x ∈ ball 1 (1 / 2) ⊢ b * |x ^ (-b - 1)| ≤ 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
norm_num at m
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : -(1 / 2) + 1 < x ∧ x < 1 / 2 + 1 ⊢ b * |x ^ (-b - 1)| ≤ 4
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : 1 / 2 < x ∧ x < 3 / 2 ⊢ b * |x ^ (-b - 1)| ≤ 4
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : -(1 / 2) + 1 < x ∧ x < 1 / 2 + 1 ⊢ b * |x ^ (-b - 1)| ≤ 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
have x0 : 0 < x := by linarith
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : 1 / 2 < x ∧ x < 3 / 2 ⊢ b * |x ^ (-b - 1)| ≤ 4
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : 1 / 2 < x ∧ x < 3 / 2 x0 : 0 < x ⊢ b * |x ^ (-b - 1)| ≤ 4
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : 1 / 2 < x ∧ x < 3 / 2 ⊢ b * |x ^ (-b - 1)| ≤ 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
calc b * |x ^ (-b - 1)| _ ≤ 1 * |x| ^ (-b - 1) := by bound _ = (x ^ (b + 1))⁻¹ := by rw [← Real.rpow_neg x0.le, neg_add', one_mul, abs_of_pos x0] _ ≤ ((1 / 2 : ℝ) ^ (b + 1))⁻¹ := by bound _ = 2 ^ (b + 1) := by rw [one_div, Real.inv_rpow zero_le_two, inv_inv] _ ≤ 2 ^ (1 + 1 : ℝ) := by bound _ ≤ 4 := by norm_num
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : 1 / 2 < x ∧ x < 3 / 2 x0 : 0 < x ⊢ b * |x ^ (-b - 1)| ≤ 4
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : 1 / 2 < x ∧ x < 3 / 2 x0 : 0 < x ⊢ b * |x ^ (-b - 1)| ≤ 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
linarith
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : 1 / 2 < x ∧ x < 3 / 2 ⊢ 0 < x
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : 1 / 2 < x ∧ x < 3 / 2 ⊢ 0 < x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
bound
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : 1 / 2 < x ∧ x < 3 / 2 x0 : 0 < x ⊢ b * |x ^ (-b - 1)| ≤ 1 * |x| ^ (-b - 1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : 1 / 2 < x ∧ x < 3 / 2 x0 : 0 < x ⊢ b * |x ^ (-b - 1)| ≤ 1 * |x| ^ (-b - 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
rw [← Real.rpow_neg x0.le, neg_add', one_mul, abs_of_pos x0]
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : 1 / 2 < x ∧ x < 3 / 2 x0 : 0 < x ⊢ 1 * |x| ^ (-b - 1) = (x ^ (b + 1))⁻¹
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : 1 / 2 < x ∧ x < 3 / 2 x0 : 0 < x ⊢ 1 * |x| ^ (-b - 1) = (x ^ (b + 1))⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
bound
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : 1 / 2 < x ∧ x < 3 / 2 x0 : 0 < x ⊢ (x ^ (b + 1))⁻¹ ≤ ((1 / 2) ^ (b + 1))⁻¹
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : 1 / 2 < x ∧ x < 3 / 2 x0 : 0 < x ⊢ (x ^ (b + 1))⁻¹ ≤ ((1 / 2) ^ (b + 1))⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
rw [one_div, Real.inv_rpow zero_le_two, inv_inv]
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : 1 / 2 < x ∧ x < 3 / 2 x0 : 0 < x ⊢ ((1 / 2) ^ (b + 1))⁻¹ = 2 ^ (b + 1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : 1 / 2 < x ∧ x < 3 / 2 x0 : 0 < x ⊢ ((1 / 2) ^ (b + 1))⁻¹ = 2 ^ (b + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
bound
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : 1 / 2 < x ∧ x < 3 / 2 x0 : 0 < x ⊢ 2 ^ (b + 1) ≤ 2 ^ (1 + 1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : 1 / 2 < x ∧ x < 3 / 2 x0 : 0 < x ⊢ 2 ^ (b + 1) ≤ 2 ^ (1 + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
norm_num
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : 1 / 2 < x ∧ x < 3 / 2 x0 : 0 < x ⊢ 2 ^ (1 + 1) ≤ 4
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x x : ℝ m : 1 / 2 < x ∧ x < 3 / 2 x0 : 0 < x ⊢ 2 ^ (1 + 1) ≤ 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
norm_num
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x bound : ∀ x ∈ ball 1 (1 / 2), ‖deriv (fun x => x ^ (-b)) x‖ ≤ 4 ⊢ 0 < 1 / 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x bound : ∀ x ∈ ball 1 (1 / 2), ‖deriv (fun x => x ^ (-b)) x‖ ≤ 4 ⊢ 0 < 1 / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
linarith [(lt_min_iff.mp a1).2]
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x bound : ∀ x ∈ ball 1 (1 / 2), ‖deriv (fun x => x ^ (-b)) x‖ ≤ 4 le : |a ^ (-b) - 1| ≤ 4 * |a - 1| ⊢ 4 * |a - 1| < 4 * (r / 4)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x bound : ∀ x ∈ ball 1 (1 / 2), ‖deriv (fun x => x ^ (-b)) x‖ ≤ 4 le : |a ^ (-b) - 1| ≤ 4 * |a - 1| ⊢ 4 * |a - 1| < 4 * (r / 4) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_potential
[31, 1]
[86, 21]
ring
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x bound : ∀ x ∈ ball 1 (1 / 2), ‖deriv (fun x => x ^ (-b)) x‖ ≤ 4 le : |a ^ (-b) - 1| ≤ 4 * |a - 1| ⊢ 4 * (r / 4) = r
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) r : ℝ rp : r > 0 k : ℕ p : ℂ h : Complex.abs (p - 1) < min (1 / 2) (r / 4) a : ℝ ha : Complex.abs p = a b : ℝ hb : (↑(d ^ k))⁻¹ = b a1 : |a - 1| < min (1 / 2) (r / 4) am : a ∈ ball 1 (1 / 2) b0 : 0 ≤ b b1 : b ≤ 1 hd : ∀ x ∈ ball 1 (1 / 2), HasDerivAt (fun x => x ^ (-b)) (-b * x ^ (-b - 1)) x bound : ∀ x ∈ ball 1 (1 / 2), ‖deriv (fun x => x ^ (-b)) x‖ ≤ 4 le : |a ^ (-b) - 1| ≤ 4 * |a - 1| ⊢ 4 * (r / 4) = r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_log_neg_log_potential
[88, 1]
[106, 82]
set s := superF d
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(⋯.potential c ↑z).log).log)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log)
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(⋯.potential c ↑z).log).log) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_log_neg_log_potential
[88, 1]
[106, 82]
have zn1 : ∀ {n}, 1 < abs ((f' d c)^[n] z) := by intro n; exact lt_of_lt_of_le (by norm_num) (le_trans z3 (le_self_iter d z3 cz _))
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log)
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_log_neg_log_potential
[88, 1]
[106, 82]
have zn0 : ∀ {n}, 0 < abs ((f' d c)^[n] z) := fun {_} ↦ lt_trans zero_lt_one zn1
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log)
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_log_neg_log_potential
[88, 1]
[106, 82]
have ln0 : ∀ {n}, 0 < log (abs ((f' d c)^[n] z)) := fun {_} ↦ Real.log_pos zn1
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log)
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_log_neg_log_potential
[88, 1]
[106, 82]
have dn0 : ∀ {n}, (d:ℝ)^n ≠ 0 := fun {_} ↦ pow_ne_zero _ (Nat.cast_ne_zero.mpr (d_ne_zero d))
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log)
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_log_neg_log_potential
[88, 1]
[106, 82]
have p0 : 0 < s.potential c z := potential_pos
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 p0 : 0 < s.potential c ↑z ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log)
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_log_neg_log_potential
[88, 1]
[106, 82]
have p1 : s.potential c z < 1 := potential_lt_one_of_two_lt (by linarith) cz
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 p0 : 0 < s.potential c ↑z ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 p0 : 0 < s.potential c ↑z p1 : s.potential c ↑z < 1 ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log)
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 p0 : 0 < s.potential c ↑z ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_log_neg_log_potential
[88, 1]
[106, 82]
set f := fun x ↦ log (log x⁻¹)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 p0 : 0 < s.potential c ↑z p1 : s.potential c ↑z < 1 ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (_root_.f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 p0 : 0 < s.potential c ↑z p1 : s.potential c ↑z < 1 f : ℝ → ℝ := fun x => x⁻¹.log.log ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log)
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 p0 : 0 < s.potential c ↑z p1 : s.potential c ↑z < 1 ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_log_neg_log_potential
[88, 1]
[106, 82]
have fc : ContinuousAt f ((superF d).potential c z) := by refine ((NormedField.continuousAt_inv.mpr p0.ne').log (inv_ne_zero p0.ne')).log ?_ exact Real.log_ne_zero_of_pos_of_ne_one (inv_pos.mpr p0) (inv_ne_one.mpr p1.ne)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (_root_.f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 p0 : 0 < s.potential c ↑z p1 : s.potential c ↑z < 1 f : ℝ → ℝ := fun x => x⁻¹.log.log ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (_root_.f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 p0 : 0 < s.potential c ↑z p1 : s.potential c ↑z < 1 f : ℝ → ℝ := fun x => x⁻¹.log.log fc : ContinuousAt f (⋯.potential c ↑z) ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log)
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (_root_.f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 p0 : 0 < s.potential c ↑z p1 : s.potential c ↑z < 1 f : ℝ → ℝ := fun x => x⁻¹.log.log ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_log_neg_log_potential
[88, 1]
[106, 82]
have t := Tendsto.comp fc (tendsto_potential d z3 cz)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (_root_.f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 p0 : 0 < s.potential c ↑z p1 : s.potential c ↑z < 1 f : ℝ → ℝ := fun x => x⁻¹.log.log fc : ContinuousAt f (⋯.potential c ↑z) ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (_root_.f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 p0 : 0 < s.potential c ↑z p1 : s.potential c ↑z < 1 f : ℝ → ℝ := fun x => x⁻¹.log.log fc : ContinuousAt f (⋯.potential c ↑z) t : Tendsto (f ∘ fun n => Complex.abs ((f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 (f (⋯.potential c ↑z))) ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log)
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (_root_.f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 p0 : 0 < s.potential c ↑z p1 : s.potential c ↑z < 1 f : ℝ → ℝ := fun x => x⁻¹.log.log fc : ContinuousAt f (⋯.potential c ↑z) ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_log_neg_log_potential
[88, 1]
[106, 82]
simpa only [Real.log_inv, Real.log_neg_eq_log, Nat.cast_pow, Function.comp_def, Real.log_rpow zn0, neg_mul, ← div_eq_inv_mul, Real.log_div ln0.ne' dn0, Real.log_pow, f] using t
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (_root_.f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 p0 : 0 < s.potential c ↑z p1 : s.potential c ↑z < 1 f : ℝ → ℝ := fun x => x⁻¹.log.log fc : ContinuousAt f (⋯.potential c ↑z) t : Tendsto (f ∘ fun n => Complex.abs ((f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 (f (⋯.potential c ↑z))) ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (_root_.f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 p0 : 0 < s.potential c ↑z p1 : s.potential c ↑z < 1 f : ℝ → ℝ := fun x => x⁻¹.log.log fc : ContinuousAt f (⋯.potential c ↑z) t : Tendsto (f ∘ fun n => Complex.abs ((f' d c)^[n] z) ^ (-(↑(d ^ n))⁻¹)) atTop (𝓝 (f (⋯.potential c ↑z))) ⊢ Tendsto (fun n => (Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) atTop (𝓝 (-(s.potential c ↑z).log).log) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_log_neg_log_potential
[88, 1]
[106, 82]
intro n
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d ⊢ ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d n : ℕ ⊢ 1 < Complex.abs ((f' d c)^[n] z)
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d ⊢ ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_log_neg_log_potential
[88, 1]
[106, 82]
exact lt_of_lt_of_le (by norm_num) (le_trans z3 (le_self_iter d z3 cz _))
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d n : ℕ ⊢ 1 < Complex.abs ((f' d c)^[n] z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d n : ℕ ⊢ 1 < Complex.abs ((f' d c)^[n] z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_log_neg_log_potential
[88, 1]
[106, 82]
norm_num
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d n : ℕ ⊢ 1 < 3
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d n : ℕ ⊢ 1 < 3 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_log_neg_log_potential
[88, 1]
[106, 82]
linarith
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 p0 : 0 < s.potential c ↑z ⊢ 2 < Complex.abs z
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 p0 : 0 < s.potential c ↑z ⊢ 2 < Complex.abs z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_log_neg_log_potential
[88, 1]
[106, 82]
refine ((NormedField.continuousAt_inv.mpr p0.ne').log (inv_ne_zero p0.ne')).log ?_
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (_root_.f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 p0 : 0 < s.potential c ↑z p1 : s.potential c ↑z < 1 f : ℝ → ℝ := fun x => x⁻¹.log.log ⊢ ContinuousAt f (⋯.potential c ↑z)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (_root_.f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 p0 : 0 < s.potential c ↑z p1 : s.potential c ↑z < 1 f : ℝ → ℝ := fun x => x⁻¹.log.log ⊢ (s.potential c ↑z)⁻¹.log ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (_root_.f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 p0 : 0 < s.potential c ↑z p1 : s.potential c ↑z < 1 f : ℝ → ℝ := fun x => x⁻¹.log.log ⊢ ContinuousAt f (⋯.potential c ↑z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
tendsto_log_neg_log_potential
[88, 1]
[106, 82]
exact Real.log_ne_zero_of_pos_of_ne_one (inv_pos.mpr p0) (inv_ne_one.mpr p1.ne)
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (_root_.f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 p0 : 0 < s.potential c ↑z p1 : s.potential c ↑z < 1 f : ℝ → ℝ := fun x => x⁻¹.log.log ⊢ (s.potential c ↑z)⁻¹.log ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z s : Super (_root_.f d) d OnePoint.infty := superF d zn1 : ∀ {n : ℕ}, 1 < Complex.abs ((f' d c)^[n] z) zn0 : ∀ {n : ℕ}, 0 < Complex.abs ((f' d c)^[n] z) ln0 : ∀ {n : ℕ}, 0 < (Complex.abs ((f' d c)^[n] z)).log dn0 : ∀ {n : ℕ}, ↑d ^ n ≠ 0 p0 : 0 < s.potential c ↑z p1 : s.potential c ↑z < 1 f : ℝ → ℝ := fun x => x⁻¹.log.log ⊢ (s.potential c ↑z)⁻¹.log ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
log_neg_log_potential_approx
[108, 1]
[122, 47]
apply le_of_forall_pos_lt_add
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z ⊢ |(-(⋯.potential c ↑z).log).log - (Complex.abs z).log.log| ≤ iter_error d c z
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z ⊢ ∀ (ε : ℝ), 0 < ε → |(-(⋯.potential c ↑z).log).log - (Complex.abs z).log.log| < iter_error d c z + ε
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z ⊢ |(-(⋯.potential c ↑z).log).log - (Complex.abs z).log.log| ≤ iter_error d c z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
log_neg_log_potential_approx
[108, 1]
[122, 47]
intro e ep
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z ⊢ ∀ (ε : ℝ), 0 < ε → |(-(⋯.potential c ↑z).log).log - (Complex.abs z).log.log| < iter_error d c z + ε
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e ⊢ |(-(⋯.potential c ↑z).log).log - (Complex.abs z).log.log| < iter_error d c z + e
Please generate a tactic in lean4 to solve the state. STATE: case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z ⊢ ∀ (ε : ℝ), 0 < ε → |(-(⋯.potential c ↑z).log).log - (Complex.abs z).log.log| < iter_error d c z + ε TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
log_neg_log_potential_approx
[108, 1]
[122, 47]
rcases (Metric.tendsto_nhds.mp (tendsto_log_neg_log_potential d z3 cz) e ep).exists with ⟨n,t⟩
case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e ⊢ |(-(⋯.potential c ↑z).log).log - (Complex.abs z).log.log| < iter_error d c z + e
case h.intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e n : ℕ t : dist ((Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) (-(⋯.potential c ↑z).log).log < e ⊢ |(-(⋯.potential c ↑z).log).log - (Complex.abs z).log.log| < iter_error d c z + e
Please generate a tactic in lean4 to solve the state. STATE: case h c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e ⊢ |(-(⋯.potential c ↑z).log).log - (Complex.abs z).log.log| < iter_error d c z + e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
log_neg_log_potential_approx
[108, 1]
[122, 47]
have ie := iter_approx d z3 cz n
case h.intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e n : ℕ t : dist ((Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) (-(⋯.potential c ↑z).log).log < e ⊢ |(-(⋯.potential c ↑z).log).log - (Complex.abs z).log.log| < iter_error d c z + e
case h.intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e n : ℕ t : dist ((Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) (-(⋯.potential c ↑z).log).log < e ie : |(Complex.abs ((f' d c)^[n] z)).log.log - (Complex.abs z).log.log - ↑n * (↑d).log| ≤ iter_error d c z ⊢ |(-(⋯.potential c ↑z).log).log - (Complex.abs z).log.log| < iter_error d c z + e
Please generate a tactic in lean4 to solve the state. STATE: case h.intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e n : ℕ t : dist ((Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) (-(⋯.potential c ↑z).log).log < e ⊢ |(-(⋯.potential c ↑z).log).log - (Complex.abs z).log.log| < iter_error d c z + e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
log_neg_log_potential_approx
[108, 1]
[122, 47]
generalize log (-log ((superF d).potential c z)) = p at ie t
case h.intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e n : ℕ t : dist ((Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) (-(⋯.potential c ↑z).log).log < e ie : |(Complex.abs ((f' d c)^[n] z)).log.log - (Complex.abs z).log.log - ↑n * (↑d).log| ≤ iter_error d c z ⊢ |(-(⋯.potential c ↑z).log).log - (Complex.abs z).log.log| < iter_error d c z + e
case h.intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e n : ℕ ie : |(Complex.abs ((f' d c)^[n] z)).log.log - (Complex.abs z).log.log - ↑n * (↑d).log| ≤ iter_error d c z p : ℝ t : dist ((Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) p < e ⊢ |p - (Complex.abs z).log.log| < iter_error d c z + e
Please generate a tactic in lean4 to solve the state. STATE: case h.intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e n : ℕ t : dist ((Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) (-(⋯.potential c ↑z).log).log < e ie : |(Complex.abs ((f' d c)^[n] z)).log.log - (Complex.abs z).log.log - ↑n * (↑d).log| ≤ iter_error d c z ⊢ |(-(⋯.potential c ↑z).log).log - (Complex.abs z).log.log| < iter_error d c z + e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
log_neg_log_potential_approx
[108, 1]
[122, 47]
generalize log (log (Complex.abs ((f' d c)^[n] z))) = x at ie t
case h.intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e n : ℕ ie : |(Complex.abs ((f' d c)^[n] z)).log.log - (Complex.abs z).log.log - ↑n * (↑d).log| ≤ iter_error d c z p : ℝ t : dist ((Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) p < e ⊢ |p - (Complex.abs z).log.log| < iter_error d c z + e
case h.intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e n : ℕ p x : ℝ ie : |x - (Complex.abs z).log.log - ↑n * (↑d).log| ≤ iter_error d c z t : dist (x - ↑n * (↑d).log) p < e ⊢ |p - (Complex.abs z).log.log| < iter_error d c z + e
Please generate a tactic in lean4 to solve the state. STATE: case h.intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e n : ℕ ie : |(Complex.abs ((f' d c)^[n] z)).log.log - (Complex.abs z).log.log - ↑n * (↑d).log| ≤ iter_error d c z p : ℝ t : dist ((Complex.abs ((f' d c)^[n] z)).log.log - ↑n * (↑d).log) p < e ⊢ |p - (Complex.abs z).log.log| < iter_error d c z + e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
log_neg_log_potential_approx
[108, 1]
[122, 47]
generalize log (log (Complex.abs z)) = y at ie t
case h.intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e n : ℕ p x : ℝ ie : |x - (Complex.abs z).log.log - ↑n * (↑d).log| ≤ iter_error d c z t : dist (x - ↑n * (↑d).log) p < e ⊢ |p - (Complex.abs z).log.log| < iter_error d c z + e
case h.intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e n : ℕ p x : ℝ t : dist (x - ↑n * (↑d).log) p < e y : ℝ ie : |x - y - ↑n * (↑d).log| ≤ iter_error d c z ⊢ |p - y| < iter_error d c z + e
Please generate a tactic in lean4 to solve the state. STATE: case h.intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e n : ℕ p x : ℝ ie : |x - (Complex.abs z).log.log - ↑n * (↑d).log| ≤ iter_error d c z t : dist (x - ↑n * (↑d).log) p < e ⊢ |p - (Complex.abs z).log.log| < iter_error d c z + e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
log_neg_log_potential_approx
[108, 1]
[122, 47]
rw [Real.dist_eq, abs_sub_comm] at t
case h.intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e n : ℕ p x : ℝ t : dist (x - ↑n * (↑d).log) p < e y : ℝ ie : |x - y - ↑n * (↑d).log| ≤ iter_error d c z ⊢ |p - y| < iter_error d c z + e
case h.intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e n : ℕ p x : ℝ t : |p - (x - ↑n * (↑d).log)| < e y : ℝ ie : |x - y - ↑n * (↑d).log| ≤ iter_error d c z ⊢ |p - y| < iter_error d c z + e
Please generate a tactic in lean4 to solve the state. STATE: case h.intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e n : ℕ p x : ℝ t : dist (x - ↑n * (↑d).log) p < e y : ℝ ie : |x - y - ↑n * (↑d).log| ≤ iter_error d c z ⊢ |p - y| < iter_error d c z + e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
log_neg_log_potential_approx
[108, 1]
[122, 47]
rw [add_comm]
case h.intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e n : ℕ p x : ℝ t : |p - (x - ↑n * (↑d).log)| < e y : ℝ ie : |x - y - ↑n * (↑d).log| ≤ iter_error d c z ⊢ |p - y| < iter_error d c z + e
case h.intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e n : ℕ p x : ℝ t : |p - (x - ↑n * (↑d).log)| < e y : ℝ ie : |x - y - ↑n * (↑d).log| ≤ iter_error d c z ⊢ |p - y| < e + iter_error d c z
Please generate a tactic in lean4 to solve the state. STATE: case h.intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e n : ℕ p x : ℝ t : |p - (x - ↑n * (↑d).log)| < e y : ℝ ie : |x - y - ↑n * (↑d).log| ≤ iter_error d c z ⊢ |p - y| < iter_error d c z + e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
log_neg_log_potential_approx
[108, 1]
[122, 47]
calc |p - y| _ = |(p - (x - n * log d)) + (x - y - n * log d)| := by ring_nf _ ≤ |p - (x - n * log d)| + |x - y - n * log d| := abs_add _ _ _ < e + _ := add_lt_add_of_lt_of_le t ie
case h.intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e n : ℕ p x : ℝ t : |p - (x - ↑n * (↑d).log)| < e y : ℝ ie : |x - y - ↑n * (↑d).log| ≤ iter_error d c z ⊢ |p - y| < e + iter_error d c z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.intro c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e n : ℕ p x : ℝ t : |p - (x - ↑n * (↑d).log)| < e y : ℝ ie : |x - y - ↑n * (↑d).log| ≤ iter_error d c z ⊢ |p - y| < e + iter_error d c z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
log_neg_log_potential_approx
[108, 1]
[122, 47]
ring_nf
c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e n : ℕ p x : ℝ t : |p - (x - ↑n * (↑d).log)| < e y : ℝ ie : |x - y - ↑n * (↑d).log| ≤ iter_error d c z ⊢ |p - y| = |p - (x - ↑n * (↑d).log) + (x - y - ↑n * (↑d).log)|
no goals
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) z3 : 3 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z e : ℝ ep : 0 < e n : ℕ p x : ℝ t : |p - (x - ↑n * (↑d).log)| < e y : ℝ ie : |x - y - ↑n * (↑d).log| ≤ iter_error d c z ⊢ |p - y| = |p - (x - ↑n * (↑d).log) + (x - y - ↑n * (↑d).log)| TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Potential.lean
hasDerivAt_ene
[136, 1]
[140, 68]
have h : HasDerivAt (fun x ↦ exp (-exp x)) (exp (-exp x) * -exp x) x := HasDerivAt.exp (Real.hasDerivAt_exp x).neg
c z : ℂ d : ℕ inst✝ : Fact (2 ≤ d) x : ℝ ⊢ HasDerivAt ene (-dene x) x
c z : ℂ d : ℕ inst✝ : Fact (2 ≤ d) x : ℝ h : HasDerivAt (fun x => (-x.exp).exp) ((-x.exp).exp * -x.exp) x ⊢ HasDerivAt ene (-dene x) x
Please generate a tactic in lean4 to solve the state. STATE: c z : ℂ d : ℕ inst✝ : Fact (2 ≤ d) x : ℝ ⊢ HasDerivAt ene (-dene x) x TACTIC: