url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
exact differentiableAt_id.add (differentiableAt_const _)
case hf S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z ⊢ DifferentiableAt ℂ (fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hf S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z ⊢ DifferentiableAt ℂ (fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
simp only [deriv_add_const, deriv_sub_const, deriv_id'', mul_one, sub_add_cancel, Function.comp]
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z d1 : DifferentiableAt ℂ (g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) ⊢ deriv g (↑(extChartAt I a) z - ↑(extChartAt I a) a + ↑(extChartAt I a) a) * deriv (fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ deriv g (↑(extChartAt I a) z) = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z d1 : DifferentiableAt ℂ (g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) ⊢ deriv g (↑(extChartAt I a) z - ↑(extChartAt I a) a + ↑(extChartAt I a) a) * deriv (fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ deriv g (↑(extChartAt I a) z) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
simp only [sub_add_cancel, dg]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z d1 : DifferentiableAt ℂ (g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) ⊢ DifferentiableAt ℂ g (↑(extChartAt I a) z - ↑(extChartAt I a) a + ↑(extChartAt I a) a)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z d1 : DifferentiableAt ℂ (g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) ⊢ DifferentiableAt ℂ g (↑(extChartAt I a) z - ↑(extChartAt I a) a + ↑(extChartAt I a) a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
exact differentiableAt_id.add (differentiableAt_const _)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z d1 : DifferentiableAt ℂ (g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) ⊢ DifferentiableAt ℂ (fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z d1 : DifferentiableAt ℂ (g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) ⊢ DifferentiableAt ℂ (fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.isClosed_critical_not_a
[592, 1]
[600, 91]
rw [← isOpen_compl_iff]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ IsClosed {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ IsOpen {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ IsClosed {p | Critical (f p.1) p.2 ∧ p.2 ≠ a} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.isClosed_critical_not_a
[592, 1]
[600, 91]
rw [isOpen_iff_eventually]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ IsOpen {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ ∀ x ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ, ∀ᶠ (y : ℂ × S) in 𝓝 x, y ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ IsOpen {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.isClosed_critical_not_a
[592, 1]
[600, 91]
intro ⟨c, z⟩ m
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ ∀ x ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ, ∀ᶠ (y : ℂ × S) in 𝓝 x, y ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ ⊢ ∀ᶠ (y : ℂ × S) in 𝓝 (c, z), y ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ ∀ x ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ, ∀ᶠ (y : ℂ × S) in 𝓝 x, y ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.isClosed_critical_not_a
[592, 1]
[600, 91]
by_cases za : z = a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ ⊢ ∀ᶠ (y : ℂ × S) in 𝓝 (c, z), y ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ za : z = a ⊢ ∀ᶠ (y : ℂ × S) in 𝓝 (c, z), y ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ za : ¬z = a ⊢ ∀ᶠ (y : ℂ × S) in 𝓝 (c, z), y ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ ⊢ ∀ᶠ (y : ℂ × S) in 𝓝 (c, z), y ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.isClosed_critical_not_a
[592, 1]
[600, 91]
rw [za]
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ za : z = a ⊢ ∀ᶠ (y : ℂ × S) in 𝓝 (c, z), y ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ za : z = a ⊢ ∀ᶠ (y : ℂ × S) in 𝓝 (c, a), y ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ
Please generate a tactic in lean4 to solve the state. STATE: case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ za : z = a ⊢ ∀ᶠ (y : ℂ × S) in 𝓝 (c, z), y ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.isClosed_critical_not_a
[592, 1]
[600, 91]
refine (s.f_noncritical_near_a c).mp (eventually_of_forall ?_)
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ za : z = a ⊢ ∀ᶠ (y : ℂ × S) in 𝓝 (c, a), y ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ za : z = a ⊢ ∀ (x : ℂ × S), (Critical (f x.1) x.2 ↔ x.2 = a) → x ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ
Please generate a tactic in lean4 to solve the state. STATE: case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ za : z = a ⊢ ∀ᶠ (y : ℂ × S) in 𝓝 (c, a), y ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.isClosed_critical_not_a
[592, 1]
[600, 91]
intro ⟨e, w⟩ h
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ za : z = a ⊢ ∀ (x : ℂ × S), (Critical (f x.1) x.2 ↔ x.2 = a) → x ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ za : z = a e : ℂ w : S h : Critical (f (e, w).1) (e, w).2 ↔ (e, w).2 = a ⊢ (e, w) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ
Please generate a tactic in lean4 to solve the state. STATE: case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ za : z = a ⊢ ∀ (x : ℂ × S), (Critical (f x.1) x.2 ↔ x.2 = a) → x ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.isClosed_critical_not_a
[592, 1]
[600, 91]
simp only [mem_compl_iff, mem_setOf, not_and, not_not] at h ⊢
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ za : z = a e : ℂ w : S h : Critical (f (e, w).1) (e, w).2 ↔ (e, w).2 = a ⊢ (e, w) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ za : z = a e : ℂ w : S h : Critical (f e) w ↔ w = a ⊢ Critical (f e) w → w = a
Please generate a tactic in lean4 to solve the state. STATE: case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ za : z = a e : ℂ w : S h : Critical (f (e, w).1) (e, w).2 ↔ (e, w).2 = a ⊢ (e, w) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.isClosed_critical_not_a
[592, 1]
[600, 91]
exact h.1
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ za : z = a e : ℂ w : S h : Critical (f e) w ↔ w = a ⊢ Critical (f e) w → w = a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ za : z = a e : ℂ w : S h : Critical (f e) w ↔ w = a ⊢ Critical (f e) w → w = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.isClosed_critical_not_a
[592, 1]
[600, 91]
have o := isOpen_iff_eventually.mp (isOpen_noncritical s.fa)
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ za : ¬z = a ⊢ ∀ᶠ (y : ℂ × S) in 𝓝 (c, z), y ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ za : ¬z = a o : ∀ x ∈ {p | ¬Critical (f p.1) p.2}, ∀ᶠ (y : ℂ × S) in 𝓝 x, y ∈ {p | ¬Critical (f p.1) p.2} ⊢ ∀ᶠ (y : ℂ × S) in 𝓝 (c, z), y ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ za : ¬z = a ⊢ ∀ᶠ (y : ℂ × S) in 𝓝 (c, z), y ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.isClosed_critical_not_a
[592, 1]
[600, 91]
simp only [za, mem_compl_iff, mem_setOf, not_and, not_not, imp_false] at m o ⊢
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ za : ¬z = a o : ∀ x ∈ {p | ¬Critical (f p.1) p.2}, ∀ᶠ (y : ℂ × S) in 𝓝 x, y ∈ {p | ¬Critical (f p.1) p.2} ⊢ ∀ᶠ (y : ℂ × S) in 𝓝 (c, z), y ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S za : ¬z = a m : ¬Critical (f c) z o : ∀ (x : ℂ × S), ¬Critical (f x.1) x.2 → ∀ᶠ (y : ℂ × S) in 𝓝 x, ¬Critical (f y.1) y.2 ⊢ ∀ᶠ (y : ℂ × S) in 𝓝 (c, z), Critical (f y.1) y.2 → y.2 = a
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ za : ¬z = a o : ∀ x ∈ {p | ¬Critical (f p.1) p.2}, ∀ᶠ (y : ℂ × S) in 𝓝 x, y ∈ {p | ¬Critical (f p.1) p.2} ⊢ ∀ᶠ (y : ℂ × S) in 𝓝 (c, z), y ∈ {p | Critical (f p.1) p.2 ∧ p.2 ≠ a}ᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.isClosed_critical_not_a
[592, 1]
[600, 91]
refine (o (c, z) m).mp (eventually_of_forall ?_)
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S za : ¬z = a m : ¬Critical (f c) z o : ∀ (x : ℂ × S), ¬Critical (f x.1) x.2 → ∀ᶠ (y : ℂ × S) in 𝓝 x, ¬Critical (f y.1) y.2 ⊢ ∀ᶠ (y : ℂ × S) in 𝓝 (c, z), Critical (f y.1) y.2 → y.2 = a
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S za : ¬z = a m : ¬Critical (f c) z o : ∀ (x : ℂ × S), ¬Critical (f x.1) x.2 → ∀ᶠ (y : ℂ × S) in 𝓝 x, ¬Critical (f y.1) y.2 ⊢ ∀ (x : ℂ × S), ¬Critical (f x.1) x.2 → Critical (f x.1) x.2 → x.2 = a
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S za : ¬z = a m : ¬Critical (f c) z o : ∀ (x : ℂ × S), ¬Critical (f x.1) x.2 → ∀ᶠ (y : ℂ × S) in 𝓝 x, ¬Critical (f y.1) y.2 ⊢ ∀ᶠ (y : ℂ × S) in 𝓝 (c, z), Critical (f y.1) y.2 → y.2 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.isClosed_critical_not_a
[592, 1]
[600, 91]
intro ⟨e, w⟩ a b
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S za : ¬z = a m : ¬Critical (f c) z o : ∀ (x : ℂ × S), ¬Critical (f x.1) x.2 → ∀ᶠ (y : ℂ × S) in 𝓝 x, ¬Critical (f y.1) y.2 ⊢ ∀ (x : ℂ × S), ¬Critical (f x.1) x.2 → Critical (f x.1) x.2 → x.2 = a
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ c : ℂ z : S za : ¬z = a✝ m : ¬Critical (f c) z o : ∀ (x : ℂ × S), ¬Critical (f x.1) x.2 → ∀ᶠ (y : ℂ × S) in 𝓝 x, ¬Critical (f y.1) y.2 e : ℂ w : S a : ¬Critical (f (e, w).1) (e, w).2 b : Critical (f (e, w).1) (e, w).2 ⊢ (e, w).2 = a✝
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S za : ¬z = a m : ¬Critical (f c) z o : ∀ (x : ℂ × S), ¬Critical (f x.1) x.2 → ∀ᶠ (y : ℂ × S) in 𝓝 x, ¬Critical (f y.1) y.2 ⊢ ∀ (x : ℂ × S), ¬Critical (f x.1) x.2 → Critical (f x.1) x.2 → x.2 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.isClosed_critical_not_a
[592, 1]
[600, 91]
exfalso
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ c : ℂ z : S za : ¬z = a✝ m : ¬Critical (f c) z o : ∀ (x : ℂ × S), ¬Critical (f x.1) x.2 → ∀ᶠ (y : ℂ × S) in 𝓝 x, ¬Critical (f y.1) y.2 e : ℂ w : S a : ¬Critical (f (e, w).1) (e, w).2 b : Critical (f (e, w).1) (e, w).2 ⊢ (e, w).2 = a✝
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ c : ℂ z : S za : ¬z = a✝ m : ¬Critical (f c) z o : ∀ (x : ℂ × S), ¬Critical (f x.1) x.2 → ∀ᶠ (y : ℂ × S) in 𝓝 x, ¬Critical (f y.1) y.2 e : ℂ w : S a : ¬Critical (f (e, w).1) (e, w).2 b : Critical (f (e, w).1) (e, w).2 ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ c : ℂ z : S za : ¬z = a✝ m : ¬Critical (f c) z o : ∀ (x : ℂ × S), ¬Critical (f x.1) x.2 → ∀ᶠ (y : ℂ × S) in 𝓝 x, ¬Critical (f y.1) y.2 e : ℂ w : S a : ¬Critical (f (e, w).1) (e, w).2 b : Critical (f (e, w).1) (e, w).2 ⊢ (e, w).2 = a✝ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.isClosed_critical_not_a
[592, 1]
[600, 91]
exact a b
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ c : ℂ z : S za : ¬z = a✝ m : ¬Critical (f c) z o : ∀ (x : ℂ × S), ¬Critical (f x.1) x.2 → ∀ᶠ (y : ℂ × S) in 𝓝 x, ¬Critical (f y.1) y.2 e : ℂ w : S a : ¬Critical (f (e, w).1) (e, w).2 b : Critical (f (e, w).1) (e, w).2 ⊢ False
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ c : ℂ z : S za : ¬z = a✝ m : ¬Critical (f c) z o : ∀ (x : ℂ × S), ¬Critical (f x.1) x.2 → ∀ᶠ (y : ℂ × S) in 𝓝 x, ¬Critical (f y.1) y.2 e : ℂ w : S a : ¬Critical (f (e, w).1) (e, w).2 b : Critical (f (e, w).1) (e, w).2 ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNearIter_mfderiv_ne_zero
[610, 1]
[614, 69]
apply mderiv_comp_ne_zero' b0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a b0 : mfderiv I I (s.bottcherNear c) ((f c)^[n] z) ≠ 0 f0 : ¬Precritical (f c) z ⊢ mfderiv I I (s.bottcherNearIter n c) z ≠ 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a b0 : mfderiv I I (s.bottcherNear c) ((f c)^[n] z) ≠ 0 f0 : ¬Precritical (f c) z ⊢ mfderiv I I (f c)^[n] z ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a b0 : mfderiv I I (s.bottcherNear c) ((f c)^[n] z) ≠ 0 f0 : ¬Precritical (f c) z ⊢ mfderiv I I (s.bottcherNearIter n c) z ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNearIter_mfderiv_ne_zero
[610, 1]
[614, 69]
contrapose f0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a b0 : mfderiv I I (s.bottcherNear c) ((f c)^[n] z) ≠ 0 f0 : ¬Precritical (f c) z ⊢ mfderiv I I (f c)^[n] z ≠ 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a b0 : mfderiv I I (s.bottcherNear c) ((f c)^[n] z) ≠ 0 f0 : ¬mfderiv I I (f c)^[n] z ≠ 0 ⊢ ¬¬Precritical (f c) z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a b0 : mfderiv I I (s.bottcherNear c) ((f c)^[n] z) ≠ 0 f0 : ¬Precritical (f c) z ⊢ mfderiv I I (f c)^[n] z ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNearIter_mfderiv_ne_zero
[610, 1]
[614, 69]
simp only [not_not] at f0 ⊢
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a b0 : mfderiv I I (s.bottcherNear c) ((f c)^[n] z) ≠ 0 f0 : ¬mfderiv I I (f c)^[n] z ≠ 0 ⊢ ¬¬Precritical (f c) z
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a b0 : mfderiv I I (s.bottcherNear c) ((f c)^[n] z) ≠ 0 f0 : mfderiv I I (f c)^[n] z = 0 ⊢ Precritical (f c) z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a b0 : mfderiv I I (s.bottcherNear c) ((f c)^[n] z) ≠ 0 f0 : ¬mfderiv I I (f c)^[n] z ≠ 0 ⊢ ¬¬Precritical (f c) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNearIter_mfderiv_ne_zero
[610, 1]
[614, 69]
exact critical_iter s.fa.along_snd f0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a b0 : mfderiv I I (s.bottcherNear c) ((f c)^[n] z) ≠ 0 f0 : mfderiv I I (f c)^[n] z = 0 ⊢ Precritical (f c) z
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a b0 : mfderiv I I (s.bottcherNear c) ((f c)^[n] z) ≠ 0 f0 : mfderiv I I (f c)^[n] z = 0 ⊢ Precritical (f c) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.iter_nontrivial_a
[617, 1]
[621, 47]
induction' n with n h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ NontrivialHolomorphicAt (fun z => (f c)^[n] z) a
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ NontrivialHolomorphicAt (fun z => (f c)^[0] z) a case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : NontrivialHolomorphicAt (fun z => (f c)^[n] z) a ⊢ NontrivialHolomorphicAt (fun z => (f c)^[n + 1] z) a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ NontrivialHolomorphicAt (fun z => (f c)^[n] z) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.iter_nontrivial_a
[617, 1]
[621, 47]
simp only [Function.iterate_zero_apply]
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ NontrivialHolomorphicAt (fun z => (f c)^[0] z) a case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : NontrivialHolomorphicAt (fun z => (f c)^[n] z) a ⊢ NontrivialHolomorphicAt (fun z => (f c)^[n + 1] z) a
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ NontrivialHolomorphicAt (fun z => z) a case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : NontrivialHolomorphicAt (fun z => (f c)^[n] z) a ⊢ NontrivialHolomorphicAt (fun z => (f c)^[n + 1] z) a
Please generate a tactic in lean4 to solve the state. STATE: case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ NontrivialHolomorphicAt (fun z => (f c)^[0] z) a case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : NontrivialHolomorphicAt (fun z => (f c)^[n] z) a ⊢ NontrivialHolomorphicAt (fun z => (f c)^[n + 1] z) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.iter_nontrivial_a
[617, 1]
[621, 47]
apply nontrivialHolomorphicAt_id
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ NontrivialHolomorphicAt (fun z => z) a case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : NontrivialHolomorphicAt (fun z => (f c)^[n] z) a ⊢ NontrivialHolomorphicAt (fun z => (f c)^[n + 1] z) a
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : NontrivialHolomorphicAt (fun z => (f c)^[n] z) a ⊢ NontrivialHolomorphicAt (fun z => (f c)^[n + 1] z) a
Please generate a tactic in lean4 to solve the state. STATE: case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ NontrivialHolomorphicAt (fun z => z) a case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : NontrivialHolomorphicAt (fun z => (f c)^[n] z) a ⊢ NontrivialHolomorphicAt (fun z => (f c)^[n + 1] z) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.iter_nontrivial_a
[617, 1]
[621, 47]
simp only [Function.iterate_succ_apply']
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : NontrivialHolomorphicAt (fun z => (f c)^[n] z) a ⊢ NontrivialHolomorphicAt (fun z => (f c)^[n + 1] z) a
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : NontrivialHolomorphicAt (fun z => (f c)^[n] z) a ⊢ NontrivialHolomorphicAt (fun z => f c ((f c)^[n] z)) a
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : NontrivialHolomorphicAt (fun z => (f c)^[n] z) a ⊢ NontrivialHolomorphicAt (fun z => (f c)^[n + 1] z) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.iter_nontrivial_a
[617, 1]
[621, 47]
refine NontrivialHolomorphicAt.comp ?_ h
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : NontrivialHolomorphicAt (fun z => (f c)^[n] z) a ⊢ NontrivialHolomorphicAt (fun z => f c ((f c)^[n] z)) a
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : NontrivialHolomorphicAt (fun z => (f c)^[n] z) a ⊢ NontrivialHolomorphicAt (f c) ((f c)^[n] a)
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : NontrivialHolomorphicAt (fun z => (f c)^[n] z) a ⊢ NontrivialHolomorphicAt (fun z => f c ((f c)^[n] z)) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.iter_nontrivial_a
[617, 1]
[621, 47]
simp only [s.iter_a]
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : NontrivialHolomorphicAt (fun z => (f c)^[n] z) a ⊢ NontrivialHolomorphicAt (f c) ((f c)^[n] a)
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : NontrivialHolomorphicAt (fun z => (f c)^[n] z) a ⊢ NontrivialHolomorphicAt (f c) a
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : NontrivialHolomorphicAt (fun z => (f c)^[n] z) a ⊢ NontrivialHolomorphicAt (f c) ((f c)^[n] a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.iter_nontrivial_a
[617, 1]
[621, 47]
exact s.f_nontrivial c
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : NontrivialHolomorphicAt (fun z => (f c)^[n] z) a ⊢ NontrivialHolomorphicAt (f c) a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : NontrivialHolomorphicAt (fun z => (f c)^[n] z) a ⊢ NontrivialHolomorphicAt (f c) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNearIter_nontrivial_a
[624, 1]
[631, 29]
simp only [s.iter_a]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ NontrivialHolomorphicAt (s.bottcherNear c) ((f c)^[n] a)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ NontrivialHolomorphicAt (s.bottcherNear c) a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ NontrivialHolomorphicAt (s.bottcherNear c) ((f c)^[n] a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNearIter_nontrivial_a
[624, 1]
[631, 29]
exact nontrivialHolomorphicAt_of_mfderiv_ne_zero (s.bottcherNear_holomorphic _ (s.mem_near c)).along_snd (s.bottcherNear_mfderiv_ne_zero c)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ NontrivialHolomorphicAt (s.bottcherNear c) a
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ NontrivialHolomorphicAt (s.bottcherNear c) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
have e : ((univ : Set X) ×ˢ t)ᶜ = univ ×ˢ tᶜ := by apply Set.ext; intro ⟨a, x⟩; rw [mem_compl_iff] simp only [prod_mk_mem_set_prod_eq, mem_univ, mem_compl_iff, true_and_iff]
X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t ⊢ Nonseparating (univ ×ˢ t)
X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ ⊢ Nonseparating (univ ×ˢ t)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t ⊢ Nonseparating (univ ×ˢ t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
constructor
X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ ⊢ Nonseparating (univ ×ˢ t)
case dense X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ ⊢ Dense (univ ×ˢ t)ᶜ case loc X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ ⊢ ∀ (x : X × Y) (u : Set (X × Y)), x ∈ univ ×ˢ t → u ∈ 𝓝 x → ∃ c ⊆ u \ univ ×ˢ t, c ∈ 𝓝[(univ ×ˢ t)ᶜ] x ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ ⊢ Nonseparating (univ ×ˢ t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
apply Set.ext
X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t ⊢ (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ
case h X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t ⊢ ∀ (x : X × Y), x ∈ (univ ×ˢ t)ᶜ ↔ x ∈ univ ×ˢ tᶜ
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t ⊢ (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
intro ⟨a, x⟩
case h X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t ⊢ ∀ (x : X × Y), x ∈ (univ ×ˢ t)ᶜ ↔ x ∈ univ ×ˢ tᶜ
case h X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t a : X x : Y ⊢ (a, x) ∈ (univ ×ˢ t)ᶜ ↔ (a, x) ∈ univ ×ˢ tᶜ
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t ⊢ ∀ (x : X × Y), x ∈ (univ ×ˢ t)ᶜ ↔ x ∈ univ ×ˢ tᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
rw [mem_compl_iff]
case h X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t a : X x : Y ⊢ (a, x) ∈ (univ ×ˢ t)ᶜ ↔ (a, x) ∈ univ ×ˢ tᶜ
case h X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t a : X x : Y ⊢ (a, x) ∉ univ ×ˢ t ↔ (a, x) ∈ univ ×ˢ tᶜ
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t a : X x : Y ⊢ (a, x) ∈ (univ ×ˢ t)ᶜ ↔ (a, x) ∈ univ ×ˢ tᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
simp only [prod_mk_mem_set_prod_eq, mem_univ, mem_compl_iff, true_and_iff]
case h X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t a : X x : Y ⊢ (a, x) ∉ univ ×ˢ t ↔ (a, x) ∈ univ ×ˢ tᶜ
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t a : X x : Y ⊢ (a, x) ∉ univ ×ˢ t ↔ (a, x) ∈ univ ×ˢ tᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
rw [e]
case dense X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ ⊢ Dense (univ ×ˢ t)ᶜ
case dense X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ ⊢ Dense (univ ×ˢ tᶜ)
Please generate a tactic in lean4 to solve the state. STATE: case dense X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ ⊢ Dense (univ ×ˢ t)ᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
exact dense_univ.prod n.dense
case dense X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ ⊢ Dense (univ ×ˢ tᶜ)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case dense X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ ⊢ Dense (univ ×ˢ tᶜ) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
intro ⟨a, x⟩ u m un
case loc X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ ⊢ ∀ (x : X × Y) (u : Set (X × Y)), x ∈ univ ×ˢ t → u ∈ 𝓝 x → ∃ c ⊆ u \ univ ×ˢ t, c ∈ 𝓝[(univ ×ˢ t)ᶜ] x ∧ IsPreconnected c
case loc X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) m : (a, x) ∈ univ ×ˢ t un : u ∈ 𝓝 (a, x) ⊢ ∃ c ⊆ u \ univ ×ˢ t, c ∈ 𝓝[(univ ×ˢ t)ᶜ] (a, x) ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: case loc X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ ⊢ ∀ (x : X × Y) (u : Set (X × Y)), x ∈ univ ×ˢ t → u ∈ 𝓝 x → ∃ c ⊆ u \ univ ×ˢ t, c ∈ 𝓝[(univ ×ˢ t)ᶜ] x ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
simp only [mem_prod_eq, mem_univ, true_and_iff] at m
case loc X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) m : (a, x) ∈ univ ×ˢ t un : u ∈ 𝓝 (a, x) ⊢ ∃ c ⊆ u \ univ ×ˢ t, c ∈ 𝓝[(univ ×ˢ t)ᶜ] (a, x) ∧ IsPreconnected c
case loc X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t ⊢ ∃ c ⊆ u \ univ ×ˢ t, c ∈ 𝓝[(univ ×ˢ t)ᶜ] (a, x) ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: case loc X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) m : (a, x) ∈ univ ×ˢ t un : u ∈ 𝓝 (a, x) ⊢ ∃ c ⊆ u \ univ ×ˢ t, c ∈ 𝓝[(univ ×ˢ t)ᶜ] (a, x) ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
rcases mem_nhds_prod_iff.mp un with ⟨u0, n0, u1, n1, uu⟩
case loc X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t ⊢ ∃ c ⊆ u \ univ ×ˢ t, c ∈ 𝓝[(univ ×ˢ t)ᶜ] (a, x) ∧ IsPreconnected c
case loc.intro.intro.intro.intro X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u ⊢ ∃ c ⊆ u \ univ ×ˢ t, c ∈ 𝓝[(univ ×ˢ t)ᶜ] (a, x) ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: case loc X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t ⊢ ∃ c ⊆ u \ univ ×ˢ t, c ∈ 𝓝[(univ ×ˢ t)ᶜ] (a, x) ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
rcases n.loc x u1 m n1 with ⟨c1, cs1, cn1, cp1⟩
case loc.intro.intro.intro.intro X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u ⊢ ∃ c ⊆ u \ univ ×ˢ t, c ∈ 𝓝[(univ ×ˢ t)ᶜ] (a, x) ∧ IsPreconnected c
case loc.intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 ⊢ ∃ c ⊆ u \ univ ×ˢ t, c ∈ 𝓝[(univ ×ˢ t)ᶜ] (a, x) ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: case loc.intro.intro.intro.intro X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u ⊢ ∃ c ⊆ u \ univ ×ˢ t, c ∈ 𝓝[(univ ×ˢ t)ᶜ] (a, x) ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
rcases locallyConnectedSpace_iff_open_connected_subsets.mp (by infer_instance) a u0 n0 with ⟨c0, cs0, co0, cm0, cc0⟩
case loc.intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 ⊢ ∃ c ⊆ u \ univ ×ˢ t, c ∈ 𝓝[(univ ×ˢ t)ᶜ] (a, x) ∧ IsPreconnected c
case loc.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 ⊢ ∃ c ⊆ u \ univ ×ˢ t, c ∈ 𝓝[(univ ×ˢ t)ᶜ] (a, x) ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: case loc.intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 ⊢ ∃ c ⊆ u \ univ ×ˢ t, c ∈ 𝓝[(univ ×ˢ t)ᶜ] (a, x) ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
use c0 ×ˢ c1
case loc.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 ⊢ ∃ c ⊆ u \ univ ×ˢ t, c ∈ 𝓝[(univ ×ˢ t)ᶜ] (a, x) ∧ IsPreconnected c
case h X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 ⊢ c0 ×ˢ c1 ⊆ u \ univ ×ˢ t ∧ c0 ×ˢ c1 ∈ 𝓝[(univ ×ˢ t)ᶜ] (a, x) ∧ IsPreconnected (c0 ×ˢ c1)
Please generate a tactic in lean4 to solve the state. STATE: case loc.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 ⊢ ∃ c ⊆ u \ univ ×ˢ t, c ∈ 𝓝[(univ ×ˢ t)ᶜ] (a, x) ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
refine ⟨?_, ?_, ?_⟩
case h X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 ⊢ c0 ×ˢ c1 ⊆ u \ univ ×ˢ t ∧ c0 ×ˢ c1 ∈ 𝓝[(univ ×ˢ t)ᶜ] (a, x) ∧ IsPreconnected (c0 ×ˢ c1)
case h.refine_1 X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 ⊢ c0 ×ˢ c1 ⊆ u \ univ ×ˢ t case h.refine_2 X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 ⊢ c0 ×ˢ c1 ∈ 𝓝[(univ ×ˢ t)ᶜ] (a, x) case h.refine_3 X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 ⊢ IsPreconnected (c0 ×ˢ c1)
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 ⊢ c0 ×ˢ c1 ⊆ u \ univ ×ˢ t ∧ c0 ×ˢ c1 ∈ 𝓝[(univ ×ˢ t)ᶜ] (a, x) ∧ IsPreconnected (c0 ×ˢ c1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
infer_instance
X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 ⊢ LocallyConnectedSpace X
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 ⊢ LocallyConnectedSpace X TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
intro ⟨b, y⟩ m'
case h.refine_1 X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 ⊢ c0 ×ˢ c1 ⊆ u \ univ ×ˢ t
case h.refine_1 X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 b : X y : Y m' : (b, y) ∈ c0 ×ˢ c1 ⊢ (b, y) ∈ u \ univ ×ˢ t
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 ⊢ c0 ×ˢ c1 ⊆ u \ univ ×ˢ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
simp only [mem_prod_eq, mem_diff, mem_univ, true_and_iff] at m' ⊢
case h.refine_1 X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 b : X y : Y m' : (b, y) ∈ c0 ×ˢ c1 ⊢ (b, y) ∈ u \ univ ×ˢ t
case h.refine_1 X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 b : X y : Y m' : b ∈ c0 ∧ y ∈ c1 ⊢ (b, y) ∈ u ∧ y ∉ t
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 b : X y : Y m' : (b, y) ∈ c0 ×ˢ c1 ⊢ (b, y) ∈ u \ univ ×ˢ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
refine ⟨?_, (cs1 m'.2).2⟩
case h.refine_1 X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 b : X y : Y m' : b ∈ c0 ∧ y ∈ c1 ⊢ (b, y) ∈ u ∧ y ∉ t
case h.refine_1 X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 b : X y : Y m' : b ∈ c0 ∧ y ∈ c1 ⊢ (b, y) ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 b : X y : Y m' : b ∈ c0 ∧ y ∈ c1 ⊢ (b, y) ∈ u ∧ y ∉ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
apply uu
case h.refine_1 X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 b : X y : Y m' : b ∈ c0 ∧ y ∈ c1 ⊢ (b, y) ∈ u
case h.refine_1.a X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 b : X y : Y m' : b ∈ c0 ∧ y ∈ c1 ⊢ (b, y) ∈ u0 ×ˢ u1
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 b : X y : Y m' : b ∈ c0 ∧ y ∈ c1 ⊢ (b, y) ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
use cs0 m'.1, (cs1 m'.2).1
case h.refine_1.a X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 b : X y : Y m' : b ∈ c0 ∧ y ∈ c1 ⊢ (b, y) ∈ u0 ×ˢ u1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1.a X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 b : X y : Y m' : b ∈ c0 ∧ y ∈ c1 ⊢ (b, y) ∈ u0 ×ˢ u1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
rw [e, nhdsWithin_prod_eq, nhdsWithin_univ]
case h.refine_2 X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 ⊢ c0 ×ˢ c1 ∈ 𝓝[(univ ×ˢ t)ᶜ] (a, x)
case h.refine_2 X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 ⊢ c0 ×ˢ c1 ∈ 𝓝 a ×ˢ 𝓝[tᶜ] x
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_2 X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 ⊢ c0 ×ˢ c1 ∈ 𝓝[(univ ×ˢ t)ᶜ] (a, x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
exact Filter.prod_mem_prod (co0.mem_nhds cm0) cn1
case h.refine_2 X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 ⊢ c0 ×ˢ c1 ∈ 𝓝 a ×ˢ 𝓝[tᶜ] x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_2 X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 ⊢ c0 ×ˢ c1 ∈ 𝓝 a ×ˢ 𝓝[tᶜ] x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.univ_prod
[33, 1]
[48, 40]
exact cc0.isPreconnected.prod cp1
case h.refine_3 X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 ⊢ IsPreconnected (c0 ×ˢ c1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_3 X : Type inst✝⁵ : TopologicalSpace X Y : Type inst✝⁴ : TopologicalSpace Y S : Type inst✝³ : TopologicalSpace S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S inst✝ : LocallyConnectedSpace X t : Set Y n : Nonseparating t e : (univ ×ˢ t)ᶜ = univ ×ˢ tᶜ a : X x : Y u : Set (X × Y) un : u ∈ 𝓝 (a, x) m : x ∈ t u0 : Set X n0 : u0 ∈ 𝓝 a u1 : Set Y n1 : u1 ∈ 𝓝 x uu : u0 ×ˢ u1 ⊆ u c1 : Set Y cs1 : c1 ⊆ u1 \ t cn1 : c1 ∈ 𝓝[tᶜ] x cp1 : IsPreconnected c1 c0 : Set X cs0 : c0 ⊆ u0 co0 : IsOpen c0 cm0 : a ∈ c0 cc0 : IsConnected c0 ⊢ IsPreconnected (c0 ×ˢ c1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
rw [dense_iff_inter_open]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) ⊢ Dense tᶜ
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) ⊢ ∀ (U : Set S), IsOpen U → U.Nonempty → (U ∩ tᶜ).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) ⊢ Dense tᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
intro u uo ⟨z, m⟩
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) ⊢ ∀ (U : Set S), IsOpen U → U.Nonempty → (U ∩ tᶜ).Nonempty
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u ⊢ (u ∩ tᶜ).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) ⊢ ∀ (U : Set S), IsOpen U → U.Nonempty → (U ∩ tᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
by_cases zt : z ∉ t
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u ⊢ (u ∩ tᶜ).Nonempty
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∉ t ⊢ (u ∩ tᶜ).Nonempty case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : ¬z ∉ t ⊢ (u ∩ tᶜ).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u ⊢ (u ∩ tᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
use z, m, zt
case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∉ t ⊢ (u ∩ tᶜ).Nonempty case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : ¬z ∉ t ⊢ (u ∩ tᶜ).Nonempty
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : ¬z ∉ t ⊢ (u ∩ tᶜ).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∉ t ⊢ (u ∩ tᶜ).Nonempty case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : ¬z ∉ t ⊢ (u ∩ tᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
simp only [not_not] at zt
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : ¬z ∉ t ⊢ (u ∩ tᶜ).Nonempty
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t ⊢ (u ∩ tᶜ).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : ¬z ∉ t ⊢ (u ∩ tᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
generalize hv : (extChartAt I z).target ∩ (extChartAt I z).symm ⁻¹' u = v
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t ⊢ (u ∩ tᶜ).Nonempty
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v ⊢ (u ∩ tᶜ).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t ⊢ (u ∩ tᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
have vo : IsOpen v := by rw [← hv] exact (continuousOn_extChartAt_symm I z).isOpen_inter_preimage (isOpen_extChartAt_target I z) uo
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v ⊢ (u ∩ tᶜ).Nonempty
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v ⊢ (u ∩ tᶜ).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v ⊢ (u ∩ tᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
have vn : v.Nonempty := by use extChartAt I z z simp only [mem_inter_iff, mem_extChartAt_target, true_and_iff, mem_preimage, PartialEquiv.left_inv _ (mem_extChartAt_source I z), m, ← hv]
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v ⊢ (u ∩ tᶜ).Nonempty
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v vn : v.Nonempty ⊢ (u ∩ tᶜ).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v ⊢ (u ∩ tᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
rcases dense_iff_inter_open.mp (h z).dense v vo vn with ⟨y, m⟩
case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v vn : v.Nonempty ⊢ (u ∩ tᶜ).Nonempty
case neg.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m✝ : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v vn : v.Nonempty y : ℂ m : y ∈ v ∩ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ ⊢ (u ∩ tᶜ).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v vn : v.Nonempty ⊢ (u ∩ tᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
use(extChartAt I z).symm y
case neg.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m✝ : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v vn : v.Nonempty y : ℂ m : y ∈ v ∩ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ ⊢ (u ∩ tᶜ).Nonempty
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m✝ : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v vn : v.Nonempty y : ℂ m : y ∈ v ∩ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ ⊢ ↑(extChartAt I z).symm y ∈ u ∩ tᶜ
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m✝ : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v vn : v.Nonempty y : ℂ m : y ∈ v ∩ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ ⊢ (u ∩ tᶜ).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
simp only [mem_inter_iff, mem_preimage, mem_compl_iff, not_and, ← hv] at m
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m✝ : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v vn : v.Nonempty y : ℂ m : y ∈ v ∩ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ ⊢ ↑(extChartAt I z).symm y ∈ u ∩ tᶜ
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m✝ : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v vn : v.Nonempty y : ℂ m : (y ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm y ∈ u) ∧ (y ∈ (extChartAt I z).target → ↑(extChartAt I z).symm y ∉ t) ⊢ ↑(extChartAt I z).symm y ∈ u ∩ tᶜ
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m✝ : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v vn : v.Nonempty y : ℂ m : y ∈ v ∩ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ ⊢ ↑(extChartAt I z).symm y ∈ u ∩ tᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
rcases m with ⟨⟨ym, yu⟩, yt⟩
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m✝ : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v vn : v.Nonempty y : ℂ m : (y ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm y ∈ u) ∧ (y ∈ (extChartAt I z).target → ↑(extChartAt I z).symm y ∉ t) ⊢ ↑(extChartAt I z).symm y ∈ u ∩ tᶜ
case h.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v vn : v.Nonempty y : ℂ yt : y ∈ (extChartAt I z).target → ↑(extChartAt I z).symm y ∉ t ym : y ∈ (extChartAt I z).target yu : ↑(extChartAt I z).symm y ∈ u ⊢ ↑(extChartAt I z).symm y ∈ u ∩ tᶜ
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m✝ : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v vn : v.Nonempty y : ℂ m : (y ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm y ∈ u) ∧ (y ∈ (extChartAt I z).target → ↑(extChartAt I z).symm y ∉ t) ⊢ ↑(extChartAt I z).symm y ∈ u ∩ tᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
simp only [mem_inter_iff, ym, yu, true_and_iff, mem_compl_iff]
case h.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v vn : v.Nonempty y : ℂ yt : y ∈ (extChartAt I z).target → ↑(extChartAt I z).symm y ∉ t ym : y ∈ (extChartAt I z).target yu : ↑(extChartAt I z).symm y ∈ u ⊢ ↑(extChartAt I z).symm y ∈ u ∩ tᶜ
case h.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v vn : v.Nonempty y : ℂ yt : y ∈ (extChartAt I z).target → ↑(extChartAt I z).symm y ∉ t ym : y ∈ (extChartAt I z).target yu : ↑(extChartAt I z).symm y ∈ u ⊢ ↑(extChartAt I z).symm y ∉ t
Please generate a tactic in lean4 to solve the state. STATE: case h.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v vn : v.Nonempty y : ℂ yt : y ∈ (extChartAt I z).target → ↑(extChartAt I z).symm y ∉ t ym : y ∈ (extChartAt I z).target yu : ↑(extChartAt I z).symm y ∈ u ⊢ ↑(extChartAt I z).symm y ∈ u ∩ tᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
exact yt ym
case h.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v vn : v.Nonempty y : ℂ yt : y ∈ (extChartAt I z).target → ↑(extChartAt I z).symm y ∉ t ym : y ∈ (extChartAt I z).target yu : ↑(extChartAt I z).symm y ∈ u ⊢ ↑(extChartAt I z).symm y ∉ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v vn : v.Nonempty y : ℂ yt : y ∈ (extChartAt I z).target → ↑(extChartAt I z).symm y ∉ t ym : y ∈ (extChartAt I z).target yu : ↑(extChartAt I z).symm y ∈ u ⊢ ↑(extChartAt I z).symm y ∉ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
rw [← hv]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v ⊢ IsOpen v
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v ⊢ IsOpen ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v ⊢ IsOpen v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
exact (continuousOn_extChartAt_symm I z).isOpen_inter_preimage (isOpen_extChartAt_target I z) uo
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v ⊢ IsOpen ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v ⊢ IsOpen ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
use extChartAt I z z
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v ⊢ v.Nonempty
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v ⊢ ↑(extChartAt I z) z ∈ v
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v ⊢ v.Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
simp only [mem_inter_iff, mem_extChartAt_target, true_and_iff, mem_preimage, PartialEquiv.left_inv _ (mem_extChartAt_source I z), m, ← hv]
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v ⊢ ↑(extChartAt I z) z ∈ v
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) u : Set S uo : IsOpen u z : S m : z ∈ u zt : z ∈ t v : Set ℂ hv : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u = v vo : IsOpen v ⊢ ↑(extChartAt I z) z ∈ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
intro z u zt un
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) ⊢ ∀ (x : S) (u : Set S), x ∈ t → u ∈ 𝓝 x → ∃ c ⊆ u \ t, c ∈ 𝓝[tᶜ] x ∧ IsPreconnected c
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z ⊢ ∃ c ⊆ u \ t, c ∈ 𝓝[tᶜ] z ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) ⊢ ∀ (x : S) (u : Set S), x ∈ t → u ∈ 𝓝 x → ∃ c ⊆ u \ t, c ∈ 𝓝[tᶜ] x ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
have m : extChartAt I z z ∈ (extChartAt I z).target ∩ (extChartAt I z).symm ⁻¹' t := by simp only [mem_inter_iff, mem_extChartAt_target I z, true_and_iff, mem_preimage, PartialEquiv.left_inv _ (mem_extChartAt_source I z), zt]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z ⊢ ∃ c ⊆ u \ t, c ∈ 𝓝[tᶜ] z ∧ IsPreconnected c
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t ⊢ ∃ c ⊆ u \ t, c ∈ 𝓝[tᶜ] z ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z ⊢ ∃ c ⊆ u \ t, c ∈ 𝓝[tᶜ] z ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
have n : (extChartAt I z).target ∩ (extChartAt I z).symm ⁻¹' u ∈ 𝓝 (extChartAt I z z) := by apply Filter.inter_mem exact (isOpen_extChartAt_target I z).mem_nhds (mem_extChartAt_target I z) exact extChartAt_preimage_mem_nhds _ un
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t ⊢ ∃ c ⊆ u \ t, c ∈ 𝓝[tᶜ] z ∧ IsPreconnected c
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) ⊢ ∃ c ⊆ u \ t, c ∈ 𝓝[tᶜ] z ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t ⊢ ∃ c ⊆ u \ t, c ∈ 𝓝[tᶜ] z ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
rcases (h z).loc _ _ m n with ⟨c, cs, cn, cp⟩
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) ⊢ ∃ c ⊆ u \ t, c ∈ 𝓝[tᶜ] z ∧ IsPreconnected c
case intro.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c ⊢ ∃ c ⊆ u \ t, c ∈ 𝓝[tᶜ] z ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) ⊢ ∃ c ⊆ u \ t, c ∈ 𝓝[tᶜ] z ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
use(extChartAt I z).source ∩ extChartAt I z ⁻¹' c
case intro.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c e : (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c = ↑(extChartAt I z).symm '' c ⊢ ∃ c ⊆ u \ t, c ∈ 𝓝[tᶜ] z ∧ IsPreconnected c
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c e : (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c = ↑(extChartAt I z).symm '' c ⊢ (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c ⊆ u \ t ∧ (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c ∈ 𝓝[tᶜ] z ∧ IsPreconnected ((extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c e : (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c = ↑(extChartAt I z).symm '' c ⊢ ∃ c ⊆ u \ t, c ∈ 𝓝[tᶜ] z ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
refine ⟨?_, ?_, ?_⟩
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c e : (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c = ↑(extChartAt I z).symm '' c ⊢ (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c ⊆ u \ t ∧ (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c ∈ 𝓝[tᶜ] z ∧ IsPreconnected ((extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c)
case h.refine_1 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c e : (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c = ↑(extChartAt I z).symm '' c ⊢ (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c ⊆ u \ t case h.refine_2 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c e : (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c = ↑(extChartAt I z).symm '' c ⊢ (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c ∈ 𝓝[tᶜ] z case h.refine_3 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c e : (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c = ↑(extChartAt I z).symm '' c ⊢ IsPreconnected ((extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c)
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c e : (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c = ↑(extChartAt I z).symm '' c ⊢ (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c ⊆ u \ t ∧ (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c ∈ 𝓝[tᶜ] z ∧ IsPreconnected ((extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
simp only [mem_inter_iff, mem_extChartAt_target I z, true_and_iff, mem_preimage, PartialEquiv.left_inv _ (mem_extChartAt_source I z), zt]
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z ⊢ ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z ⊢ ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
apply Filter.inter_mem
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t ⊢ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z)
case hs X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t ⊢ (extChartAt I z).target ∈ 𝓝 (↑(extChartAt I z) z) case ht X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t ⊢ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t ⊢ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
exact (isOpen_extChartAt_target I z).mem_nhds (mem_extChartAt_target I z)
case hs X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t ⊢ (extChartAt I z).target ∈ 𝓝 (↑(extChartAt I z) z) case ht X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t ⊢ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z)
case ht X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t ⊢ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z)
Please generate a tactic in lean4 to solve the state. STATE: case hs X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t ⊢ (extChartAt I z).target ∈ 𝓝 (↑(extChartAt I z) z) case ht X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t ⊢ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
exact extChartAt_preimage_mem_nhds _ un
case ht X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t ⊢ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case ht X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t ⊢ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
apply Set.ext
X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c ⊢ (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c = ↑(extChartAt I z).symm '' c
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c ⊢ ∀ (x : S), x ∈ (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c ↔ x ∈ ↑(extChartAt I z).symm '' c
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c ⊢ (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c = ↑(extChartAt I z).symm '' c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
intro x
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c ⊢ ∀ (x : S), x ∈ (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c ↔ x ∈ ↑(extChartAt I z).symm '' c
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S ⊢ x ∈ (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c ↔ x ∈ ↑(extChartAt I z).symm '' c
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c ⊢ ∀ (x : S), x ∈ (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c ↔ x ∈ ↑(extChartAt I z).symm '' c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
simp only [mem_inter_iff, mem_preimage, mem_image]
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S ⊢ x ∈ (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c ↔ x ∈ ↑(extChartAt I z).symm '' c
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S ⊢ x ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) x ∈ c ↔ ∃ x_1 ∈ c, ↑(extChartAt I z).symm x_1 = x
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S ⊢ x ∈ (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c ↔ x ∈ ↑(extChartAt I z).symm '' c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
constructor
case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S ⊢ x ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) x ∈ c ↔ ∃ x_1 ∈ c, ↑(extChartAt I z).symm x_1 = x
case h.mp X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S ⊢ x ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) x ∈ c → ∃ x_1 ∈ c, ↑(extChartAt I z).symm x_1 = x case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S ⊢ (∃ x_1 ∈ c, ↑(extChartAt I z).symm x_1 = x) → x ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) x ∈ c
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S ⊢ x ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) x ∈ c ↔ ∃ x_1 ∈ c, ↑(extChartAt I z).symm x_1 = x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
intro ⟨xz, xc⟩
case h.mp X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S ⊢ x ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) x ∈ c → ∃ x_1 ∈ c, ↑(extChartAt I z).symm x_1 = x
case h.mp X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S xz : x ∈ (extChartAt I z).source xc : ↑(extChartAt I z) x ∈ c ⊢ ∃ x_1 ∈ c, ↑(extChartAt I z).symm x_1 = x
Please generate a tactic in lean4 to solve the state. STATE: case h.mp X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S ⊢ x ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) x ∈ c → ∃ x_1 ∈ c, ↑(extChartAt I z).symm x_1 = x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
refine ⟨_, xc, ?_⟩
case h.mp X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S xz : x ∈ (extChartAt I z).source xc : ↑(extChartAt I z) x ∈ c ⊢ ∃ x_1 ∈ c, ↑(extChartAt I z).symm x_1 = x
case h.mp X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S xz : x ∈ (extChartAt I z).source xc : ↑(extChartAt I z) x ∈ c ⊢ ↑(extChartAt I z).symm (↑(extChartAt I z) x) = x
Please generate a tactic in lean4 to solve the state. STATE: case h.mp X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S xz : x ∈ (extChartAt I z).source xc : ↑(extChartAt I z) x ∈ c ⊢ ∃ x_1 ∈ c, ↑(extChartAt I z).symm x_1 = x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
simp only [PartialEquiv.left_inv _ xz]
case h.mp X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S xz : x ∈ (extChartAt I z).source xc : ↑(extChartAt I z) x ∈ c ⊢ ↑(extChartAt I z).symm (↑(extChartAt I z) x) = x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.mp X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S xz : x ∈ (extChartAt I z).source xc : ↑(extChartAt I z) x ∈ c ⊢ ↑(extChartAt I z).symm (↑(extChartAt I z) x) = x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
intro ⟨y, yc, yx⟩
case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S ⊢ (∃ x_1 ∈ c, ↑(extChartAt I z).symm x_1 = x) → x ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) x ∈ c
case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S y : ℂ yc : y ∈ c yx : ↑(extChartAt I z).symm y = x ⊢ x ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) x ∈ c
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S ⊢ (∃ x_1 ∈ c, ↑(extChartAt I z).symm x_1 = x) → x ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) x ∈ c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
rw [← yx]
case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S y : ℂ yc : y ∈ c yx : ↑(extChartAt I z).symm y = x ⊢ x ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) x ∈ c
case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S y : ℂ yc : y ∈ c yx : ↑(extChartAt I z).symm y = x ⊢ ↑(extChartAt I z).symm y ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) (↑(extChartAt I z).symm y) ∈ c
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S y : ℂ yc : y ∈ c yx : ↑(extChartAt I z).symm y = x ⊢ x ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) x ∈ c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
have xc := cs yc
case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S y : ℂ yc : y ∈ c yx : ↑(extChartAt I z).symm y = x ⊢ ↑(extChartAt I z).symm y ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) (↑(extChartAt I z).symm y) ∈ c
case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S y : ℂ yc : y ∈ c yx : ↑(extChartAt I z).symm y = x xc : y ∈ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) ⊢ ↑(extChartAt I z).symm y ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) (↑(extChartAt I z).symm y) ∈ c
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S y : ℂ yc : y ∈ c yx : ↑(extChartAt I z).symm y = x ⊢ ↑(extChartAt I z).symm y ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) (↑(extChartAt I z).symm y) ∈ c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
simp only [mem_diff, mem_inter_iff, mem_preimage] at xc
case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S y : ℂ yc : y ∈ c yx : ↑(extChartAt I z).symm y = x xc : y ∈ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) ⊢ ↑(extChartAt I z).symm y ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) (↑(extChartAt I z).symm y) ∈ c
case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S y : ℂ yc : y ∈ c yx : ↑(extChartAt I z).symm y = x xc : (y ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm y ∈ u) ∧ ¬(y ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm y ∈ t) ⊢ ↑(extChartAt I z).symm y ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) (↑(extChartAt I z).symm y) ∈ c
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S y : ℂ yc : y ∈ c yx : ↑(extChartAt I z).symm y = x xc : y ∈ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) ⊢ ↑(extChartAt I z).symm y ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) (↑(extChartAt I z).symm y) ∈ c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
have yz := xc.1.1
case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S y : ℂ yc : y ∈ c yx : ↑(extChartAt I z).symm y = x xc : (y ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm y ∈ u) ∧ ¬(y ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm y ∈ t) ⊢ ↑(extChartAt I z).symm y ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) (↑(extChartAt I z).symm y) ∈ c
case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S y : ℂ yc : y ∈ c yx : ↑(extChartAt I z).symm y = x xc : (y ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm y ∈ u) ∧ ¬(y ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm y ∈ t) yz : y ∈ (extChartAt I z).target ⊢ ↑(extChartAt I z).symm y ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) (↑(extChartAt I z).symm y) ∈ c
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S y : ℂ yc : y ∈ c yx : ↑(extChartAt I z).symm y = x xc : (y ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm y ∈ u) ∧ ¬(y ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm y ∈ t) ⊢ ↑(extChartAt I z).symm y ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) (↑(extChartAt I z).symm y) ∈ c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
use PartialEquiv.map_target _ yz
case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S y : ℂ yc : y ∈ c yx : ↑(extChartAt I z).symm y = x xc : (y ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm y ∈ u) ∧ ¬(y ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm y ∈ t) yz : y ∈ (extChartAt I z).target ⊢ ↑(extChartAt I z).symm y ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) (↑(extChartAt I z).symm y) ∈ c
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S y : ℂ yc : y ∈ c yx : ↑(extChartAt I z).symm y = x xc : (y ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm y ∈ u) ∧ ¬(y ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm y ∈ t) yz : y ∈ (extChartAt I z).target ⊢ ↑(extChartAt I z) (↑(extChartAt I z).symm y) ∈ c
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S y : ℂ yc : y ∈ c yx : ↑(extChartAt I z).symm y = x xc : (y ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm y ∈ u) ∧ ¬(y ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm y ∈ t) yz : y ∈ (extChartAt I z).target ⊢ ↑(extChartAt I z).symm y ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) (↑(extChartAt I z).symm y) ∈ c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
simp only [PartialEquiv.right_inv _ yz, yc]
case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S y : ℂ yc : y ∈ c yx : ↑(extChartAt I z).symm y = x xc : (y ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm y ∈ u) ∧ ¬(y ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm y ∈ t) yz : y ∈ (extChartAt I z).target ⊢ ↑(extChartAt I z) (↑(extChartAt I z).symm y) ∈ c
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c x : S y : ℂ yc : y ∈ c yx : ↑(extChartAt I z).symm y = x xc : (y ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm y ∈ u) ∧ ¬(y ∈ (extChartAt I z).target ∧ ↑(extChartAt I z).symm y ∈ t) yz : y ∈ (extChartAt I z).target ⊢ ↑(extChartAt I z) (↑(extChartAt I z).symm y) ∈ c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
intro x xm
case h.refine_1 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c e : (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c = ↑(extChartAt I z).symm '' c ⊢ (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c ⊆ u \ t
case h.refine_1 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c e : (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c = ↑(extChartAt I z).symm '' c x : S xm : x ∈ (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c ⊢ x ∈ u \ t
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c e : (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c = ↑(extChartAt I z).symm '' c ⊢ (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c ⊆ u \ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nonseparating.lean
Nonseparating.complexManifold
[51, 1]
[110, 89]
simp only [mem_inter_iff, mem_preimage] at xm
case h.refine_1 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c e : (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c = ↑(extChartAt I z).symm '' c x : S xm : x ∈ (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c ⊢ x ∈ u \ t
case h.refine_1 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c e : (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c = ↑(extChartAt I z).symm '' c x : S xm : x ∈ (extChartAt I z).source ∧ ↑(extChartAt I z) x ∈ c ⊢ x ∈ u \ t
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 X : Type inst✝⁴ : TopologicalSpace X Y : Type inst✝³ : TopologicalSpace Y S : Type inst✝² : TopologicalSpace S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S t : Set S h : ∀ (z : S), Nonseparating ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) z : S u : Set S zt : z ∈ t un : u ∈ 𝓝 z m : ↑(extChartAt I z) z ∈ (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t n : (extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u ∈ 𝓝 (↑(extChartAt I z) z) c : Set ℂ cs : c ⊆ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' u) \ ((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t) cn : c ∈ 𝓝[((extChartAt I z).target ∩ ↑(extChartAt I z).symm ⁻¹' t)ᶜ] ↑(extChartAt I z) z cp : IsPreconnected c e : (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c = ↑(extChartAt I z).symm '' c x : S xm : x ∈ (extChartAt I z).source ∩ ↑(extChartAt I z) ⁻¹' c ⊢ x ∈ u \ t TACTIC: