url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
intro e ep
case intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 ⊒ βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < Ξ΅
case intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 ⊒ βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < Ξ΅ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
generalize d4 : (1 - a) * (e / 4) = d
case intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
case intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
have dp : d > 0 := by rw [← d4]; bound
case intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
case intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
rcases Filter.eventually_atTop.mp (Metric.tendstoUniformlyOn_iff.mp u d dp) with ⟨n, hn'⟩
case intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
case intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn' : βˆ€ b β‰₯ n, βˆ€ x ∈ s, dist (g x) (f b x) < d ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
set hn := hn' n
case intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn' : βˆ€ b β‰₯ n, βˆ€ x ∈ s, dist (g x) (f b x) < d ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
case intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn' : βˆ€ b β‰₯ n, βˆ€ x ∈ s, dist (g x) (f b x) < d hn : n β‰₯ n β†’ βˆ€ x ∈ s, dist (g x) (f n x) < d := hn' n ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn' : βˆ€ b β‰₯ n, βˆ€ x ∈ s, dist (g x) (f b x) < d ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
simp at hn
case intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn' : βˆ€ b β‰₯ n, βˆ€ x ∈ s, dist (g x) (f b x) < d hn : n β‰₯ n β†’ βˆ€ x ∈ s, dist (g x) (f n x) < d := hn' n ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
case intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn' : βˆ€ b β‰₯ n, βˆ€ x ∈ s, dist (g x) (f b x) < d hn : βˆ€ x ∈ s, dist (g x) (f n x) < d ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn' : βˆ€ b β‰₯ n, βˆ€ x ∈ s, dist (g x) (f b x) < d hn : n β‰₯ n β†’ βˆ€ x ∈ s, dist (g x) (f n x) < d := hn' n ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
clear hn' u
case intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn' : βˆ€ b β‰₯ n, βˆ€ x ∈ s, dist (g x) (f b x) < d hn : βˆ€ x ∈ s, dist (g x) (f n x) < d ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
case intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn' : βˆ€ b β‰₯ n, βˆ€ x ∈ s, dist (g x) (f b x) < d hn : βˆ€ x ∈ s, dist (g x) (f n x) < d ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
have dfg : dist (f n (c + y)) (g (c + y)) ≀ d := by apply le_of_lt; rw [dist_comm] refine hn (c + y) ?_ apply cb simp; exact yr.le
case intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
case intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
set hs := (hpf n).hasSum yb
case intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
case intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d hs : HasSum (fun n_1 => (pr n n_1) fun x => y) (f n (c + y)) := (hpf n).hasSum yb ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
rw [HasSum, Metric.tendsto_atTop] at hs
case intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d hs : HasSum (fun n_1 => (pr n n_1) fun x => y) (f n (c + y)) := (hpf n).hasSum yb ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
case intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d hs : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ n_1 β‰₯ N, dist (n_1.sum fun b => (pr n b) fun x => y) (f n (c + y)) < Ξ΅ ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d hs : HasSum (fun n_1 => (pr n n_1) fun x => y) (f n (c + y)) := (hpf n).hasSum yb ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
rcases hs d dp with ⟨N, NM⟩
case intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d hs : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ n_1 β‰₯ N, dist (n_1.sum fun b => (pr n b) fun x => y) (f n (c + y)) < Ξ΅ ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d hs : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ n_1 β‰₯ N, dist (n_1.sum fun b => (pr n b) fun x => y) (f n (c + y)) < Ξ΅ N : Finset β„• NM : βˆ€ n_1 β‰₯ N, dist (n_1.sum fun b => (pr n b) fun x => y) (f n (c + y)) < d ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d hs : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ n_1 β‰₯ N, dist (n_1.sum fun b => (pr n b) fun x => y) (f n (c + y)) < Ξ΅ ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
clear hs
case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d hs : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ n_1 β‰₯ N, dist (n_1.sum fun b => (pr n b) fun x => y) (f n (c + y)) < Ξ΅ N : Finset β„• NM : βˆ€ n_1 β‰₯ N, dist (n_1.sum fun b => (pr n b) fun x => y) (f n (c + y)) < d ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d N : Finset β„• NM : βˆ€ n_1 β‰₯ N, dist (n_1.sum fun b => (pr n b) fun x => y) (f n (c + y)) < d ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d hs : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ n_1 β‰₯ N, dist (n_1.sum fun b => (pr n b) fun x => y) (f n (c + y)) < Ξ΅ N : Finset β„• NM : βˆ€ n_1 β‰₯ N, dist (n_1.sum fun b => (pr n b) fun x => y) (f n (c + y)) < d ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
exists N
case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d N : Finset β„• NM : βˆ€ n_1 β‰₯ N, dist (n_1.sum fun b => (pr n b) fun x => y) (f n (c + y)) < d ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d N : Finset β„• NM : βˆ€ n_1 β‰₯ N, dist (n_1.sum fun b => (pr n b) fun x => y) (f n (c + y)) < d ⊒ βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d N : Finset β„• NM : βˆ€ n_1 β‰₯ N, dist (n_1.sum fun b => (pr n b) fun x => y) (f n (c + y)) < d ⊒ βˆƒ N, βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
intro M NlM
case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d N : Finset β„• NM : βˆ€ n_1 β‰₯ N, dist (n_1.sum fun b => (pr n b) fun x => y) (f n (c + y)) < d ⊒ βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d N : Finset β„• NM : βˆ€ n_1 β‰₯ N, dist (n_1.sum fun b => (pr n b) fun x => y) (f n (c + y)) < d M : Finset β„• NlM : M β‰₯ N ⊒ dist (M.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d N : Finset β„• NM : βˆ€ n_1 β‰₯ N, dist (n_1.sum fun b => (pr n b) fun x => y) (f n (c + y)) < d ⊒ βˆ€ n β‰₯ N, dist (n.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
have dpf := (NM M NlM).le
case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d N : Finset β„• NM : βˆ€ n_1 β‰₯ N, dist (n_1.sum fun b => (pr n b) fun x => y) (f n (c + y)) < d M : Finset β„• NlM : M β‰₯ N ⊒ dist (M.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d N : Finset β„• NM : βˆ€ n_1 β‰₯ N, dist (n_1.sum fun b => (pr n b) fun x => y) (f n (c + y)) < d M : Finset β„• NlM : M β‰₯ N dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ dist (M.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d N : Finset β„• NM : βˆ€ n_1 β‰₯ N, dist (n_1.sum fun b => (pr n b) fun x => y) (f n (c + y)) < d M : Finset β„• NlM : M β‰₯ N ⊒ dist (M.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
clear NM NlM N yb
case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d N : Finset β„• NM : βˆ€ n_1 β‰₯ N, dist (n_1.sum fun b => (pr n b) fun x => y) (f n (c + y)) < d M : Finset β„• NlM : M β‰₯ N dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ dist (M.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ dist (M.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d N : Finset β„• NM : βˆ€ n_1 β‰₯ N, dist (n_1.sum fun b => (pr n b) fun x => y) (f n (c + y)) < d M : Finset β„• NlM : M β‰₯ N dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ dist (M.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
generalize hMp : M.sum (fun k : β„• ↦ p k fun _ ↦ y) = Mp
case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d dppr : dist (M.sum fun k => (p k) fun x => y) (M.sum fun k => (pr n k) fun x => y) ≀ e / 4 ⊒ dist (M.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e
case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d dppr : dist (M.sum fun k => (p k) fun x => y) (M.sum fun k => (pr n k) fun x => y) ≀ e / 4 Mp : β„‚ hMp : (M.sum fun k => (p k) fun x => y) = Mp ⊒ dist Mp (g (c + y)) < e
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d dppr : dist (M.sum fun k => (p k) fun x => y) (M.sum fun k => (pr n k) fun x => y) ≀ e / 4 ⊒ dist (M.sum fun b => (cauchyPowerSeries g c (↑r) b) fun x => y) (g (c + y)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
rw [hMp] at dppr
case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d dppr : dist (M.sum fun k => (p k) fun x => y) (M.sum fun k => (pr n k) fun x => y) ≀ e / 4 Mp : β„‚ hMp : (M.sum fun k => (p k) fun x => y) = Mp ⊒ dist Mp (g (c + y)) < e
case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d Mp : β„‚ dppr : dist Mp (M.sum fun k => (pr n k) fun x => y) ≀ e / 4 hMp : (M.sum fun k => (p k) fun x => y) = Mp ⊒ dist Mp (g (c + y)) < e
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d dppr : dist (M.sum fun k => (p k) fun x => y) (M.sum fun k => (pr n k) fun x => y) ≀ e / 4 Mp : β„‚ hMp : (M.sum fun k => (p k) fun x => y) = Mp ⊒ dist Mp (g (c + y)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
generalize hMpr : M.sum (fun k ↦ pr n k fun _ ↦ y) = Mpr
case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d Mp : β„‚ dppr : dist Mp (M.sum fun k => (pr n k) fun x => y) ≀ e / 4 hMp : (M.sum fun k => (p k) fun x => y) = Mp ⊒ dist Mp (g (c + y)) < e
case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d Mp : β„‚ dppr : dist Mp (M.sum fun k => (pr n k) fun x => y) ≀ e / 4 hMp : (M.sum fun k => (p k) fun x => y) = Mp Mpr : β„‚ hMpr : (M.sum fun k => (pr n k) fun x => y) = Mpr ⊒ dist Mp (g (c + y)) < e
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d Mp : β„‚ dppr : dist Mp (M.sum fun k => (pr n k) fun x => y) ≀ e / 4 hMp : (M.sum fun k => (p k) fun x => y) = Mp ⊒ dist Mp (g (c + y)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
rw [hMpr] at dpf dppr
case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d Mp : β„‚ dppr : dist Mp (M.sum fun k => (pr n k) fun x => y) ≀ e / 4 hMp : (M.sum fun k => (p k) fun x => y) = Mp Mpr : β„‚ hMpr : (M.sum fun k => (pr n k) fun x => y) = Mpr ⊒ dist Mp (g (c + y)) < e
case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• Mp : β„‚ hMp : (M.sum fun k => (p k) fun x => y) = Mp Mpr : β„‚ dppr : dist Mp Mpr ≀ e / 4 dpf : dist Mpr (f n (c + y)) ≀ d hMpr : (M.sum fun k => (pr n k) fun x => y) = Mpr ⊒ dist Mp (g (c + y)) < e
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d Mp : β„‚ dppr : dist Mp (M.sum fun k => (pr n k) fun x => y) ≀ e / 4 hMp : (M.sum fun k => (p k) fun x => y) = Mp Mpr : β„‚ hMpr : (M.sum fun k => (pr n k) fun x => y) = Mpr ⊒ dist Mp (g (c + y)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
calc dist Mp (g (c + y)) _ ≀ dist Mp (f n (c + y)) + dist (f n (c + y)) (g (c + y)) := dist_triangle _ _ _ _ ≀ dist Mp Mpr + dist Mpr (f n (c + y)) + d := by bound _ ≀ e / 4 + d + d := by bound _ = e / 4 + 2 * (1 - a) * (e / 4) := by rw [← d4]; ring _ ≀ e / 4 + 2 * (1 - 0) * (e / 4) := by bound _ = 3 / 4 * e := by ring _ < 1 * e := (mul_lt_mul_of_pos_right (by norm_num) ep) _ = e := by simp
case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• Mp : β„‚ hMp : (M.sum fun k => (p k) fun x => y) = Mp Mpr : β„‚ dppr : dist Mp Mpr ≀ e / 4 dpf : dist Mpr (f n (c + y)) ≀ d hMpr : (M.sum fun k => (pr n k) fun x => y) = Mpr ⊒ dist Mp (g (c + y)) < e
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• Mp : β„‚ hMp : (M.sum fun k => (p k) fun x => y) = Mp Mpr : β„‚ dppr : dist Mp Mpr ≀ e / 4 dpf : dist Mpr (f n (c + y)) ≀ d hMpr : (M.sum fun k => (pr n k) fun x => y) = Mpr ⊒ dist Mp (g (c + y)) < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
intro n
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ o : IsOpen s h : βˆ€ (n : I), AnalyticOn β„‚ (f n) s u : TendstoUniformlyOn f g atTop s c : β„‚ hc : c ∈ s r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r hb : βˆ€ (n : I), AnalyticOn β„‚ (f n) (closedBall c ↑r) pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r ⊒ βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ o : IsOpen s h : βˆ€ (n : I), AnalyticOn β„‚ (f n) s u : TendstoUniformlyOn f g atTop s c : β„‚ hc : c ∈ s r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r hb : βˆ€ (n : I), AnalyticOn β„‚ (f n) (closedBall c ↑r) pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r n : I ⊒ HasFPowerSeriesOnBall (f n) (pr n) c ↑r
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ o : IsOpen s h : βˆ€ (n : I), AnalyticOn β„‚ (f n) s u : TendstoUniformlyOn f g atTop s c : β„‚ hc : c ∈ s r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r hb : βˆ€ (n : I), AnalyticOn β„‚ (f n) (closedBall c ↑r) pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r ⊒ βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
have cs := cauchy_on_cball_radius rp (hb n)
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ o : IsOpen s h : βˆ€ (n : I), AnalyticOn β„‚ (f n) s u : TendstoUniformlyOn f g atTop s c : β„‚ hc : c ∈ s r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r hb : βˆ€ (n : I), AnalyticOn β„‚ (f n) (closedBall c ↑r) pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r n : I ⊒ HasFPowerSeriesOnBall (f n) (pr n) c ↑r
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ o : IsOpen s h : βˆ€ (n : I), AnalyticOn β„‚ (f n) s u : TendstoUniformlyOn f g atTop s c : β„‚ hc : c ∈ s r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r hb : βˆ€ (n : I), AnalyticOn β„‚ (f n) (closedBall c ↑r) pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r n : I cs : HasFPowerSeriesOnBall (f n) (cauchyPowerSeries (f n) c ↑r) c ↑r ⊒ HasFPowerSeriesOnBall (f n) (pr n) c ↑r
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ o : IsOpen s h : βˆ€ (n : I), AnalyticOn β„‚ (f n) s u : TendstoUniformlyOn f g atTop s c : β„‚ hc : c ∈ s r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r hb : βˆ€ (n : I), AnalyticOn β„‚ (f n) (closedBall c ↑r) pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r n : I ⊒ HasFPowerSeriesOnBall (f n) (pr n) c ↑r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
have pn : pr n = cauchyPowerSeries (f n) c r := rfl
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ o : IsOpen s h : βˆ€ (n : I), AnalyticOn β„‚ (f n) s u : TendstoUniformlyOn f g atTop s c : β„‚ hc : c ∈ s r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r hb : βˆ€ (n : I), AnalyticOn β„‚ (f n) (closedBall c ↑r) pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r n : I cs : HasFPowerSeriesOnBall (f n) (cauchyPowerSeries (f n) c ↑r) c ↑r ⊒ HasFPowerSeriesOnBall (f n) (pr n) c ↑r
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ o : IsOpen s h : βˆ€ (n : I), AnalyticOn β„‚ (f n) s u : TendstoUniformlyOn f g atTop s c : β„‚ hc : c ∈ s r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r hb : βˆ€ (n : I), AnalyticOn β„‚ (f n) (closedBall c ↑r) pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r n : I cs : HasFPowerSeriesOnBall (f n) (cauchyPowerSeries (f n) c ↑r) c ↑r pn : pr n = cauchyPowerSeries (f n) c ↑r ⊒ HasFPowerSeriesOnBall (f n) (pr n) c ↑r
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ o : IsOpen s h : βˆ€ (n : I), AnalyticOn β„‚ (f n) s u : TendstoUniformlyOn f g atTop s c : β„‚ hc : c ∈ s r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r hb : βˆ€ (n : I), AnalyticOn β„‚ (f n) (closedBall c ↑r) pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r n : I cs : HasFPowerSeriesOnBall (f n) (cauchyPowerSeries (f n) c ↑r) c ↑r ⊒ HasFPowerSeriesOnBall (f n) (pr n) c ↑r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
rw [← pn] at cs
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ o : IsOpen s h : βˆ€ (n : I), AnalyticOn β„‚ (f n) s u : TendstoUniformlyOn f g atTop s c : β„‚ hc : c ∈ s r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r hb : βˆ€ (n : I), AnalyticOn β„‚ (f n) (closedBall c ↑r) pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r n : I cs : HasFPowerSeriesOnBall (f n) (cauchyPowerSeries (f n) c ↑r) c ↑r pn : pr n = cauchyPowerSeries (f n) c ↑r ⊒ HasFPowerSeriesOnBall (f n) (pr n) c ↑r
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ o : IsOpen s h : βˆ€ (n : I), AnalyticOn β„‚ (f n) s u : TendstoUniformlyOn f g atTop s c : β„‚ hc : c ∈ s r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r hb : βˆ€ (n : I), AnalyticOn β„‚ (f n) (closedBall c ↑r) pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r n : I cs : HasFPowerSeriesOnBall (f n) (pr n) c ↑r pn : pr n = cauchyPowerSeries (f n) c ↑r ⊒ HasFPowerSeriesOnBall (f n) (pr n) c ↑r
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ o : IsOpen s h : βˆ€ (n : I), AnalyticOn β„‚ (f n) s u : TendstoUniformlyOn f g atTop s c : β„‚ hc : c ∈ s r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r hb : βˆ€ (n : I), AnalyticOn β„‚ (f n) (closedBall c ↑r) pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r n : I cs : HasFPowerSeriesOnBall (f n) (cauchyPowerSeries (f n) c ↑r) c ↑r pn : pr n = cauchyPowerSeries (f n) c ↑r ⊒ HasFPowerSeriesOnBall (f n) (pr n) c ↑r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
exact cs
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ o : IsOpen s h : βˆ€ (n : I), AnalyticOn β„‚ (f n) s u : TendstoUniformlyOn f g atTop s c : β„‚ hc : c ∈ s r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r hb : βˆ€ (n : I), AnalyticOn β„‚ (f n) (closedBall c ↑r) pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r n : I cs : HasFPowerSeriesOnBall (f n) (pr n) c ↑r pn : pr n = cauchyPowerSeries (f n) c ↑r ⊒ HasFPowerSeriesOnBall (f n) (pr n) c ↑r
no goals
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ o : IsOpen s h : βˆ€ (n : I), AnalyticOn β„‚ (f n) s u : TendstoUniformlyOn f g atTop s c : β„‚ hc : c ∈ s r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r hb : βˆ€ (n : I), AnalyticOn β„‚ (f n) (closedBall c ↑r) pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r n : I cs : HasFPowerSeriesOnBall (f n) (pr n) c ↑r pn : pr n = cauchyPowerSeries (f n) c ↑r ⊒ HasFPowerSeriesOnBall (f n) (pr n) c ↑r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
bound
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r ⊒ a β‰₯ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r ⊒ a β‰₯ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
bound
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 ⊒ 1 - a > 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 ⊒ 1 - a > 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
rw [← d4]
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d ⊒ d > 0
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d ⊒ (1 - a) * (e / 4) > 0
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d ⊒ d > 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
bound
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d ⊒ (1 - a) * (e / 4) > 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ u : TendstoUniformlyOn f g atTop s c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d ⊒ (1 - a) * (e / 4) > 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
apply le_of_lt
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d ⊒ dist (f n (c + y)) (g (c + y)) ≀ d
case a I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d ⊒ dist (f n (c + y)) (g (c + y)) < d
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d ⊒ dist (f n (c + y)) (g (c + y)) ≀ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
rw [dist_comm]
case a I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d ⊒ dist (f n (c + y)) (g (c + y)) < d
case a I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d ⊒ dist (g (c + y)) (f n (c + y)) < d
Please generate a tactic in lean4 to solve the state. STATE: case a I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d ⊒ dist (f n (c + y)) (g (c + y)) < d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
refine hn (c + y) ?_
case a I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d ⊒ dist (g (c + y)) (f n (c + y)) < d
case a I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d ⊒ c + y ∈ s
Please generate a tactic in lean4 to solve the state. STATE: case a I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d ⊒ dist (g (c + y)) (f n (c + y)) < d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
apply cb
case a I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d ⊒ c + y ∈ s
case a.a I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d ⊒ c + y ∈ closedBall c ↑r
Please generate a tactic in lean4 to solve the state. STATE: case a I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d ⊒ c + y ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
simp
case a.a I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d ⊒ c + y ∈ closedBall c ↑r
case a.a I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d ⊒ Complex.abs y ≀ ↑r
Please generate a tactic in lean4 to solve the state. STATE: case a.a I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d ⊒ c + y ∈ closedBall c ↑r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
exact yr.le
case a.a I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d ⊒ Complex.abs y ≀ ↑r
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yb : y ∈ EMetric.ball 0 ↑r yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d ⊒ Complex.abs y ≀ ↑r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
trans M.sum fun k : β„• ↦ dist (p k fun _ ↦ y) (pr n k fun _ ↦ y)
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ dist (M.sum fun k => (p k) fun x => y) (M.sum fun k => (pr n k) fun x => y) ≀ e / 4
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ dist (M.sum fun k => (p k) fun x => y) (M.sum fun k => (pr n k) fun x => y) ≀ M.sum fun k => dist ((p k) fun x => y) ((pr n k) fun x => y) I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ (M.sum fun k => dist ((p k) fun x => y) ((pr n k) fun x => y)) ≀ e / 4
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ dist (M.sum fun k => (p k) fun x => y) (M.sum fun k => (pr n k) fun x => y) ≀ e / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
apply dist_sum_sum_le M (fun k : β„• ↦ p k fun _ ↦ y) fun k : β„• ↦ pr n k fun _ ↦ y
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ dist (M.sum fun k => (p k) fun x => y) (M.sum fun k => (pr n k) fun x => y) ≀ M.sum fun k => dist ((p k) fun x => y) ((pr n k) fun x => y) I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ (M.sum fun k => dist ((p k) fun x => y) ((pr n k) fun x => y)) ≀ e / 4
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ (M.sum fun k => dist ((p k) fun x => y) ((pr n k) fun x => y)) ≀ e / 4
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ dist (M.sum fun k => (p k) fun x => y) (M.sum fun k => (pr n k) fun x => y) ≀ M.sum fun k => dist ((p k) fun x => y) ((pr n k) fun x => y) I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ (M.sum fun k => dist ((p k) fun x => y) ((pr n k) fun x => y)) ≀ e / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
trans M.sum fun k ↦ a ^ k * d
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ (M.sum fun k => dist ((p k) fun x => y) ((pr n k) fun x => y)) ≀ e / 4
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ (M.sum fun k => dist ((p k) fun x => y) ((pr n k) fun x => y)) ≀ M.sum fun k => a ^ k * d I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ (M.sum fun k => a ^ k * d) ≀ e / 4
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ (M.sum fun k => dist ((p k) fun x => y) ((pr n k) fun x => y)) ≀ e / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
apply Finset.sum_le_sum
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ (M.sum fun k => dist ((p k) fun x => y) ((pr n k) fun x => y)) ≀ M.sum fun k => a ^ k * d
case h I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ βˆ€ i ∈ M, dist ((p i) fun x => y) ((pr n i) fun x => y) ≀ a ^ i * d
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ (M.sum fun k => dist ((p k) fun x => y) ((pr n k) fun x => y)) ≀ M.sum fun k => a ^ k * d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
intro k _
case h I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ βˆ€ i ∈ M, dist ((p i) fun x => y) ((pr n i) fun x => y) ≀ a ^ i * d
case h I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M ⊒ dist ((p k) fun x => y) ((pr n k) fun x => y) ≀ a ^ k * d
Please generate a tactic in lean4 to solve the state. STATE: case h I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ βˆ€ i ∈ M, dist ((p i) fun x => y) ((pr n i) fun x => y) ≀ a ^ i * d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
have hak : a ^ k = abs y ^ k * r⁻¹ ^ k := by calc (abs y / r) ^ k _ = (abs y * r⁻¹) ^ k := by rw [div_eq_mul_inv, NNReal.coe_inv] _ = abs y ^ k * r⁻¹ ^ k := mul_pow _ _ _
case h I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M ⊒ dist ((p k) fun x => y) ((pr n k) fun x => y) ≀ a ^ k * d
case h I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k ⊒ dist ((p k) fun x => y) ((pr n k) fun x => y) ≀ a ^ k * d
Please generate a tactic in lean4 to solve the state. STATE: case h I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M ⊒ dist ((p k) fun x => y) ((pr n k) fun x => y) ≀ a ^ k * d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
rw [hak]
case h I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k ⊒ dist ((p k) fun x => y) ((pr n k) fun x => y) ≀ a ^ k * d
case h I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k ⊒ dist ((p k) fun x => y) ((pr n k) fun x => y) ≀ Complex.abs y ^ k * ↑r⁻¹ ^ k * d
Please generate a tactic in lean4 to solve the state. STATE: case h I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k ⊒ dist ((p k) fun x => y) ((pr n k) fun x => y) ≀ a ^ k * d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
generalize hd' : d.toNNReal = d'
case h I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k ⊒ dist ((p k) fun x => y) ((pr n k) fun x => y) ≀ Complex.abs y ^ k * ↑r⁻¹ ^ k * d
case h I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k d' : ℝβ‰₯0 hd' : d.toNNReal = d' ⊒ dist ((p k) fun x => y) ((pr n k) fun x => y) ≀ Complex.abs y ^ k * ↑r⁻¹ ^ k * d
Please generate a tactic in lean4 to solve the state. STATE: case h I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k ⊒ dist ((p k) fun x => y) ((pr n k) fun x => y) ≀ Complex.abs y ^ k * ↑r⁻¹ ^ k * d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
have dd : (d' : ℝ) = d := by rw [← hd']; exact Real.coe_toNNReal d dp.le
case h I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k d' : ℝβ‰₯0 hd' : d.toNNReal = d' ⊒ dist ((p k) fun x => y) ((pr n k) fun x => y) ≀ Complex.abs y ^ k * ↑r⁻¹ ^ k * d
case h I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k d' : ℝβ‰₯0 hd' : d.toNNReal = d' dd : ↑d' = d ⊒ dist ((p k) fun x => y) ((pr n k) fun x => y) ≀ Complex.abs y ^ k * ↑r⁻¹ ^ k * d
Please generate a tactic in lean4 to solve the state. STATE: case h I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k d' : ℝβ‰₯0 hd' : d.toNNReal = d' ⊒ dist ((p k) fun x => y) ((pr n k) fun x => y) ≀ Complex.abs y ^ k * ↑r⁻¹ ^ k * d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
have hcb : βˆ€ z, z ∈ closedBall c r β†’ abs (g z - f n z) ≀ d' := by intro z zb; exact _root_.trans (hn z (cb zb)).le (le_of_eq dd.symm)
case h I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k d' : ℝβ‰₯0 hd' : d.toNNReal = d' dd : ↑d' = d ⊒ dist ((p k) fun x => y) ((pr n k) fun x => y) ≀ Complex.abs y ^ k * ↑r⁻¹ ^ k * d
case h I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k d' : ℝβ‰₯0 hd' : d.toNNReal = d' dd : ↑d' = d hcb : βˆ€ z ∈ closedBall c ↑r, Complex.abs (g z - f n z) ≀ ↑d' ⊒ dist ((p k) fun x => y) ((pr n k) fun x => y) ≀ Complex.abs y ^ k * ↑r⁻¹ ^ k * d
Please generate a tactic in lean4 to solve the state. STATE: case h I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k d' : ℝβ‰₯0 hd' : d.toNNReal = d' dd : ↑d' = d ⊒ dist ((p k) fun x => y) ((pr n k) fun x => y) ≀ Complex.abs y ^ k * ↑r⁻¹ ^ k * d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
exact _root_.trans (cauchy_dist k y rp cg (cf n) hcb) (mul_le_mul_of_nonneg_left (le_of_eq dd) (by bound))
case h I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k d' : ℝβ‰₯0 hd' : d.toNNReal = d' dd : ↑d' = d hcb : βˆ€ z ∈ closedBall c ↑r, Complex.abs (g z - f n z) ≀ ↑d' ⊒ dist ((p k) fun x => y) ((pr n k) fun x => y) ≀ Complex.abs y ^ k * ↑r⁻¹ ^ k * d
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k d' : ℝβ‰₯0 hd' : d.toNNReal = d' dd : ↑d' = d hcb : βˆ€ z ∈ closedBall c ↑r, Complex.abs (g z - f n z) ≀ ↑d' ⊒ dist ((p k) fun x => y) ((pr n k) fun x => y) ≀ Complex.abs y ^ k * ↑r⁻¹ ^ k * d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
calc (abs y / r) ^ k _ = (abs y * r⁻¹) ^ k := by rw [div_eq_mul_inv, NNReal.coe_inv] _ = abs y ^ k * r⁻¹ ^ k := mul_pow _ _ _
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M ⊒ a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k
no goals
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M ⊒ a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
rw [div_eq_mul_inv, NNReal.coe_inv]
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M ⊒ (Complex.abs y / ↑r) ^ k = (Complex.abs y * ↑r⁻¹) ^ k
no goals
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M ⊒ (Complex.abs y / ↑r) ^ k = (Complex.abs y * ↑r⁻¹) ^ k TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
rw [← hd']
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k d' : ℝβ‰₯0 hd' : d.toNNReal = d' ⊒ ↑d' = d
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k d' : ℝβ‰₯0 hd' : d.toNNReal = d' ⊒ ↑d.toNNReal = d
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k d' : ℝβ‰₯0 hd' : d.toNNReal = d' ⊒ ↑d' = d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
exact Real.coe_toNNReal d dp.le
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k d' : ℝβ‰₯0 hd' : d.toNNReal = d' ⊒ ↑d.toNNReal = d
no goals
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k d' : ℝβ‰₯0 hd' : d.toNNReal = d' ⊒ ↑d.toNNReal = d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
intro z zb
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k d' : ℝβ‰₯0 hd' : d.toNNReal = d' dd : ↑d' = d ⊒ βˆ€ z ∈ closedBall c ↑r, Complex.abs (g z - f n z) ≀ ↑d'
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k d' : ℝβ‰₯0 hd' : d.toNNReal = d' dd : ↑d' = d z : β„‚ zb : z ∈ closedBall c ↑r ⊒ Complex.abs (g z - f n z) ≀ ↑d'
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k d' : ℝβ‰₯0 hd' : d.toNNReal = d' dd : ↑d' = d ⊒ βˆ€ z ∈ closedBall c ↑r, Complex.abs (g z - f n z) ≀ ↑d' TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
exact _root_.trans (hn z (cb zb)).le (le_of_eq dd.symm)
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k d' : ℝβ‰₯0 hd' : d.toNNReal = d' dd : ↑d' = d z : β„‚ zb : z ∈ closedBall c ↑r ⊒ Complex.abs (g z - f n z) ≀ ↑d'
no goals
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k d' : ℝβ‰₯0 hd' : d.toNNReal = d' dd : ↑d' = d z : β„‚ zb : z ∈ closedBall c ↑r ⊒ Complex.abs (g z - f n z) ≀ ↑d' TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
bound
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k d' : ℝβ‰₯0 hd' : d.toNNReal = d' dd : ↑d' = d hcb : βˆ€ z ∈ closedBall c ↑r, Complex.abs (g z - f n z) ≀ ↑d' ⊒ 0 ≀ Complex.abs y ^ k * ↑r⁻¹ ^ k
no goals
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d k : β„• a✝ : k ∈ M hak : a ^ k = Complex.abs y ^ k * ↑r⁻¹ ^ k d' : ℝβ‰₯0 hd' : d.toNNReal = d' dd : ↑d' = d hcb : βˆ€ z ∈ closedBall c ↑r, Complex.abs (g z - f n z) ≀ ↑d' ⊒ 0 ≀ Complex.abs y ^ k * ↑r⁻¹ ^ k TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
have pgb : (M.sum fun k ↦ a ^ k) ≀ (1 - a)⁻¹ := partial_geometric_bound M a0 a1
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ (M.sum fun k => a ^ k * d) ≀ e / 4
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d pgb : (M.sum fun k => a ^ k) ≀ (1 - a)⁻¹ ⊒ (M.sum fun k => a ^ k * d) ≀ e / 4
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d ⊒ (M.sum fun k => a ^ k * d) ≀ e / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
calc (M.sum fun k ↦ a ^ k * d) = (M.sum fun k ↦ a ^ k) * d := by rw [← Finset.sum_mul] _ ≀ (1 - a)⁻¹ * d := by bound _ = (1 - a)⁻¹ * ((1 - a) * (e / 4)) := by rw [← d4] _ = (1 - a) * (1 - a)⁻¹ * (e / 4) := by ring _ = 1 * (e / 4) := by rw [mul_inv_cancel a1p.ne'] _ = e / 4 := by ring
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d pgb : (M.sum fun k => a ^ k) ≀ (1 - a)⁻¹ ⊒ (M.sum fun k => a ^ k * d) ≀ e / 4
no goals
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d pgb : (M.sum fun k => a ^ k) ≀ (1 - a)⁻¹ ⊒ (M.sum fun k => a ^ k * d) ≀ e / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
rw [← Finset.sum_mul]
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d pgb : (M.sum fun k => a ^ k) ≀ (1 - a)⁻¹ ⊒ (M.sum fun k => a ^ k * d) = (M.sum fun k => a ^ k) * d
no goals
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d pgb : (M.sum fun k => a ^ k) ≀ (1 - a)⁻¹ ⊒ (M.sum fun k => a ^ k * d) = (M.sum fun k => a ^ k) * d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
bound
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d pgb : (M.sum fun k => a ^ k) ≀ (1 - a)⁻¹ ⊒ (M.sum fun k => a ^ k) * d ≀ (1 - a)⁻¹ * d
no goals
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d pgb : (M.sum fun k => a ^ k) ≀ (1 - a)⁻¹ ⊒ (M.sum fun k => a ^ k) * d ≀ (1 - a)⁻¹ * d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
rw [← d4]
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d pgb : (M.sum fun k => a ^ k) ≀ (1 - a)⁻¹ ⊒ (1 - a)⁻¹ * d = (1 - a)⁻¹ * ((1 - a) * (e / 4))
no goals
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d pgb : (M.sum fun k => a ^ k) ≀ (1 - a)⁻¹ ⊒ (1 - a)⁻¹ * d = (1 - a)⁻¹ * ((1 - a) * (e / 4)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
ring
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d pgb : (M.sum fun k => a ^ k) ≀ (1 - a)⁻¹ ⊒ (1 - a)⁻¹ * ((1 - a) * (e / 4)) = (1 - a) * (1 - a)⁻¹ * (e / 4)
no goals
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d pgb : (M.sum fun k => a ^ k) ≀ (1 - a)⁻¹ ⊒ (1 - a)⁻¹ * ((1 - a) * (e / 4)) = (1 - a) * (1 - a)⁻¹ * (e / 4) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
rw [mul_inv_cancel a1p.ne']
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d pgb : (M.sum fun k => a ^ k) ≀ (1 - a)⁻¹ ⊒ (1 - a) * (1 - a)⁻¹ * (e / 4) = 1 * (e / 4)
no goals
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d pgb : (M.sum fun k => a ^ k) ≀ (1 - a)⁻¹ ⊒ (1 - a) * (1 - a)⁻¹ * (e / 4) = 1 * (e / 4) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
ring
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d pgb : (M.sum fun k => a ^ k) ≀ (1 - a)⁻¹ ⊒ 1 * (e / 4) = e / 4
no goals
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• dpf : dist (M.sum fun b => (pr n b) fun x => y) (f n (c + y)) ≀ d pgb : (M.sum fun k => a ^ k) ≀ (1 - a)⁻¹ ⊒ 1 * (e / 4) = e / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
bound
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• Mp : β„‚ hMp : (M.sum fun k => (p k) fun x => y) = Mp Mpr : β„‚ dppr : dist Mp Mpr ≀ e / 4 dpf : dist Mpr (f n (c + y)) ≀ d hMpr : (M.sum fun k => (pr n k) fun x => y) = Mpr ⊒ dist Mp (f n (c + y)) + dist (f n (c + y)) (g (c + y)) ≀ dist Mp Mpr + dist Mpr (f n (c + y)) + d
no goals
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• Mp : β„‚ hMp : (M.sum fun k => (p k) fun x => y) = Mp Mpr : β„‚ dppr : dist Mp Mpr ≀ e / 4 dpf : dist Mpr (f n (c + y)) ≀ d hMpr : (M.sum fun k => (pr n k) fun x => y) = Mpr ⊒ dist Mp (f n (c + y)) + dist (f n (c + y)) (g (c + y)) ≀ dist Mp Mpr + dist Mpr (f n (c + y)) + d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
bound
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• Mp : β„‚ hMp : (M.sum fun k => (p k) fun x => y) = Mp Mpr : β„‚ dppr : dist Mp Mpr ≀ e / 4 dpf : dist Mpr (f n (c + y)) ≀ d hMpr : (M.sum fun k => (pr n k) fun x => y) = Mpr ⊒ dist Mp Mpr + dist Mpr (f n (c + y)) + d ≀ e / 4 + d + d
no goals
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• Mp : β„‚ hMp : (M.sum fun k => (p k) fun x => y) = Mp Mpr : β„‚ dppr : dist Mp Mpr ≀ e / 4 dpf : dist Mpr (f n (c + y)) ≀ d hMpr : (M.sum fun k => (pr n k) fun x => y) = Mpr ⊒ dist Mp Mpr + dist Mpr (f n (c + y)) + d ≀ e / 4 + d + d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
rw [← d4]
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• Mp : β„‚ hMp : (M.sum fun k => (p k) fun x => y) = Mp Mpr : β„‚ dppr : dist Mp Mpr ≀ e / 4 dpf : dist Mpr (f n (c + y)) ≀ d hMpr : (M.sum fun k => (pr n k) fun x => y) = Mpr ⊒ e / 4 + d + d = e / 4 + 2 * (1 - a) * (e / 4)
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• Mp : β„‚ hMp : (M.sum fun k => (p k) fun x => y) = Mp Mpr : β„‚ dppr : dist Mp Mpr ≀ e / 4 dpf : dist Mpr (f n (c + y)) ≀ d hMpr : (M.sum fun k => (pr n k) fun x => y) = Mpr ⊒ e / 4 + (1 - a) * (e / 4) + (1 - a) * (e / 4) = e / 4 + 2 * (1 - a) * (e / 4)
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• Mp : β„‚ hMp : (M.sum fun k => (p k) fun x => y) = Mp Mpr : β„‚ dppr : dist Mp Mpr ≀ e / 4 dpf : dist Mpr (f n (c + y)) ≀ d hMpr : (M.sum fun k => (pr n k) fun x => y) = Mpr ⊒ e / 4 + d + d = e / 4 + 2 * (1 - a) * (e / 4) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
ring
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• Mp : β„‚ hMp : (M.sum fun k => (p k) fun x => y) = Mp Mpr : β„‚ dppr : dist Mp Mpr ≀ e / 4 dpf : dist Mpr (f n (c + y)) ≀ d hMpr : (M.sum fun k => (pr n k) fun x => y) = Mpr ⊒ e / 4 + (1 - a) * (e / 4) + (1 - a) * (e / 4) = e / 4 + 2 * (1 - a) * (e / 4)
no goals
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• Mp : β„‚ hMp : (M.sum fun k => (p k) fun x => y) = Mp Mpr : β„‚ dppr : dist Mp Mpr ≀ e / 4 dpf : dist Mpr (f n (c + y)) ≀ d hMpr : (M.sum fun k => (pr n k) fun x => y) = Mpr ⊒ e / 4 + (1 - a) * (e / 4) + (1 - a) * (e / 4) = e / 4 + 2 * (1 - a) * (e / 4) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
bound
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• Mp : β„‚ hMp : (M.sum fun k => (p k) fun x => y) = Mp Mpr : β„‚ dppr : dist Mp Mpr ≀ e / 4 dpf : dist Mpr (f n (c + y)) ≀ d hMpr : (M.sum fun k => (pr n k) fun x => y) = Mpr ⊒ e / 4 + 2 * (1 - a) * (e / 4) ≀ e / 4 + 2 * (1 - 0) * (e / 4)
no goals
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• Mp : β„‚ hMp : (M.sum fun k => (p k) fun x => y) = Mp Mpr : β„‚ dppr : dist Mp Mpr ≀ e / 4 dpf : dist Mpr (f n (c + y)) ≀ d hMpr : (M.sum fun k => (pr n k) fun x => y) = Mpr ⊒ e / 4 + 2 * (1 - a) * (e / 4) ≀ e / 4 + 2 * (1 - 0) * (e / 4) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
ring
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• Mp : β„‚ hMp : (M.sum fun k => (p k) fun x => y) = Mp Mpr : β„‚ dppr : dist Mp Mpr ≀ e / 4 dpf : dist Mpr (f n (c + y)) ≀ d hMpr : (M.sum fun k => (pr n k) fun x => y) = Mpr ⊒ e / 4 + 2 * (1 - 0) * (e / 4) = 3 / 4 * e
no goals
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• Mp : β„‚ hMp : (M.sum fun k => (p k) fun x => y) = Mp Mpr : β„‚ dppr : dist Mp Mpr ≀ e / 4 dpf : dist Mpr (f n (c + y)) ≀ d hMpr : (M.sum fun k => (pr n k) fun x => y) = Mpr ⊒ e / 4 + 2 * (1 - 0) * (e / 4) = 3 / 4 * e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
norm_num
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• Mp : β„‚ hMp : (M.sum fun k => (p k) fun x => y) = Mp Mpr : β„‚ dppr : dist Mp Mpr ≀ e / 4 dpf : dist Mpr (f n (c + y)) ≀ d hMpr : (M.sum fun k => (pr n k) fun x => y) = Mpr ⊒ 3 / 4 < 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• Mp : β„‚ hMp : (M.sum fun k => (p k) fun x => y) = Mp Mpr : β„‚ dppr : dist Mp Mpr ≀ e / 4 dpf : dist Mpr (f n (c + y)) ≀ d hMpr : (M.sum fun k => (pr n k) fun x => y) = Mpr ⊒ 3 / 4 < 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
uniform_analytic_lim
[189, 1]
[270, 21]
simp
I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• Mp : β„‚ hMp : (M.sum fun k => (p k) fun x => y) = Mp Mpr : β„‚ dppr : dist Mp Mpr ≀ e / 4 dpf : dist Mpr (f n (c + y)) ≀ d hMpr : (M.sum fun k => (pr n k) fun x => y) = Mpr ⊒ 1 * e = e
no goals
Please generate a tactic in lean4 to solve the state. STATE: I : Type inst✝¹ : Lattice I inst✝ : Nonempty I f : I β†’ β„‚ β†’ β„‚ g : β„‚ β†’ β„‚ s : Set β„‚ c : β„‚ r : ℝβ‰₯0 cb : closedBall c ↑r βŠ† s rp : 0 < r pr : I β†’ FormalMultilinearSeries β„‚ β„‚ β„‚ := fun n => cauchyPowerSeries (f n) c ↑r hpf : βˆ€ (n : I), HasFPowerSeriesOnBall (f n) (pr n) c ↑r cf : βˆ€ (n : I), ContinuousOn (f n) (closedBall c ↑r) cg : ContinuousOn g (closedBall c ↑r) p : FormalMultilinearSeries β„‚ β„‚ β„‚ := cauchyPowerSeries g c ↑r y : β„‚ yr : Complex.abs y < ↑r a : ℝ := Complex.abs y / ↑r a0 : a β‰₯ 0 a1 : a < 1 a1p : 1 - a > 0 e : ℝ ep : e > 0 d : ℝ d4 : (1 - a) * (e / 4) = d dp : d > 0 n : I hn : βˆ€ x ∈ s, dist (g x) (f n x) < d dfg : dist (f n (c + y)) (g (c + y)) ≀ d M : Finset β„• Mp : β„‚ hMp : (M.sum fun k => (p k) fun x => y) = Mp Mpr : β„‚ dppr : dist Mp Mpr ≀ e / 4 dpf : dist Mpr (f n (c + y)) ≀ d hMpr : (M.sum fun k => (pr n k) fun x => y) = Mpr ⊒ 1 * e = e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
generalize hc : (fun n ↦ Classical.choose ((sc.bddAbove_image (fc n).norm).exists_ge 0)) = c
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : UniformCauchySeqOn f atTop s fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : UniformCauchySeqOn f atTop s fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : UniformCauchySeqOn f atTop s fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
have cs : βˆ€ n, 0 ≀ c n ∧ βˆ€ x, x ∈ s β†’ β€–f n xβ€– ≀ c n := fun n ↦ by simpa only [← hc, mem_image, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] using Classical.choose_spec ((sc.bddAbove_image (fc n).norm).exists_ge 0)
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : UniformCauchySeqOn f atTop s fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : UniformCauchySeqOn f atTop s fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : UniformCauchySeqOn f atTop s fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
rw [Metric.uniformCauchySeqOn_iff] at u
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : UniformCauchySeqOn f atTop s fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < Ξ΅ fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : UniformCauchySeqOn f atTop s fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
rcases u 1 (by norm_num) with ⟨N, H⟩
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < Ξ΅ fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < Ξ΅ fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < Ξ΅ fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
clear u
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < Ξ΅ fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < Ξ΅ fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
generalize hbs : Finset.image c (Finset.range (N + 1)) = bs
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
have c0 : c 0 ∈ bs := by simp [← hbs]; exists 0; simp
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
generalize hb : 1 + bs.max' ⟨_, c0⟩ = b
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
exists b
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
constructor
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
case intro.left X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ 0 ≀ b case intro.right X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
simpa only [← hc, mem_image, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] using Classical.choose_spec ((sc.bddAbove_image (fc n).norm).exists_ge 0)
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : UniformCauchySeqOn f atTop s fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c n : β„• ⊒ 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : UniformCauchySeqOn f atTop s fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c n : β„• ⊒ 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
norm_num
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < Ξ΅ fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n ⊒ 1 > 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < Ξ΅ fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n ⊒ 1 > 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
simp [← hbs]
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs ⊒ c 0 ∈ bs
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs ⊒ βˆƒ a < N + 1, c a = c 0
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs ⊒ c 0 ∈ bs TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
exists 0
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs ⊒ βˆƒ a < N + 1, c a = c 0
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs ⊒ 0 < N + 1 ∧ c 0 = c 0
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs ⊒ βˆƒ a < N + 1, c a = c 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
simp
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs ⊒ 0 < N + 1 ∧ c 0 = c 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs ⊒ 0 < N + 1 ∧ c 0 = c 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
rw [← hb]
case intro.left X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ 0 ≀ b
case intro.left X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ 0 ≀ 1 + bs.max' β‹―
Please generate a tactic in lean4 to solve the state. STATE: case intro.left X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ 0 ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
exact add_nonneg (by norm_num) (_root_.trans (cs 0).1 (Finset.le_max' _ _ c0))
case intro.left X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ 0 ≀ 1 + bs.max' β‹―
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.left X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ 0 ≀ 1 + bs.max' β‹― TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
norm_num
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ 0 ≀ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ 0 ≀ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
intro n x xs
case intro.right X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
case intro.right X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s ⊒ β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case intro.right X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
by_cases nN : n ≀ N
case intro.right X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s ⊒ β€–f n xβ€– ≀ b
case pos X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N ⊒ β€–f n xβ€– ≀ b case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : Β¬n ≀ N ⊒ β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case intro.right X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s ⊒ β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
have cn : c n ∈ bs := by simp [← hbs]; exists n; simp [Nat.lt_add_one_iff.mpr nN]
case pos X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N ⊒ β€–f n xβ€– ≀ b
case pos X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N cn : c n ∈ bs ⊒ β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case pos X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N ⊒ β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
exact _root_.trans ((cs n).2 x xs) (_root_.trans (Finset.le_max' _ _ cn) (by simp only [le_add_iff_nonneg_left, zero_le_one, ← hb]))
case pos X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N cn : c n ∈ bs ⊒ β€–f n xβ€– ≀ b
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N cn : c n ∈ bs ⊒ β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
simp [← hbs]
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N ⊒ c n ∈ bs
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N ⊒ βˆƒ a < N + 1, c a = c n
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N ⊒ c n ∈ bs TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
exists n
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N ⊒ βˆƒ a < N + 1, c a = c n
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N ⊒ n < N + 1 ∧ c n = c n
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N ⊒ βˆƒ a < N + 1, c a = c n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
simp [Nat.lt_add_one_iff.mpr nN]
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N ⊒ n < N + 1 ∧ c n = c n
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N ⊒ n < N + 1 ∧ c n = c n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
simp only [le_add_iff_nonneg_left, zero_le_one, ← hb]
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N cn : c n ∈ bs ⊒ bs.max' β‹― ≀ b
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N cn : c n ∈ bs ⊒ bs.max' β‹― ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
simp at nN
case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : Β¬n ≀ N ⊒ β€–f n xβ€– ≀ b
case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n ⊒ β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : Β¬n ≀ N ⊒ β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
specialize H N le_rfl n nN.le x xs
case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n ⊒ β€–f n xβ€– ≀ b
case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 ⊒ β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n ⊒ β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
have cN : c N ∈ bs := by simp [← hbs]; exists N; simp
case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 ⊒ β€–f n xβ€– ≀ b
case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 cN : c N ∈ bs ⊒ β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 ⊒ β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
have bN := _root_.trans ((cs N).2 x xs) (Finset.le_max' _ _ cN)
case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 cN : c N ∈ bs ⊒ β€–f n xβ€– ≀ b
case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 cN : c N ∈ bs bN : β€–f N xβ€– ≀ bs.max' β‹― ⊒ β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 cN : c N ∈ bs ⊒ β€–f n xβ€– ≀ b TACTIC: