url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
simp only [Metric.ball_eq_empty.mpr rp, empty_diff]
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : r ≤ 0 ⊢ IsPreconnected (ball a r \ {a}) case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : ¬r ≤ 0 ⊢ IsPreconnected (ball a r \ {a})
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : r ≤ 0 ⊢ IsPreconnected ∅ case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : ¬r ≤ 0 ⊢ IsPreconnected (ball a r \ {a})
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : r ≤ 0 ⊢ IsPreconnected (ball a r \ {a}) case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : ¬r ≤ 0 ⊢ IsPreconnected (ball a r \ {a}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
exact isPreconnected_empty
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : r ≤ 0 ⊢ IsPreconnected ∅ case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : ¬r ≤ 0 ⊢ IsPreconnected (ball a r \ {a})
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : ¬r ≤ 0 ⊢ IsPreconnected (ball a r \ {a})
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : r ≤ 0 ⊢ IsPreconnected ∅ case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : ¬r ≤ 0 ⊢ IsPreconnected (ball a r \ {a}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
simp only [not_le] at rp
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : ¬r ≤ 0 ⊢ IsPreconnected (ball a r \ {a})
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r ⊢ IsPreconnected (ball a r \ {a})
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : ¬r ≤ 0 ⊢ IsPreconnected (ball a r \ {a}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
rw [e]
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ IsPreconnected (ball a r \ {a})
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ IsPreconnected ((fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ)
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ IsPreconnected (ball a r \ {a}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
apply IsPreconnected.image
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ IsPreconnected ((fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ)
case neg.H X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ IsPreconnected (Ioo 0 r ×ˢ univ) case neg.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ ContinuousOn (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) (Ioo 0 r ×ˢ univ)
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ IsPreconnected ((fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
exact isPreconnected_Ioo.prod isPreconnected_univ
case neg.H X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ IsPreconnected (Ioo 0 r ×ˢ univ) case neg.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ ContinuousOn (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) (Ioo 0 r ×ˢ univ)
case neg.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ ContinuousOn (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) (Ioo 0 r ×ˢ univ)
Please generate a tactic in lean4 to solve the state. STATE: case neg.H X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ IsPreconnected (Ioo 0 r ×ˢ univ) case neg.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ ContinuousOn (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) (Ioo 0 r ×ˢ univ) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
apply Continuous.continuousOn
case neg.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ ContinuousOn (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) (Ioo 0 r ×ˢ univ)
case neg.hf.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ Continuous fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp
Please generate a tactic in lean4 to solve the state. STATE: case neg.hf X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ ContinuousOn (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) (Ioo 0 r ×ˢ univ) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
continuity
case neg.hf.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ Continuous fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.hf.h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r e : ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ ⊢ Continuous fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
apply Set.ext
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r ⊢ ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r ⊢ ∀ (x : ℂ), x ∈ ball a r \ {a} ↔ x ∈ (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r ⊢ ball a r \ {a} = (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
intro z
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r ⊢ ∀ (x : ℂ), x ∈ ball a r \ {a} ↔ x ∈ (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ z ∈ ball a r \ {a} ↔ z ∈ (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r ⊢ ∀ (x : ℂ), x ∈ ball a r \ {a} ↔ x ∈ (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
simp only [mem_diff, mem_ball, Complex.dist_eq, mem_singleton_iff, mem_image, Prod.exists, mem_prod_eq, mem_Ioo, mem_univ, and_true_iff]
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ z ∈ ball a r \ {a} ↔ z ∈ (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ Complex.abs (z - a) < r ∧ ¬z = a ↔ ∃ a_1 b, (0 < a_1 ∧ a_1 < r) ∧ a + ↑a_1 * (↑b * Complex.I).exp = z
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ z ∈ ball a r \ {a} ↔ z ∈ (fun p => a + ↑p.1 * (↑p.2 * Complex.I).exp) '' Ioo 0 r ×ˢ univ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
constructor
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ Complex.abs (z - a) < r ∧ ¬z = a ↔ ∃ a_1 b, (0 < a_1 ∧ a_1 < r) ∧ a + ↑a_1 * (↑b * Complex.I).exp = z
case h.mp X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ Complex.abs (z - a) < r ∧ ¬z = a → ∃ a_2 b, (0 < a_2 ∧ a_2 < r) ∧ a + ↑a_2 * (↑b * Complex.I).exp = z case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ (∃ a_1 b, (0 < a_1 ∧ a_1 < r) ∧ a + ↑a_1 * (↑b * Complex.I).exp = z) → Complex.abs (z - a) < r ∧ ¬z = a
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ Complex.abs (z - a) < r ∧ ¬z = a ↔ ∃ a_1 b, (0 < a_1 ∧ a_1 < r) ∧ a + ↑a_1 * (↑b * Complex.I).exp = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
intro ⟨zr, za⟩
case h.mp X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ Complex.abs (z - a) < r ∧ ¬z = a → ∃ a_2 b, (0 < a_2 ∧ a_2 < r) ∧ a + ↑a_2 * (↑b * Complex.I).exp = z
case h.mp X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ zr : Complex.abs (z - a) < r za : ¬z = a ⊢ ∃ a_1 b, (0 < a_1 ∧ a_1 < r) ∧ a + ↑a_1 * (↑b * Complex.I).exp = z
Please generate a tactic in lean4 to solve the state. STATE: case h.mp X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ Complex.abs (z - a) < r ∧ ¬z = a → ∃ a_2 b, (0 < a_2 ∧ a_2 < r) ∧ a + ↑a_2 * (↑b * Complex.I).exp = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
use abs (z - a), Complex.arg (z - a)
case h.mp X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ zr : Complex.abs (z - a) < r za : ¬z = a ⊢ ∃ a_1 b, (0 < a_1 ∧ a_1 < r) ∧ a + ↑a_1 * (↑b * Complex.I).exp = z
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ zr : Complex.abs (z - a) < r za : ¬z = a ⊢ (0 < Complex.abs (z - a) ∧ Complex.abs (z - a) < r) ∧ a + ↑(Complex.abs (z - a)) * (↑(z - a).arg * Complex.I).exp = z
Please generate a tactic in lean4 to solve the state. STATE: case h.mp X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ zr : Complex.abs (z - a) < r za : ¬z = a ⊢ ∃ a_1 b, (0 < a_1 ∧ a_1 < r) ∧ a + ↑a_1 * (↑b * Complex.I).exp = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
simp only [AbsoluteValue.pos_iff, Ne, Complex.abs_mul_exp_arg_mul_I, add_sub_cancel, eq_self_iff_true, sub_eq_zero, za, zr, not_false_iff, and_true_iff]
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ zr : Complex.abs (z - a) < r za : ¬z = a ⊢ (0 < Complex.abs (z - a) ∧ Complex.abs (z - a) < r) ∧ a + ↑(Complex.abs (z - a)) * (↑(z - a).arg * Complex.I).exp = z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ zr : Complex.abs (z - a) < r za : ¬z = a ⊢ (0 < Complex.abs (z - a) ∧ Complex.abs (z - a) < r) ∧ a + ↑(Complex.abs (z - a)) * (↑(z - a).arg * Complex.I).exp = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
intro ⟨s, t, ⟨s0, sr⟩, e⟩
case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ (∃ a_1 b, (0 < a_1 ∧ a_1 < r) ∧ a + ↑a_1 * (↑b * Complex.I).exp = z) → Complex.abs (z - a) < r ∧ ¬z = a
case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ s t : ℝ s0 : 0 < s sr : s < r e : a + ↑s * (↑t * Complex.I).exp = z ⊢ Complex.abs (z - a) < r ∧ ¬z = a
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ ⊢ (∃ a_1 b, (0 < a_1 ∧ a_1 < r) ∧ a + ↑a_1 * (↑b * Complex.I).exp = z) → Complex.abs (z - a) < r ∧ ¬z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
simp only [← e, add_sub_cancel_left, Complex.abs.map_mul, Complex.abs_ofReal, abs_of_pos s0, Complex.abs_exp_ofReal_mul_I, mul_one, sr, true_and_iff, add_right_eq_self, mul_eq_zero, Complex.exp_ne_zero, or_false_iff, Complex.ofReal_eq_zero]
case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ s t : ℝ s0 : 0 < s sr : s < r e : a + ↑s * (↑t * Complex.I).exp = z ⊢ Complex.abs (z - a) < r ∧ ¬z = a
case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ s t : ℝ s0 : 0 < s sr : s < r e : a + ↑s * (↑t * Complex.I).exp = z ⊢ ¬s = 0
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ s t : ℝ s0 : 0 < s sr : s < r e : a + ↑s * (↑t * Complex.I).exp = z ⊢ Complex.abs (z - a) < r ∧ ¬z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.ball_diff_center
[177, 1]
[196, 44]
exact s0.ne'
case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ s t : ℝ s0 : 0 < s sr : s < r e : a + ↑s * (↑t * Complex.I).exp = z ⊢ ¬s = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ r : ℝ rp : 0 < r z : ℂ s t : ℝ s0 : 0 < s sr : s < r e : a + ↑s * (↑t * Complex.I).exp = z ⊢ ¬s = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
rw [dense_iff_inter_open]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ ⊢ Dense {a}ᶜ
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ ⊢ ∀ (U : Set ℂ), IsOpen U → U.Nonempty → (U ∩ {a}ᶜ).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ ⊢ Dense {a}ᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
intro u uo ⟨z, m⟩
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ ⊢ ∀ (U : Set ℂ), IsOpen U → U.Nonempty → (U ∩ {a}ᶜ).Nonempty
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u ⊢ (u ∩ {a}ᶜ).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ ⊢ ∀ (U : Set ℂ), IsOpen U → U.Nonempty → (U ∩ {a}ᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
by_cases za : z ≠ a
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u ⊢ (u ∩ {a}ᶜ).Nonempty
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z ≠ a ⊢ (u ∩ {a}ᶜ).Nonempty case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : ¬z ≠ a ⊢ (u ∩ {a}ᶜ).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u ⊢ (u ∩ {a}ᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
simp only [not_not] at za
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : ¬z ≠ a ⊢ (u ∩ {a}ᶜ).Nonempty
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z = a ⊢ (u ∩ {a}ᶜ).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : ¬z ≠ a ⊢ (u ∩ {a}ᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
rw [za] at m
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z = a ⊢ (u ∩ {a}ᶜ).Nonempty
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : a ∈ u za : z = a ⊢ (u ∩ {a}ᶜ).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z = a ⊢ (u ∩ {a}ᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
clear za z
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : a ∈ u za : z = a ⊢ (u ∩ {a}ᶜ).Nonempty
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u ⊢ (u ∩ {a}ᶜ).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : a ∈ u za : z = a ⊢ (u ∩ {a}ᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
rcases Metric.isOpen_iff.mp uo a m with ⟨r, rp, rs⟩
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u ⊢ (u ∩ {a}ᶜ).Nonempty
case neg.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ (u ∩ {a}ᶜ).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u ⊢ (u ∩ {a}ᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
use a + r / 2
case neg.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ (u ∩ {a}ᶜ).Nonempty
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ a + ↑r / 2 ∈ u ∩ {a}ᶜ
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ (u ∩ {a}ᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
simp only [mem_inter_iff, mem_compl_iff, mem_singleton_iff, add_right_eq_self, div_eq_zero_iff, Complex.ofReal_eq_zero, bit0_eq_zero, one_ne_zero, or_false_iff, rp.ne', not_false_iff, and_true_iff, false_or, two_ne_zero]
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ a + ↑r / 2 ∈ u ∩ {a}ᶜ
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ a + ↑r / 2 ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ a + ↑r / 2 ∈ u ∩ {a}ᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
apply rs
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ a + ↑r / 2 ∈ u
case h.a X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ a + ↑r / 2 ∈ ball a r
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ a + ↑r / 2 ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
simp only [mem_ball, dist_self_add_left, Complex.norm_eq_abs, map_div₀, Complex.abs_ofReal, Complex.abs_two, abs_of_pos rp, half_lt_self rp]
case h.a X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ a + ↑r / 2 ∈ ball a r
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.a X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u m : a ∈ u r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ a + ↑r / 2 ∈ ball a r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
use z
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z ≠ a ⊢ (u ∩ {a}ᶜ).Nonempty
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z ≠ a ⊢ z ∈ u ∩ {a}ᶜ
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z ≠ a ⊢ (u ∩ {a}ᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
use m
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z ≠ a ⊢ z ∈ u ∩ {a}ᶜ
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z ≠ a ⊢ z ∈ {a}ᶜ
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z ≠ a ⊢ z ∈ u ∩ {a}ᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
exact za
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z ≠ a ⊢ z ∈ {a}ᶜ
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ uo : IsOpen u z : ℂ m : z ∈ u za : z ≠ a ⊢ z ∈ {a}ᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
intro z u m n
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ ⊢ ∀ (x : ℂ) (u : Set ℂ), x ∈ {a} → u ∈ 𝓝 x → ∃ c ⊆ u \ {a}, c ∈ 𝓝[{a}ᶜ] x ∧ IsPreconnected c
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : ℂ u : Set ℂ m : z ∈ {a} n : u ∈ 𝓝 z ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[{a}ᶜ] z ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ ⊢ ∀ (x : ℂ) (u : Set ℂ), x ∈ {a} → u ∈ 𝓝 x → ∃ c ⊆ u \ {a}, c ∈ 𝓝[{a}ᶜ] x ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
simp only [mem_singleton_iff] at m
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : ℂ u : Set ℂ m : z ∈ {a} n : u ∈ 𝓝 z ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[{a}ᶜ] z ∧ IsPreconnected c
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : ℂ u : Set ℂ n : u ∈ 𝓝 z m : z = a ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[{a}ᶜ] z ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : ℂ u : Set ℂ m : z ∈ {a} n : u ∈ 𝓝 z ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[{a}ᶜ] z ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
simp only [m] at n ⊢
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : ℂ u : Set ℂ n : u ∈ 𝓝 z m : z = a ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[{a}ᶜ] z ∧ IsPreconnected c
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : ℂ u : Set ℂ m : z = a n : u ∈ 𝓝 a ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[≠] a ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : ℂ u : Set ℂ n : u ∈ 𝓝 z m : z = a ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[{a}ᶜ] z ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
clear m z
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : ℂ u : Set ℂ m : z = a n : u ∈ 𝓝 a ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[≠] a ∧ IsPreconnected c
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[≠] a ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : ℂ u : Set ℂ m : z = a n : u ∈ 𝓝 a ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[≠] a ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
rcases Metric.mem_nhds_iff.mp n with ⟨r, rp, rs⟩
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[≠] a ∧ IsPreconnected c
case intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[≠] a ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[≠] a ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
use ball a r \ {a}
case intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[≠] a ∧ IsPreconnected c
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ ball a r \ {a} ⊆ u \ {a} ∧ ball a r \ {a} ∈ 𝓝[≠] a ∧ IsPreconnected (ball a r \ {a})
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ ∃ c ⊆ u \ {a}, c ∈ 𝓝[≠] a ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
refine ⟨diff_subset_diff_left rs, ?_, IsPreconnected.ball_diff_center⟩
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ ball a r \ {a} ⊆ u \ {a} ∧ ball a r \ {a} ∈ 𝓝[≠] a ∧ IsPreconnected (ball a r \ {a})
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ ball a r \ {a} ∈ 𝓝[≠] a
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ ball a r \ {a} ⊆ u \ {a} ∧ ball a r \ {a} ∈ 𝓝[≠] a ∧ IsPreconnected (ball a r \ {a}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Complex.nonseparating_singleton
[199, 1]
[217, 70]
exact diff_mem_nhdsWithin_compl (Metric.ball_mem_nhds _ rp) _
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ ball a r \ {a} ∈ 𝓝[≠] a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : ℂ u : Set ℂ n : u ∈ 𝓝 a r : ℝ rp : r > 0 rs : ball a r ⊆ u ⊢ ball a r \ {a} ∈ 𝓝[≠] a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
AnalyticManifold.nonseparating_singleton
[220, 1]
[230, 38]
apply Nonseparating.complexManifold
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : S ⊢ Nonseparating {a}
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : S ⊢ ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a})
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : S ⊢ Nonseparating {a} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
AnalyticManifold.nonseparating_singleton
[220, 1]
[230, 38]
intro z
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : S ⊢ ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a})
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S ⊢ Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a})
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a : S ⊢ ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
AnalyticManifold.nonseparating_singleton
[220, 1]
[230, 38]
by_cases az : a ∈ (extChartAt I z).source
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S ⊢ Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a})
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source ⊢ Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a}) case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∉ (extChartAt I z).source ⊢ Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a})
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S ⊢ Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
AnalyticManifold.nonseparating_singleton
[220, 1]
[230, 38]
convert Complex.nonseparating_singleton (extChartAt I z a)
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source ⊢ Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a})
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source ⊢ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a} = {↑(extChartAt I z) a}
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source ⊢ Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
AnalyticManifold.nonseparating_singleton
[220, 1]
[230, 38]
simp only [eq_singleton_iff_unique_mem, mem_inter_iff, PartialEquiv.map_source _ az, true_and_iff, mem_preimage, mem_singleton_iff, PartialEquiv.left_inv _ az, eq_self_iff_true]
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source ⊢ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a} = {↑(extChartAt I z) a}
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source ⊢ ∀ (x : ℂ), x ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm x = a → x = ↑(extChartAt I z) a
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source ⊢ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a} = {↑(extChartAt I z) a} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
AnalyticManifold.nonseparating_singleton
[220, 1]
[230, 38]
intro x ⟨m, e⟩
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source ⊢ ∀ (x : ℂ), x ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm x = a → x = ↑(extChartAt I z) a
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source x : ℂ m : x ∈ (extChartAt I z).target e : ↑(extChartAt I z).symm x = a ⊢ x = ↑(extChartAt I z) a
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source ⊢ ∀ (x : ℂ), x ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm x = a → x = ↑(extChartAt I z) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
AnalyticManifold.nonseparating_singleton
[220, 1]
[230, 38]
simp only [← e, PartialEquiv.right_inv _ m]
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source x : ℂ m : x ∈ (extChartAt I z).target e : ↑(extChartAt I z).symm x = a ⊢ x = ↑(extChartAt I z) a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∈ (extChartAt I z).source x : ℂ m : x ∈ (extChartAt I z).target e : ↑(extChartAt I z).symm x = a ⊢ x = ↑(extChartAt I z) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
AnalyticManifold.nonseparating_singleton
[220, 1]
[230, 38]
convert Nonseparating.empty
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∉ (extChartAt I z).source ⊢ Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a})
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∉ (extChartAt I z).source ⊢ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a} = ∅
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∉ (extChartAt I z).source ⊢ Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
AnalyticManifold.nonseparating_singleton
[220, 1]
[230, 38]
simp only [eq_empty_iff_forall_not_mem, mem_inter_iff, mem_preimage, mem_singleton_iff, not_and]
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∉ (extChartAt I z).source ⊢ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a} = ∅
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∉ (extChartAt I z).source ⊢ ∀ x ∈ (extChartAt I z).target, ¬↑(extChartAt I z).symm x = a
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∉ (extChartAt I z).source ⊢ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' {a} = ∅ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
AnalyticManifold.nonseparating_singleton
[220, 1]
[230, 38]
intro x m
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∉ (extChartAt I z).source ⊢ ∀ x ∈ (extChartAt I z).target, ¬↑(extChartAt I z).symm x = a
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∉ (extChartAt I z).source x : ℂ m : x ∈ (extChartAt I z).target ⊢ ¬↑(extChartAt I z).symm x = a
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∉ (extChartAt I z).source ⊢ ∀ x ∈ (extChartAt I z).target, ¬↑(extChartAt I z).symm x = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
AnalyticManifold.nonseparating_singleton
[220, 1]
[230, 38]
contrapose az
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∉ (extChartAt I z).source x : ℂ m : x ∈ (extChartAt I z).target ⊢ ¬↑(extChartAt I z).symm x = a
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S x : ℂ m : x ∈ (extChartAt I z).target az : ¬¬↑(extChartAt I z).symm x = a ⊢ ¬a ∉ (extChartAt I z).source
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S az : a ∉ (extChartAt I z).source x : ℂ m : x ∈ (extChartAt I z).target ⊢ ¬↑(extChartAt I z).symm x = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
AnalyticManifold.nonseparating_singleton
[220, 1]
[230, 38]
simp only [not_not] at az ⊢
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S x : ℂ m : x ∈ (extChartAt I z).target az : ¬¬↑(extChartAt I z).symm x = a ⊢ ¬a ∉ (extChartAt I z).source
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S x : ℂ m : x ∈ (extChartAt I z).target az : ↑(extChartAt I z).symm x = a ⊢ a ∈ (extChartAt I z).source
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S x : ℂ m : x ∈ (extChartAt I z).target az : ¬¬↑(extChartAt I z).symm x = a ⊢ ¬a ∉ (extChartAt I z).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
AnalyticManifold.nonseparating_singleton
[220, 1]
[230, 38]
rw [← az]
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S x : ℂ m : x ∈ (extChartAt I z).target az : ↑(extChartAt I z).symm x = a ⊢ a ∈ (extChartAt I z).source
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S x : ℂ m : x ∈ (extChartAt I z).target az : ↑(extChartAt I z).symm x = a ⊢ ↑(extChartAt I z).symm x ∈ (extChartAt I z).source
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S x : ℂ m : x ∈ (extChartAt I z).target az : ↑(extChartAt I z).symm x = a ⊢ a ∈ (extChartAt I z).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
AnalyticManifold.nonseparating_singleton
[220, 1]
[230, 38]
exact PartialEquiv.map_target _ m
case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S x : ℂ m : x ∈ (extChartAt I z).target az : ↑(extChartAt I z).symm x = a ⊢ ↑(extChartAt I z).symm x ∈ (extChartAt I z).source
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S a z : S x : ℂ m : x ∈ (extChartAt I z).target az : ↑(extChartAt I z).symm x = a ⊢ ↑(extChartAt I z).symm x ∈ (extChartAt I z).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff_line
[238, 1]
[244, 85]
apply IsPreconnected.open_diff sc so
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s : Set (ℂ × S) sc : IsPreconnected s so : IsOpen s a : S ⊢ IsPreconnected (s \ {p | p.2 = a})
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s : Set (ℂ × S) sc : IsPreconnected s so : IsOpen s a : S ⊢ Nonseparating {p | p.2 = a}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s : Set (ℂ × S) sc : IsPreconnected s so : IsOpen s a : S ⊢ IsPreconnected (s \ {p | p.2 = a}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff_line
[238, 1]
[244, 85]
have e : {p : ℂ × S | p.2 = a} = univ ×ˢ {a} := by apply Set.ext; intro ⟨c, z⟩ simp only [mem_prod_eq, mem_setOf, mem_univ, true_and_iff, mem_singleton_iff]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s : Set (ℂ × S) sc : IsPreconnected s so : IsOpen s a : S ⊢ Nonseparating {p | p.2 = a}
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s : Set (ℂ × S) sc : IsPreconnected s so : IsOpen s a : S e : {p | p.2 = a} = univ ×ˢ {a} ⊢ Nonseparating {p | p.2 = a}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s : Set (ℂ × S) sc : IsPreconnected s so : IsOpen s a : S ⊢ Nonseparating {p | p.2 = a} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff_line
[238, 1]
[244, 85]
rw [e]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s : Set (ℂ × S) sc : IsPreconnected s so : IsOpen s a : S e : {p | p.2 = a} = univ ×ˢ {a} ⊢ Nonseparating {p | p.2 = a}
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s : Set (ℂ × S) sc : IsPreconnected s so : IsOpen s a : S e : {p | p.2 = a} = univ ×ˢ {a} ⊢ Nonseparating (univ ×ˢ {a})
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s : Set (ℂ × S) sc : IsPreconnected s so : IsOpen s a : S e : {p | p.2 = a} = univ ×ˢ {a} ⊢ Nonseparating {p | p.2 = a} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff_line
[238, 1]
[244, 85]
exact Nonseparating.univ_prod (AnalyticManifold.nonseparating_singleton _)
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s : Set (ℂ × S) sc : IsPreconnected s so : IsOpen s a : S e : {p | p.2 = a} = univ ×ˢ {a} ⊢ Nonseparating (univ ×ˢ {a})
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s : Set (ℂ × S) sc : IsPreconnected s so : IsOpen s a : S e : {p | p.2 = a} = univ ×ˢ {a} ⊢ Nonseparating (univ ×ˢ {a}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff_line
[238, 1]
[244, 85]
apply Set.ext
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s : Set (ℂ × S) sc : IsPreconnected s so : IsOpen s a : S ⊢ {p | p.2 = a} = univ ×ˢ {a}
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s : Set (ℂ × S) sc : IsPreconnected s so : IsOpen s a : S ⊢ ∀ (x : ℂ × S), x ∈ {p | p.2 = a} ↔ x ∈ univ ×ˢ {a}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s : Set (ℂ × S) sc : IsPreconnected s so : IsOpen s a : S ⊢ {p | p.2 = a} = univ ×ˢ {a} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff_line
[238, 1]
[244, 85]
intro ⟨c, z⟩
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s : Set (ℂ × S) sc : IsPreconnected s so : IsOpen s a : S ⊢ ∀ (x : ℂ × S), x ∈ {p | p.2 = a} ↔ x ∈ univ ×ˢ {a}
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s : Set (ℂ × S) sc : IsPreconnected s so : IsOpen s a : S c : ℂ z : S ⊢ (c, z) ∈ {p | p.2 = a} ↔ (c, z) ∈ univ ×ˢ {a}
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s : Set (ℂ × S) sc : IsPreconnected s so : IsOpen s a : S ⊢ ∀ (x : ℂ × S), x ∈ {p | p.2 = a} ↔ x ∈ univ ×ˢ {a} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
IsPreconnected.open_diff_line
[238, 1]
[244, 85]
simp only [mem_prod_eq, mem_setOf, mem_univ, true_and_iff, mem_singleton_iff]
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s : Set (ℂ × S) sc : IsPreconnected s so : IsOpen s a : S c : ℂ z : S ⊢ (c, z) ∈ {p | p.2 = a} ↔ (c, z) ∈ univ ×ˢ {a}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S s : Set (ℂ × S) sc : IsPreconnected s so : IsOpen s a : S c : ℂ z : S ⊢ (c, z) ∈ {p | p.2 = a} ↔ (c, z) ∈ univ ×ˢ {a} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
cauchy_on_cball_radius
[32, 1]
[38, 53]
have hd : DifferentiableOn ℂ f (closedBall z r) := by intro x H; exact AnalyticAt.differentiableWithinAt (h x H)
f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (closedBall z ↑r) ⊢ HasFPowerSeriesOnBall f (cauchyPowerSeries f z ↑r) z ↑r
f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (closedBall z ↑r) hd : DifferentiableOn ℂ f (closedBall z ↑r) ⊢ HasFPowerSeriesOnBall f (cauchyPowerSeries f z ↑r) z ↑r
Please generate a tactic in lean4 to solve the state. STATE: f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (closedBall z ↑r) ⊢ HasFPowerSeriesOnBall f (cauchyPowerSeries f z ↑r) z ↑r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
cauchy_on_cball_radius
[32, 1]
[38, 53]
set p : FormalMultilinearSeries ℂ ℂ ℂ := cauchyPowerSeries f z r
f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (closedBall z ↑r) hd : DifferentiableOn ℂ f (closedBall z ↑r) ⊢ HasFPowerSeriesOnBall f (cauchyPowerSeries f z ↑r) z ↑r
f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (closedBall z ↑r) hd : DifferentiableOn ℂ f (closedBall z ↑r) p : FormalMultilinearSeries ℂ ℂ ℂ := cauchyPowerSeries f z ↑r ⊢ HasFPowerSeriesOnBall f p z ↑r
Please generate a tactic in lean4 to solve the state. STATE: f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (closedBall z ↑r) hd : DifferentiableOn ℂ f (closedBall z ↑r) ⊢ HasFPowerSeriesOnBall f (cauchyPowerSeries f z ↑r) z ↑r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
cauchy_on_cball_radius
[32, 1]
[38, 53]
exact DifferentiableOn.hasFPowerSeriesOnBall hd rp
f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (closedBall z ↑r) hd : DifferentiableOn ℂ f (closedBall z ↑r) p : FormalMultilinearSeries ℂ ℂ ℂ := cauchyPowerSeries f z ↑r ⊢ HasFPowerSeriesOnBall f p z ↑r
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (closedBall z ↑r) hd : DifferentiableOn ℂ f (closedBall z ↑r) p : FormalMultilinearSeries ℂ ℂ ℂ := cauchyPowerSeries f z ↑r ⊢ HasFPowerSeriesOnBall f p z ↑r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
cauchy_on_cball_radius
[32, 1]
[38, 53]
intro x H
f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (closedBall z ↑r) ⊢ DifferentiableOn ℂ f (closedBall z ↑r)
f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (closedBall z ↑r) x : ℂ H : x ∈ closedBall z ↑r ⊢ DifferentiableWithinAt ℂ f (closedBall z ↑r) x
Please generate a tactic in lean4 to solve the state. STATE: f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (closedBall z ↑r) ⊢ DifferentiableOn ℂ f (closedBall z ↑r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
cauchy_on_cball_radius
[32, 1]
[38, 53]
exact AnalyticAt.differentiableWithinAt (h x H)
f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (closedBall z ↑r) x : ℂ H : x ∈ closedBall z ↑r ⊢ DifferentiableWithinAt ℂ f (closedBall z ↑r) x
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (closedBall z ↑r) x : ℂ H : x ∈ closedBall z ↑r ⊢ DifferentiableWithinAt ℂ f (closedBall z ↑r) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_small_cball
[45, 1]
[51, 15]
intro x hx
f : ℂ → ℂ z : ℂ r : ℝ≥0 h : AnalyticOn ℂ f (ball z ↑r) s : ℝ≥0 sr : s < r ⊢ AnalyticOn ℂ f (closedBall z ↑s)
f : ℂ → ℂ z : ℂ r : ℝ≥0 h : AnalyticOn ℂ f (ball z ↑r) s : ℝ≥0 sr : s < r x : ℂ hx : x ∈ closedBall z ↑s ⊢ AnalyticAt ℂ f x
Please generate a tactic in lean4 to solve the state. STATE: f : ℂ → ℂ z : ℂ r : ℝ≥0 h : AnalyticOn ℂ f (ball z ↑r) s : ℝ≥0 sr : s < r ⊢ AnalyticOn ℂ f (closedBall z ↑s) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_small_cball
[45, 1]
[51, 15]
rw [closedBall] at hx
f : ℂ → ℂ z : ℂ r : ℝ≥0 h : AnalyticOn ℂ f (ball z ↑r) s : ℝ≥0 sr : s < r x : ℂ hx : x ∈ closedBall z ↑s ⊢ AnalyticAt ℂ f x
f : ℂ → ℂ z : ℂ r : ℝ≥0 h : AnalyticOn ℂ f (ball z ↑r) s : ℝ≥0 sr : s < r x : ℂ hx : x ∈ {y | dist y z ≤ ↑s} ⊢ AnalyticAt ℂ f x
Please generate a tactic in lean4 to solve the state. STATE: f : ℂ → ℂ z : ℂ r : ℝ≥0 h : AnalyticOn ℂ f (ball z ↑r) s : ℝ≥0 sr : s < r x : ℂ hx : x ∈ closedBall z ↑s ⊢ AnalyticAt ℂ f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_small_cball
[45, 1]
[51, 15]
simp at hx
f : ℂ → ℂ z : ℂ r : ℝ≥0 h : AnalyticOn ℂ f (ball z ↑r) s : ℝ≥0 sr : s < r x : ℂ hx : x ∈ {y | dist y z ≤ ↑s} ⊢ AnalyticAt ℂ f x
f : ℂ → ℂ z : ℂ r : ℝ≥0 h : AnalyticOn ℂ f (ball z ↑r) s : ℝ≥0 sr : s < r x : ℂ hx : nndist x z ≤ s ⊢ AnalyticAt ℂ f x
Please generate a tactic in lean4 to solve the state. STATE: f : ℂ → ℂ z : ℂ r : ℝ≥0 h : AnalyticOn ℂ f (ball z ↑r) s : ℝ≥0 sr : s < r x : ℂ hx : x ∈ {y | dist y z ≤ ↑s} ⊢ AnalyticAt ℂ f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_small_cball
[45, 1]
[51, 15]
have hb : x ∈ ball z r := by rw [ball]; simp only [dist_lt_coe, Set.mem_setOf_eq]; exact lt_of_le_of_lt hx sr
f : ℂ → ℂ z : ℂ r : ℝ≥0 h : AnalyticOn ℂ f (ball z ↑r) s : ℝ≥0 sr : s < r x : ℂ hx : nndist x z ≤ s ⊢ AnalyticAt ℂ f x
f : ℂ → ℂ z : ℂ r : ℝ≥0 h : AnalyticOn ℂ f (ball z ↑r) s : ℝ≥0 sr : s < r x : ℂ hx : nndist x z ≤ s hb : x ∈ ball z ↑r ⊢ AnalyticAt ℂ f x
Please generate a tactic in lean4 to solve the state. STATE: f : ℂ → ℂ z : ℂ r : ℝ≥0 h : AnalyticOn ℂ f (ball z ↑r) s : ℝ≥0 sr : s < r x : ℂ hx : nndist x z ≤ s ⊢ AnalyticAt ℂ f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_small_cball
[45, 1]
[51, 15]
exact h x hb
f : ℂ → ℂ z : ℂ r : ℝ≥0 h : AnalyticOn ℂ f (ball z ↑r) s : ℝ≥0 sr : s < r x : ℂ hx : nndist x z ≤ s hb : x ∈ ball z ↑r ⊢ AnalyticAt ℂ f x
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : ℂ → ℂ z : ℂ r : ℝ≥0 h : AnalyticOn ℂ f (ball z ↑r) s : ℝ≥0 sr : s < r x : ℂ hx : nndist x z ≤ s hb : x ∈ ball z ↑r ⊢ AnalyticAt ℂ f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_small_cball
[45, 1]
[51, 15]
rw [ball]
f : ℂ → ℂ z : ℂ r : ℝ≥0 h : AnalyticOn ℂ f (ball z ↑r) s : ℝ≥0 sr : s < r x : ℂ hx : nndist x z ≤ s ⊢ x ∈ ball z ↑r
f : ℂ → ℂ z : ℂ r : ℝ≥0 h : AnalyticOn ℂ f (ball z ↑r) s : ℝ≥0 sr : s < r x : ℂ hx : nndist x z ≤ s ⊢ x ∈ {y | dist y z < ↑r}
Please generate a tactic in lean4 to solve the state. STATE: f : ℂ → ℂ z : ℂ r : ℝ≥0 h : AnalyticOn ℂ f (ball z ↑r) s : ℝ≥0 sr : s < r x : ℂ hx : nndist x z ≤ s ⊢ x ∈ ball z ↑r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_small_cball
[45, 1]
[51, 15]
simp only [dist_lt_coe, Set.mem_setOf_eq]
f : ℂ → ℂ z : ℂ r : ℝ≥0 h : AnalyticOn ℂ f (ball z ↑r) s : ℝ≥0 sr : s < r x : ℂ hx : nndist x z ≤ s ⊢ x ∈ {y | dist y z < ↑r}
f : ℂ → ℂ z : ℂ r : ℝ≥0 h : AnalyticOn ℂ f (ball z ↑r) s : ℝ≥0 sr : s < r x : ℂ hx : nndist x z ≤ s ⊢ nndist x z < r
Please generate a tactic in lean4 to solve the state. STATE: f : ℂ → ℂ z : ℂ r : ℝ≥0 h : AnalyticOn ℂ f (ball z ↑r) s : ℝ≥0 sr : s < r x : ℂ hx : nndist x z ≤ s ⊢ x ∈ {y | dist y z < ↑r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_small_cball
[45, 1]
[51, 15]
exact lt_of_le_of_lt hx sr
f : ℂ → ℂ z : ℂ r : ℝ≥0 h : AnalyticOn ℂ f (ball z ↑r) s : ℝ≥0 sr : s < r x : ℂ hx : nndist x z ≤ s ⊢ nndist x z < r
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : ℂ → ℂ z : ℂ r : ℝ≥0 h : AnalyticOn ℂ f (ball z ↑r) s : ℝ≥0 sr : s < r x : ℂ hx : nndist x z ≤ s ⊢ nndist x z < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
have h0 := analyticOn_small_cball h (r / 2) (NNReal.half_lt_self <| rp.ne')
f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) ⊢ ∃ p, HasFPowerSeriesOnBall f p z ↑r
f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) ⊢ ∃ p, HasFPowerSeriesOnBall f p z ↑r
Please generate a tactic in lean4 to solve the state. STATE: f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) ⊢ ∃ p, HasFPowerSeriesOnBall f p z ↑r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
rcases analyticOn_cball_radius (half_pos rp) h0 with ⟨p, ph⟩
f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) ⊢ ∃ p, HasFPowerSeriesOnBall f p z ↑r
case intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) ⊢ ∃ p, HasFPowerSeriesOnBall f p z ↑r
Please generate a tactic in lean4 to solve the state. STATE: f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) ⊢ ∃ p, HasFPowerSeriesOnBall f p z ↑r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
set R := FormalMultilinearSeries.radius p
case intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) ⊢ ∃ p, HasFPowerSeriesOnBall f p z ↑r
case intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius ⊢ ∃ p, HasFPowerSeriesOnBall f p z ↑r
Please generate a tactic in lean4 to solve the state. STATE: case intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) ⊢ ∃ p, HasFPowerSeriesOnBall f p z ↑r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
refine ⟨p, { r_le := ?_ r_pos := ENNReal.coe_pos.mpr rp hasSum := ?_ }⟩
case intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius ⊢ ∃ p, HasFPowerSeriesOnBall f p z ↑r
case intro.refine_1 f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius ⊢ ↑r ≤ p.radius case intro.refine_2 f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius ⊢ ∀ {y : ℂ}, y ∈ EMetric.ball 0 ↑r → HasSum (fun n => (p n) fun x => y) (f (z + y))
Please generate a tactic in lean4 to solve the state. STATE: case intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius ⊢ ∃ p, HasFPowerSeriesOnBall f p z ↑r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
apply ENNReal.le_of_forall_pos_nnreal_lt
case intro.refine_1 f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius ⊢ ↑r ≤ p.radius
case intro.refine_1.h f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius ⊢ ∀ (r_1 : ℝ≥0), 0 < r_1 → ↑r_1 < ↑r → ↑r_1 ≤ p.radius
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_1 f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius ⊢ ↑r ≤ p.radius TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
intro t tp tr
case intro.refine_1.h f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius ⊢ ∀ (r_1 : ℝ≥0), 0 < r_1 → ↑r_1 < ↑r → ↑r_1 ≤ p.radius
case intro.refine_1.h f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius t : ℝ≥0 tp : 0 < t tr : ↑t < ↑r ⊢ ↑t ≤ p.radius
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_1.h f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius ⊢ ∀ (r_1 : ℝ≥0), 0 < r_1 → ↑r_1 < ↑r → ↑r_1 ≤ p.radius TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
have ht := analyticOn_small_cball h t (ENNReal.coe_lt_coe.mp tr)
case intro.refine_1.h f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius t : ℝ≥0 tp : 0 < t tr : ↑t < ↑r ⊢ ↑t ≤ p.radius
case intro.refine_1.h f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius t : ℝ≥0 tp : 0 < t tr : ↑t < ↑r ht : AnalyticOn ℂ f (closedBall z ↑t) ⊢ ↑t ≤ p.radius
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_1.h f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius t : ℝ≥0 tp : 0 < t tr : ↑t < ↑r ⊢ ↑t ≤ p.radius TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
rcases analyticOn_cball_radius tp ht with ⟨p', hp'⟩
case intro.refine_1.h f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius t : ℝ≥0 tp : 0 < t tr : ↑t < ↑r ht : AnalyticOn ℂ f (closedBall z ↑t) ⊢ ↑t ≤ p.radius
case intro.refine_1.h.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius t : ℝ≥0 tp : 0 < t tr : ↑t < ↑r ht : AnalyticOn ℂ f (closedBall z ↑t) p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p' z ↑t ⊢ ↑t ≤ p.radius
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_1.h f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius t : ℝ≥0 tp : 0 < t tr : ↑t < ↑r ht : AnalyticOn ℂ f (closedBall z ↑t) ⊢ ↑t ≤ p.radius TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
have pp : p = p' := HasFPowerSeriesAt.eq_formalMultilinearSeries ⟨↑(r / 2), ph⟩ ⟨t, hp'⟩
case intro.refine_1.h.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius t : ℝ≥0 tp : 0 < t tr : ↑t < ↑r ht : AnalyticOn ℂ f (closedBall z ↑t) p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p' z ↑t ⊢ ↑t ≤ p.radius
case intro.refine_1.h.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius t : ℝ≥0 tp : 0 < t tr : ↑t < ↑r ht : AnalyticOn ℂ f (closedBall z ↑t) p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p' z ↑t pp : p = p' ⊢ ↑t ≤ p.radius
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_1.h.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius t : ℝ≥0 tp : 0 < t tr : ↑t < ↑r ht : AnalyticOn ℂ f (closedBall z ↑t) p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p' z ↑t ⊢ ↑t ≤ p.radius TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
rw [← pp] at hp'
case intro.refine_1.h.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius t : ℝ≥0 tp : 0 < t tr : ↑t < ↑r ht : AnalyticOn ℂ f (closedBall z ↑t) p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p' z ↑t pp : p = p' ⊢ ↑t ≤ p.radius
case intro.refine_1.h.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius t : ℝ≥0 tp : 0 < t tr : ↑t < ↑r ht : AnalyticOn ℂ f (closedBall z ↑t) p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p z ↑t pp : p = p' ⊢ ↑t ≤ p.radius
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_1.h.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius t : ℝ≥0 tp : 0 < t tr : ↑t < ↑r ht : AnalyticOn ℂ f (closedBall z ↑t) p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p' z ↑t pp : p = p' ⊢ ↑t ≤ p.radius TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
refine hp'.r_le
case intro.refine_1.h.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius t : ℝ≥0 tp : 0 < t tr : ↑t < ↑r ht : AnalyticOn ℂ f (closedBall z ↑t) p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p z ↑t pp : p = p' ⊢ ↑t ≤ p.radius
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_1.h.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius t : ℝ≥0 tp : 0 < t tr : ↑t < ↑r ht : AnalyticOn ℂ f (closedBall z ↑t) p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p z ↑t pp : p = p' ⊢ ↑t ≤ p.radius TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
intro y yr
case intro.refine_2 f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius ⊢ ∀ {y : ℂ}, y ∈ EMetric.ball 0 ↑r → HasSum (fun n => (p n) fun x => y) (f (z + y))
case intro.refine_2 f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : y ∈ EMetric.ball 0 ↑r ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y))
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_2 f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius ⊢ ∀ {y : ℂ}, y ∈ EMetric.ball 0 ↑r → HasSum (fun n => (p n) fun x => y) (f (z + y)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
rw [EMetric.ball, Set.mem_setOf] at yr
case intro.refine_2 f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : y ∈ EMetric.ball 0 ↑r ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y))
case intro.refine_2 f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y))
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_2 f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : y ∈ EMetric.ball 0 ↑r ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
rcases exists_between yr with ⟨t, t0, t1⟩
case intro.refine_2 f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y))
case intro.refine_2.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y))
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_2 f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
have t1' : t.toNNReal < r := by rw [← WithTop.coe_lt_coe]; exact lt_of_le_of_lt ENNReal.coe_toNNReal_le_self t1
case intro.refine_2.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y))
case intro.refine_2.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y))
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_2.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
have ht := analyticOn_small_cball h t.toNNReal t1'
case intro.refine_2.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y))
case intro.refine_2.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ht : AnalyticOn ℂ f (closedBall z ↑t.toNNReal) ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y))
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_2.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
have tp : 0 < ENNReal.toNNReal t := ENNReal.toNNReal_pos (ne_of_gt <| pos_of_gt t0) (ne_top_of_lt t1)
case intro.refine_2.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ht : AnalyticOn ℂ f (closedBall z ↑t.toNNReal) ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y))
case intro.refine_2.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ht : AnalyticOn ℂ f (closedBall z ↑t.toNNReal) tp : 0 < t.toNNReal ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y))
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_2.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ht : AnalyticOn ℂ f (closedBall z ↑t.toNNReal) ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
rcases analyticOn_cball_radius tp ht with ⟨p', hp'⟩
case intro.refine_2.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ht : AnalyticOn ℂ f (closedBall z ↑t.toNNReal) tp : 0 < t.toNNReal ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y))
case intro.refine_2.intro.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ht : AnalyticOn ℂ f (closedBall z ↑t.toNNReal) tp : 0 < t.toNNReal p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p' z ↑t.toNNReal ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y))
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_2.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ht : AnalyticOn ℂ f (closedBall z ↑t.toNNReal) tp : 0 < t.toNNReal ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
have pp : p = p' := HasFPowerSeriesAt.eq_formalMultilinearSeries ⟨↑(r / 2), ph⟩ ⟨t.toNNReal, hp'⟩
case intro.refine_2.intro.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ht : AnalyticOn ℂ f (closedBall z ↑t.toNNReal) tp : 0 < t.toNNReal p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p' z ↑t.toNNReal ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y))
case intro.refine_2.intro.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ht : AnalyticOn ℂ f (closedBall z ↑t.toNNReal) tp : 0 < t.toNNReal p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p' z ↑t.toNNReal pp : p = p' ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y))
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_2.intro.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ht : AnalyticOn ℂ f (closedBall z ↑t.toNNReal) tp : 0 < t.toNNReal p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p' z ↑t.toNNReal ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
rw [← pp] at hp'
case intro.refine_2.intro.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ht : AnalyticOn ℂ f (closedBall z ↑t.toNNReal) tp : 0 < t.toNNReal p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p' z ↑t.toNNReal pp : p = p' ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y))
case intro.refine_2.intro.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ht : AnalyticOn ℂ f (closedBall z ↑t.toNNReal) tp : 0 < t.toNNReal p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p z ↑t.toNNReal pp : p = p' ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y))
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_2.intro.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ht : AnalyticOn ℂ f (closedBall z ↑t.toNNReal) tp : 0 < t.toNNReal p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p' z ↑t.toNNReal pp : p = p' ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
refine hp'.hasSum ?_
case intro.refine_2.intro.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ht : AnalyticOn ℂ f (closedBall z ↑t.toNNReal) tp : 0 < t.toNNReal p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p z ↑t.toNNReal pp : p = p' ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y))
case intro.refine_2.intro.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ht : AnalyticOn ℂ f (closedBall z ↑t.toNNReal) tp : 0 < t.toNNReal p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p z ↑t.toNNReal pp : p = p' ⊢ y ∈ EMetric.ball 0 ↑t.toNNReal
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_2.intro.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ht : AnalyticOn ℂ f (closedBall z ↑t.toNNReal) tp : 0 < t.toNNReal p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p z ↑t.toNNReal pp : p = p' ⊢ HasSum (fun n => (p n) fun x => y) (f (z + y)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
rw [EMetric.ball, Set.mem_setOf]
case intro.refine_2.intro.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ht : AnalyticOn ℂ f (closedBall z ↑t.toNNReal) tp : 0 < t.toNNReal p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p z ↑t.toNNReal pp : p = p' ⊢ y ∈ EMetric.ball 0 ↑t.toNNReal
case intro.refine_2.intro.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ht : AnalyticOn ℂ f (closedBall z ↑t.toNNReal) tp : 0 < t.toNNReal p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p z ↑t.toNNReal pp : p = p' ⊢ edist y 0 < ↑t.toNNReal
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_2.intro.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ht : AnalyticOn ℂ f (closedBall z ↑t.toNNReal) tp : 0 < t.toNNReal p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p z ↑t.toNNReal pp : p = p' ⊢ y ∈ EMetric.ball 0 ↑t.toNNReal TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
calc edist y 0 _ < t := t0 _ = ↑t.toNNReal := (ENNReal.coe_toNNReal <| ne_top_of_lt t1).symm
case intro.refine_2.intro.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ht : AnalyticOn ℂ f (closedBall z ↑t.toNNReal) tp : 0 < t.toNNReal p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p z ↑t.toNNReal pp : p = p' ⊢ edist y 0 < ↑t.toNNReal
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_2.intro.intro.intro f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r t1' : t.toNNReal < r ht : AnalyticOn ℂ f (closedBall z ↑t.toNNReal) tp : 0 < t.toNNReal p' : FormalMultilinearSeries ℂ ℂ ℂ hp' : HasFPowerSeriesOnBall f p z ↑t.toNNReal pp : p = p' ⊢ edist y 0 < ↑t.toNNReal TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
rw [← WithTop.coe_lt_coe]
f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r ⊢ t.toNNReal < r
f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r ⊢ ↑t.toNNReal < ↑r
Please generate a tactic in lean4 to solve the state. STATE: f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r ⊢ t.toNNReal < r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
analyticOn_ball_radius
[53, 1]
[87, 72]
exact lt_of_le_of_lt ENNReal.coe_toNNReal_le_self t1
f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r ⊢ ↑t.toNNReal < ↑r
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : ℂ → ℂ z : ℂ r : ℝ≥0 rp : r > 0 h : AnalyticOn ℂ f (ball z ↑r) h0 : AnalyticOn ℂ f (closedBall z ↑(r / 2)) p : FormalMultilinearSeries ℂ ℂ ℂ ph : HasFPowerSeriesOnBall f p z ↑(r / 2) R : ENNReal := p.radius y : ℂ yr : edist y 0 < ↑r t : ENNReal t0 : edist y 0 < t t1 : t < ↑r ⊢ ↑t.toNNReal < ↑r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Uniform.lean
cauchy_bound
[89, 1]
[121, 92]
set wr := abs w ^ n * r⁻¹ ^ n * d
f : ℂ → ℂ c : ℂ r d : ℝ≥0 w : ℂ n : ℕ rp : r > 0 h : ∀ w ∈ closedBall c ↑r, Complex.abs (f w) ≤ ↑d ⊢ Complex.abs ((cauchyPowerSeries f c (↑r) n) fun x => w) ≤ Complex.abs w ^ n * ↑r⁻¹ ^ n * ↑d
f : ℂ → ℂ c : ℂ r d : ℝ≥0 w : ℂ n : ℕ rp : r > 0 h : ∀ w ∈ closedBall c ↑r, Complex.abs (f w) ≤ ↑d wr : ℝ := Complex.abs w ^ n * ↑r⁻¹ ^ n * ↑d ⊢ Complex.abs ((cauchyPowerSeries f c (↑r) n) fun x => w) ≤ wr
Please generate a tactic in lean4 to solve the state. STATE: f : ℂ → ℂ c : ℂ r d : ℝ≥0 w : ℂ n : ℕ rp : r > 0 h : ∀ w ∈ closedBall c ↑r, Complex.abs (f w) ≤ ↑d ⊢ Complex.abs ((cauchyPowerSeries f c (↑r) n) fun x => w) ≤ Complex.abs w ^ n * ↑r⁻¹ ^ n * ↑d TACTIC: