url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
rw [dist_eq_norm] at H
case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 cN : c N ∈ bs bN : ‖f N x‖ ≤ bs.max' ⋯ ⊢ ‖f n x‖ ≤ b
case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : ‖f N x - f n x‖ < 1 cN : c N ∈ bs bN : ‖f N x‖ ≤ bs.max' ⋯ ⊢ ‖f n x‖ ≤ b
Please generate a tactic in lean4 to solve the state. STATE: case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 cN : c N ∈ bs bN : ‖f N x‖ ≤ bs.max' ⋯ ⊢ ‖f n x‖ ≤ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
calc ‖f n x‖ = ‖f N x - (f N x - f n x)‖ := by rw [sub_sub_cancel] _ ≤ ‖f N x‖ + ‖f N x - f n x‖ := norm_sub_le _ _ _ ≤ bs.max' _ + 1 := add_le_add bN H.le _ = 1 + bs.max' _ := by ring _ = b := by simp only [hb]
case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : ‖f N x - f n x‖ < 1 cN : c N ∈ bs bN : ‖f N x‖ ≤ bs.max' ⋯ ⊢ ‖f n x‖ ≤ b
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : ‖f N x - f n x‖ < 1 cN : c N ∈ bs bN : ‖f N x‖ ≤ bs.max' ⋯ ⊢ ‖f n x‖ ≤ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
simp [← hbs]
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 ⊢ c N ∈ bs
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 ⊢ ∃ a < N + 1, c a = c N
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 ⊢ c N ∈ bs TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
exists N
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 ⊢ ∃ a < N + 1, c a = c N
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 ⊢ N < N + 1 ∧ c N = c N
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 ⊢ ∃ a < N + 1, c a = c N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
simp
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 ⊢ N < N + 1 ∧ c N = c N
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 ⊢ N < N + 1 ∧ c N = c N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
rw [sub_sub_cancel]
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : ‖f N x - f n x‖ < 1 cN : c N ∈ bs bN : ‖f N x‖ ≤ bs.max' ⋯ ⊢ ‖f n x‖ = ‖f N x - (f N x - f n x)‖
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : ‖f N x - f n x‖ < 1 cN : c N ∈ bs bN : ‖f N x‖ ≤ bs.max' ⋯ ⊢ ‖f n x‖ = ‖f N x - (f N x - f n x)‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
ring
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : ‖f N x - f n x‖ < 1 cN : c N ∈ bs bN : ‖f N x‖ ≤ bs.max' ⋯ ⊢ bs.max' ⋯ + 1 = 1 + bs.max' ?m.16989
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : ‖f N x - f n x‖ < 1 cN : c N ∈ bs bN : ‖f N x‖ ≤ bs.max' ⋯ ⊢ bs.max' ⋯ + 1 = 1 + bs.max' ?m.16989 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
simp only [hb]
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : ‖f N x - f n x‖ < 1 cN : c N ∈ bs bN : ‖f N x‖ ≤ bs.max' ⋯ ⊢ 1 + bs.max' ⋯ = b
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : ‖f N x - f n x‖ < 1 cN : c N ∈ bs bN : ‖f N x‖ ≤ bs.max' ⋯ ⊢ 1 + bs.max' ⋯ = b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
tendsto_inv_iff_tendsto
[62, 1]
[67, 32]
refine ⟨fun h ↦ ?_, fun h ↦ h.inv₀ a0⟩
A B : Type inst✝ : NontriviallyNormedField B l : Filter A f : A → B a : B a0 : a ≠ 0 ⊢ Tendsto (fun x => (f x)⁻¹) l (𝓝 a⁻¹) ↔ Tendsto f l (𝓝 a)
A B : Type inst✝ : NontriviallyNormedField B l : Filter A f : A → B a : B a0 : a ≠ 0 h : Tendsto (fun x => (f x)⁻¹) l (𝓝 a⁻¹) ⊢ Tendsto f l (𝓝 a)
Please generate a tactic in lean4 to solve the state. STATE: A B : Type inst✝ : NontriviallyNormedField B l : Filter A f : A → B a : B a0 : a ≠ 0 ⊢ Tendsto (fun x => (f x)⁻¹) l (𝓝 a⁻¹) ↔ Tendsto f l (𝓝 a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
tendsto_inv_iff_tendsto
[62, 1]
[67, 32]
have h := h.inv₀ (inv_ne_zero a0)
A B : Type inst✝ : NontriviallyNormedField B l : Filter A f : A → B a : B a0 : a ≠ 0 h : Tendsto (fun x => (f x)⁻¹) l (𝓝 a⁻¹) ⊢ Tendsto f l (𝓝 a)
A B : Type inst✝ : NontriviallyNormedField B l : Filter A f : A → B a : B a0 : a ≠ 0 h✝ : Tendsto (fun x => (f x)⁻¹) l (𝓝 a⁻¹) h : Tendsto (fun x => (f x)⁻¹⁻¹) l (𝓝 a⁻¹⁻¹) ⊢ Tendsto f l (𝓝 a)
Please generate a tactic in lean4 to solve the state. STATE: A B : Type inst✝ : NontriviallyNormedField B l : Filter A f : A → B a : B a0 : a ≠ 0 h : Tendsto (fun x => (f x)⁻¹) l (𝓝 a⁻¹) ⊢ Tendsto f l (𝓝 a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
tendsto_inv_iff_tendsto
[62, 1]
[67, 32]
field_simp [a0] at h
A B : Type inst✝ : NontriviallyNormedField B l : Filter A f : A → B a : B a0 : a ≠ 0 h✝ : Tendsto (fun x => (f x)⁻¹) l (𝓝 a⁻¹) h : Tendsto (fun x => (f x)⁻¹⁻¹) l (𝓝 a⁻¹⁻¹) ⊢ Tendsto f l (𝓝 a)
A B : Type inst✝ : NontriviallyNormedField B l : Filter A f : A → B a : B a0 : a ≠ 0 h✝ : Tendsto (fun x => (f x)⁻¹) l (𝓝 a⁻¹) h : Tendsto (fun x => f x) l (𝓝 a) ⊢ Tendsto f l (𝓝 a)
Please generate a tactic in lean4 to solve the state. STATE: A B : Type inst✝ : NontriviallyNormedField B l : Filter A f : A → B a : B a0 : a ≠ 0 h✝ : Tendsto (fun x => (f x)⁻¹) l (𝓝 a⁻¹) h : Tendsto (fun x => (f x)⁻¹⁻¹) l (𝓝 a⁻¹⁻¹) ⊢ Tendsto f l (𝓝 a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
tendsto_inv_iff_tendsto
[62, 1]
[67, 32]
exact h
A B : Type inst✝ : NontriviallyNormedField B l : Filter A f : A → B a : B a0 : a ≠ 0 h✝ : Tendsto (fun x => (f x)⁻¹) l (𝓝 a⁻¹) h : Tendsto (fun x => f x) l (𝓝 a) ⊢ Tendsto f l (𝓝 a)
no goals
Please generate a tactic in lean4 to solve the state. STATE: A B : Type inst✝ : NontriviallyNormedField B l : Filter A f : A → B a : B a0 : a ≠ 0 h✝ : Tendsto (fun x => (f x)⁻¹) l (𝓝 a⁻¹) h : Tendsto (fun x => f x) l (𝓝 a) ⊢ Tendsto f l (𝓝 a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
generalize hs' : ofDual ⁻¹' s = s'
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x ⊢ Icc a b ⊆ s
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ Icc a b ⊆ s
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x ⊢ Icc a b ⊆ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
intro x m
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' rev : Icc (toDual b) (toDual a) ⊆ s' ⊢ Icc a b ⊆ s
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' rev : Icc (toDual b) (toDual a) ⊆ s' x : X m : x ∈ Icc a b ⊢ x ∈ s
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' rev : Icc (toDual b) (toDual a) ⊆ s' ⊢ Icc a b ⊆ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
simp only [Set.mem_Icc] at m
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' rev : Icc (toDual b) (toDual a) ⊆ s' x : X m : x ∈ Icc a b ⊢ x ∈ s
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' rev : Icc (toDual b) (toDual a) ⊆ s' x : X m : a ≤ x ∧ x ≤ b ⊢ x ∈ s
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' rev : Icc (toDual b) (toDual a) ⊆ s' x : X m : x ∈ Icc a b ⊢ x ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
specialize @rev (toDual x)
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' rev : Icc (toDual b) (toDual a) ⊆ s' x : X m : a ≤ x ∧ x ≤ b ⊢ x ∈ s
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : X m : a ≤ x ∧ x ≤ b rev : toDual x ∈ Icc (toDual b) (toDual a) → toDual x ∈ s' ⊢ x ∈ s
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' rev : Icc (toDual b) (toDual a) ⊆ s' x : X m : a ≤ x ∧ x ≤ b ⊢ x ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
simp only [Set.dual_Icc, Set.mem_preimage, Set.mem_Icc, and_imp, OrderDual.ofDual_toDual, ← hs'] at rev
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : X m : a ≤ x ∧ x ≤ b rev : toDual x ∈ Icc (toDual b) (toDual a) → toDual x ∈ s' ⊢ x ∈ s
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : X m : a ≤ x ∧ x ≤ b rev : a ≤ x → x ≤ b → x ∈ s ⊢ x ∈ s
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : X m : a ≤ x ∧ x ≤ b rev : toDual x ∈ Icc (toDual b) (toDual a) → toDual x ∈ s' ⊢ x ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
exact rev m.1 m.2
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : X m : a ≤ x ∧ x ≤ b rev : a ≤ x → x ≤ b → x ∈ s ⊢ x ∈ s
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : X m : a ≤ x ∧ x ≤ b rev : a ≤ x → x ≤ b → x ∈ s ⊢ x ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
apply IsClosed.Icc_subset_of_forall_mem_nhdsWithin
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ Icc (toDual b) (toDual a) ⊆ s'
case hs X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ IsClosed (s' ∩ Icc (toDual b) (toDual a)) case ha X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ toDual b ∈ s' case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ ∀ x ∈ s' ∩ Ico (toDual b) (toDual a), s' ∈ 𝓝[>] x
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ Icc (toDual b) (toDual a) ⊆ s' TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
have e : s' ∩ Icc (toDual b) (toDual a) = ofDual ⁻¹' (s ∩ Icc a b) := by apply Set.ext; intro x; simp only [Set.dual_Icc, Set.preimage_inter, ← hs']
case hs X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ IsClosed (s' ∩ Icc (toDual b) (toDual a))
case hs X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' e : s' ∩ Icc (toDual b) (toDual a) = ⇑ofDual ⁻¹' (s ∩ Icc a b) ⊢ IsClosed (s' ∩ Icc (toDual b) (toDual a))
Please generate a tactic in lean4 to solve the state. STATE: case hs X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ IsClosed (s' ∩ Icc (toDual b) (toDual a)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
rw [e]
case hs X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' e : s' ∩ Icc (toDual b) (toDual a) = ⇑ofDual ⁻¹' (s ∩ Icc a b) ⊢ IsClosed (s' ∩ Icc (toDual b) (toDual a))
case hs X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' e : s' ∩ Icc (toDual b) (toDual a) = ⇑ofDual ⁻¹' (s ∩ Icc a b) ⊢ IsClosed (⇑ofDual ⁻¹' (s ∩ Icc a b))
Please generate a tactic in lean4 to solve the state. STATE: case hs X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' e : s' ∩ Icc (toDual b) (toDual a) = ⇑ofDual ⁻¹' (s ∩ Icc a b) ⊢ IsClosed (s' ∩ Icc (toDual b) (toDual a)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
exact IsClosed.preimage continuous_ofDual sc
case hs X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' e : s' ∩ Icc (toDual b) (toDual a) = ⇑ofDual ⁻¹' (s ∩ Icc a b) ⊢ IsClosed (⇑ofDual ⁻¹' (s ∩ Icc a b))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hs X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' e : s' ∩ Icc (toDual b) (toDual a) = ⇑ofDual ⁻¹' (s ∩ Icc a b) ⊢ IsClosed (⇑ofDual ⁻¹' (s ∩ Icc a b)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
apply Set.ext
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ s' ∩ Icc (toDual b) (toDual a) = ⇑ofDual ⁻¹' (s ∩ Icc a b)
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ ∀ (x : Xᵒᵈ), x ∈ s' ∩ Icc (toDual b) (toDual a) ↔ x ∈ ⇑ofDual ⁻¹' (s ∩ Icc a b)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ s' ∩ Icc (toDual b) (toDual a) = ⇑ofDual ⁻¹' (s ∩ Icc a b) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
intro x
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ ∀ (x : Xᵒᵈ), x ∈ s' ∩ Icc (toDual b) (toDual a) ↔ x ∈ ⇑ofDual ⁻¹' (s ∩ Icc a b)
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ ⊢ x ∈ s' ∩ Icc (toDual b) (toDual a) ↔ x ∈ ⇑ofDual ⁻¹' (s ∩ Icc a b)
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ ∀ (x : Xᵒᵈ), x ∈ s' ∩ Icc (toDual b) (toDual a) ↔ x ∈ ⇑ofDual ⁻¹' (s ∩ Icc a b) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
simp only [Set.dual_Icc, Set.preimage_inter, ← hs']
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ ⊢ x ∈ s' ∩ Icc (toDual b) (toDual a) ↔ x ∈ ⇑ofDual ⁻¹' (s ∩ Icc a b)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ ⊢ x ∈ s' ∩ Icc (toDual b) (toDual a) ↔ x ∈ ⇑ofDual ⁻¹' (s ∩ Icc a b) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
simp only [Set.mem_preimage, OrderDual.ofDual_toDual, sb, ← hs']
case ha X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ toDual b ∈ s'
no goals
Please generate a tactic in lean4 to solve the state. STATE: case ha X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ toDual b ∈ s' TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
intro x m
case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ ∀ x ∈ s' ∩ Ico (toDual b) (toDual a), s' ∈ 𝓝[>] x
case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ m : x ∈ s' ∩ Ico (toDual b) (toDual a) ⊢ s' ∈ 𝓝[>] x
Please generate a tactic in lean4 to solve the state. STATE: case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ ∀ x ∈ s' ∩ Ico (toDual b) (toDual a), s' ∈ 𝓝[>] x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
simp only [Set.mem_preimage, Set.mem_inter_iff, Set.mem_Ico, OrderDual.toDual_le, OrderDual.lt_toDual] at m
case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ m : x ∈ s' ∩ Ico (toDual b) (toDual a) ⊢ s' ∈ 𝓝[>] x
case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ m : x ∈ s' ∧ ofDual x ≤ b ∧ a < ofDual x ⊢ s' ∈ 𝓝[>] x
Please generate a tactic in lean4 to solve the state. STATE: case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ m : x ∈ s' ∩ Ico (toDual b) (toDual a) ⊢ s' ∈ 𝓝[>] x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
simp only [mem_nhdsWithin_iff_eventually, eventually_nhds_iff, Set.mem_inter_iff, Set.mem_Ioc, ← hs'] at so m ⊢
case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ m : x ∈ s' ∧ ofDual x ≤ b ∧ a < ofDual x ⊢ s' ∈ 𝓝[>] x
case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x ⊢ ∃ t, (∀ x_1 ∈ t, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s) ∧ IsOpen t ∧ x ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ m : x ∈ s' ∧ ofDual x ≤ b ∧ a < ofDual x ⊢ s' ∈ 𝓝[>] x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
rcases so (ofDual x) ⟨m.1, m.2.2, m.2.1⟩ with ⟨n, h, o, nx⟩
case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x ⊢ ∃ t, (∀ x_1 ∈ t, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s) ∧ IsOpen t ∧ x ∈ t
case hgt.intro.intro.intro X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n ⊢ ∃ t, (∀ x_1 ∈ t, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s) ∧ IsOpen t ∧ x ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x ⊢ ∃ t, (∀ x_1 ∈ t, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s) ∧ IsOpen t ∧ x ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
use ofDual ⁻¹' n
case hgt.intro.intro.intro X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n ⊢ ∃ t, (∀ x_1 ∈ t, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s) ∧ IsOpen t ∧ x ∈ t
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n ⊢ (∀ x_1 ∈ ⇑ofDual ⁻¹' n, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s) ∧ IsOpen (⇑ofDual ⁻¹' n) ∧ x ∈ ⇑ofDual ⁻¹' n
Please generate a tactic in lean4 to solve the state. STATE: case hgt.intro.intro.intro X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n ⊢ ∃ t, (∀ x_1 ∈ t, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s) ∧ IsOpen t ∧ x ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
refine ⟨?_, o.preimage continuous_ofDual, mem_preimage.mpr nx⟩
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n ⊢ (∀ x_1 ∈ ⇑ofDual ⁻¹' n, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s) ∧ IsOpen (⇑ofDual ⁻¹' n) ∧ x ∈ ⇑ofDual ⁻¹' n
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n ⊢ ∀ x_1 ∈ ⇑ofDual ⁻¹' n, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n ⊢ (∀ x_1 ∈ ⇑ofDual ⁻¹' n, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s) ∧ IsOpen (⇑ofDual ⁻¹' n) ∧ x ∈ ⇑ofDual ⁻¹' n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
intro y m xy
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n ⊢ ∀ x_1 ∈ ⇑ofDual ⁻¹' n, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : y ∈ Ioi x ⊢ y ∈ ⇑ofDual ⁻¹' s
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n ⊢ ∀ x_1 ∈ ⇑ofDual ⁻¹' n, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
simp only [Set.mem_Ioi] at xy
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : y ∈ Ioi x ⊢ y ∈ ⇑ofDual ⁻¹' s
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : x < y ⊢ y ∈ ⇑ofDual ⁻¹' s
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : y ∈ Ioi x ⊢ y ∈ ⇑ofDual ⁻¹' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
simp only [Set.mem_preimage]
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : x < y ⊢ y ∈ ⇑ofDual ⁻¹' s
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : x < y ⊢ ofDual y ∈ s
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : x < y ⊢ y ∈ ⇑ofDual ⁻¹' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
simp only [Set.mem_Iio, Set.mem_preimage, OrderDual.ofDual_lt_ofDual] at h
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : x < y ⊢ ofDual y ∈ s
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : x < y h : ∀ x_1 ∈ n, x_1 < ofDual x → x_1 ∈ s ⊢ ofDual y ∈ s
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : x < y ⊢ ofDual y ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
exact h _ m xy
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : x < y h : ∀ x_1 ∈ n, x_1 < ofDual x → x_1 ∈ s ⊢ ofDual y ∈ s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : x < y h : ∀ x_1 ∈ n, x_1 < ofDual x → x_1 ∈ s ⊢ ofDual y ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
refine isPreconnected_of_forall_pair fun x hx y hy ↦ ?_
X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u ⊢ IsPreconnected S.sUnion
X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t
Please generate a tactic in lean4 to solve the state. STATE: X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u ⊢ IsPreconnected S.sUnion TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
rcases mem_sUnion.1 hx with ⟨s, hs, hxs⟩
X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t
case intro.intro X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t
Please generate a tactic in lean4 to solve the state. STATE: X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
rcases mem_sUnion.1 hy with ⟨t, ht, hyt⟩
case intro.intro X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t
case intro.intro.intro.intro X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
rcases eq_or_ne s t with rfl | hst
case intro.intro.intro.intro X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t
case intro.intro.intro.intro.inl X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s ht : s ∈ S hyt : y ∈ s ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t case intro.intro.intro.intro.inr X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
exact ⟨s, subset_sUnion_of_mem hs, hxs, hyt, hSc s hs⟩
case intro.intro.intro.intro.inl X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s ht : s ∈ S hyt : y ∈ s ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.inl X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s ht : s ∈ S hyt : y ∈ s ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
rcases h hs ht hst ⟨x, hxs⟩ ⟨y, hyt⟩ with ⟨u, huS, hsu, hut, hu⟩
case intro.intro.intro.intro.inr X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t
case intro.intro.intro.intro.inr.intro.intro.intro.intro X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.inr X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
refine ⟨s ∪ u ∪ t, ?_, ?_, ?_, ?_⟩
case intro.intro.intro.intro.inr.intro.intro.intro.intro X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t
case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_1 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ s ∪ u ∪ t ⊆ S.sUnion case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_2 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ x ∈ s ∪ u ∪ t case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_3 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ y ∈ s ∪ u ∪ t case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_4 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ IsPreconnected (s ∪ u ∪ t)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.inr.intro.intro.intro.intro X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
simp [*, subset_sUnion_of_mem]
case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_1 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ s ∪ u ∪ t ⊆ S.sUnion
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_1 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ s ∪ u ∪ t ⊆ S.sUnion TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
simp [*]
case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_2 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ x ∈ s ∪ u ∪ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_2 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ x ∈ s ∪ u ∪ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
simp [*]
case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_3 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ y ∈ s ∪ u ∪ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_3 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ y ∈ s ∪ u ∪ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
refine ((hSc s hs).union' hsu hu).union' (hut.mono ?_) (hSc t ht)
case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_4 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ IsPreconnected (s ∪ u ∪ t)
case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_4 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ u ∩ t ⊆ (s ∪ u) ∩ t
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_4 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ IsPreconnected (s ∪ u ∪ t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
exact inter_subset_inter_left _ (subset_union_right _ _)
case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_4 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ u ∩ t ⊆ (s ∪ u) ∩ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_4 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ u ∩ t ⊆ (s ∪ u) ∩ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.iUnion_of_pairwise_exists_isPreconnected
[121, 1]
[128, 33]
apply IsPreconnected.sUnion_of_pairwise_exists_isPreconnected (forall_mem_range.2 hsc)
ι : Type u_1 X : Type u_2 inst✝ : TopologicalSpace X s : ι → Set X hsc : ∀ (i : ι), IsPreconnected (s i) h : Pairwise fun i j => (s i).Nonempty → (s j).Nonempty → ∃ u ⊆ ⋃ i, s i, (s i ∩ u).Nonempty ∧ (u ∩ s j).Nonempty ∧ IsPreconnected u ⊢ IsPreconnected (⋃ i, s i)
ι : Type u_1 X : Type u_2 inst✝ : TopologicalSpace X s : ι → Set X hsc : ∀ (i : ι), IsPreconnected (s i) h : Pairwise fun i j => (s i).Nonempty → (s j).Nonempty → ∃ u ⊆ ⋃ i, s i, (s i ∩ u).Nonempty ∧ (u ∩ s j).Nonempty ∧ IsPreconnected u ⊢ (range fun i => s i).Pairwise fun s_1 t => s_1.Nonempty → t.Nonempty → ∃ u ⊆ (range fun i => s i).sUnion, (s_1 ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u
Please generate a tactic in lean4 to solve the state. STATE: ι : Type u_1 X : Type u_2 inst✝ : TopologicalSpace X s : ι → Set X hsc : ∀ (i : ι), IsPreconnected (s i) h : Pairwise fun i j => (s i).Nonempty → (s j).Nonempty → ∃ u ⊆ ⋃ i, s i, (s i ∩ u).Nonempty ∧ (u ∩ s j).Nonempty ∧ IsPreconnected u ⊢ IsPreconnected (⋃ i, s i) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.iUnion_of_pairwise_exists_isPreconnected
[121, 1]
[128, 33]
rintro _ ⟨i, rfl⟩ _ ⟨j, rfl⟩ hij
ι : Type u_1 X : Type u_2 inst✝ : TopologicalSpace X s : ι → Set X hsc : ∀ (i : ι), IsPreconnected (s i) h : Pairwise fun i j => (s i).Nonempty → (s j).Nonempty → ∃ u ⊆ ⋃ i, s i, (s i ∩ u).Nonempty ∧ (u ∩ s j).Nonempty ∧ IsPreconnected u ⊢ (range fun i => s i).Pairwise fun s_1 t => s_1.Nonempty → t.Nonempty → ∃ u ⊆ (range fun i => s i).sUnion, (s_1 ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u
case intro.intro ι : Type u_1 X : Type u_2 inst✝ : TopologicalSpace X s : ι → Set X hsc : ∀ (i : ι), IsPreconnected (s i) h : Pairwise fun i j => (s i).Nonempty → (s j).Nonempty → ∃ u ⊆ ⋃ i, s i, (s i ∩ u).Nonempty ∧ (u ∩ s j).Nonempty ∧ IsPreconnected u i j : ι hij : (fun i => s i) i ≠ (fun i => s i) j ⊢ ((fun i => s i) i).Nonempty → ((fun i => s i) j).Nonempty → ∃ u ⊆ (range fun i => s i).sUnion, ((fun i => s i) i ∩ u).Nonempty ∧ (u ∩ (fun i => s i) j).Nonempty ∧ IsPreconnected u
Please generate a tactic in lean4 to solve the state. STATE: ι : Type u_1 X : Type u_2 inst✝ : TopologicalSpace X s : ι → Set X hsc : ∀ (i : ι), IsPreconnected (s i) h : Pairwise fun i j => (s i).Nonempty → (s j).Nonempty → ∃ u ⊆ ⋃ i, s i, (s i ∩ u).Nonempty ∧ (u ∩ s j).Nonempty ∧ IsPreconnected u ⊢ (range fun i => s i).Pairwise fun s_1 t => s_1.Nonempty → t.Nonempty → ∃ u ⊆ (range fun i => s i).sUnion, (s_1 ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.iUnion_of_pairwise_exists_isPreconnected
[121, 1]
[128, 33]
exact h (ne_of_apply_ne s hij)
case intro.intro ι : Type u_1 X : Type u_2 inst✝ : TopologicalSpace X s : ι → Set X hsc : ∀ (i : ι), IsPreconnected (s i) h : Pairwise fun i j => (s i).Nonempty → (s j).Nonempty → ∃ u ⊆ ⋃ i, s i, (s i ∩ u).Nonempty ∧ (u ∩ s j).Nonempty ∧ IsPreconnected u i j : ι hij : (fun i => s i) i ≠ (fun i => s i) j ⊢ ((fun i => s i) i).Nonempty → ((fun i => s i) j).Nonempty → ∃ u ⊆ (range fun i => s i).sUnion, ((fun i => s i) i ∩ u).Nonempty ∧ (u ∩ (fun i => s i) j).Nonempty ∧ IsPreconnected u
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro ι : Type u_1 X : Type u_2 inst✝ : TopologicalSpace X s : ι → Set X hsc : ∀ (i : ι), IsPreconnected (s i) h : Pairwise fun i j => (s i).Nonempty → (s j).Nonempty → ∃ u ⊆ ⋃ i, s i, (s i ∩ u).Nonempty ∧ (u ∩ s j).Nonempty ∧ IsPreconnected u i j : ι hij : (fun i => s i) i ≠ (fun i => s i) j ⊢ ((fun i => s i) i).Nonempty → ((fun i => s i) j).Nonempty → ∃ u ⊆ (range fun i => s i).sUnion, ((fun i => s i) i ∩ u).Nonempty ∧ (u ∩ (fun i => s i) j).Nonempty ∧ IsPreconnected u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
local_preconnected_nhdsSet
[132, 1]
[144, 57]
rw [← subset_interior_iff_mem_nhdsSet] at st
X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : s ∈ 𝓝ˢ t ⊢ ∃ c, IsOpen c ∧ t ⊆ c ∧ c ⊆ s ∧ IsPreconnected c
X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s ⊢ ∃ c, IsOpen c ∧ t ⊆ c ∧ c ⊆ s ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : s ∈ 𝓝ˢ t ⊢ ∃ c, IsOpen c ∧ t ⊆ c ∧ c ⊆ s ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
local_preconnected_nhdsSet
[132, 1]
[144, 57]
have hsub : t ⊆ ⋃ x : t, connectedComponentIn (interior s) x := fun x hx ↦ mem_iUnion.2 ⟨⟨x, hx⟩, mem_connectedComponentIn (st hx)⟩
X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s ⊢ ∃ c, IsOpen c ∧ t ⊆ c ∧ c ⊆ s ∧ IsPreconnected c
X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ ∃ c, IsOpen c ∧ t ⊆ c ∧ c ⊆ s ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s ⊢ ∃ c, IsOpen c ∧ t ⊆ c ∧ c ⊆ s ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
local_preconnected_nhdsSet
[132, 1]
[144, 57]
refine ⟨_, isOpen_iUnion fun _ ↦ isOpen_interior.connectedComponentIn, hsub, iUnion_subset fun x ↦ ?_, ?_⟩
X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ ∃ c, IsOpen c ∧ t ⊆ c ∧ c ⊆ s ∧ IsPreconnected c
case refine_1 X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x x : ↑t ⊢ connectedComponentIn (interior s) ↑x ⊆ s case refine_2 X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ IsPreconnected (⋃ i, connectedComponentIn (interior s) ↑i)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ ∃ c, IsOpen c ∧ t ⊆ c ∧ c ⊆ s ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
local_preconnected_nhdsSet
[132, 1]
[144, 57]
exact (connectedComponentIn_subset _ _).trans interior_subset
case refine_1 X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x x : ↑t ⊢ connectedComponentIn (interior s) ↑x ⊆ s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x x : ↑t ⊢ connectedComponentIn (interior s) ↑x ⊆ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
local_preconnected_nhdsSet
[132, 1]
[144, 57]
apply IsPreconnected.iUnion_of_pairwise_exists_isPreconnected
case refine_2 X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ IsPreconnected (⋃ i, connectedComponentIn (interior s) ↑i)
case refine_2.hsc X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ ∀ (i : ↑t), IsPreconnected (connectedComponentIn (interior s) ↑i) case refine_2.h X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ Pairwise fun i j => (connectedComponentIn (interior s) ↑i).Nonempty → (connectedComponentIn (interior s) ↑j).Nonempty → ∃ u ⊆ ⋃ i, connectedComponentIn (interior s) ↑i, (connectedComponentIn (interior s) ↑i ∩ u).Nonempty ∧ (u ∩ connectedComponentIn (interior s) ↑j).Nonempty ∧ IsPreconnected u
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ IsPreconnected (⋃ i, connectedComponentIn (interior s) ↑i) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
local_preconnected_nhdsSet
[132, 1]
[144, 57]
exact fun _ ↦ isPreconnected_connectedComponentIn
case refine_2.hsc X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ ∀ (i : ↑t), IsPreconnected (connectedComponentIn (interior s) ↑i)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2.hsc X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ ∀ (i : ↑t), IsPreconnected (connectedComponentIn (interior s) ↑i) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
local_preconnected_nhdsSet
[132, 1]
[144, 57]
exact fun x y _ _ _ ↦ ⟨t, hsub, ⟨x, mem_connectedComponentIn (st x.2), x.2⟩, ⟨y, y.2, mem_connectedComponentIn (st y.2)⟩, tc⟩
case refine_2.h X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ Pairwise fun i j => (connectedComponentIn (interior s) ↑i).Nonempty → (connectedComponentIn (interior s) ↑j).Nonempty → ∃ u ⊆ ⋃ i, connectedComponentIn (interior s) ↑i, (connectedComponentIn (interior s) ↑i ∩ u).Nonempty ∧ (u ∩ connectedComponentIn (interior s) ↑j).Nonempty ∧ IsPreconnected u
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2.h X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ Pairwise fun i j => (connectedComponentIn (interior s) ↑i).Nonempty → (connectedComponentIn (interior s) ↑j).Nonempty → ∃ u ⊆ ⋃ i, connectedComponentIn (interior s) ↑i, (connectedComponentIn (interior s) ↑i ∩ u).Nonempty ∧ (u ∩ connectedComponentIn (interior s) ↑j).Nonempty ∧ IsPreconnected u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
Prod.frequently
[170, 1]
[173, 6]
simp only [frequently_iff_neBot, ← prod_neBot, ← prod_inf_prod, prod_principal_principal]
A B : Type f : Filter A g : Filter B p : A → Prop q : B → Prop ⊢ (∃ᶠ (x : A × B) in f ×ˢ g, p x.1 ∧ q x.2) ↔ (∃ᶠ (a : A) in f, p a) ∧ ∃ᶠ (b : B) in g, q b
A B : Type f : Filter A g : Filter B p : A → Prop q : B → Prop ⊢ (f ×ˢ g ⊓ 𝓟 {x | p x.1 ∧ q x.2}).NeBot ↔ (f ×ˢ g ⊓ 𝓟 ({a | p a} ×ˢ {b | q b})).NeBot
Please generate a tactic in lean4 to solve the state. STATE: A B : Type f : Filter A g : Filter B p : A → Prop q : B → Prop ⊢ (∃ᶠ (x : A × B) in f ×ˢ g, p x.1 ∧ q x.2) ↔ (∃ᶠ (a : A) in f, p a) ∧ ∃ᶠ (b : B) in g, q b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
Prod.frequently
[170, 1]
[173, 6]
rfl
A B : Type f : Filter A g : Filter B p : A → Prop q : B → Prop ⊢ (f ×ˢ g ⊓ 𝓟 {x | p x.1 ∧ q x.2}).NeBot ↔ (f ×ˢ g ⊓ 𝓟 ({a | p a} ×ˢ {b | q b})).NeBot
no goals
Please generate a tactic in lean4 to solve the state. STATE: A B : Type f : Filter A g : Filter B p : A → Prop q : B → Prop ⊢ (f ×ˢ g ⊓ 𝓟 {x | p x.1 ∧ q x.2}).NeBot ↔ (f ×ˢ g ⊓ 𝓟 ({a | p a} ×ˢ {b | q b})).NeBot TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
MapClusterPt.prod
[176, 1]
[184, 67]
rw [mapClusterPt_iff] at fa ⊢
A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : MapClusterPt b a f ga : Tendsto g a (𝓝 c) ⊢ MapClusterPt (b, c) a fun x => (f x, g x)
A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) ⊢ ∀ s ∈ 𝓝 (b, c), ∃ᶠ (a : A) in a, (f a, g a) ∈ s
Please generate a tactic in lean4 to solve the state. STATE: A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : MapClusterPt b a f ga : Tendsto g a (𝓝 c) ⊢ MapClusterPt (b, c) a fun x => (f x, g x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
MapClusterPt.prod
[176, 1]
[184, 67]
intro s n
A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) ⊢ ∀ s ∈ 𝓝 (b, c), ∃ᶠ (a : A) in a, (f a, g a) ∈ s
A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) ⊢ ∃ᶠ (a : A) in a, (f a, g a) ∈ s
Please generate a tactic in lean4 to solve the state. STATE: A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) ⊢ ∀ s ∈ 𝓝 (b, c), ∃ᶠ (a : A) in a, (f a, g a) ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
MapClusterPt.prod
[176, 1]
[184, 67]
rcases mem_nhds_prod_iff.mp n with ⟨u, un, v, vn, sub⟩
A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) ⊢ ∃ᶠ (a : A) in a, (f a, g a) ∈ s
case intro.intro.intro.intro A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) u : Set B un : u ∈ 𝓝 b v : Set C vn : v ∈ 𝓝 c sub : u ×ˢ v ⊆ s ⊢ ∃ᶠ (a : A) in a, (f a, g a) ∈ s
Please generate a tactic in lean4 to solve the state. STATE: A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) ⊢ ∃ᶠ (a : A) in a, (f a, g a) ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
MapClusterPt.prod
[176, 1]
[184, 67]
apply (fa _ un).mp
case intro.intro.intro.intro A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) u : Set B un : u ∈ 𝓝 b v : Set C vn : v ∈ 𝓝 c sub : u ×ˢ v ⊆ s ⊢ ∃ᶠ (a : A) in a, (f a, g a) ∈ s
case intro.intro.intro.intro A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) u : Set B un : u ∈ 𝓝 b v : Set C vn : v ∈ 𝓝 c sub : u ×ˢ v ⊆ s ⊢ ∀ᶠ (x : A) in a, f x ∈ u → (f x, g x) ∈ s
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) u : Set B un : u ∈ 𝓝 b v : Set C vn : v ∈ 𝓝 c sub : u ×ˢ v ⊆ s ⊢ ∃ᶠ (a : A) in a, (f a, g a) ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
MapClusterPt.prod
[176, 1]
[184, 67]
apply (Filter.tendsto_iff_forall_eventually_mem.mp ga v vn).mp
case intro.intro.intro.intro A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) u : Set B un : u ∈ 𝓝 b v : Set C vn : v ∈ 𝓝 c sub : u ×ˢ v ⊆ s ⊢ ∀ᶠ (x : A) in a, f x ∈ u → (f x, g x) ∈ s
case intro.intro.intro.intro A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) u : Set B un : u ∈ 𝓝 b v : Set C vn : v ∈ 𝓝 c sub : u ×ˢ v ⊆ s ⊢ ∀ᶠ (x : A) in a, g x ∈ v → f x ∈ u → (f x, g x) ∈ s
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) u : Set B un : u ∈ 𝓝 b v : Set C vn : v ∈ 𝓝 c sub : u ×ˢ v ⊆ s ⊢ ∀ᶠ (x : A) in a, f x ∈ u → (f x, g x) ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
MapClusterPt.prod
[176, 1]
[184, 67]
exact eventually_of_forall fun x gv fu ↦ sub (mk_mem_prod fu gv)
case intro.intro.intro.intro A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) u : Set B un : u ∈ 𝓝 b v : Set C vn : v ∈ 𝓝 c sub : u ×ˢ v ⊆ s ⊢ ∀ᶠ (x : A) in a, g x ∈ v → f x ∈ u → (f x, g x) ∈ s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) u : Set B un : u ∈ 𝓝 b v : Set C vn : v ∈ 𝓝 c sub : u ×ˢ v ⊆ s ⊢ ∀ᶠ (x : A) in a, g x ∈ v → f x ∈ u → (f x, g x) ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_slice
[51, 1]
[53, 96]
apply Set.ext
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ x : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a c : ℂ ⊢ {x | (c, x) ∈ s.ext} = ball 0 (s.p c)
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ x : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a c : ℂ ⊢ ∀ (x : ℂ), x ∈ {x | (c, x) ∈ s.ext} ↔ x ∈ ball 0 (s.p c)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ x : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a c : ℂ ⊢ {x | (c, x) ∈ s.ext} = ball 0 (s.p c) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_slice
[51, 1]
[53, 96]
intro x
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ x : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a c : ℂ ⊢ ∀ (x : ℂ), x ∈ {x | (c, x) ∈ s.ext} ↔ x ∈ ball 0 (s.p c)
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a c x : ℂ ⊢ x ∈ {x | (c, x) ∈ s.ext} ↔ x ∈ ball 0 (s.p c)
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ x : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a c : ℂ ⊢ ∀ (x : ℂ), x ∈ {x | (c, x) ∈ s.ext} ↔ x ∈ ball 0 (s.p c) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_slice
[51, 1]
[53, 96]
simp only [Super.ext, mem_ball, mem_setOf, Complex.dist_eq, sub_zero]
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a c x : ℂ ⊢ x ∈ {x | (c, x) ∈ s.ext} ↔ x ∈ ball 0 (s.p c)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a c x : ℂ ⊢ x ∈ {x | (c, x) ∈ s.ext} ↔ x ∈ ball 0 (s.p c) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.isOpen_ext
[56, 1]
[63, 37]
set f := fun y : ℂ × ℂ ↦ s.p y.1 - abs y.2
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c x : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s ⊢ IsOpen s.ext
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f✝ : ℂ → S → S c x : ℂ a z : S d n : ℕ s✝ : Super f✝ d a y : ℂ × ℂ s : Super f✝ d a inst✝ : OnePreimage s f : ℂ × ℂ → ℝ := fun y => s.p y.1 - Complex.abs y.2 ⊢ IsOpen s.ext
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c x : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s ⊢ IsOpen s.ext TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.isOpen_ext
[56, 1]
[63, 37]
have fc : LowerSemicontinuous f := (s.lowerSemicontinuous_p.comp continuous_fst).add (Complex.continuous_abs.comp continuous_snd).neg.lowerSemicontinuous
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f✝ : ℂ → S → S c x : ℂ a z : S d n : ℕ s✝ : Super f✝ d a y : ℂ × ℂ s : Super f✝ d a inst✝ : OnePreimage s f : ℂ × ℂ → ℝ := fun y => s.p y.1 - Complex.abs y.2 ⊢ IsOpen s.ext
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f✝ : ℂ → S → S c x : ℂ a z : S d n : ℕ s✝ : Super f✝ d a y : ℂ × ℂ s : Super f✝ d a inst✝ : OnePreimage s f : ℂ × ℂ → ℝ := fun y => s.p y.1 - Complex.abs y.2 fc : LowerSemicontinuous f ⊢ IsOpen s.ext
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f✝ : ℂ → S → S c x : ℂ a z : S d n : ℕ s✝ : Super f✝ d a y : ℂ × ℂ s : Super f✝ d a inst✝ : OnePreimage s f : ℂ × ℂ → ℝ := fun y => s.p y.1 - Complex.abs y.2 ⊢ IsOpen s.ext TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.isOpen_ext
[56, 1]
[63, 37]
have e : s.ext = f ⁻¹' Ioi 0 := Set.ext fun _ ↦ by simp only [Super.ext, mem_setOf, mem_preimage, mem_Ioi, sub_pos, f]
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f✝ : ℂ → S → S c x : ℂ a z : S d n : ℕ s✝ : Super f✝ d a y : ℂ × ℂ s : Super f✝ d a inst✝ : OnePreimage s f : ℂ × ℂ → ℝ := fun y => s.p y.1 - Complex.abs y.2 fc : LowerSemicontinuous f ⊢ IsOpen s.ext
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f✝ : ℂ → S → S c x : ℂ a z : S d n : ℕ s✝ : Super f✝ d a y : ℂ × ℂ s : Super f✝ d a inst✝ : OnePreimage s f : ℂ × ℂ → ℝ := fun y => s.p y.1 - Complex.abs y.2 fc : LowerSemicontinuous f e : s.ext = f ⁻¹' Ioi 0 ⊢ IsOpen s.ext
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f✝ : ℂ → S → S c x : ℂ a z : S d n : ℕ s✝ : Super f✝ d a y : ℂ × ℂ s : Super f✝ d a inst✝ : OnePreimage s f : ℂ × ℂ → ℝ := fun y => s.p y.1 - Complex.abs y.2 fc : LowerSemicontinuous f ⊢ IsOpen s.ext TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.isOpen_ext
[56, 1]
[63, 37]
rw [e]
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f✝ : ℂ → S → S c x : ℂ a z : S d n : ℕ s✝ : Super f✝ d a y : ℂ × ℂ s : Super f✝ d a inst✝ : OnePreimage s f : ℂ × ℂ → ℝ := fun y => s.p y.1 - Complex.abs y.2 fc : LowerSemicontinuous f e : s.ext = f ⁻¹' Ioi 0 ⊢ IsOpen s.ext
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f✝ : ℂ → S → S c x : ℂ a z : S d n : ℕ s✝ : Super f✝ d a y : ℂ × ℂ s : Super f✝ d a inst✝ : OnePreimage s f : ℂ × ℂ → ℝ := fun y => s.p y.1 - Complex.abs y.2 fc : LowerSemicontinuous f e : s.ext = f ⁻¹' Ioi 0 ⊢ IsOpen (f ⁻¹' Ioi 0)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f✝ : ℂ → S → S c x : ℂ a z : S d n : ℕ s✝ : Super f✝ d a y : ℂ × ℂ s : Super f✝ d a inst✝ : OnePreimage s f : ℂ × ℂ → ℝ := fun y => s.p y.1 - Complex.abs y.2 fc : LowerSemicontinuous f e : s.ext = f ⁻¹' Ioi 0 ⊢ IsOpen s.ext TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.isOpen_ext
[56, 1]
[63, 37]
exact fc.isOpen_preimage _
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f✝ : ℂ → S → S c x : ℂ a z : S d n : ℕ s✝ : Super f✝ d a y : ℂ × ℂ s : Super f✝ d a inst✝ : OnePreimage s f : ℂ × ℂ → ℝ := fun y => s.p y.1 - Complex.abs y.2 fc : LowerSemicontinuous f e : s.ext = f ⁻¹' Ioi 0 ⊢ IsOpen (f ⁻¹' Ioi 0)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f✝ : ℂ → S → S c x : ℂ a z : S d n : ℕ s✝ : Super f✝ d a y : ℂ × ℂ s : Super f✝ d a inst✝ : OnePreimage s f : ℂ × ℂ → ℝ := fun y => s.p y.1 - Complex.abs y.2 fc : LowerSemicontinuous f e : s.ext = f ⁻¹' Ioi 0 ⊢ IsOpen (f ⁻¹' Ioi 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.isOpen_ext
[56, 1]
[63, 37]
simp only [Super.ext, mem_setOf, mem_preimage, mem_Ioi, sub_pos, f]
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f✝ : ℂ → S → S c x : ℂ a z : S d n : ℕ s✝ : Super f✝ d a y : ℂ × ℂ s : Super f✝ d a inst✝ : OnePreimage s f : ℂ × ℂ → ℝ := fun y => s.p y.1 - Complex.abs y.2 fc : LowerSemicontinuous f x✝ : ℂ × ℂ ⊢ x✝ ∈ s.ext ↔ x✝ ∈ f ⁻¹' Ioi 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f✝ : ℂ → S → S c x : ℂ a z : S d n : ℕ s✝ : Super f✝ d a y : ℂ × ℂ s : Super f✝ d a inst✝ : OnePreimage s f : ℂ × ℂ → ℝ := fun y => s.p y.1 - Complex.abs y.2 fc : LowerSemicontinuous f x✝ : ℂ × ℂ ⊢ x✝ ∈ s.ext ↔ x✝ ∈ f ⁻¹' Ioi 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.mem_ext
[66, 1]
[67, 68]
simp only [Super.ext, mem_setOf, Complex.abs.map_zero, s.p_pos c]
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c : ℂ ⊢ (c, 0) ∈ s.ext
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c : ℂ ⊢ (c, 0) ∈ s.ext TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_slice_connected
[70, 1]
[73, 93]
rw [s.ext_slice c]
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c : ℂ ⊢ IsConnected {x | (c, x) ∈ s.ext}
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c : ℂ ⊢ IsConnected (ball 0 (s.p c))
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c : ℂ ⊢ IsConnected {x | (c, x) ∈ s.ext} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_slice_connected
[70, 1]
[73, 93]
exact ⟨⟨(0 : ℂ), mem_ball_self (s.p_pos c)⟩, (convex_ball (0 : ℂ) (s.p c)).isPreconnected⟩
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c : ℂ ⊢ IsConnected (ball 0 (s.p c))
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c : ℂ ⊢ IsConnected (ball 0 (s.p c)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_connected
[76, 1]
[90, 62]
refine ⟨⟨(0, 0), s.mem_ext 0⟩, isPreconnected_of_forall (0, 0) ?_⟩
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c x : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s ⊢ IsConnected s.ext
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c x : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s ⊢ ∀ y ∈ s.ext, ∃ t ⊆ s.ext, (0, 0) ∈ t ∧ y ∈ t ∧ IsPreconnected t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c x : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s ⊢ IsConnected s.ext TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_connected
[76, 1]
[90, 62]
intro ⟨c, x⟩ m
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c x : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s ⊢ ∀ y ∈ s.ext, ∃ t ⊆ s.ext, (0, 0) ∈ t ∧ y ∈ t ∧ IsPreconnected t
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ ∃ t ⊆ s.ext, (0, 0) ∈ t ∧ (c, x) ∈ t ∧ IsPreconnected t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c x : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s ⊢ ∀ y ∈ s.ext, ∃ t ⊆ s.ext, (0, 0) ∈ t ∧ y ∈ t ∧ IsPreconnected t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_connected
[76, 1]
[90, 62]
use(fun x ↦ (c, x)) '' {x | (c, x) ∈ s.ext} ∪ univ ×ˢ {0}
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ ∃ t ⊆ s.ext, (0, 0) ∈ t ∧ (c, x) ∈ t ∧ IsPreconnected t
case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ (fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ∪ univ ×ˢ {0} ⊆ s.ext ∧ (0, 0) ∈ (fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ∪ univ ×ˢ {0} ∧ (c, x) ∈ (fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ∪ univ ×ˢ {0} ∧ IsPreconnected ((fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ∪ univ ×ˢ {0})
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ ∃ t ⊆ s.ext, (0, 0) ∈ t ∧ (c, x) ∈ t ∧ IsPreconnected t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_connected
[76, 1]
[90, 62]
simp only [mem_image, mem_union, union_subset_iff, mem_setOf, mem_prod_eq, mem_univ, true_and_iff, mem_singleton_iff, eq_self_iff_true, or_true_iff]
case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ (fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ∪ univ ×ˢ {0} ⊆ s.ext ∧ (0, 0) ∈ (fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ∪ univ ×ˢ {0} ∧ (c, x) ∈ (fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ∪ univ ×ˢ {0} ∧ IsPreconnected ((fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ∪ univ ×ˢ {0})
case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ ((fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ⊆ s.ext ∧ univ ×ˢ {0} ⊆ s.ext) ∧ ((∃ x_1, (c, x_1) ∈ s.ext ∧ (c, x_1) = (c, x)) ∨ x = 0) ∧ IsPreconnected ((fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ∪ univ ×ˢ {0})
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ (fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ∪ univ ×ˢ {0} ⊆ s.ext ∧ (0, 0) ∈ (fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ∪ univ ×ˢ {0} ∧ (c, x) ∈ (fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ∪ univ ×ˢ {0} ∧ IsPreconnected ((fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ∪ univ ×ˢ {0}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_connected
[76, 1]
[90, 62]
refine ⟨⟨?_, ?_⟩, ?_, ?_⟩
case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ ((fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ⊆ s.ext ∧ univ ×ˢ {0} ⊆ s.ext) ∧ ((∃ x_1, (c, x_1) ∈ s.ext ∧ (c, x_1) = (c, x)) ∨ x = 0) ∧ IsPreconnected ((fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ∪ univ ×ˢ {0})
case h.refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ (fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ⊆ s.ext case h.refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ univ ×ˢ {0} ⊆ s.ext case h.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ (∃ x_1, (c, x_1) ∈ s.ext ∧ (c, x_1) = (c, x)) ∨ x = 0 case h.refine_4 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ IsPreconnected ((fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ∪ univ ×ˢ {0})
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ ((fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ⊆ s.ext ∧ univ ×ˢ {0} ⊆ s.ext) ∧ ((∃ x_1, (c, x_1) ∈ s.ext ∧ (c, x_1) = (c, x)) ∨ x = 0) ∧ IsPreconnected ((fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ∪ univ ×ˢ {0}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_connected
[76, 1]
[90, 62]
intro y n
case h.refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ (fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ⊆ s.ext
case h.refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n✝ : ℕ s✝ : Super f d a y✝ : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext y : ℂ × ℂ n : y ∈ (fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ⊢ y ∈ s.ext
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ (fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ⊆ s.ext TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_connected
[76, 1]
[90, 62]
simp only [mem_image, mem_setOf] at n
case h.refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n✝ : ℕ s✝ : Super f d a y✝ : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext y : ℂ × ℂ n : y ∈ (fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ⊢ y ∈ s.ext
case h.refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n✝ : ℕ s✝ : Super f d a y✝ : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext y : ℂ × ℂ n : ∃ x, (c, x) ∈ s.ext ∧ (c, x) = y ⊢ y ∈ s.ext
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n✝ : ℕ s✝ : Super f d a y✝ : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext y : ℂ × ℂ n : y ∈ (fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ⊢ y ∈ s.ext TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_connected
[76, 1]
[90, 62]
rcases n with ⟨x, m, e⟩
case h.refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n✝ : ℕ s✝ : Super f d a y✝ : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext y : ℂ × ℂ n : ∃ x, (c, x) ∈ s.ext ∧ (c, x) = y ⊢ y ∈ s.ext
case h.refine_1.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝¹ : ℂ a z : S d n : ℕ s✝ : Super f d a y✝ : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x✝ : ℂ m✝ : (c, x✝) ∈ s.ext y : ℂ × ℂ x : ℂ m : (c, x) ∈ s.ext e : (c, x) = y ⊢ y ∈ s.ext
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n✝ : ℕ s✝ : Super f d a y✝ : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext y : ℂ × ℂ n : ∃ x, (c, x) ∈ s.ext ∧ (c, x) = y ⊢ y ∈ s.ext TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_connected
[76, 1]
[90, 62]
rw [e] at m
case h.refine_1.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝¹ : ℂ a z : S d n : ℕ s✝ : Super f d a y✝ : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x✝ : ℂ m✝ : (c, x✝) ∈ s.ext y : ℂ × ℂ x : ℂ m : (c, x) ∈ s.ext e : (c, x) = y ⊢ y ∈ s.ext
case h.refine_1.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝¹ : ℂ a z : S d n : ℕ s✝ : Super f d a y✝ : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x✝ : ℂ m✝ : (c, x✝) ∈ s.ext y : ℂ × ℂ x : ℂ m : y ∈ s.ext e : (c, x) = y ⊢ y ∈ s.ext
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝¹ : ℂ a z : S d n : ℕ s✝ : Super f d a y✝ : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x✝ : ℂ m✝ : (c, x✝) ∈ s.ext y : ℂ × ℂ x : ℂ m : (c, x) ∈ s.ext e : (c, x) = y ⊢ y ∈ s.ext TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_connected
[76, 1]
[90, 62]
exact m
case h.refine_1.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝¹ : ℂ a z : S d n : ℕ s✝ : Super f d a y✝ : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x✝ : ℂ m✝ : (c, x✝) ∈ s.ext y : ℂ × ℂ x : ℂ m : y ∈ s.ext e : (c, x) = y ⊢ y ∈ s.ext
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝¹ : ℂ a z : S d n : ℕ s✝ : Super f d a y✝ : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x✝ : ℂ m✝ : (c, x✝) ∈ s.ext y : ℂ × ℂ x : ℂ m : y ∈ s.ext e : (c, x) = y ⊢ y ∈ s.ext TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_connected
[76, 1]
[90, 62]
intro ⟨c, x⟩ m
case h.refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ univ ×ˢ {0} ⊆ s.ext
case h.refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝¹ x✝¹ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c✝ x✝ : ℂ m✝ : (c✝, x✝) ∈ s.ext c x : ℂ m : (c, x) ∈ univ ×ˢ {0} ⊢ (c, x) ∈ s.ext
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ univ ×ˢ {0} ⊆ s.ext TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_connected
[76, 1]
[90, 62]
simp only [mem_prod_eq, mem_singleton_iff] at m
case h.refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝¹ x✝¹ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c✝ x✝ : ℂ m✝ : (c✝, x✝) ∈ s.ext c x : ℂ m : (c, x) ∈ univ ×ˢ {0} ⊢ (c, x) ∈ s.ext
case h.refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝¹ x✝¹ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c✝ x✝ : ℂ m✝ : (c✝, x✝) ∈ s.ext c x : ℂ m : c ∈ univ ∧ x = 0 ⊢ (c, x) ∈ s.ext
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝¹ x✝¹ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c✝ x✝ : ℂ m✝ : (c✝, x✝) ∈ s.ext c x : ℂ m : (c, x) ∈ univ ×ˢ {0} ⊢ (c, x) ∈ s.ext TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_connected
[76, 1]
[90, 62]
rw [m.2]
case h.refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝¹ x✝¹ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c✝ x✝ : ℂ m✝ : (c✝, x✝) ∈ s.ext c x : ℂ m : c ∈ univ ∧ x = 0 ⊢ (c, x) ∈ s.ext
case h.refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝¹ x✝¹ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c✝ x✝ : ℂ m✝ : (c✝, x✝) ∈ s.ext c x : ℂ m : c ∈ univ ∧ x = 0 ⊢ (c, 0) ∈ s.ext
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝¹ x✝¹ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c✝ x✝ : ℂ m✝ : (c✝, x✝) ∈ s.ext c x : ℂ m : c ∈ univ ∧ x = 0 ⊢ (c, x) ∈ s.ext TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_connected
[76, 1]
[90, 62]
exact s.mem_ext c
case h.refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝¹ x✝¹ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c✝ x✝ : ℂ m✝ : (c✝, x✝) ∈ s.ext c x : ℂ m : c ∈ univ ∧ x = 0 ⊢ (c, 0) ∈ s.ext
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝¹ x✝¹ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c✝ x✝ : ℂ m✝ : (c✝, x✝) ∈ s.ext c x : ℂ m : c ∈ univ ∧ x = 0 ⊢ (c, 0) ∈ s.ext TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_connected
[76, 1]
[90, 62]
left
case h.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ (∃ x_1, (c, x_1) ∈ s.ext ∧ (c, x_1) = (c, x)) ∨ x = 0
case h.refine_3.h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ ∃ x_1, (c, x_1) ∈ s.ext ∧ (c, x_1) = (c, x)
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ (∃ x_1, (c, x_1) ∈ s.ext ∧ (c, x_1) = (c, x)) ∨ x = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_connected
[76, 1]
[90, 62]
exact ⟨x, m, rfl⟩
case h.refine_3.h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ ∃ x_1, (c, x_1) ∈ s.ext ∧ (c, x_1) = (c, x)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_3.h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ ∃ x_1, (c, x_1) ∈ s.ext ∧ (c, x_1) = (c, x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_connected
[76, 1]
[90, 62]
refine IsPreconnected.union (c, 0) ?_ ?_ ?_ ?_
case h.refine_4 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ IsPreconnected ((fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ∪ univ ×ˢ {0})
case h.refine_4.refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ (c, 0) ∈ (fun x => (c, x)) '' {x | (c, x) ∈ s.ext} case h.refine_4.refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ (c, 0) ∈ univ ×ˢ {0} case h.refine_4.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ IsPreconnected ((fun x => (c, x)) '' {x | (c, x) ∈ s.ext}) case h.refine_4.refine_4 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ IsPreconnected (univ ×ˢ {0})
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_4 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ IsPreconnected ((fun x => (c, x)) '' {x | (c, x) ∈ s.ext} ∪ univ ×ˢ {0}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_connected
[76, 1]
[90, 62]
use 0, s.mem_ext c
case h.refine_4.refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ (c, 0) ∈ (fun x => (c, x)) '' {x | (c, x) ∈ s.ext}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_4.refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ (c, 0) ∈ (fun x => (c, x)) '' {x | (c, x) ∈ s.ext} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_connected
[76, 1]
[90, 62]
exact mk_mem_prod (mem_univ _) rfl
case h.refine_4.refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ (c, 0) ∈ univ ×ˢ {0}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_4.refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ (c, 0) ∈ univ ×ˢ {0} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_connected
[76, 1]
[90, 62]
exact IsPreconnected.image (s.ext_slice_connected c).isPreconnected _ (Continuous.Prod.mk _).continuousOn
case h.refine_4.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ IsPreconnected ((fun x => (c, x)) '' {x | (c, x) ∈ s.ext})
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_4.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ IsPreconnected ((fun x => (c, x)) '' {x | (c, x) ∈ s.ext}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Ray.lean
Super.ext_connected
[76, 1]
[90, 62]
exact isPreconnected_univ.prod isPreconnected_singleton
case h.refine_4.refine_4 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ IsPreconnected (univ ×ˢ {0})
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_4.refine_4 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ x✝ : ℂ a z : S d n : ℕ s✝ : Super f d a y : ℂ × ℂ s : Super f d a inst✝ : OnePreimage s c x : ℂ m : (c, x) ∈ s.ext ⊢ IsPreconnected (univ ×ˢ {0}) TACTIC: