url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
---|---|---|---|---|---|---|---|---|---|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_inj | [203, 1] | [282, 65] | rw [xe] | case neg.refine_2.refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n✝ : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e : t ∈ u
n : ℕ
hn : s.np c (Complex.abs (↑t * x0)) = n
t0 : ↑t ≠ 0
pe : Complex.abs (↑t * x0) = Complex.abs (↑t * x1)
e0 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n s.ray x
e1 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x1), Eqn s n s.ray x
de : x0 ^ d ^ n = x1 ^ d ^ n
r : ℂ → ℂ → S
hr : (fun e x => s.ray e (x1 / x0 * x)) = r
xe : x1 / x0 * (↑t * x0) = ↑t * x1
er : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n r y
⊢ s.ray c (↑t * x0) = s.ray c (x1 / x0 * (↑t * x0)) | case neg.refine_2.refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n✝ : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e : t ∈ u
n : ℕ
hn : s.np c (Complex.abs (↑t * x0)) = n
t0 : ↑t ≠ 0
pe : Complex.abs (↑t * x0) = Complex.abs (↑t * x1)
e0 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n s.ray x
e1 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x1), Eqn s n s.ray x
de : x0 ^ d ^ n = x1 ^ d ^ n
r : ℂ → ℂ → S
hr : (fun e x => s.ray e (x1 / x0 * x)) = r
xe : x1 / x0 * (↑t * x0) = ↑t * x1
er : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n r y
⊢ s.ray c (↑t * x0) = s.ray c (↑t * x1) | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_2.refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n✝ : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e : t ∈ u
n : ℕ
hn : s.np c (Complex.abs (↑t * x0)) = n
t0 : ↑t ≠ 0
pe : Complex.abs (↑t * x0) = Complex.abs (↑t * x1)
e0 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n s.ray x
e1 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x1), Eqn s n s.ray x
de : x0 ^ d ^ n = x1 ^ d ^ n
r : ℂ → ℂ → S
hr : (fun e x => s.ray e (x1 / x0 * x)) = r
xe : x1 / x0 * (↑t * x0) = ↑t * x1
er : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n r y
⊢ s.ray c (↑t * x0) = s.ray c (x1 / x0 * (↑t * x0))
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_inj | [203, 1] | [282, 65] | exact e | case neg.refine_2.refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n✝ : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e : t ∈ u
n : ℕ
hn : s.np c (Complex.abs (↑t * x0)) = n
t0 : ↑t ≠ 0
pe : Complex.abs (↑t * x0) = Complex.abs (↑t * x1)
e0 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n s.ray x
e1 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x1), Eqn s n s.ray x
de : x0 ^ d ^ n = x1 ^ d ^ n
r : ℂ → ℂ → S
hr : (fun e x => s.ray e (x1 / x0 * x)) = r
xe : x1 / x0 * (↑t * x0) = ↑t * x1
er : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n r y
⊢ s.ray c (↑t * x0) = s.ray c (↑t * x1) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_2.refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n✝ : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e : t ∈ u
n : ℕ
hn : s.np c (Complex.abs (↑t * x0)) = n
t0 : ↑t ≠ 0
pe : Complex.abs (↑t * x0) = Complex.abs (↑t * x1)
e0 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n s.ray x
e1 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x1), Eqn s n s.ray x
de : x0 ^ d ^ n = x1 ^ d ^ n
r : ℂ → ℂ → S
hr : (fun e x => s.ray e (x1 / x0 * x)) = r
xe : x1 / x0 * (↑t * x0) = ↑t * x1
er : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n r y
⊢ s.ray c (↑t * x0) = s.ray c (↑t * x1)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_inj | [203, 1] | [282, 65] | rw [← hr] at e | case neg.refine_2.refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n✝ : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝¹ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u✝ : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e✝ : t ∈ u✝
n : ℕ
hn : s.np c (Complex.abs (↑t * x0)) = n
t0 : ↑t ≠ 0
pe : Complex.abs (↑t * x0) = Complex.abs (↑t * x1)
e0 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n s.ray x
e1 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x1), Eqn s n s.ray x
de : x0 ^ d ^ n = x1 ^ d ^ n
r : ℂ → ℂ → S
hr : (fun e x => s.ray e (x1 / x0 * x)) = r
xe : x1 / x0 * (↑t * x0) = ↑t * x1
er : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n r y
u : ℝ
e : uncurry s.ray (c, ↑u * x0) = uncurry r (c, ↑u * x0)
⊢ s.ray c (↑u * x0) = s.ray c (↑u * x1) | case neg.refine_2.refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n✝ : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝¹ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u✝ : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e✝ : t ∈ u✝
n : ℕ
hn : s.np c (Complex.abs (↑t * x0)) = n
t0 : ↑t ≠ 0
pe : Complex.abs (↑t * x0) = Complex.abs (↑t * x1)
e0 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n s.ray x
e1 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x1), Eqn s n s.ray x
de : x0 ^ d ^ n = x1 ^ d ^ n
r : ℂ → ℂ → S
hr : (fun e x => s.ray e (x1 / x0 * x)) = r
xe : x1 / x0 * (↑t * x0) = ↑t * x1
er : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n r y
u : ℝ
e : uncurry s.ray (c, ↑u * x0) = uncurry (fun e x => s.ray e (x1 / x0 * x)) (c, ↑u * x0)
⊢ s.ray c (↑u * x0) = s.ray c (↑u * x1) | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_2.refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n✝ : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝¹ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u✝ : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e✝ : t ∈ u✝
n : ℕ
hn : s.np c (Complex.abs (↑t * x0)) = n
t0 : ↑t ≠ 0
pe : Complex.abs (↑t * x0) = Complex.abs (↑t * x1)
e0 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n s.ray x
e1 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x1), Eqn s n s.ray x
de : x0 ^ d ^ n = x1 ^ d ^ n
r : ℂ → ℂ → S
hr : (fun e x => s.ray e (x1 / x0 * x)) = r
xe : x1 / x0 * (↑t * x0) = ↑t * x1
er : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n r y
u : ℝ
e : uncurry s.ray (c, ↑u * x0) = uncurry r (c, ↑u * x0)
⊢ s.ray c (↑u * x0) = s.ray c (↑u * x1)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_inj | [203, 1] | [282, 65] | simp only [uncurry] at e | case neg.refine_2.refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n✝ : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝¹ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u✝ : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e✝ : t ∈ u✝
n : ℕ
hn : s.np c (Complex.abs (↑t * x0)) = n
t0 : ↑t ≠ 0
pe : Complex.abs (↑t * x0) = Complex.abs (↑t * x1)
e0 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n s.ray x
e1 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x1), Eqn s n s.ray x
de : x0 ^ d ^ n = x1 ^ d ^ n
r : ℂ → ℂ → S
hr : (fun e x => s.ray e (x1 / x0 * x)) = r
xe : x1 / x0 * (↑t * x0) = ↑t * x1
er : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n r y
u : ℝ
e : uncurry s.ray (c, ↑u * x0) = uncurry (fun e x => s.ray e (x1 / x0 * x)) (c, ↑u * x0)
⊢ s.ray c (↑u * x0) = s.ray c (↑u * x1) | case neg.refine_2.refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n✝ : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝¹ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u✝ : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e✝ : t ∈ u✝
n : ℕ
hn : s.np c (Complex.abs (↑t * x0)) = n
t0 : ↑t ≠ 0
pe : Complex.abs (↑t * x0) = Complex.abs (↑t * x1)
e0 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n s.ray x
e1 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x1), Eqn s n s.ray x
de : x0 ^ d ^ n = x1 ^ d ^ n
r : ℂ → ℂ → S
hr : (fun e x => s.ray e (x1 / x0 * x)) = r
xe : x1 / x0 * (↑t * x0) = ↑t * x1
er : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n r y
u : ℝ
e : s.ray c (↑u * x0) = s.ray c (x1 / x0 * (↑u * x0))
⊢ s.ray c (↑u * x0) = s.ray c (↑u * x1) | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_2.refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n✝ : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝¹ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u✝ : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e✝ : t ∈ u✝
n : ℕ
hn : s.np c (Complex.abs (↑t * x0)) = n
t0 : ↑t ≠ 0
pe : Complex.abs (↑t * x0) = Complex.abs (↑t * x1)
e0 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n s.ray x
e1 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x1), Eqn s n s.ray x
de : x0 ^ d ^ n = x1 ^ d ^ n
r : ℂ → ℂ → S
hr : (fun e x => s.ray e (x1 / x0 * x)) = r
xe : x1 / x0 * (↑t * x0) = ↑t * x1
er : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n r y
u : ℝ
e : uncurry s.ray (c, ↑u * x0) = uncurry (fun e x => s.ray e (x1 / x0 * x)) (c, ↑u * x0)
⊢ s.ray c (↑u * x0) = s.ray c (↑u * x1)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_inj | [203, 1] | [282, 65] | rw [← mul_assoc, mul_comm _ (u:ℂ), mul_assoc, div_mul_cancel₀ _ x00] at e | case neg.refine_2.refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n✝ : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝¹ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u✝ : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e✝ : t ∈ u✝
n : ℕ
hn : s.np c (Complex.abs (↑t * x0)) = n
t0 : ↑t ≠ 0
pe : Complex.abs (↑t * x0) = Complex.abs (↑t * x1)
e0 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n s.ray x
e1 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x1), Eqn s n s.ray x
de : x0 ^ d ^ n = x1 ^ d ^ n
r : ℂ → ℂ → S
hr : (fun e x => s.ray e (x1 / x0 * x)) = r
xe : x1 / x0 * (↑t * x0) = ↑t * x1
er : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n r y
u : ℝ
e : s.ray c (↑u * x0) = s.ray c (x1 / x0 * (↑u * x0))
⊢ s.ray c (↑u * x0) = s.ray c (↑u * x1) | case neg.refine_2.refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n✝ : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝¹ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u✝ : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e✝ : t ∈ u✝
n : ℕ
hn : s.np c (Complex.abs (↑t * x0)) = n
t0 : ↑t ≠ 0
pe : Complex.abs (↑t * x0) = Complex.abs (↑t * x1)
e0 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n s.ray x
e1 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x1), Eqn s n s.ray x
de : x0 ^ d ^ n = x1 ^ d ^ n
r : ℂ → ℂ → S
hr : (fun e x => s.ray e (x1 / x0 * x)) = r
xe : x1 / x0 * (↑t * x0) = ↑t * x1
er : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n r y
u : ℝ
e : s.ray c (↑u * x0) = s.ray c (↑u * x1)
⊢ s.ray c (↑u * x0) = s.ray c (↑u * x1) | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_2.refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n✝ : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝¹ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u✝ : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e✝ : t ∈ u✝
n : ℕ
hn : s.np c (Complex.abs (↑t * x0)) = n
t0 : ↑t ≠ 0
pe : Complex.abs (↑t * x0) = Complex.abs (↑t * x1)
e0 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n s.ray x
e1 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x1), Eqn s n s.ray x
de : x0 ^ d ^ n = x1 ^ d ^ n
r : ℂ → ℂ → S
hr : (fun e x => s.ray e (x1 / x0 * x)) = r
xe : x1 / x0 * (↑t * x0) = ↑t * x1
er : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n r y
u : ℝ
e : s.ray c (↑u * x0) = s.ray c (x1 / x0 * (↑u * x0))
⊢ s.ray c (↑u * x0) = s.ray c (↑u * x1)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_inj | [203, 1] | [282, 65] | exact e | case neg.refine_2.refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n✝ : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝¹ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u✝ : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e✝ : t ∈ u✝
n : ℕ
hn : s.np c (Complex.abs (↑t * x0)) = n
t0 : ↑t ≠ 0
pe : Complex.abs (↑t * x0) = Complex.abs (↑t * x1)
e0 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n s.ray x
e1 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x1), Eqn s n s.ray x
de : x0 ^ d ^ n = x1 ^ d ^ n
r : ℂ → ℂ → S
hr : (fun e x => s.ray e (x1 / x0 * x)) = r
xe : x1 / x0 * (↑t * x0) = ↑t * x1
er : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n r y
u : ℝ
e : s.ray c (↑u * x0) = s.ray c (↑u * x1)
⊢ s.ray c (↑u * x0) = s.ray c (↑u * x1) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_2.refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n✝ : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝¹ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u✝ : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e✝ : t ∈ u✝
n : ℕ
hn : s.np c (Complex.abs (↑t * x0)) = n
t0 : ↑t ≠ 0
pe : Complex.abs (↑t * x0) = Complex.abs (↑t * x1)
e0 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n s.ray x
e1 : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, ↑t * x1), Eqn s n s.ray x
de : x0 ^ d ^ n = x1 ^ d ^ n
r : ℂ → ℂ → S
hr : (fun e x => s.ray e (x1 / x0 * x)) = r
xe : x1 / x0 * (↑t * x0) = ↑t * x1
er : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, ↑t * x0), Eqn s n r y
u : ℝ
e : s.ray c (↑u * x0) = s.ray c (↑u * x1)
⊢ s.ray c (↑u * x0) = s.ray c (↑u * x1)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_inj | [203, 1] | [282, 65] | intro t ⟨m, e⟩ | case neg.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
⊢ Ioc 0 1 ∩ closure u ⊆ u | case neg.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e : t ∈ closure u
⊢ t ∈ u | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
⊢ Ioc 0 1 ∩ closure u ⊆ u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_inj | [203, 1] | [282, 65] | simp only [mem_setOf, mem_closure_iff_frequently] at e ⊢ | case neg.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e : t ∈ closure u
⊢ t ∈ u | case neg.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e : ∃ᶠ (x : ℝ) in 𝓝 t, x ∈ u
⊢ t ∈ u | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e : t ∈ closure u
⊢ t ∈ u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_inj | [203, 1] | [282, 65] | have rc : ∀ {x : ℂ}, (c, x) ∈ s.ext → ContinuousAt (fun t : ℝ ↦ s.ray c (↑t * x)) t :=
fun {x} p ↦
(s.ray_holomorphic (pt p m)).along_snd.continuousAt.comp_of_eq
(Complex.continuous_ofReal.continuousAt.mul continuousAt_const) rfl | case neg.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e : ∃ᶠ (x : ℝ) in 𝓝 t, x ∈ u
⊢ t ∈ u | case neg.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e : ∃ᶠ (x : ℝ) in 𝓝 t, x ∈ u
rc : ∀ {x : ℂ}, (c, x) ∈ s.ext → ContinuousAt (fun t => s.ray c (↑t * x)) t
⊢ t ∈ u | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e : ∃ᶠ (x : ℝ) in 𝓝 t, x ∈ u
⊢ t ∈ u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_inj | [203, 1] | [282, 65] | exact tendsto_nhds_unique_of_frequently_eq (rc p0) (rc p1) e | case neg.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e : ∃ᶠ (x : ℝ) in 𝓝 t, x ∈ u
rc : ∀ {x : ℂ}, (c, x) ∈ s.ext → ContinuousAt (fun t => s.ray c (↑t * x)) t
⊢ t ∈ u | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
x0 x1 : ℂ
p0 : (c, x0) ∈ s.ext
p1 : (c, x1) ∈ s.ext
e✝ : s.ray c x0 = s.ray c x1
ax : Complex.abs x0 = Complex.abs x1
x00 : ¬x0 = 0
tc : ∀ (x : ℂ) (t : ℝ), ContinuousAt (fun t => ↑t * x) t
pt : ∀ {x : ℂ} {t : ℝ}, (c, x) ∈ s.ext → t ∈ Ioc 0 1 → (c, ↑t * x) ∈ s.ext
u : Set ℝ := {t | s.ray c (↑t * x0) = s.ray c (↑t * x1)}
t : ℝ
m : t ∈ Ioc 0 1
e : ∃ᶠ (x : ℝ) in 𝓝 t, x ∈ u
rc : ∀ {x : ℂ}, (c, x) ∈ s.ext → ContinuousAt (fun t => s.ray c (↑t * x)) t
⊢ t ∈ u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | intro z0 m0 | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
⊢ ∀ {z : S}, (c, z) ∈ s.post → ∃ x, (c, x) ∈ s.ext ∧ s.ray c x = z | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
m0 : (c, z0) ∈ s.post
⊢ ∃ x, (c, x) ∈ s.ext ∧ s.ray c x = z0 | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
⊢ ∀ {z : S}, (c, z) ∈ s.post → ∃ x, (c, x) ∈ s.ext ∧ s.ray c x = z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | by_contra i0 | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
m0 : (c, z0) ∈ s.post
⊢ ∃ x, (c, x) ∈ s.ext ∧ s.ray c x = z0 | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
m0 : (c, z0) ∈ s.post
i0 : ¬∃ x, (c, x) ∈ s.ext ∧ s.ray c x = z0
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
m0 : (c, z0) ∈ s.post
⊢ ∃ x, (c, x) ∈ s.ext ∧ s.ray c x = z0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | simp only [not_forall, not_exists, not_and] at i0 | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
m0 : (c, z0) ∈ s.post
i0 : ¬∃ x, (c, x) ∈ s.ext ∧ s.ray c x = z0
⊢ False | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
m0 : (c, z0) ∈ s.post
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
m0 : (c, z0) ∈ s.post
i0 : ¬∃ x, (c, x) ∈ s.ext ∧ s.ray c x = z0
⊢ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | set p0 := s.potential c z0 | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
m0 : (c, z0) ∈ s.post
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
⊢ False | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
m0 : (c, z0) ∈ s.post
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
m0 : (c, z0) ∈ s.post
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
⊢ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | simp only [Super.post, mem_setOf, Postcritical] at m0 | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
m0 : (c, z0) ∈ s.post
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
⊢ False | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
m0 : (c, z0) ∈ s.post
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
⊢ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | rcases exists_between m0 with ⟨p1, p01, post⟩ | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
⊢ False | case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
⊢ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | set i := s.ray c '' {x | (c, x) ∈ s.ext} | case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
⊢ False | case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
⊢ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | set j := {z | s.potential c z ≤ p1} ∩ i | case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
⊢ False | case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
⊢ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | set u := {z | s.potential c z ≤ p1} \ i | case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
⊢ False | case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
⊢ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | have pc : Continuous (s.potential c) := (Continuous.potential s).along_snd | case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
⊢ False | case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
⊢ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | have io : IsOpen i := by
rw [isOpen_iff_eventually]; intro z ⟨x, m, xz⟩
have eq := (s.ray_nontrivial m).nhds_eq_map_nhds; rw [xz] at eq
rw [eq, Filter.eventually_map]
exact ((s.isOpen_ext.snd_preimage c).eventually_mem m).mp
(eventually_of_forall fun x m ↦ ⟨x, m, rfl⟩) | case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
⊢ False | case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
⊢ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | have uc : IsCompact u := ((isClosed_le pc continuous_const).sdiff io).isCompact | case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
⊢ False | case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
⊢ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | have z0u : z0 ∈ u := by
simp only [mem_diff, mem_setOf, u]; use p01.le; contrapose i0
simp only [not_not, mem_image, mem_setOf, not_forall, exists_prop] at i0 ⊢; exact i0 | case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
⊢ False | case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
⊢ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | have ne : u.Nonempty := ⟨z0, z0u⟩ | case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
⊢ False | case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
⊢ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | rcases uc.exists_isMinOn ne pc.continuousOn with ⟨z, zu, zm⟩ | case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
⊢ False | case intro.intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zu : z ∈ u
zm : IsMinOn (s.potential c) u z
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
⊢ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | simp only [mem_diff, mem_setOf, u] at zu | case intro.intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zu : z ∈ u
zm : IsMinOn (s.potential c) u z
⊢ False | case intro.intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zu : z ∈ u
zm : IsMinOn (s.potential c) u z
⊢ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | simp only [mem_setOf, mem_image, not_exists, not_and, i] at zu | case intro.intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zu : s.potential c z ≤ p1 ∧ z ∉ i
zm : ∀ᶠ (w : S) in 𝓝 z, s.potential c z ≤ s.potential c w
⊢ False | case intro.intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : ∀ᶠ (w : S) in 𝓝 z, s.potential c z ≤ s.potential c w
zu : s.potential c z ≤ p1 ∧ ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zu : s.potential c z ≤ p1 ∧ z ∉ i
zm : ∀ᶠ (w : S) in 𝓝 z, s.potential c z ≤ s.potential c w
⊢ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | have za := s.potential_minima_only_a (lt_of_le_of_lt zu.1 post) zm | case intro.intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : ∀ᶠ (w : S) in 𝓝 z, s.potential c z ≤ s.potential c w
zu : s.potential c z ≤ p1 ∧ ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z
⊢ False | case intro.intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : ∀ᶠ (w : S) in 𝓝 z, s.potential c z ≤ s.potential c w
zu : s.potential c z ≤ p1 ∧ ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z
za : z = a
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : ∀ᶠ (w : S) in 𝓝 z, s.potential c z ≤ s.potential c w
zu : s.potential c z ≤ p1 ∧ ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z
⊢ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | have h := zu.2 0 (s.mem_ext c) | case intro.intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : ∀ᶠ (w : S) in 𝓝 z, s.potential c z ≤ s.potential c w
zu : s.potential c z ≤ p1 ∧ ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z
za : z = a
⊢ False | case intro.intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : ∀ᶠ (w : S) in 𝓝 z, s.potential c z ≤ s.potential c w
zu : s.potential c z ≤ p1 ∧ ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z
za : z = a
h : ¬s.ray c 0 = z
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : ∀ᶠ (w : S) in 𝓝 z, s.potential c z ≤ s.potential c w
zu : s.potential c z ≤ p1 ∧ ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z
za : z = a
⊢ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | simp only [s.ray_zero] at h | case intro.intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : ∀ᶠ (w : S) in 𝓝 z, s.potential c z ≤ s.potential c w
zu : s.potential c z ≤ p1 ∧ ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z
za : z = a
h : ¬s.ray c 0 = z
⊢ False | case intro.intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : ∀ᶠ (w : S) in 𝓝 z, s.potential c z ≤ s.potential c w
zu : s.potential c z ≤ p1 ∧ ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z
za : z = a
h : ¬a = z
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : ∀ᶠ (w : S) in 𝓝 z, s.potential c z ≤ s.potential c w
zu : s.potential c z ≤ p1 ∧ ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z
za : z = a
h : ¬s.ray c 0 = z
⊢ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | exact h za.symm | case intro.intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : ∀ᶠ (w : S) in 𝓝 z, s.potential c z ≤ s.potential c w
zu : s.potential c z ≤ p1 ∧ ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z
za : z = a
h : ¬a = z
⊢ False | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : ∀ᶠ (w : S) in 𝓝 z, s.potential c z ≤ s.potential c w
zu : s.potential c z ≤ p1 ∧ ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z
za : z = a
h : ¬a = z
⊢ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | rw [isOpen_iff_eventually] | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
⊢ IsOpen i | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
⊢ ∀ x ∈ i, ∀ᶠ (y : S) in 𝓝 x, y ∈ i | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
⊢ IsOpen i
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | intro z ⟨x, m, xz⟩ | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
⊢ ∀ x ∈ i, ∀ᶠ (y : S) in 𝓝 x, y ∈ i | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
z : S
x : ℂ
m : x ∈ {x | (c, x) ∈ s.ext}
xz : s.ray c x = z
⊢ ∀ᶠ (y : S) in 𝓝 z, y ∈ i | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
⊢ ∀ x ∈ i, ∀ᶠ (y : S) in 𝓝 x, y ∈ i
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | have eq := (s.ray_nontrivial m).nhds_eq_map_nhds | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
z : S
x : ℂ
m : x ∈ {x | (c, x) ∈ s.ext}
xz : s.ray c x = z
⊢ ∀ᶠ (y : S) in 𝓝 z, y ∈ i | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
z : S
x : ℂ
m : x ∈ {x | (c, x) ∈ s.ext}
xz : s.ray c x = z
eq : 𝓝 (s.ray c x) = Filter.map (s.ray c) (𝓝 x)
⊢ ∀ᶠ (y : S) in 𝓝 z, y ∈ i | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
z : S
x : ℂ
m : x ∈ {x | (c, x) ∈ s.ext}
xz : s.ray c x = z
⊢ ∀ᶠ (y : S) in 𝓝 z, y ∈ i
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | rw [xz] at eq | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
z : S
x : ℂ
m : x ∈ {x | (c, x) ∈ s.ext}
xz : s.ray c x = z
eq : 𝓝 (s.ray c x) = Filter.map (s.ray c) (𝓝 x)
⊢ ∀ᶠ (y : S) in 𝓝 z, y ∈ i | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
z : S
x : ℂ
m : x ∈ {x | (c, x) ∈ s.ext}
xz : s.ray c x = z
eq : 𝓝 z = Filter.map (s.ray c) (𝓝 x)
⊢ ∀ᶠ (y : S) in 𝓝 z, y ∈ i | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
z : S
x : ℂ
m : x ∈ {x | (c, x) ∈ s.ext}
xz : s.ray c x = z
eq : 𝓝 (s.ray c x) = Filter.map (s.ray c) (𝓝 x)
⊢ ∀ᶠ (y : S) in 𝓝 z, y ∈ i
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | rw [eq, Filter.eventually_map] | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
z : S
x : ℂ
m : x ∈ {x | (c, x) ∈ s.ext}
xz : s.ray c x = z
eq : 𝓝 z = Filter.map (s.ray c) (𝓝 x)
⊢ ∀ᶠ (y : S) in 𝓝 z, y ∈ i | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
z : S
x : ℂ
m : x ∈ {x | (c, x) ∈ s.ext}
xz : s.ray c x = z
eq : 𝓝 z = Filter.map (s.ray c) (𝓝 x)
⊢ ∀ᶠ (a_1 : ℂ) in 𝓝 x, s.ray c a_1 ∈ i | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
z : S
x : ℂ
m : x ∈ {x | (c, x) ∈ s.ext}
xz : s.ray c x = z
eq : 𝓝 z = Filter.map (s.ray c) (𝓝 x)
⊢ ∀ᶠ (y : S) in 𝓝 z, y ∈ i
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | exact ((s.isOpen_ext.snd_preimage c).eventually_mem m).mp
(eventually_of_forall fun x m ↦ ⟨x, m, rfl⟩) | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
z : S
x : ℂ
m : x ∈ {x | (c, x) ∈ s.ext}
xz : s.ray c x = z
eq : 𝓝 z = Filter.map (s.ray c) (𝓝 x)
⊢ ∀ᶠ (a_1 : ℂ) in 𝓝 x, s.ray c a_1 ∈ i | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
z : S
x : ℂ
m : x ∈ {x | (c, x) ∈ s.ext}
xz : s.ray c x = z
eq : 𝓝 z = Filter.map (s.ray c) (𝓝 x)
⊢ ∀ᶠ (a_1 : ℂ) in 𝓝 x, s.ray c a_1 ∈ i
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | rw [e] | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
e : j = s.ray c '' closedBall 0 p1
⊢ IsClosed j | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
e : j = s.ray c '' closedBall 0 p1
⊢ IsClosed (s.ray c '' closedBall 0 p1) | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
e : j = s.ray c '' closedBall 0 p1
⊢ IsClosed j
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | refine (IsCompact.image_of_continuousOn (isCompact_closedBall _ _) ?_).isClosed | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
e : j = s.ray c '' closedBall 0 p1
⊢ IsClosed (s.ray c '' closedBall 0 p1) | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
e : j = s.ray c '' closedBall 0 p1
⊢ ContinuousOn (s.ray c) (closedBall 0 p1) | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
e : j = s.ray c '' closedBall 0 p1
⊢ IsClosed (s.ray c '' closedBall 0 p1)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | intro x m | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
e : j = s.ray c '' closedBall 0 p1
⊢ ContinuousOn (s.ray c) (closedBall 0 p1) | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
e : j = s.ray c '' closedBall 0 p1
x : ℂ
m : x ∈ closedBall 0 p1
⊢ ContinuousWithinAt (s.ray c) (closedBall 0 p1) x | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
e : j = s.ray c '' closedBall 0 p1
⊢ ContinuousOn (s.ray c) (closedBall 0 p1)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | simp only [mem_closedBall, Complex.dist_eq, sub_zero] at m | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
e : j = s.ray c '' closedBall 0 p1
x : ℂ
m : x ∈ closedBall 0 p1
⊢ ContinuousWithinAt (s.ray c) (closedBall 0 p1) x | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
e : j = s.ray c '' closedBall 0 p1
x : ℂ
m : Complex.abs x ≤ p1
⊢ ContinuousWithinAt (s.ray c) (closedBall 0 p1) x | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
e : j = s.ray c '' closedBall 0 p1
x : ℂ
m : x ∈ closedBall 0 p1
⊢ ContinuousWithinAt (s.ray c) (closedBall 0 p1) x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | exact (s.ray_holomorphic (lt_of_le_of_lt m post)).along_snd.continuousAt.continuousWithinAt | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
e : j = s.ray c '' closedBall 0 p1
x : ℂ
m : Complex.abs x ≤ p1
⊢ ContinuousWithinAt (s.ray c) (closedBall 0 p1) x | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
e : j = s.ray c '' closedBall 0 p1
x : ℂ
m : Complex.abs x ≤ p1
⊢ ContinuousWithinAt (s.ray c) (closedBall 0 p1) x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | refine Set.ext fun z ↦ ?_ | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
⊢ j = s.ray c '' closedBall 0 p1 | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
⊢ z ∈ j ↔ z ∈ s.ray c '' closedBall 0 p1 | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
⊢ j = s.ray c '' closedBall 0 p1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | simp only [mem_inter_iff, mem_setOf, mem_image, mem_closedBall, Complex.dist_eq, sub_zero,
Super.ext, j] | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
⊢ z ∈ j ↔ z ∈ s.ray c '' closedBall 0 p1 | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
⊢ s.potential c z ≤ p1 ∧ z ∈ i ↔ ∃ x, Complex.abs x ≤ p1 ∧ s.ray c x = z | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
⊢ z ∈ j ↔ z ∈ s.ray c '' closedBall 0 p1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | constructor | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
⊢ s.potential c z ≤ p1 ∧ z ∈ i ↔ ∃ x, Complex.abs x ≤ p1 ∧ s.ray c x = z | case mp
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
⊢ s.potential c z ≤ p1 ∧ z ∈ i → ∃ x, Complex.abs x ≤ p1 ∧ s.ray c x = z
case mpr
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
⊢ (∃ x, Complex.abs x ≤ p1 ∧ s.ray c x = z) → s.potential c z ≤ p1 ∧ z ∈ i | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
⊢ s.potential c z ≤ p1 ∧ z ∈ i ↔ ∃ x, Complex.abs x ≤ p1 ∧ s.ray c x = z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | intro ⟨zp1, x, xp, xz⟩ | case mp
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
⊢ s.potential c z ≤ p1 ∧ z ∈ i → ∃ x, Complex.abs x ≤ p1 ∧ s.ray c x = z | case mp
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
zp1 : s.potential c z ≤ p1
x : ℂ
xp : x ∈ {x | (c, x) ∈ s.ext}
xz : s.ray c x = z
⊢ ∃ x, Complex.abs x ≤ p1 ∧ s.ray c x = z | Please generate a tactic in lean4 to solve the state.
STATE:
case mp
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
⊢ s.potential c z ≤ p1 ∧ z ∈ i → ∃ x, Complex.abs x ≤ p1 ∧ s.ray c x = z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | rw [← xz, s.ray_potential xp] at zp1 | case mp
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
zp1 : s.potential c z ≤ p1
x : ℂ
xp : x ∈ {x | (c, x) ∈ s.ext}
xz : s.ray c x = z
⊢ ∃ x, Complex.abs x ≤ p1 ∧ s.ray c x = z | case mp
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
x : ℂ
zp1 : Complex.abs x ≤ p1
xp : x ∈ {x | (c, x) ∈ s.ext}
xz : s.ray c x = z
⊢ ∃ x, Complex.abs x ≤ p1 ∧ s.ray c x = z | Please generate a tactic in lean4 to solve the state.
STATE:
case mp
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
zp1 : s.potential c z ≤ p1
x : ℂ
xp : x ∈ {x | (c, x) ∈ s.ext}
xz : s.ray c x = z
⊢ ∃ x, Complex.abs x ≤ p1 ∧ s.ray c x = z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | use x, zp1, xz | case mp
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
x : ℂ
zp1 : Complex.abs x ≤ p1
xp : x ∈ {x | (c, x) ∈ s.ext}
xz : s.ray c x = z
⊢ ∃ x, Complex.abs x ≤ p1 ∧ s.ray c x = z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case mp
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
x : ℂ
zp1 : Complex.abs x ≤ p1
xp : x ∈ {x | (c, x) ∈ s.ext}
xz : s.ray c x = z
⊢ ∃ x, Complex.abs x ≤ p1 ∧ s.ray c x = z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | intro ⟨x, xp, xz⟩ | case mpr
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
⊢ (∃ x, Complex.abs x ≤ p1 ∧ s.ray c x = z) → s.potential c z ≤ p1 ∧ z ∈ i | case mpr
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
x : ℂ
xp : Complex.abs x ≤ p1
xz : s.ray c x = z
⊢ s.potential c z ≤ p1 ∧ z ∈ i | Please generate a tactic in lean4 to solve the state.
STATE:
case mpr
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
⊢ (∃ x, Complex.abs x ≤ p1 ∧ s.ray c x = z) → s.potential c z ≤ p1 ∧ z ∈ i
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | have zp1 := lt_of_le_of_lt xp post | case mpr
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
x : ℂ
xp : Complex.abs x ≤ p1
xz : s.ray c x = z
⊢ s.potential c z ≤ p1 ∧ z ∈ i | case mpr
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
x : ℂ
xp : Complex.abs x ≤ p1
xz : s.ray c x = z
zp1 : Complex.abs x < s.p c
⊢ s.potential c z ≤ p1 ∧ z ∈ i | Please generate a tactic in lean4 to solve the state.
STATE:
case mpr
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
x : ℂ
xp : Complex.abs x ≤ p1
xz : s.ray c x = z
⊢ s.potential c z ≤ p1 ∧ z ∈ i
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | rw [← xz, s.ray_potential zp1] | case mpr
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
x : ℂ
xp : Complex.abs x ≤ p1
xz : s.ray c x = z
zp1 : Complex.abs x < s.p c
⊢ s.potential c z ≤ p1 ∧ z ∈ i | case mpr
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
x : ℂ
xp : Complex.abs x ≤ p1
xz : s.ray c x = z
zp1 : Complex.abs x < s.p c
⊢ Complex.abs x ≤ p1 ∧ s.ray c x ∈ i | Please generate a tactic in lean4 to solve the state.
STATE:
case mpr
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
x : ℂ
xp : Complex.abs x ≤ p1
xz : s.ray c x = z
zp1 : Complex.abs x < s.p c
⊢ s.potential c z ≤ p1 ∧ z ∈ i
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | use xp, x, zp1 | case mpr
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
x : ℂ
xp : Complex.abs x ≤ p1
xz : s.ray c x = z
zp1 : Complex.abs x < s.p c
⊢ Complex.abs x ≤ p1 ∧ s.ray c x ∈ i | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case mpr
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x✝ : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
z : S
x : ℂ
xp : Complex.abs x ≤ p1
xz : s.ray c x = z
zp1 : Complex.abs x < s.p c
⊢ Complex.abs x ≤ p1 ∧ s.ray c x ∈ i
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | simp only [mem_diff, mem_setOf, u] | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
⊢ z0 ∈ u | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
⊢ s.potential c z0 ≤ p1 ∧ z0 ∉ i | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
⊢ z0 ∈ u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | use p01.le | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
⊢ s.potential c z0 ≤ p1 ∧ z0 ∉ i | case right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
⊢ z0 ∉ i | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
⊢ s.potential c z0 ≤ p1 ∧ z0 ∉ i
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | contrapose i0 | case right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
⊢ z0 ∉ i | case right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
i0 : ¬z0 ∉ i
⊢ ¬∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0 | Please generate a tactic in lean4 to solve the state.
STATE:
case right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
⊢ z0 ∉ i
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | simp only [not_not, mem_image, mem_setOf, not_forall, exists_prop] at i0 ⊢ | case right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
i0 : ¬z0 ∉ i
⊢ ¬∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0 | case right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
i0 : z0 ∈ i
⊢ ∃ x, (c, x) ∈ s.ext ∧ s.ray c x = z0 | Please generate a tactic in lean4 to solve the state.
STATE:
case right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
i0 : ¬z0 ∉ i
⊢ ¬∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | exact i0 | case right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
i0 : z0 ∈ i
⊢ ∃ x, (c, x) ∈ s.ext ∧ s.ray c x = z0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
i0 : z0 ∈ i
⊢ ∃ x, (c, x) ∈ s.ext ∧ s.ray c x = z0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | have m : z ∈ jᶜ := by rw [compl_inter]; right; exact zu.2 | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
⊢ ∀ᶠ (w : S) in 𝓝 z, s.potential c z ≤ s.potential c w | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m : z ∈ jᶜ
⊢ ∀ᶠ (w : S) in 𝓝 z, s.potential c z ≤ s.potential c w | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
⊢ ∀ᶠ (w : S) in 𝓝 z, s.potential c z ≤ s.potential c w
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | have lt : s.potential c z < p1 := lt_of_le_of_lt (zm z0u) p01 | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m : z ∈ jᶜ
⊢ ∀ᶠ (w : S) in 𝓝 z, s.potential c z ≤ s.potential c w | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m : z ∈ jᶜ
lt : s.potential c z < p1
⊢ ∀ᶠ (w : S) in 𝓝 z, s.potential c z ≤ s.potential c w | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m : z ∈ jᶜ
⊢ ∀ᶠ (w : S) in 𝓝 z, s.potential c z ≤ s.potential c w
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | apply (jc.isOpen_compl.eventually_mem m).mp | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m : z ∈ jᶜ
lt : s.potential c z < p1
⊢ ∀ᶠ (w : S) in 𝓝 z, s.potential c z ≤ s.potential c w | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m : z ∈ jᶜ
lt : s.potential c z < p1
⊢ ∀ᶠ (x : S) in 𝓝 z, x ∈ jᶜ → s.potential c z ≤ s.potential c x | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m : z ∈ jᶜ
lt : s.potential c z < p1
⊢ ∀ᶠ (w : S) in 𝓝 z, s.potential c z ≤ s.potential c w
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | apply ((Continuous.potential s).along_snd.continuousAt.eventually_lt continuousAt_const lt).mp | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m : z ∈ jᶜ
lt : s.potential c z < p1
⊢ ∀ᶠ (x : S) in 𝓝 z, x ∈ jᶜ → s.potential c z ≤ s.potential c x | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m : z ∈ jᶜ
lt : s.potential c z < p1
⊢ ∀ᶠ (x : S) in 𝓝 z, uncurry s.potential (c, x) < p1 → x ∈ jᶜ → s.potential c z ≤ s.potential c x | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m : z ∈ jᶜ
lt : s.potential c z < p1
⊢ ∀ᶠ (x : S) in 𝓝 z, x ∈ jᶜ → s.potential c z ≤ s.potential c x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | refine eventually_of_forall fun w lt m ↦ ?_ | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m : z ∈ jᶜ
lt : s.potential c z < p1
⊢ ∀ᶠ (x : S) in 𝓝 z, uncurry s.potential (c, x) < p1 → x ∈ jᶜ → s.potential c z ≤ s.potential c x | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m✝ : z ∈ jᶜ
lt✝ : s.potential c z < p1
w : S
lt : uncurry s.potential (c, w) < p1
m : w ∈ jᶜ
⊢ s.potential c z ≤ s.potential c w | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m : z ∈ jᶜ
lt : s.potential c z < p1
⊢ ∀ᶠ (x : S) in 𝓝 z, uncurry s.potential (c, x) < p1 → x ∈ jᶜ → s.potential c z ≤ s.potential c x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | rw [compl_inter] at m | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m✝ : z ∈ jᶜ
lt✝ : s.potential c z < p1
w : S
lt : uncurry s.potential (c, w) < p1
m : w ∈ jᶜ
⊢ s.potential c z ≤ s.potential c w | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m✝ : z ∈ jᶜ
lt✝ : s.potential c z < p1
w : S
lt : uncurry s.potential (c, w) < p1
m : w ∈ {z | s.potential c z ≤ p1}ᶜ ∪ iᶜ
⊢ s.potential c z ≤ s.potential c w | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m✝ : z ∈ jᶜ
lt✝ : s.potential c z < p1
w : S
lt : uncurry s.potential (c, w) < p1
m : w ∈ jᶜ
⊢ s.potential c z ≤ s.potential c w
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | cases' m with m m | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m✝ : z ∈ jᶜ
lt✝ : s.potential c z < p1
w : S
lt : uncurry s.potential (c, w) < p1
m : w ∈ {z | s.potential c z ≤ p1}ᶜ ∪ iᶜ
⊢ s.potential c z ≤ s.potential c w | case inl
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m✝ : z ∈ jᶜ
lt✝ : s.potential c z < p1
w : S
lt : uncurry s.potential (c, w) < p1
m : w ∈ {z | s.potential c z ≤ p1}ᶜ
⊢ s.potential c z ≤ s.potential c w
case inr
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m✝ : z ∈ jᶜ
lt✝ : s.potential c z < p1
w : S
lt : uncurry s.potential (c, w) < p1
m : w ∈ iᶜ
⊢ s.potential c z ≤ s.potential c w | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m✝ : z ∈ jᶜ
lt✝ : s.potential c z < p1
w : S
lt : uncurry s.potential (c, w) < p1
m : w ∈ {z | s.potential c z ≤ p1}ᶜ ∪ iᶜ
⊢ s.potential c z ≤ s.potential c w
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | rw [compl_inter] | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
⊢ z ∈ jᶜ | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
⊢ z ∈ {z | s.potential c z ≤ p1}ᶜ ∪ iᶜ | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
⊢ z ∈ jᶜ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | right | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
⊢ z ∈ {z | s.potential c z ≤ p1}ᶜ ∪ iᶜ | case h
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
⊢ z ∈ iᶜ | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
⊢ z ∈ {z | s.potential c z ≤ p1}ᶜ ∪ iᶜ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | exact zu.2 | case h
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
⊢ z ∈ iᶜ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
⊢ z ∈ iᶜ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | simp only [compl_setOf, mem_setOf, not_le] at m | case inl
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m✝ : z ∈ jᶜ
lt✝ : s.potential c z < p1
w : S
lt : uncurry s.potential (c, w) < p1
m : w ∈ {z | s.potential c z ≤ p1}ᶜ
⊢ s.potential c z ≤ s.potential c w | case inl
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m✝ : z ∈ jᶜ
lt✝ : s.potential c z < p1
w : S
lt : uncurry s.potential (c, w) < p1
m : p1 < s.potential c w
⊢ s.potential c z ≤ s.potential c w | Please generate a tactic in lean4 to solve the state.
STATE:
case inl
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m✝ : z ∈ jᶜ
lt✝ : s.potential c z < p1
w : S
lt : uncurry s.potential (c, w) < p1
m : w ∈ {z | s.potential c z ≤ p1}ᶜ
⊢ s.potential c z ≤ s.potential c w
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | linarith | case inl
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m✝ : z ∈ jᶜ
lt✝ : s.potential c z < p1
w : S
lt : uncurry s.potential (c, w) < p1
m : p1 < s.potential c w
⊢ s.potential c z ≤ s.potential c w | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case inl
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m✝ : z ∈ jᶜ
lt✝ : s.potential c z < p1
w : S
lt : uncurry s.potential (c, w) < p1
m : p1 < s.potential c w
⊢ s.potential c z ≤ s.potential c w
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | apply zm | case inr
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m✝ : z ∈ jᶜ
lt✝ : s.potential c z < p1
w : S
lt : uncurry s.potential (c, w) < p1
m : w ∈ iᶜ
⊢ s.potential c z ≤ s.potential c w | case inr.a
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m✝ : z ∈ jᶜ
lt✝ : s.potential c z < p1
w : S
lt : uncurry s.potential (c, w) < p1
m : w ∈ iᶜ
⊢ w ∈ u | Please generate a tactic in lean4 to solve the state.
STATE:
case inr
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m✝ : z ∈ jᶜ
lt✝ : s.potential c z < p1
w : S
lt : uncurry s.potential (c, w) < p1
m : w ∈ iᶜ
⊢ s.potential c z ≤ s.potential c w
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | simp only [mem_diff, mem_setOf, u] | case inr.a
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m✝ : z ∈ jᶜ
lt✝ : s.potential c z < p1
w : S
lt : uncurry s.potential (c, w) < p1
m : w ∈ iᶜ
⊢ w ∈ u | case inr.a
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m✝ : z ∈ jᶜ
lt✝ : s.potential c z < p1
w : S
lt : uncurry s.potential (c, w) < p1
m : w ∈ iᶜ
⊢ s.potential c w ≤ p1 ∧ w ∉ i | Please generate a tactic in lean4 to solve the state.
STATE:
case inr.a
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m✝ : z ∈ jᶜ
lt✝ : s.potential c z < p1
w : S
lt : uncurry s.potential (c, w) < p1
m : w ∈ iᶜ
⊢ w ∈ u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_surj | [291, 1] | [338, 79] | use lt.le, m | case inr.a
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m✝ : z ∈ jᶜ
lt✝ : s.potential c z < p1
w : S
lt : uncurry s.potential (c, w) < p1
m : w ∈ iᶜ
⊢ s.potential c w ≤ p1 ∧ w ∉ i | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case inr.a
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z✝ : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
z0 : S
i0 : ∀ (x : ℂ), (c, x) ∈ s.ext → ¬s.ray c x = z0
p0 : ℝ := s.potential c z0
m0 : s.potential c z0 < s.p c
p1 : ℝ
p01 : s.potential c z0 < p1
post : p1 < s.p c
i : Set S := s.ray c '' {x | (c, x) ∈ s.ext}
j : Set S := {z | s.potential c z ≤ p1} ∩ i
u : Set S := {z | s.potential c z ≤ p1} \ i
pc : Continuous (s.potential c)
io : IsOpen i
jc : IsClosed j
uc : IsCompact u
z0u : z0 ∈ u
ne : u.Nonempty
z : S
zm : IsMinOn (s.potential c) u z
zu : s.potential c z ≤ p1 ∧ z ∉ i
m✝ : z ∈ jᶜ
lt✝ : s.potential c z < p1
w : S
lt : uncurry s.potential (c, w) < p1
m : w ∈ iᶜ
⊢ s.potential c w ≤ p1 ∧ w ∉ i
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_bij | [341, 1] | [347, 61] | refine ⟨fun _ m ↦ s.ray_post m, ?_, ?_⟩ | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
⊢ BijOn (fun y => (y.1, s.ray y.1 y.2)) s.ext s.post | case refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
⊢ InjOn (fun y => (y.1, s.ray y.1 y.2)) s.ext
case refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
⊢ SurjOn (fun y => (y.1, s.ray y.1 y.2)) s.ext s.post | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
⊢ BijOn (fun y => (y.1, s.ray y.1 y.2)) s.ext s.post
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_bij | [341, 1] | [347, 61] | intro ⟨c0, x0⟩ m0 ⟨c1, x1⟩ m1 e | case refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
⊢ InjOn (fun y => (y.1, s.ray y.1 y.2)) s.ext | case refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
c0 x0 : ℂ
m0 : (c0, x0) ∈ s.ext
c1 x1 : ℂ
m1 : (c1, x1) ∈ s.ext
e : (fun y => (y.1, s.ray y.1 y.2)) (c0, x0) = (fun y => (y.1, s.ray y.1 y.2)) (c1, x1)
⊢ (c0, x0) = (c1, x1) | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
⊢ InjOn (fun y => (y.1, s.ray y.1 y.2)) s.ext
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_bij | [341, 1] | [347, 61] | simp only [Prod.ext_iff] at e ⊢ | case refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
c0 x0 : ℂ
m0 : (c0, x0) ∈ s.ext
c1 x1 : ℂ
m1 : (c1, x1) ∈ s.ext
e : (fun y => (y.1, s.ray y.1 y.2)) (c0, x0) = (fun y => (y.1, s.ray y.1 y.2)) (c1, x1)
⊢ (c0, x0) = (c1, x1) | case refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
c0 x0 : ℂ
m0 : (c0, x0) ∈ s.ext
c1 x1 : ℂ
m1 : (c1, x1) ∈ s.ext
e : c0 = c1 ∧ s.ray c0 x0 = s.ray c1 x1
⊢ c0 = c1 ∧ x0 = x1 | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
c0 x0 : ℂ
m0 : (c0, x0) ∈ s.ext
c1 x1 : ℂ
m1 : (c1, x1) ∈ s.ext
e : (fun y => (y.1, s.ray y.1 y.2)) (c0, x0) = (fun y => (y.1, s.ray y.1 y.2)) (c1, x1)
⊢ (c0, x0) = (c1, x1)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_bij | [341, 1] | [347, 61] | rcases e with ⟨ec, ex⟩ | case refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
c0 x0 : ℂ
m0 : (c0, x0) ∈ s.ext
c1 x1 : ℂ
m1 : (c1, x1) ∈ s.ext
e : c0 = c1 ∧ s.ray c0 x0 = s.ray c1 x1
⊢ c0 = c1 ∧ x0 = x1 | case refine_1.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
c0 x0 : ℂ
m0 : (c0, x0) ∈ s.ext
c1 x1 : ℂ
m1 : (c1, x1) ∈ s.ext
ec : c0 = c1
ex : s.ray c0 x0 = s.ray c1 x1
⊢ c0 = c1 ∧ x0 = x1 | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
c0 x0 : ℂ
m0 : (c0, x0) ∈ s.ext
c1 x1 : ℂ
m1 : (c1, x1) ∈ s.ext
e : c0 = c1 ∧ s.ray c0 x0 = s.ray c1 x1
⊢ c0 = c1 ∧ x0 = x1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_bij | [341, 1] | [347, 61] | rw [ec] at m0 ex | case refine_1.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
c0 x0 : ℂ
m0 : (c0, x0) ∈ s.ext
c1 x1 : ℂ
m1 : (c1, x1) ∈ s.ext
ec : c0 = c1
ex : s.ray c0 x0 = s.ray c1 x1
⊢ c0 = c1 ∧ x0 = x1 | case refine_1.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
c0 x0 c1 : ℂ
m0 : (c1, x0) ∈ s.ext
x1 : ℂ
m1 : (c1, x1) ∈ s.ext
ec : c0 = c1
ex : s.ray c1 x0 = s.ray c1 x1
⊢ c0 = c1 ∧ x0 = x1 | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
c0 x0 : ℂ
m0 : (c0, x0) ∈ s.ext
c1 x1 : ℂ
m1 : (c1, x1) ∈ s.ext
ec : c0 = c1
ex : s.ray c0 x0 = s.ray c1 x1
⊢ c0 = c1 ∧ x0 = x1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_bij | [341, 1] | [347, 61] | use ec, s.ray_inj m0 m1 ex | case refine_1.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
c0 x0 c1 : ℂ
m0 : (c1, x0) ∈ s.ext
x1 : ℂ
m1 : (c1, x1) ∈ s.ext
ec : c0 = c1
ex : s.ray c1 x0 = s.ray c1 x1
⊢ c0 = c1 ∧ x0 = x1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
c0 x0 c1 : ℂ
m0 : (c1, x0) ∈ s.ext
x1 : ℂ
m1 : (c1, x1) ∈ s.ext
ec : c0 = c1
ex : s.ray c1 x0 = s.ray c1 x1
⊢ c0 = c1 ∧ x0 = x1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_bij | [341, 1] | [347, 61] | intro ⟨c, x⟩ m | case refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
⊢ SurjOn (fun y => (y.1, s.ray y.1 y.2)) s.ext s.post | case refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c✝ x✝ : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
c : ℂ
x : S
m : (c, x) ∈ s.post
⊢ (c, x) ∈ (fun y => (y.1, s.ray y.1 y.2)) '' s.ext | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c x : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
⊢ SurjOn (fun y => (y.1, s.ray y.1 y.2)) s.ext s.post
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_bij | [341, 1] | [347, 61] | simp only [mem_image, Prod.ext_iff] | case refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c✝ x✝ : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
c : ℂ
x : S
m : (c, x) ∈ s.post
⊢ (c, x) ∈ (fun y => (y.1, s.ray y.1 y.2)) '' s.ext | case refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c✝ x✝ : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
c : ℂ
x : S
m : (c, x) ∈ s.post
⊢ ∃ x_1 ∈ s.ext, x_1.1 = c ∧ s.ray x_1.1 x_1.2 = x | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c✝ x✝ : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
c : ℂ
x : S
m : (c, x) ∈ s.post
⊢ (c, x) ∈ (fun y => (y.1, s.ray y.1 y.2)) '' s.ext
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_bij | [341, 1] | [347, 61] | rcases s.ray_surj m with ⟨x, m, e⟩ | case refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c✝ x✝ : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
c : ℂ
x : S
m : (c, x) ∈ s.post
⊢ ∃ x_1 ∈ s.ext, x_1.1 = c ∧ s.ray x_1.1 x_1.2 = x | case refine_2.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c✝ x✝¹ : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
c : ℂ
x✝ : S
m✝ : (c, x✝) ∈ s.post
x : ℂ
m : (c, x) ∈ s.ext
e : s.ray c x = x✝
⊢ ∃ x ∈ s.ext, x.1 = c ∧ s.ray x.1 x.2 = x✝ | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c✝ x✝ : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
c : ℂ
x : S
m : (c, x) ∈ s.post
⊢ ∃ x_1 ∈ s.ext, x_1.1 = c ∧ s.ray x_1.1 x_1.2 = x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Ray.lean | Super.ray_bij | [341, 1] | [347, 61] | use⟨c, x⟩, m, rfl, e | case refine_2.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c✝ x✝¹ : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
c : ℂ
x✝ : S
m✝ : (c, x✝) ∈ s.post
x : ℂ
m : (c, x) ∈ s.ext
e : s.ray c x = x✝
⊢ ∃ x ∈ s.ext, x.1 = c ∧ s.ray x.1 x.2 = x✝ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : CompactSpace S
inst✝³ : T3Space S
inst✝² : ChartedSpace ℂ S
inst✝¹ : AnalyticManifold I S
f : ℂ → S → S
c✝ x✝¹ : ℂ
a z : S
d n : ℕ
s✝ : Super f d a
y : ℂ × ℂ
s : Super f d a
inst✝ : OnePreimage s
c : ℂ
x✝ : S
m✝ : (c, x✝) ∈ s.post
x : ℂ
m : (c, x) ∈ s.ext
e : s.ray c x = x✝
⊢ ∃ x ∈ s.ext, x.1 = c ∧ s.ray x.1 x.2 = x✝
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/Inverse.lean | ComplexInverseFun.Cinv.zz | [49, 1] | [50, 85] | simp only [Prod.snd, Cinv.z', PartialEquiv.left_inv _ (mem_extChartAt_source _ _)] | S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ ↑(extChartAt I z).symm (c, i.z').2 = z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ ↑(extChartAt I z).symm (c, i.z').2 = z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/Inverse.lean | ComplexInverseFun.Cinv.fa' | [60, 1] | [64, 13] | have fa := i.fa | S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ AnalyticAt ℂ i.f' (c, i.z') | S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z)
⊢ AnalyticAt ℂ i.f' (c, i.z') | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ AnalyticAt ℂ i.f' (c, i.z')
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/Inverse.lean | ComplexInverseFun.Cinv.fa' | [60, 1] | [64, 13] | simp only [holomorphicAt_iff, uncurry, extChartAt_prod, Function.comp, PartialEquiv.prod_coe_symm,
PartialEquiv.prod_coe] at fa | S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z)
⊢ AnalyticAt ℂ i.f' (c, i.z') | S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
fa :
ContinuousAt (uncurry f) (c, z) ∧
AnalyticAt ℂ (fun x => ↑(extChartAt I (f c z)) (f (↑(extChartAt I c).symm x.1) (↑(extChartAt I z).symm x.2)))
(↑(extChartAt I c) c, ↑(extChartAt I z) z)
⊢ AnalyticAt ℂ i.f' (c, i.z') | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z)
⊢ AnalyticAt ℂ i.f' (c, i.z')
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/Inverse.lean | ComplexInverseFun.Cinv.fa' | [60, 1] | [64, 13] | exact fa.2 | S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
fa :
ContinuousAt (uncurry f) (c, z) ∧
AnalyticAt ℂ (fun x => ↑(extChartAt I (f c z)) (f (↑(extChartAt I c).symm x.1) (↑(extChartAt I z).symm x.2)))
(↑(extChartAt I c) c, ↑(extChartAt I z) z)
⊢ AnalyticAt ℂ i.f' (c, i.z') | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
fa :
ContinuousAt (uncurry f) (c, z) ∧
AnalyticAt ℂ (fun x => ↑(extChartAt I (f c z)) (f (↑(extChartAt I c).symm x.1) (↑(extChartAt I z).symm x.2)))
(↑(extChartAt I c) c, ↑(extChartAt I z) z)
⊢ AnalyticAt ℂ i.f' (c, i.z')
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/Inverse.lean | ComplexInverseFun.Cinv.has_df' | [106, 1] | [117, 67] | apply HasMFDerivAt.comp (I' := I) (c, i.z') | S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I i.f' (c, i.z') i.df' | case hg
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (↑(extChartAt I (f c z))) (f (c, i.z').1 (↑(extChartAt I z).symm (c, i.z').2)) i.de'
case hf
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun x => f x.1 (↑(extChartAt I z).symm x.2)) (c, i.z') i.df | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I i.f' (c, i.z') i.df'
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/Inverse.lean | ComplexInverseFun.Cinv.has_df' | [106, 1] | [117, 67] | rw [i.zz] | case hg
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (↑(extChartAt I (f c z))) (f (c, i.z').1 (↑(extChartAt I z).symm (c, i.z').2)) i.de' | case hg
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (↑(extChartAt I (f c z))) (f (c, i.z').1 z) i.de' | Please generate a tactic in lean4 to solve the state.
STATE:
case hg
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (↑(extChartAt I (f c z))) (f (c, i.z').1 (↑(extChartAt I z).symm (c, i.z').2)) i.de'
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/Inverse.lean | ComplexInverseFun.Cinv.has_df' | [106, 1] | [117, 67] | exact (HolomorphicAt.extChartAt (mem_extChartAt_source _ _)).mdifferentiableAt.hasMFDerivAt | case hg
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (↑(extChartAt I (f c z))) (f (c, i.z').1 z) i.de' | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case hg
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (↑(extChartAt I (f c z))) (f (c, i.z').1 z) i.de'
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/Inverse.lean | ComplexInverseFun.Cinv.has_df' | [106, 1] | [117, 67] | simp only [Cinv.df] | case hf
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun x => f x.1 (↑(extChartAt I z).symm x.2)) (c, i.z') i.df | case hf
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun x => f x.1 (↑(extChartAt I z).symm x.2)) (c, i.z')
(i.dfc.comp dc + i.dfz.comp (i.de.comp dz)) | Please generate a tactic in lean4 to solve the state.
STATE:
case hf
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun x => f x.1 (↑(extChartAt I z).symm x.2)) (c, i.z') i.df
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/Inverse.lean | ComplexInverseFun.Cinv.has_df' | [106, 1] | [117, 67] | apply MDifferentiableAt.hasMFDerivAt_comp2 (J := I) (co := cms) | case hf
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun x => f x.1 (↑(extChartAt I z).symm x.2)) (c, i.z')
(i.dfc.comp dc + i.dfz.comp (i.de.comp dz)) | case hf.fd
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ MDifferentiableAt (I.prod I) I (uncurry f) ((c, i.z').1, ↑(extChartAt I z).symm (c, i.z').2)
case hf.gh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun y => y.1) (c, i.z') dc
case hf.hh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun y => ↑(extChartAt I z).symm y.2) (c, i.z') (i.de.comp dz)
case hf.fh0
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f y (↑(extChartAt I z).symm (c, i.z').2)) (c, i.z').1 i.dfc
case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz | Please generate a tactic in lean4 to solve the state.
STATE:
case hf
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun x => f x.1 (↑(extChartAt I z).symm x.2)) (c, i.z')
(i.dfc.comp dc + i.dfz.comp (i.de.comp dz))
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/Inverse.lean | ComplexInverseFun.Cinv.has_df' | [106, 1] | [117, 67] | rw [i.zz] | case hf.fd
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ MDifferentiableAt (I.prod I) I (uncurry f) ((c, i.z').1, ↑(extChartAt I z).symm (c, i.z').2)
case hf.gh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun y => y.1) (c, i.z') dc
case hf.hh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun y => ↑(extChartAt I z).symm y.2) (c, i.z') (i.de.comp dz)
case hf.fh0
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f y (↑(extChartAt I z).symm (c, i.z').2)) (c, i.z').1 i.dfc
case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz | case hf.fd
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ MDifferentiableAt (I.prod I) I (uncurry f) ((c, i.z').1, z)
case hf.gh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun y => y.1) (c, i.z') dc
case hf.hh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun y => ↑(extChartAt I z).symm y.2) (c, i.z') (i.de.comp dz)
case hf.fh0
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f y (↑(extChartAt I z).symm (c, i.z').2)) (c, i.z').1 i.dfc
case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz | Please generate a tactic in lean4 to solve the state.
STATE:
case hf.fd
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ MDifferentiableAt (I.prod I) I (uncurry f) ((c, i.z').1, ↑(extChartAt I z).symm (c, i.z').2)
case hf.gh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun y => y.1) (c, i.z') dc
case hf.hh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun y => ↑(extChartAt I z).symm y.2) (c, i.z') (i.de.comp dz)
case hf.fh0
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f y (↑(extChartAt I z).symm (c, i.z').2)) (c, i.z').1 i.dfc
case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/Inverse.lean | ComplexInverseFun.Cinv.has_df' | [106, 1] | [117, 67] | exact i.fa.mdifferentiableAt | case hf.fd
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ MDifferentiableAt (I.prod I) I (uncurry f) ((c, i.z').1, z)
case hf.gh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun y => y.1) (c, i.z') dc
case hf.hh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun y => ↑(extChartAt I z).symm y.2) (c, i.z') (i.de.comp dz)
case hf.fh0
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f y (↑(extChartAt I z).symm (c, i.z').2)) (c, i.z').1 i.dfc
case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz | case hf.gh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun y => y.1) (c, i.z') dc
case hf.hh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun y => ↑(extChartAt I z).symm y.2) (c, i.z') (i.de.comp dz)
case hf.fh0
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f y (↑(extChartAt I z).symm (c, i.z').2)) (c, i.z').1 i.dfc
case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz | Please generate a tactic in lean4 to solve the state.
STATE:
case hf.fd
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ MDifferentiableAt (I.prod I) I (uncurry f) ((c, i.z').1, z)
case hf.gh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun y => y.1) (c, i.z') dc
case hf.hh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun y => ↑(extChartAt I z).symm y.2) (c, i.z') (i.de.comp dz)
case hf.fh0
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f y (↑(extChartAt I z).symm (c, i.z').2)) (c, i.z').1 i.dfc
case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/Inverse.lean | ComplexInverseFun.Cinv.has_df' | [106, 1] | [117, 67] | apply hasMFDerivAt_fst | case hf.gh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun y => y.1) (c, i.z') dc
case hf.hh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun y => ↑(extChartAt I z).symm y.2) (c, i.z') (i.de.comp dz)
case hf.fh0
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f y (↑(extChartAt I z).symm (c, i.z').2)) (c, i.z').1 i.dfc
case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz | case hf.hh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun y => ↑(extChartAt I z).symm y.2) (c, i.z') (i.de.comp dz)
case hf.fh0
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f y (↑(extChartAt I z).symm (c, i.z').2)) (c, i.z').1 i.dfc
case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz | Please generate a tactic in lean4 to solve the state.
STATE:
case hf.gh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun y => y.1) (c, i.z') dc
case hf.hh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun y => ↑(extChartAt I z).symm y.2) (c, i.z') (i.de.comp dz)
case hf.fh0
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f y (↑(extChartAt I z).symm (c, i.z').2)) (c, i.z').1 i.dfc
case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/Inverse.lean | ComplexInverseFun.Cinv.has_df' | [106, 1] | [117, 67] | refine HasMFDerivAt.comp _ ?_ (hasMFDerivAt_snd _ _ _) | case hf.hh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun y => ↑(extChartAt I z).symm y.2) (c, i.z') (i.de.comp dz)
case hf.fh0
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f y (↑(extChartAt I z).symm (c, i.z').2)) (c, i.z').1 i.dfc
case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz | case hf.hh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I ↑(extChartAt I z).symm (c, i.z').2 i.de
case hf.fh0
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f y (↑(extChartAt I z).symm (c, i.z').2)) (c, i.z').1 i.dfc
case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz | Please generate a tactic in lean4 to solve the state.
STATE:
case hf.hh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt (I.prod I) I (fun y => ↑(extChartAt I z).symm y.2) (c, i.z') (i.de.comp dz)
case hf.fh0
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f y (↑(extChartAt I z).symm (c, i.z').2)) (c, i.z').1 i.dfc
case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/Inverse.lean | ComplexInverseFun.Cinv.has_df' | [106, 1] | [117, 67] | exact (HolomorphicAt.extChartAt_symm (mem_extChartAt_target _ _)).mdifferentiableAt.hasMFDerivAt | case hf.hh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I ↑(extChartAt I z).symm (c, i.z').2 i.de
case hf.fh0
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f y (↑(extChartAt I z).symm (c, i.z').2)) (c, i.z').1 i.dfc
case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz | case hf.fh0
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f y (↑(extChartAt I z).symm (c, i.z').2)) (c, i.z').1 i.dfc
case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz | Please generate a tactic in lean4 to solve the state.
STATE:
case hf.hh
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I ↑(extChartAt I z).symm (c, i.z').2 i.de
case hf.fh0
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f y (↑(extChartAt I z).symm (c, i.z').2)) (c, i.z').1 i.dfc
case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/Inverse.lean | ComplexInverseFun.Cinv.has_df' | [106, 1] | [117, 67] | rw [i.zz] | case hf.fh0
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f y (↑(extChartAt I z).symm (c, i.z').2)) (c, i.z').1 i.dfc
case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz | case hf.fh0
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f y z) (c, i.z').1 i.dfc
case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz | Please generate a tactic in lean4 to solve the state.
STATE:
case hf.fh0
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f y (↑(extChartAt I z).symm (c, i.z').2)) (c, i.z').1 i.dfc
case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/Inverse.lean | ComplexInverseFun.Cinv.has_df' | [106, 1] | [117, 67] | exact i.fa.along_fst.mdifferentiableAt.hasMFDerivAt | case hf.fh0
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f y z) (c, i.z').1 i.dfc
case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz | case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz | Please generate a tactic in lean4 to solve the state.
STATE:
case hf.fh0
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f y z) (c, i.z').1 i.dfc
case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/Inverse.lean | ComplexInverseFun.Cinv.has_df' | [106, 1] | [117, 67] | rw [i.zz] | case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz | case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) z i.dfz | Please generate a tactic in lean4 to solve the state.
STATE:
case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) (↑(extChartAt I z).symm (c, i.z').2) i.dfz
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/Inverse.lean | ComplexInverseFun.Cinv.has_df' | [106, 1] | [117, 67] | exact i.fa.along_snd.mdifferentiableAt.hasMFDerivAt | case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) z i.dfz | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case hf.fh1
S : Type
inst✝³ : TopologicalSpace S
inst✝² : ChartedSpace ℂ S
cms : AnalyticManifold I S
T : Type
inst✝¹ : TopologicalSpace T
inst✝ : ChartedSpace ℂ T
cmt : AnalyticManifold I T
f : ℂ → S → T
c : ℂ
z : S
i : Cinv f c z
⊢ HasMFDerivAt I I (fun y => f (c, i.z').1 y) z i.dfz
TACTIC:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.