url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.has_dh
[119, 1]
[120, 64]
refine HasMFDerivAt.prod ?_ i.has_df'
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ HasMFDerivAt (I.prod I) (I.prod I) i.h (c, i.z') i.dh
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ HasMFDerivAt (I.prod I) I (fun y => y.1) (c, i.z') dc
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ HasMFDerivAt (I.prod I) (I.prod I) i.h (c, i.z') i.dh TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.has_dh
[119, 1]
[120, 64]
apply hasMFDerivAt_fst
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ HasMFDerivAt (I.prod I) I (fun y => y.1) (c, i.z') dc
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ HasMFDerivAt (I.prod I) I (fun y => y.1) (c, i.z') dc TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.dei_de
[142, 1]
[146, 89]
intro t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ ∀ (t : ℂ), i.dei (i.de t) = t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : ℂ ⊢ i.dei (i.de t) = t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ ∀ (t : ℂ), i.dei (i.de t) = t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.dei_de
[142, 1]
[146, 89]
have h := ContinuousLinearMap.ext_iff.mp (extChartAt_mderiv_right_inverse' (mem_extChartAt_source I z)) t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : ℂ ⊢ i.dei (i.de t) = t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : ℂ h : ((mfderiv I I (↑(extChartAt I z)) z).comp (mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) z))) t = (ContinuousLinearMap.id ℂ (TangentSpace I (↑(extChartAt I z) z))) t ⊢ i.dei (i.de t) = t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : ℂ ⊢ i.dei (i.de t) = t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.dei_de
[142, 1]
[146, 89]
simp only [ContinuousLinearMap.comp_apply, ContinuousLinearMap.id_apply] at h
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : ℂ h : ((mfderiv I I (↑(extChartAt I z)) z).comp (mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) z))) t = (ContinuousLinearMap.id ℂ (TangentSpace I (↑(extChartAt I z) z))) t ⊢ i.dei (i.de t) = t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : ℂ h : (mfderiv I I (↑(extChartAt I z)) z) ((mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) z)) t) = t ⊢ i.dei (i.de t) = t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : ℂ h : ((mfderiv I I (↑(extChartAt I z)) z).comp (mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) z))) t = (ContinuousLinearMap.id ℂ (TangentSpace I (↑(extChartAt I z) z))) t ⊢ i.dei (i.de t) = t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.dei_de
[142, 1]
[146, 89]
exact h
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : ℂ h : (mfderiv I I (↑(extChartAt I z)) z) ((mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) z)) t) = t ⊢ i.dei (i.de t) = t
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : ℂ h : (mfderiv I I (↑(extChartAt I z)) z) ((mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) z)) t) = t ⊢ i.dei (i.de t) = t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.dei_de'
[148, 1]
[152, 89]
intro t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ ∀ (t : TangentSpace I (f c z)), i.dei' (i.de' t) = t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : TangentSpace I (f c z) ⊢ i.dei' (i.de' t) = t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ ∀ (t : TangentSpace I (f c z)), i.dei' (i.de' t) = t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.dei_de'
[148, 1]
[152, 89]
have h := ContinuousLinearMap.ext_iff.mp (extChartAt_mderiv_left_inverse (mem_extChartAt_source I (f c z))) t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : TangentSpace I (f c z) ⊢ i.dei' (i.de' t) = t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : TangentSpace I (f c z) h : ((mfderiv I I (↑(extChartAt I (f c z)).symm) (↑(extChartAt I (f c z)) (f c z))).comp (mfderiv I I (↑(extChartAt I (f c z))) (f c z))) t = (ContinuousLinearMap.id ℂ (TangentSpace I (f c z))) t ⊢ i.dei' (i.de' t) = t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : TangentSpace I (f c z) ⊢ i.dei' (i.de' t) = t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.dei_de'
[148, 1]
[152, 89]
simp only [ContinuousLinearMap.comp_apply, ContinuousLinearMap.id_apply] at h
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : TangentSpace I (f c z) h : ((mfderiv I I (↑(extChartAt I (f c z)).symm) (↑(extChartAt I (f c z)) (f c z))).comp (mfderiv I I (↑(extChartAt I (f c z))) (f c z))) t = (ContinuousLinearMap.id ℂ (TangentSpace I (f c z))) t ⊢ i.dei' (i.de' t) = t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : TangentSpace I (f c z) h : (mfderiv I I (↑(extChartAt I (f c z)).symm) (↑(extChartAt I (f c z)) (f c z))) ((mfderiv I I (↑(extChartAt I (f c z))) (f c z)) t) = (ContinuousLinearMap.id ℂ (TangentSpace I (f c z))) t ⊢ i.dei' (i.de' t) = t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : TangentSpace I (f c z) h : ((mfderiv I I (↑(extChartAt I (f c z)).symm) (↑(extChartAt I (f c z)) (f c z))).comp (mfderiv I I (↑(extChartAt I (f c z))) (f c z))) t = (ContinuousLinearMap.id ℂ (TangentSpace I (f c z))) t ⊢ i.dei' (i.de' t) = t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.dei_de'
[148, 1]
[152, 89]
exact h
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : TangentSpace I (f c z) h : (mfderiv I I (↑(extChartAt I (f c z)).symm) (↑(extChartAt I (f c z)) (f c z))) ((mfderiv I I (↑(extChartAt I (f c z))) (f c z)) t) = (ContinuousLinearMap.id ℂ (TangentSpace I (f c z))) t ⊢ i.dei' (i.de' t) = t
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : TangentSpace I (f c z) h : (mfderiv I I (↑(extChartAt I (f c z)).symm) (↑(extChartAt I (f c z)) (f c z))) ((mfderiv I I (↑(extChartAt I (f c z))) (f c z)) t) = (ContinuousLinearMap.id ℂ (TangentSpace I (f c z))) t ⊢ i.dei' (i.de' t) = t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.de_dei
[154, 1]
[158, 89]
intro t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ ∀ (t : TangentSpace I z), i.de (i.dei t) = t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : TangentSpace I z ⊢ i.de (i.dei t) = t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ ∀ (t : TangentSpace I z), i.de (i.dei t) = t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.de_dei
[154, 1]
[158, 89]
have h := ContinuousLinearMap.ext_iff.mp (extChartAt_mderiv_left_inverse (mem_extChartAt_source I z)) t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : TangentSpace I z ⊢ i.de (i.dei t) = t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : TangentSpace I z h : ((mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) z)).comp (mfderiv I I (↑(extChartAt I z)) z)) t = (ContinuousLinearMap.id ℂ (TangentSpace I z)) t ⊢ i.de (i.dei t) = t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : TangentSpace I z ⊢ i.de (i.dei t) = t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.de_dei
[154, 1]
[158, 89]
simp only [ContinuousLinearMap.comp_apply, ContinuousLinearMap.id_apply] at h
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : TangentSpace I z h : ((mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) z)).comp (mfderiv I I (↑(extChartAt I z)) z)) t = (ContinuousLinearMap.id ℂ (TangentSpace I z)) t ⊢ i.de (i.dei t) = t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : TangentSpace I z h : (mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) z)) ((mfderiv I I (↑(extChartAt I z)) z) t) = (ContinuousLinearMap.id ℂ (TangentSpace I z)) t ⊢ i.de (i.dei t) = t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : TangentSpace I z h : ((mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) z)).comp (mfderiv I I (↑(extChartAt I z)) z)) t = (ContinuousLinearMap.id ℂ (TangentSpace I z)) t ⊢ i.de (i.dei t) = t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.de_dei
[154, 1]
[158, 89]
exact h
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : TangentSpace I z h : (mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) z)) ((mfderiv I I (↑(extChartAt I z)) z) t) = (ContinuousLinearMap.id ℂ (TangentSpace I z)) t ⊢ i.de (i.dei t) = t
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : TangentSpace I z h : (mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) z)) ((mfderiv I I (↑(extChartAt I z)) z) t) = (ContinuousLinearMap.id ℂ (TangentSpace I z)) t ⊢ i.de (i.dei t) = t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.de_dei'
[160, 1]
[164, 89]
intro t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ ∀ (t : ℂ), i.de' (i.dei' t) = t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : ℂ ⊢ i.de' (i.dei' t) = t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ ∀ (t : ℂ), i.de' (i.dei' t) = t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.de_dei'
[160, 1]
[164, 89]
have h := ContinuousLinearMap.ext_iff.mp (extChartAt_mderiv_right_inverse' (mem_extChartAt_source I (f c z))) t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : ℂ ⊢ i.de' (i.dei' t) = t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : ℂ h : ((mfderiv I I (↑(extChartAt I (f c z))) (f c z)).comp (mfderiv I I (↑(extChartAt I (f c z)).symm) (↑(extChartAt I (f c z)) (f c z)))) t = (ContinuousLinearMap.id ℂ (TangentSpace I (↑(extChartAt I (f c z)) (f c z)))) t ⊢ i.de' (i.dei' t) = t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : ℂ ⊢ i.de' (i.dei' t) = t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.de_dei'
[160, 1]
[164, 89]
simp only [ContinuousLinearMap.comp_apply, ContinuousLinearMap.id_apply] at h
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : ℂ h : ((mfderiv I I (↑(extChartAt I (f c z))) (f c z)).comp (mfderiv I I (↑(extChartAt I (f c z)).symm) (↑(extChartAt I (f c z)) (f c z)))) t = (ContinuousLinearMap.id ℂ (TangentSpace I (↑(extChartAt I (f c z)) (f c z)))) t ⊢ i.de' (i.dei' t) = t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : ℂ h : (mfderiv I I (↑(extChartAt I (f c z))) (f c z)) ((mfderiv I I (↑(extChartAt I (f c z)).symm) (↑(extChartAt I (f c z)) (f c z))) t) = t ⊢ i.de' (i.dei' t) = t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : ℂ h : ((mfderiv I I (↑(extChartAt I (f c z))) (f c z)).comp (mfderiv I I (↑(extChartAt I (f c z)).symm) (↑(extChartAt I (f c z)) (f c z)))) t = (ContinuousLinearMap.id ℂ (TangentSpace I (↑(extChartAt I (f c z)) (f c z)))) t ⊢ i.de' (i.dei' t) = t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.de_dei'
[160, 1]
[164, 89]
exact h
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : ℂ h : (mfderiv I I (↑(extChartAt I (f c z))) (f c z)) ((mfderiv I I (↑(extChartAt I (f c z)).symm) (↑(extChartAt I (f c z)) (f c z))) t) = t ⊢ i.de' (i.dei' t) = t
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : ℂ h : (mfderiv I I (↑(extChartAt I (f c z))) (f c z)) ((mfderiv I I (↑(extChartAt I (f c z)).symm) (↑(extChartAt I (f c z)) (f c z))) t) = t ⊢ i.de' (i.dei' t) = t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.dhi_dh
[166, 1]
[172, 54]
intro ⟨u, v⟩
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ ∀ (t : ℂ × ℂ), i.dhi (i.dh t) = t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z u v : ℂ ⊢ i.dhi (i.dh (u, v)) = (u, v)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ ∀ (t : ℂ × ℂ), i.dhi (i.dh t) = t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.dhi_dh
[166, 1]
[172, 54]
simp only [Cinv.dh, Cinv.dhi, dc, dz, Cinv.dfi', Cinv.df', Cinv.df, i.dei_de', i.dei_de, i.dfzi_dfz, ContinuousLinearMap.comp_apply, ContinuousLinearMap.prod_apply, ContinuousLinearMap.sub_apply, ContinuousLinearMap.coe_fst', ContinuousLinearMap.coe_snd', ContinuousLinearMap.add_apply, ContinuousLinearMap.map_add, ContinuousLinearMap.map_sub, add_sub_cancel_left, ContinuousLinearMap.coe_snd]
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z u v : ℂ ⊢ i.dhi (i.dh (u, v)) = (u, v)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z u v : ℂ ⊢ i.dhi (i.dh (u, v)) = (u, v) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.dh_dhi
[174, 1]
[180, 100]
intro ⟨u, v⟩
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ ∀ (t : ℂ × ℂ), i.dh (i.dhi t) = t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z u v : ℂ ⊢ i.dh (i.dhi (u, v)) = (u, v)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ ∀ (t : ℂ × ℂ), i.dh (i.dhi t) = t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.dh_dhi
[174, 1]
[180, 100]
simp only [Cinv.dh, Cinv.dhi, dc, dz, Cinv.dfi', Cinv.df', Cinv.df, i.de_dei', i.de_dei, i.dfz_dfzi, ContinuousLinearMap.comp_apply, ContinuousLinearMap.prod_apply, ContinuousLinearMap.sub_apply, ContinuousLinearMap.coe_fst', ContinuousLinearMap.coe_snd', ContinuousLinearMap.add_apply, ContinuousLinearMap.map_add, ContinuousLinearMap.map_sub, add_sub_cancel_left, ← add_sub_assoc, ContinuousLinearMap.coe_snd, ContinuousLinearMap.coe_fst]
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z u v : ℂ ⊢ i.dh (i.dhi (u, v)) = (u, v)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z u v : ℂ ⊢ i.dh (i.dhi (u, v)) = (u, v) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.inv_at
[194, 1]
[200, 9]
have a := ContDiffAt.localInverse_apply_image i.ha.contDiffAt i.has_dhe le_top
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ (↑i.he.symm (c, ↑(extChartAt I (f c z)) (f c z))).2 = ↑(extChartAt I z) z
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z a : ⋯.localInverse ⋯ ⋯ (i.h (c, i.z')) = (c, i.z') ⊢ (↑i.he.symm (c, ↑(extChartAt I (f c z)) (f c z))).2 = ↑(extChartAt I z) z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ (↑i.he.symm (c, ↑(extChartAt I (f c z)) (f c z))).2 = ↑(extChartAt I z) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.inv_at
[194, 1]
[200, 9]
have e : ContDiffAt.localInverse i.ha.contDiffAt i.has_dhe le_top = i.he.symm := rfl
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z a : ⋯.localInverse ⋯ ⋯ (i.h (c, i.z')) = (c, i.z') ⊢ (↑i.he.symm (c, ↑(extChartAt I (f c z)) (f c z))).2 = ↑(extChartAt I z) z
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z a : ⋯.localInverse ⋯ ⋯ (i.h (c, i.z')) = (c, i.z') e : ⋯.localInverse ⋯ ⋯ = ↑i.he.symm ⊢ (↑i.he.symm (c, ↑(extChartAt I (f c z)) (f c z))).2 = ↑(extChartAt I z) z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z a : ⋯.localInverse ⋯ ⋯ (i.h (c, i.z')) = (c, i.z') ⊢ (↑i.he.symm (c, ↑(extChartAt I (f c z)) (f c z))).2 = ↑(extChartAt I z) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.inv_at
[194, 1]
[200, 9]
rw [e] at a
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z a : ⋯.localInverse ⋯ ⋯ (i.h (c, i.z')) = (c, i.z') e : ⋯.localInverse ⋯ ⋯ = ↑i.he.symm ⊢ (↑i.he.symm (c, ↑(extChartAt I (f c z)) (f c z))).2 = ↑(extChartAt I z) z
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z a : ↑i.he.symm (i.h (c, i.z')) = (c, i.z') e : ⋯.localInverse ⋯ ⋯ = ↑i.he.symm ⊢ (↑i.he.symm (c, ↑(extChartAt I (f c z)) (f c z))).2 = ↑(extChartAt I z) z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z a : ⋯.localInverse ⋯ ⋯ (i.h (c, i.z')) = (c, i.z') e : ⋯.localInverse ⋯ ⋯ = ↑i.he.symm ⊢ (↑i.he.symm (c, ↑(extChartAt I (f c z)) (f c z))).2 = ↑(extChartAt I z) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.inv_at
[194, 1]
[200, 9]
clear e
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z a : ↑i.he.symm (i.h (c, i.z')) = (c, i.z') e : ⋯.localInverse ⋯ ⋯ = ↑i.he.symm ⊢ (↑i.he.symm (c, ↑(extChartAt I (f c z)) (f c z))).2 = ↑(extChartAt I z) z
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z a : ↑i.he.symm (i.h (c, i.z')) = (c, i.z') ⊢ (↑i.he.symm (c, ↑(extChartAt I (f c z)) (f c z))).2 = ↑(extChartAt I z) z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z a : ↑i.he.symm (i.h (c, i.z')) = (c, i.z') e : ⋯.localInverse ⋯ ⋯ = ↑i.he.symm ⊢ (↑i.he.symm (c, ↑(extChartAt I (f c z)) (f c z))).2 = ↑(extChartAt I z) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.inv_at
[194, 1]
[200, 9]
simp only [Cinv.z', Cinv.h, Cinv.f', PartialEquiv.left_inv _ (mem_extChartAt_source _ _)] at a
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z a : ↑i.he.symm (i.h (c, i.z')) = (c, i.z') ⊢ (↑i.he.symm (c, ↑(extChartAt I (f c z)) (f c z))).2 = ↑(extChartAt I z) z
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z a : ↑i.he.symm (c, ↑(extChartAt I (f c z)) (f c z)) = (c, ↑(extChartAt I z) z) ⊢ (↑i.he.symm (c, ↑(extChartAt I (f c z)) (f c z))).2 = ↑(extChartAt I z) z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z a : ↑i.he.symm (i.h (c, i.z')) = (c, i.z') ⊢ (↑i.he.symm (c, ↑(extChartAt I (f c z)) (f c z))).2 = ↑(extChartAt I z) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.inv_at
[194, 1]
[200, 9]
rw [a]
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z a : ↑i.he.symm (c, ↑(extChartAt I (f c z)) (f c z)) = (c, ↑(extChartAt I z) z) ⊢ (↑i.he.symm (c, ↑(extChartAt I (f c z)) (f c z))).2 = ↑(extChartAt I z) z
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z a : ↑i.he.symm (c, ↑(extChartAt I (f c z)) (f c z)) = (c, ↑(extChartAt I z) z) ⊢ (↑i.he.symm (c, ↑(extChartAt I (f c z)) (f c z))).2 = ↑(extChartAt I z) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.left_inv
[207, 1]
[226, 47]
generalize ht : ((extChartAt II (c, z)).source ∩ extChartAt II (c, z) ⁻¹' i.he.source : Set (ℂ × S)) = t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, z), i.g x.1 (f x.1 x.2) = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, z), i.g x.1 (f x.1 x.2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, z), i.g x.1 (f x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.left_inv
[207, 1]
[226, 47]
have o : IsOpen t := by rw [← ht] exact (continuousOn_extChartAt _ _).isOpen_inter_preimage (isOpen_extChartAt_source _ _) i.he.open_source
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, z), i.g x.1 (f x.1 x.2) = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, z), i.g x.1 (f x.1 x.2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, z), i.g x.1 (f x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.left_inv
[207, 1]
[226, 47]
have m : (c, z) ∈ t := by simp only [mem_inter_iff, mem_preimage, mem_extChartAt_source, true_and_iff, ← ht] exact ContDiffAt.mem_toPartialHomeomorph_source i.ha.contDiffAt i.has_dhe le_top
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, z), i.g x.1 (f x.1 x.2) = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m : (c, z) ∈ t ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, z), i.g x.1 (f x.1 x.2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, z), i.g x.1 (f x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.left_inv
[207, 1]
[226, 47]
apply Filter.eventuallyEq_of_mem (o.mem_nhds m)
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m : (c, z) ∈ t ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, z), i.g x.1 (f x.1 x.2) = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m : (c, z) ∈ t ⊢ EqOn (fun x => i.g x.1 (f x.1 x.2)) (fun x => x.2) t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m : (c, z) ∈ t ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, z), i.g x.1 (f x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.left_inv
[207, 1]
[226, 47]
intro x m
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m : (c, z) ∈ t ⊢ EqOn (fun x => i.g x.1 (f x.1 x.2)) (fun x => x.2) t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x ∈ t ⊢ (fun x => i.g x.1 (f x.1 x.2)) x = (fun x => x.2) x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m : (c, z) ∈ t ⊢ EqOn (fun x => i.g x.1 (f x.1 x.2)) (fun x => x.2) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.left_inv
[207, 1]
[226, 47]
simp only [mem_inter_iff, mem_preimage, extChartAt_prod, extChartAt_eq_refl, ← ht, PartialEquiv.prod_source, PartialEquiv.refl_source, mem_prod_eq, mem_univ, true_and_iff, PartialEquiv.prod_coe, PartialEquiv.refl_coe, id] at m
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x ∈ t ⊢ (fun x => i.g x.1 (f x.1 x.2)) x = (fun x => x.2) x
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x.2 ∈ (extChartAt I z).source ∧ (x.1, ↑(extChartAt I z) x.2) ∈ i.he.source ⊢ (fun x => i.g x.1 (f x.1 x.2)) x = (fun x => x.2) x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x ∈ t ⊢ (fun x => i.g x.1 (f x.1 x.2)) x = (fun x => x.2) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.left_inv
[207, 1]
[226, 47]
have inv := i.he.left_inv m.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x.2 ∈ (extChartAt I z).source ∧ (x.1, ↑(extChartAt I z) x.2) ∈ i.he.source ⊢ (fun x => i.g x.1 (f x.1 x.2)) x = (fun x => x.2) x
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x.2 ∈ (extChartAt I z).source ∧ (x.1, ↑(extChartAt I z) x.2) ∈ i.he.source inv : ↑i.he.symm (↑i.he (x.1, ↑(extChartAt I z) x.2)) = (x.1, ↑(extChartAt I z) x.2) ⊢ (fun x => i.g x.1 (f x.1 x.2)) x = (fun x => x.2) x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x.2 ∈ (extChartAt I z).source ∧ (x.1, ↑(extChartAt I z) x.2) ∈ i.he.source ⊢ (fun x => i.g x.1 (f x.1 x.2)) x = (fun x => x.2) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.left_inv
[207, 1]
[226, 47]
simp only [Cinv.g]
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x.2 ∈ (extChartAt I z).source ∧ (x.1, ↑(extChartAt I z) x.2) ∈ i.he.source inv : ↑i.he.symm (↑i.he (x.1, ↑(extChartAt I z) x.2)) = (x.1, ↑(extChartAt I z) x.2) ⊢ (fun x => i.g x.1 (f x.1 x.2)) x = (fun x => x.2) x
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x.2 ∈ (extChartAt I z).source ∧ (x.1, ↑(extChartAt I z) x.2) ∈ i.he.source inv : ↑i.he.symm (↑i.he (x.1, ↑(extChartAt I z) x.2)) = (x.1, ↑(extChartAt I z) x.2) ⊢ ↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) (f x.1 x.2))).2 = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x.2 ∈ (extChartAt I z).source ∧ (x.1, ↑(extChartAt I z) x.2) ∈ i.he.source inv : ↑i.he.symm (↑i.he (x.1, ↑(extChartAt I z) x.2)) = (x.1, ↑(extChartAt I z) x.2) ⊢ (fun x => i.g x.1 (f x.1 x.2)) x = (fun x => x.2) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.left_inv
[207, 1]
[226, 47]
generalize hq : i.he.symm = q
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x.2 ∈ (extChartAt I z).source ∧ (x.1, ↑(extChartAt I z) x.2) ∈ i.he.source inv : ↑i.he.symm (↑i.he (x.1, ↑(extChartAt I z) x.2)) = (x.1, ↑(extChartAt I z) x.2) ⊢ ↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) (f x.1 x.2))).2 = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x.2 ∈ (extChartAt I z).source ∧ (x.1, ↑(extChartAt I z) x.2) ∈ i.he.source inv : ↑i.he.symm (↑i.he (x.1, ↑(extChartAt I z) x.2)) = (x.1, ↑(extChartAt I z) x.2) q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) hq : i.he.symm = q ⊢ ↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) (f x.1 x.2))).2 = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x.2 ∈ (extChartAt I z).source ∧ (x.1, ↑(extChartAt I z) x.2) ∈ i.he.source inv : ↑i.he.symm (↑i.he (x.1, ↑(extChartAt I z) x.2)) = (x.1, ↑(extChartAt I z) x.2) ⊢ ↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) (f x.1 x.2))).2 = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.left_inv
[207, 1]
[226, 47]
rw [hq] at inv
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x.2 ∈ (extChartAt I z).source ∧ (x.1, ↑(extChartAt I z) x.2) ∈ i.he.source inv : ↑i.he.symm (↑i.he (x.1, ↑(extChartAt I z) x.2)) = (x.1, ↑(extChartAt I z) x.2) q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) hq : i.he.symm = q ⊢ ↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) (f x.1 x.2))).2 = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x.2 ∈ (extChartAt I z).source ∧ (x.1, ↑(extChartAt I z) x.2) ∈ i.he.source q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) inv : ↑q (↑i.he (x.1, ↑(extChartAt I z) x.2)) = (x.1, ↑(extChartAt I z) x.2) hq : i.he.symm = q ⊢ ↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) (f x.1 x.2))).2 = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x.2 ∈ (extChartAt I z).source ∧ (x.1, ↑(extChartAt I z) x.2) ∈ i.he.source inv : ↑i.he.symm (↑i.he (x.1, ↑(extChartAt I z) x.2)) = (x.1, ↑(extChartAt I z) x.2) q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) hq : i.he.symm = q ⊢ ↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) (f x.1 x.2))).2 = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.left_inv
[207, 1]
[226, 47]
rw [Cinv.he, ContDiffAt.toPartialHomeomorph_coe i.ha.contDiffAt i.has_dhe le_top] at inv
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x.2 ∈ (extChartAt I z).source ∧ (x.1, ↑(extChartAt I z) x.2) ∈ i.he.source q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) inv : ↑q (↑i.he (x.1, ↑(extChartAt I z) x.2)) = (x.1, ↑(extChartAt I z) x.2) hq : i.he.symm = q ⊢ ↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) (f x.1 x.2))).2 = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x.2 ∈ (extChartAt I z).source ∧ (x.1, ↑(extChartAt I z) x.2) ∈ i.he.source q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) inv : ↑q (i.h (x.1, ↑(extChartAt I z) x.2)) = (x.1, ↑(extChartAt I z) x.2) hq : i.he.symm = q ⊢ ↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) (f x.1 x.2))).2 = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x.2 ∈ (extChartAt I z).source ∧ (x.1, ↑(extChartAt I z) x.2) ∈ i.he.source q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) inv : ↑q (↑i.he (x.1, ↑(extChartAt I z) x.2)) = (x.1, ↑(extChartAt I z) x.2) hq : i.he.symm = q ⊢ ↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) (f x.1 x.2))).2 = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.left_inv
[207, 1]
[226, 47]
simp only [Cinv.h, Cinv.f', PartialEquiv.left_inv _ m.1] at inv
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x.2 ∈ (extChartAt I z).source ∧ (x.1, ↑(extChartAt I z) x.2) ∈ i.he.source q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) inv : ↑q (i.h (x.1, ↑(extChartAt I z) x.2)) = (x.1, ↑(extChartAt I z) x.2) hq : i.he.symm = q ⊢ ↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) (f x.1 x.2))).2 = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x.2 ∈ (extChartAt I z).source ∧ (x.1, ↑(extChartAt I z) x.2) ∈ i.he.source q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) hq : i.he.symm = q inv : ↑q (x.1, ↑(extChartAt I (f c z)) (f x.1 x.2)) = (x.1, ↑(extChartAt I z) x.2) ⊢ ↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) (f x.1 x.2))).2 = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x.2 ∈ (extChartAt I z).source ∧ (x.1, ↑(extChartAt I z) x.2) ∈ i.he.source q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) inv : ↑q (i.h (x.1, ↑(extChartAt I z) x.2)) = (x.1, ↑(extChartAt I z) x.2) hq : i.he.symm = q ⊢ ↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) (f x.1 x.2))).2 = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.left_inv
[207, 1]
[226, 47]
simp only [inv, PartialEquiv.left_inv _ m.1]
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x.2 ∈ (extChartAt I z).source ∧ (x.1, ↑(extChartAt I z) x.2) ∈ i.he.source q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) hq : i.he.symm = q inv : ↑q (x.1, ↑(extChartAt I (f c z)) (f x.1 x.2)) = (x.1, ↑(extChartAt I z) x.2) ⊢ ↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) (f x.1 x.2))).2 = x.2
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t m✝ : (c, z) ∈ t x : ℂ × S m : x.2 ∈ (extChartAt I z).source ∧ (x.1, ↑(extChartAt I z) x.2) ∈ i.he.source q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) hq : i.he.symm = q inv : ↑q (x.1, ↑(extChartAt I (f c z)) (f x.1 x.2)) = (x.1, ↑(extChartAt I z) x.2) ⊢ ↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) (f x.1 x.2))).2 = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.left_inv
[207, 1]
[226, 47]
rw [← ht]
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t ⊢ IsOpen t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t ⊢ IsOpen ((extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t ⊢ IsOpen t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.left_inv
[207, 1]
[226, 47]
exact (continuousOn_extChartAt _ _).isOpen_inter_preimage (isOpen_extChartAt_source _ _) i.he.open_source
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t ⊢ IsOpen ((extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t ⊢ IsOpen ((extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.left_inv
[207, 1]
[226, 47]
simp only [mem_inter_iff, mem_preimage, mem_extChartAt_source, true_and_iff, ← ht]
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t ⊢ (c, z) ∈ t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t ⊢ ↑(extChartAt (I.prod I) (c, z)) (c, z) ∈ i.he.source
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t ⊢ (c, z) ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.left_inv
[207, 1]
[226, 47]
exact ContDiffAt.mem_toPartialHomeomorph_source i.ha.contDiffAt i.has_dhe le_top
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t ⊢ ↑(extChartAt (I.prod I) (c, z)) (c, z) ∈ i.he.source
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × S) ht : (extChartAt (I.prod I) (c, z)).source ∩ ↑(extChartAt (I.prod I) (c, z)) ⁻¹' i.he.source = t o : IsOpen t ⊢ ↑(extChartAt (I.prod I) (c, z)) (c, z) ∈ i.he.source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.inv_fst
[229, 1]
[234, 11]
intro x m
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ ∀ x ∈ i.he.target, (↑i.he.symm x).1 = x.1
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z x : ℂ × ℂ m : x ∈ i.he.target ⊢ (↑i.he.symm x).1 = x.1
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ ∀ x ∈ i.he.target, (↑i.he.symm x).1 = x.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.inv_fst
[229, 1]
[234, 11]
have e : i.he (i.he.symm x) = x := i.he.right_inv m
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z x : ℂ × ℂ m : x ∈ i.he.target ⊢ (↑i.he.symm x).1 = x.1
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z x : ℂ × ℂ m : x ∈ i.he.target e : ↑i.he (↑i.he.symm x) = x ⊢ (↑i.he.symm x).1 = x.1
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z x : ℂ × ℂ m : x ∈ i.he.target ⊢ (↑i.he.symm x).1 = x.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.inv_fst
[229, 1]
[234, 11]
generalize hq : i.he.symm x = q
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z x : ℂ × ℂ m : x ∈ i.he.target e : ↑i.he (↑i.he.symm x) = x ⊢ (↑i.he.symm x).1 = x.1
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z x : ℂ × ℂ m : x ∈ i.he.target e : ↑i.he (↑i.he.symm x) = x q : ℂ × ℂ hq : ↑i.he.symm x = q ⊢ q.1 = x.1
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z x : ℂ × ℂ m : x ∈ i.he.target e : ↑i.he (↑i.he.symm x) = x ⊢ (↑i.he.symm x).1 = x.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.inv_fst
[229, 1]
[234, 11]
rw [hq] at e
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z x : ℂ × ℂ m : x ∈ i.he.target e : ↑i.he (↑i.he.symm x) = x q : ℂ × ℂ hq : ↑i.he.symm x = q ⊢ q.1 = x.1
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z x : ℂ × ℂ m : x ∈ i.he.target q : ℂ × ℂ e : ↑i.he q = x hq : ↑i.he.symm x = q ⊢ q.1 = x.1
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z x : ℂ × ℂ m : x ∈ i.he.target e : ↑i.he (↑i.he.symm x) = x q : ℂ × ℂ hq : ↑i.he.symm x = q ⊢ q.1 = x.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.inv_fst
[229, 1]
[234, 11]
rw [Cinv.he, ContDiffAt.toPartialHomeomorph_coe i.ha.contDiffAt i.has_dhe le_top, Cinv.h] at e
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z x : ℂ × ℂ m : x ∈ i.he.target q : ℂ × ℂ e : ↑i.he q = x hq : ↑i.he.symm x = q ⊢ q.1 = x.1
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z x : ℂ × ℂ m : x ∈ i.he.target q : ℂ × ℂ e : (q.1, i.f' q) = x hq : ↑i.he.symm x = q ⊢ q.1 = x.1
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z x : ℂ × ℂ m : x ∈ i.he.target q : ℂ × ℂ e : ↑i.he q = x hq : ↑i.he.symm x = q ⊢ q.1 = x.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.inv_fst
[229, 1]
[234, 11]
rw [← e]
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z x : ℂ × ℂ m : x ∈ i.he.target q : ℂ × ℂ e : (q.1, i.f' q) = x hq : ↑i.he.symm x = q ⊢ q.1 = x.1
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z x : ℂ × ℂ m : x ∈ i.he.target q : ℂ × ℂ e : (q.1, i.f' q) = x hq : ↑i.he.symm x = q ⊢ q.1 = x.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
generalize ht : ((extChartAt II (c, f c z)).source ∩ extChartAt II (c, f c z) ⁻¹' i.he.target : Set (ℂ × T)) = t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (i.g x.1 x.2) = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t ⊢ ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (i.g x.1 x.2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (i.g x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
have o : IsOpen t := by rw [← ht] exact (continuousOn_extChartAt _ _).isOpen_inter_preimage (isOpen_extChartAt_source _ _) i.he.open_target
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t ⊢ ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (i.g x.1 x.2) = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t ⊢ ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (i.g x.1 x.2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t ⊢ ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (i.g x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
have m' : (c, extChartAt I (f c z) (f c z)) ∈ i.he.toPartialEquiv.target := by have m := ContDiffAt.image_mem_toPartialHomeomorph_target i.ha.contDiffAt i.has_dhe le_top have e : i.h (c, i.z') = (c, extChartAt I (f c z) (f c z)) := by simp only [Cinv.h, Cinv.z', Cinv.f', PartialEquiv.left_inv _ (mem_extChartAt_source _ _)] rw [e] at m; exact m
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t ⊢ ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (i.g x.1 x.2) = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target ⊢ ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (i.g x.1 x.2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t ⊢ ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (i.g x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
have m : (c, f c z) ∈ t := by simp only [m', mem_inter_iff, mem_preimage, mem_extChartAt_source, true_and_iff, ← ht, extChartAt_prod, PartialEquiv.prod_coe, extChartAt_eq_refl, PartialEquiv.refl_coe, id, PartialEquiv.prod_source, prod_mk_mem_set_prod_eq, PartialEquiv.refl_source, mem_univ]
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target ⊢ ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (i.g x.1 x.2) = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (i.g x.1 x.2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target ⊢ ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (i.g x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
refine fm.mp (Filter.eventually_of_mem (o.mem_nhds m) ?_)
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source ⊢ ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (i.g x.1 x.2) = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source ⊢ ∀ x ∈ t, f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source → f x.1 (i.g x.1 x.2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source ⊢ ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (i.g x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
intro x m mf
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source ⊢ ∀ x ∈ t, f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source → f x.1 (i.g x.1 x.2) = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T m : x ∈ t mf : f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source ⊢ f x.1 (i.g x.1 x.2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source ⊢ ∀ x ∈ t, f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source → f x.1 (i.g x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
simp only [mem_inter_iff, mem_preimage, extChartAt_prod, extChartAt_eq_refl, PartialEquiv.prod_source, PartialEquiv.refl_source, mem_prod_eq, mem_univ, true_and_iff, PartialEquiv.prod_coe, PartialEquiv.refl_coe, id, ← ht] at m
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T m : x ∈ t mf : f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source ⊢ f x.1 (i.g x.1 x.2) = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T mf : f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target ⊢ f x.1 (i.g x.1 x.2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T m : x ∈ t mf : f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source ⊢ f x.1 (i.g x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
have inv := i.he.right_inv m.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T mf : f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target ⊢ f x.1 (i.g x.1 x.2) = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T mf : f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target inv : ↑i.he (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)) = (x.1, ↑(extChartAt I (f c z)) x.2) ⊢ f x.1 (i.g x.1 x.2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T mf : f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target ⊢ f x.1 (i.g x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
simp only [Cinv.g]
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T mf : f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target inv : ↑i.he (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)) = (x.1, ↑(extChartAt I (f c z)) x.2) ⊢ f x.1 (i.g x.1 x.2) = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T mf : f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target inv : ↑i.he (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)) = (x.1, ↑(extChartAt I (f c z)) x.2) ⊢ f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T mf : f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target inv : ↑i.he (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)) = (x.1, ↑(extChartAt I (f c z)) x.2) ⊢ f x.1 (i.g x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
generalize hq : i.he.symm = q
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T mf : f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target inv : ↑i.he (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)) = (x.1, ↑(extChartAt I (f c z)) x.2) ⊢ f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T mf : f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target inv : ↑i.he (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)) = (x.1, ↑(extChartAt I (f c z)) x.2) q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) hq : i.he.symm = q ⊢ f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T mf : f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target inv : ↑i.he (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)) = (x.1, ↑(extChartAt I (f c z)) x.2) ⊢ f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
rw [hq] at inv mf
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T mf : f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target inv : ↑i.he (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)) = (x.1, ↑(extChartAt I (f c z)) x.2) q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) hq : i.he.symm = q ⊢ f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) mf : f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source inv : ↑i.he (↑q (x.1, ↑(extChartAt I (f c z)) x.2)) = (x.1, ↑(extChartAt I (f c z)) x.2) hq : i.he.symm = q ⊢ f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T mf : f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target inv : ↑i.he (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)) = (x.1, ↑(extChartAt I (f c z)) x.2) q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) hq : i.he.symm = q ⊢ f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
rw [Cinv.he, ContDiffAt.toPartialHomeomorph_coe i.ha.contDiffAt i.has_dhe le_top] at inv
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) mf : f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source inv : ↑i.he (↑q (x.1, ↑(extChartAt I (f c z)) x.2)) = (x.1, ↑(extChartAt I (f c z)) x.2) hq : i.he.symm = q ⊢ f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) mf : f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source inv : i.h (↑q (x.1, ↑(extChartAt I (f c z)) x.2)) = (x.1, ↑(extChartAt I (f c z)) x.2) hq : i.he.symm = q ⊢ f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) mf : f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source inv : ↑i.he (↑q (x.1, ↑(extChartAt I (f c z)) x.2)) = (x.1, ↑(extChartAt I (f c z)) x.2) hq : i.he.symm = q ⊢ f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
have q1 : (q (x.1, extChartAt I (f c z) x.2)).1 = x.1 := by simp only [← hq, i.inv_fst _ m.2]
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) mf : f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source inv : i.h (↑q (x.1, ↑(extChartAt I (f c z)) x.2)) = (x.1, ↑(extChartAt I (f c z)) x.2) hq : i.he.symm = q ⊢ f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) mf : f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source inv : i.h (↑q (x.1, ↑(extChartAt I (f c z)) x.2)) = (x.1, ↑(extChartAt I (f c z)) x.2) hq : i.he.symm = q q1 : (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).1 = x.1 ⊢ f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) mf : f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source inv : i.h (↑q (x.1, ↑(extChartAt I (f c z)) x.2)) = (x.1, ↑(extChartAt I (f c z)) x.2) hq : i.he.symm = q ⊢ f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
simp only [Cinv.h, Cinv.f', Prod.eq_iff_fst_eq_snd_eq, q1] at inv
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) mf : f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source inv : i.h (↑q (x.1, ↑(extChartAt I (f c z)) x.2)) = (x.1, ↑(extChartAt I (f c z)) x.2) hq : i.he.symm = q q1 : (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).1 = x.1 ⊢ f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) mf : f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source hq : i.he.symm = q q1 : (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).1 = x.1 inv : True ∧ ↑(extChartAt I (f c z)) (f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2)) = ↑(extChartAt I (f c z)) x.2 ⊢ f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) mf : f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source inv : i.h (↑q (x.1, ↑(extChartAt I (f c z)) x.2)) = (x.1, ↑(extChartAt I (f c z)) x.2) hq : i.he.symm = q q1 : (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).1 = x.1 ⊢ f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
nth_rw 2 [← PartialEquiv.left_inv _ m.1]
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) mf : f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source hq : i.he.symm = q q1 : (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).1 = x.1 inv : True ∧ ↑(extChartAt I (f c z)) (f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2)) = ↑(extChartAt I (f c z)) x.2 ⊢ f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) = x.2
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) mf : f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source hq : i.he.symm = q q1 : (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).1 = x.1 inv : True ∧ ↑(extChartAt I (f c z)) (f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2)) = ↑(extChartAt I (f c z)) x.2 ⊢ f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) = ↑(extChartAt I (f c z)).symm (↑(extChartAt I (f c z)) x.2)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) mf : f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source hq : i.he.symm = q q1 : (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).1 = x.1 inv : True ∧ ↑(extChartAt I (f c z)) (f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2)) = ↑(extChartAt I (f c z)) x.2 ⊢ f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
nth_rw 2 [← inv.2]
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) mf : f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source hq : i.he.symm = q q1 : (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).1 = x.1 inv : True ∧ ↑(extChartAt I (f c z)) (f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2)) = ↑(extChartAt I (f c z)) x.2 ⊢ f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) = ↑(extChartAt I (f c z)).symm (↑(extChartAt I (f c z)) x.2)
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) mf : f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source hq : i.he.symm = q q1 : (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).1 = x.1 inv : True ∧ ↑(extChartAt I (f c z)) (f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2)) = ↑(extChartAt I (f c z)) x.2 ⊢ f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) = ↑(extChartAt I (f c z)).symm (↑(extChartAt I (f c z)) (f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2)))
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) mf : f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source hq : i.he.symm = q q1 : (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).1 = x.1 inv : True ∧ ↑(extChartAt I (f c z)) (f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2)) = ↑(extChartAt I (f c z)) x.2 ⊢ f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) = ↑(extChartAt I (f c z)).symm (↑(extChartAt I (f c z)) x.2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
refine (PartialEquiv.left_inv _ mf).symm
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) mf : f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source hq : i.he.symm = q q1 : (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).1 = x.1 inv : True ∧ ↑(extChartAt I (f c z)) (f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2)) = ↑(extChartAt I (f c z)) x.2 ⊢ f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) = ↑(extChartAt I (f c z)).symm (↑(extChartAt I (f c z)) (f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) mf : f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source hq : i.he.symm = q q1 : (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).1 = x.1 inv : True ∧ ↑(extChartAt I (f c z)) (f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2)) = ↑(extChartAt I (f c z)) x.2 ⊢ f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) = ↑(extChartAt I (f c z)).symm (↑(extChartAt I (f c z)) (f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2))) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
rw [← ht]
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t ⊢ IsOpen t
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t ⊢ IsOpen ((extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t ⊢ IsOpen t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
exact (continuousOn_extChartAt _ _).isOpen_inter_preimage (isOpen_extChartAt_source _ _) i.he.open_target
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t ⊢ IsOpen ((extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t ⊢ IsOpen ((extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
have m := ContDiffAt.image_mem_toPartialHomeomorph_target i.ha.contDiffAt i.has_dhe le_top
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t ⊢ (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m : i.h (c, i.z') ∈ (ContDiffAt.toPartialHomeomorph i.h ⋯ ⋯ ⋯).target ⊢ (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t ⊢ (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
have e : i.h (c, i.z') = (c, extChartAt I (f c z) (f c z)) := by simp only [Cinv.h, Cinv.z', Cinv.f', PartialEquiv.left_inv _ (mem_extChartAt_source _ _)]
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m : i.h (c, i.z') ∈ (ContDiffAt.toPartialHomeomorph i.h ⋯ ⋯ ⋯).target ⊢ (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m : i.h (c, i.z') ∈ (ContDiffAt.toPartialHomeomorph i.h ⋯ ⋯ ⋯).target e : i.h (c, i.z') = (c, ↑(extChartAt I (f c z)) (f c z)) ⊢ (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m : i.h (c, i.z') ∈ (ContDiffAt.toPartialHomeomorph i.h ⋯ ⋯ ⋯).target ⊢ (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
rw [e] at m
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m : i.h (c, i.z') ∈ (ContDiffAt.toPartialHomeomorph i.h ⋯ ⋯ ⋯).target e : i.h (c, i.z') = (c, ↑(extChartAt I (f c z)) (f c z)) ⊢ (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ (ContDiffAt.toPartialHomeomorph i.h ⋯ ⋯ ⋯).target e : i.h (c, i.z') = (c, ↑(extChartAt I (f c z)) (f c z)) ⊢ (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m : i.h (c, i.z') ∈ (ContDiffAt.toPartialHomeomorph i.h ⋯ ⋯ ⋯).target e : i.h (c, i.z') = (c, ↑(extChartAt I (f c z)) (f c z)) ⊢ (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
exact m
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ (ContDiffAt.toPartialHomeomorph i.h ⋯ ⋯ ⋯).target e : i.h (c, i.z') = (c, ↑(extChartAt I (f c z)) (f c z)) ⊢ (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ (ContDiffAt.toPartialHomeomorph i.h ⋯ ⋯ ⋯).target e : i.h (c, i.z') = (c, ↑(extChartAt I (f c z)) (f c z)) ⊢ (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
simp only [Cinv.h, Cinv.z', Cinv.f', PartialEquiv.left_inv _ (mem_extChartAt_source _ _)]
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m : i.h (c, i.z') ∈ (ContDiffAt.toPartialHomeomorph i.h ⋯ ⋯ ⋯).target ⊢ i.h (c, i.z') = (c, ↑(extChartAt I (f c z)) (f c z))
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m : i.h (c, i.z') ∈ (ContDiffAt.toPartialHomeomorph i.h ⋯ ⋯ ⋯).target ⊢ i.h (c, i.z') = (c, ↑(extChartAt I (f c z)) (f c z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
simp only [m', mem_inter_iff, mem_preimage, mem_extChartAt_source, true_and_iff, ← ht, extChartAt_prod, PartialEquiv.prod_coe, extChartAt_eq_refl, PartialEquiv.refl_coe, id, PartialEquiv.prod_source, prod_mk_mem_set_prod_eq, PartialEquiv.refl_source, mem_univ]
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target ⊢ (c, f c z) ∈ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target ⊢ (c, f c z) ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
refine ContinuousAt.eventually_mem ?_ (extChartAt_source_mem_nhds' I ?_)
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source
case refine_1 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (fun x => f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2)) (c, f c z) case refine_2 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ f (c, f c z).1 (↑(extChartAt I z).symm (↑i.he.symm ((c, f c z).1, ↑(extChartAt I (f c z)) (c, f c z).2)).2) ∈ (extChartAt I (f c z)).source
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
apply i.fa.continuousAt.comp₂_of_eq continuousAt_fst
case refine_1 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (fun x => f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2)) (c, f c z)
case refine_1.hh S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (fun x => (extChartAt I z).symm.1 (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) (c, f c z) case refine_1.e S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ((c, f c z).1, (extChartAt I z).symm.1 (↑i.he.symm ((c, f c z).1, ↑(extChartAt I (f c z)) (c, f c z).2)).2) = (c, z)
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (fun x => f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2)) (c, f c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
refine ContinuousAt.comp ?_ ?_
case refine_1.hh S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (fun x => (extChartAt I z).symm.1 (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) (c, f c z)
case refine_1.hh.refine_1 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (extChartAt I z).invFun (↑i.he.symm ((c, f c z).1, ↑(extChartAt I (f c z)) (c, f c z).2)).2 case refine_1.hh.refine_2 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (fun x => (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) (c, f c z)
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hh S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (fun x => (extChartAt I z).symm.1 (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) (c, f c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
simp only [i.inv_at]
case refine_1.hh.refine_1 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (extChartAt I z).invFun (↑i.he.symm ((c, f c z).1, ↑(extChartAt I (f c z)) (c, f c z).2)).2
case refine_1.hh.refine_1 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (extChartAt I z).invFun (↑(extChartAt I z) z)
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hh.refine_1 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (extChartAt I z).invFun (↑i.he.symm ((c, f c z).1, ↑(extChartAt I (f c z)) (c, f c z).2)).2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
exact continuousAt_extChartAt_symm I _
case refine_1.hh.refine_1 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (extChartAt I z).invFun (↑(extChartAt I z) z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hh.refine_1 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (extChartAt I z).invFun (↑(extChartAt I z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
apply continuousAt_snd.comp
case refine_1.hh.refine_2 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (fun x => (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) (c, f c z)
case refine_1.hh.refine_2 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (fun x => ↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)) (c, f c z)
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hh.refine_2 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (fun x => (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) (c, f c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
refine (PartialHomeomorph.continuousAt i.he.symm ?_).comp ?_
case refine_1.hh.refine_2 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (fun x => ↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)) (c, f c z)
case refine_1.hh.refine_2.refine_1 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ((c, f c z).1, ↑(extChartAt I (f c z)) (c, f c z).2) ∈ i.he.symm.source case refine_1.hh.refine_2.refine_2 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (fun x => (x.1, ↑(extChartAt I (f c z)) x.2)) (c, f c z)
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hh.refine_2 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (fun x => ↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)) (c, f c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
simp only [m', (he i).symm_source]
case refine_1.hh.refine_2.refine_1 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ((c, f c z).1, ↑(extChartAt I (f c z)) (c, f c z).2) ∈ i.he.symm.source
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hh.refine_2.refine_1 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ((c, f c z).1, ↑(extChartAt I (f c z)) (c, f c z).2) ∈ i.he.symm.source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
apply continuousAt_fst.prod
case refine_1.hh.refine_2.refine_2 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (fun x => (x.1, ↑(extChartAt I (f c z)) x.2)) (c, f c z)
case refine_1.hh.refine_2.refine_2 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (fun x => ↑(extChartAt I (f c z)) x.2) (c, f c z)
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hh.refine_2.refine_2 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (fun x => (x.1, ↑(extChartAt I (f c z)) x.2)) (c, f c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
apply (continuousAt_extChartAt I _).comp_of_eq
case refine_1.hh.refine_2.refine_2 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (fun x => ↑(extChartAt I (f c z)) x.2) (c, f c z)
case refine_1.hh.refine_2.refine_2.hf S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (fun x => x.2) (c, f c z) case refine_1.hh.refine_2.refine_2.hy S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ (c, f c z).2 = f c z
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hh.refine_2.refine_2 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (fun x => ↑(extChartAt I (f c z)) x.2) (c, f c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
exact continuousAt_snd
case refine_1.hh.refine_2.refine_2.hf S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (fun x => x.2) (c, f c z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hh.refine_2.refine_2.hf S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ContinuousAt (fun x => x.2) (c, f c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
rfl
case refine_1.hh.refine_2.refine_2.hy S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ (c, f c z).2 = f c z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hh.refine_2.refine_2.hy S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ (c, f c z).2 = f c z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
simp only [i.inv_at, PartialEquiv.left_inv _ (mem_extChartAt_source _ _), PartialEquiv.invFun_as_coe]
case refine_1.e S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ((c, f c z).1, (extChartAt I z).symm.1 (↑i.he.symm ((c, f c z).1, ↑(extChartAt I (f c z)) (c, f c z).2)).2) = (c, z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.e S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ ((c, f c z).1, (extChartAt I z).symm.1 (↑i.he.symm ((c, f c z).1, ↑(extChartAt I (f c z)) (c, f c z).2)).2) = (c, z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
simp only [i.inv_at, PartialEquiv.left_inv _ (mem_extChartAt_source _ _)]
case refine_2 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ f (c, f c z).1 (↑(extChartAt I z).symm (↑i.he.symm ((c, f c z).1, ↑(extChartAt I (f c z)) (c, f c z).2)).2) ∈ (extChartAt I (f c z)).source
case refine_2 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ f c z ∈ (extChartAt I (f c z)).source
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ f (c, f c z).1 (↑(extChartAt I z).symm (↑i.he.symm ((c, f c z).1, ↑(extChartAt I (f c z)) (c, f c z).2)).2) ∈ (extChartAt I (f c z)).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
apply mem_extChartAt_source
case refine_2 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ f c z ∈ (extChartAt I (f c z)).source
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m : (c, f c z) ∈ t ⊢ f c z ∈ (extChartAt I (f c z)).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.right_inv
[237, 1]
[284, 43]
simp only [← hq, i.inv_fst _ m.2]
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) mf : f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source inv : i.h (↑q (x.1, ↑(extChartAt I (f c z)) x.2)) = (x.1, ↑(extChartAt I (f c z)) x.2) hq : i.he.symm = q ⊢ (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).1 = x.1
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z t : Set (ℂ × T) ht : (extChartAt (I.prod I) (c, f c z)).source ∩ ↑(extChartAt (I.prod I) (c, f c z)) ⁻¹' i.he.target = t o : IsOpen t m' : (c, ↑(extChartAt I (f c z)) (f c z)) ∈ i.he.target m✝ : (c, f c z) ∈ t fm : ∀ᶠ (x : ℂ × T) in 𝓝 (c, f c z), f x.1 (↑(extChartAt I z).symm (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source x : ℂ × T m : x.2 ∈ (extChartAt I (f c z)).source ∧ (x.1, ↑(extChartAt I (f c z)) x.2) ∈ i.he.target q : PartialHomeomorph (ℂ × ℂ) (ℂ × ℂ) mf : f x.1 (↑(extChartAt I z).symm (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).2) ∈ (extChartAt I (f c z)).source inv : i.h (↑q (x.1, ↑(extChartAt I (f c z)) x.2)) = (x.1, ↑(extChartAt I (f c z)) x.2) hq : i.he.symm = q ⊢ (↑q (x.1, ↑(extChartAt I (f c z)) x.2)).1 = x.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.he_symm_holomorphic
[286, 1]
[293, 63]
apply AnalyticAt.holomorphicAt
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ HolomorphicAt (I.prod I) (I.prod I) ↑i.he.symm (c, i.fz')
case fa S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ AnalyticAt ℂ ↑i.he.symm (c, i.fz')
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ HolomorphicAt (I.prod I) (I.prod I) ↑i.he.symm (c, i.fz') TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.he_symm_holomorphic
[286, 1]
[293, 63]
have d : ContDiffAt ℂ ⊤ i.he.symm _ := ContDiffAt.to_localInverse i.ha.contDiffAt i.has_dhe le_top
case fa S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ AnalyticAt ℂ ↑i.he.symm (c, i.fz')
case fa S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z d : ContDiffAt ℂ ⊤ (↑i.he.symm) (i.h (c, i.z')) ⊢ AnalyticAt ℂ ↑i.he.symm (c, i.fz')
Please generate a tactic in lean4 to solve the state. STATE: case fa S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ AnalyticAt ℂ ↑i.he.symm (c, i.fz') TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.he_symm_holomorphic
[286, 1]
[293, 63]
have e : i.h (c, i.z') = (c, i.fz') := by simp only [Cinv.h, Cinv.fz', Cinv.f'] simp only [Cinv.z', (extChartAt I z).left_inv (mem_extChartAt_source _ _)]
case fa S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z d : ContDiffAt ℂ ⊤ (↑i.he.symm) (i.h (c, i.z')) ⊢ AnalyticAt ℂ ↑i.he.symm (c, i.fz')
case fa S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z d : ContDiffAt ℂ ⊤ (↑i.he.symm) (i.h (c, i.z')) e : i.h (c, i.z') = (c, i.fz') ⊢ AnalyticAt ℂ ↑i.he.symm (c, i.fz')
Please generate a tactic in lean4 to solve the state. STATE: case fa S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z d : ContDiffAt ℂ ⊤ (↑i.he.symm) (i.h (c, i.z')) ⊢ AnalyticAt ℂ ↑i.he.symm (c, i.fz') TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.he_symm_holomorphic
[286, 1]
[293, 63]
rw [e] at d
case fa S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z d : ContDiffAt ℂ ⊤ (↑i.he.symm) (i.h (c, i.z')) e : i.h (c, i.z') = (c, i.fz') ⊢ AnalyticAt ℂ ↑i.he.symm (c, i.fz')
case fa S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z d : ContDiffAt ℂ ⊤ ↑i.he.symm (c, i.fz') e : i.h (c, i.z') = (c, i.fz') ⊢ AnalyticAt ℂ ↑i.he.symm (c, i.fz')
Please generate a tactic in lean4 to solve the state. STATE: case fa S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z d : ContDiffAt ℂ ⊤ (↑i.he.symm) (i.h (c, i.z')) e : i.h (c, i.z') = (c, i.fz') ⊢ AnalyticAt ℂ ↑i.he.symm (c, i.fz') TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.he_symm_holomorphic
[286, 1]
[293, 63]
exact (contDiffAt_iff_analytic_at2 le_top).mp d
case fa S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z d : ContDiffAt ℂ ⊤ ↑i.he.symm (c, i.fz') e : i.h (c, i.z') = (c, i.fz') ⊢ AnalyticAt ℂ ↑i.he.symm (c, i.fz')
no goals
Please generate a tactic in lean4 to solve the state. STATE: case fa S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z d : ContDiffAt ℂ ⊤ ↑i.he.symm (c, i.fz') e : i.h (c, i.z') = (c, i.fz') ⊢ AnalyticAt ℂ ↑i.he.symm (c, i.fz') TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.he_symm_holomorphic
[286, 1]
[293, 63]
simp only [Cinv.h, Cinv.fz', Cinv.f']
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z d : ContDiffAt ℂ ⊤ (↑i.he.symm) (i.h (c, i.z')) ⊢ i.h (c, i.z') = (c, i.fz')
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z d : ContDiffAt ℂ ⊤ (↑i.he.symm) (i.h (c, i.z')) ⊢ (c, ↑(extChartAt I (f c z)) (f c (↑(extChartAt I z).symm i.z'))) = (c, ↑(extChartAt I (f c z)) (f c z))
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z d : ContDiffAt ℂ ⊤ (↑i.he.symm) (i.h (c, i.z')) ⊢ i.h (c, i.z') = (c, i.fz') TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.he_symm_holomorphic
[286, 1]
[293, 63]
simp only [Cinv.z', (extChartAt I z).left_inv (mem_extChartAt_source _ _)]
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z d : ContDiffAt ℂ ⊤ (↑i.he.symm) (i.h (c, i.z')) ⊢ (c, ↑(extChartAt I (f c z)) (f c (↑(extChartAt I z).symm i.z'))) = (c, ↑(extChartAt I (f c z)) (f c z))
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z d : ContDiffAt ℂ ⊤ (↑i.he.symm) (i.h (c, i.z')) ⊢ (c, ↑(extChartAt I (f c z)) (f c (↑(extChartAt I z).symm i.z'))) = (c, ↑(extChartAt I (f c z)) (f c z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Inverse.lean
ComplexInverseFun.Cinv.ga
[296, 1]
[303, 19]
apply (HolomorphicAt.extChartAt_symm (mem_extChartAt_target I z)).comp_of_eq
S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ HolomorphicAt (I.prod I) I (uncurry i.g) (c, f c z)
case gh S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ HolomorphicAt (I.prod I) I (fun x => (↑i.he.symm (x.1, ↑(extChartAt I (f c z)) x.2)).2) (c, f c z) case e S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ (↑i.he.symm ((c, f c z).1, ↑(extChartAt I (f c z)) (c, f c z).2)).2 = ↑(extChartAt I z) z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S cms : AnalyticManifold I S T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T cmt : AnalyticManifold I T f : ℂ → S → T c : ℂ z : S i : Cinv f c z ⊢ HolomorphicAt (I.prod I) I (uncurry i.g) (c, f c z) TACTIC: