url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.basin_iff_attracts
[419, 1]
[423, 29]
exact ⟨n, h _ (le_refl _)⟩
case mpr.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a h✝ : Attracts (f c) z a n : ℕ h : ∀ (n_1 : ℕ), n ≤ n_1 → (f c)^[n_1] z ∈ {z | (c, z) ∈ s.near} ⊢ (c, z) ∈ s.basin
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a h✝ : Attracts (f c) z a n : ℕ h : ∀ (n_1 : ℕ), n ≤ n_1 → (f c)^[n_1] z ∈ {z | (c, z) ∈ s.near} ⊢ (c, z) ∈ s.basin TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fp1
[433, 1]
[436, 52]
induction' n with n h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : ℂ × S ⊢ (s.fp^[n] p).1 = p.1
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S ⊢ (s.fp^[0] p).1 = p.1 case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a p : ℂ × S n : ℕ h : (s.fp^[n] p).1 = p.1 ⊢ (s.fp^[n + 1] p).1 = p.1
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : ℂ × S ⊢ (s.fp^[n] p).1 = p.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fp1
[433, 1]
[436, 52]
simp only [Function.iterate_zero_apply]
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S ⊢ (s.fp^[0] p).1 = p.1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S ⊢ (s.fp^[0] p).1 = p.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fp1
[433, 1]
[436, 52]
simp only [Function.iterate_succ_apply', h, fp]
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a p : ℂ × S n : ℕ h : (s.fp^[n] p).1 = p.1 ⊢ (s.fp^[n + 1] p).1 = p.1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a p : ℂ × S n : ℕ h : (s.fp^[n] p).1 = p.1 ⊢ (s.fp^[n + 1] p).1 = p.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fp2
[438, 1]
[442, 55]
induction' n with n h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : ℂ × S ⊢ (s.fp^[n] p).2 = (f p.1)^[n] p.2
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S ⊢ (s.fp^[0] p).2 = (f p.1)^[0] p.2 case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a p : ℂ × S n : ℕ h : (s.fp^[n] p).2 = (f p.1)^[n] p.2 ⊢ (s.fp^[n + 1] p).2 = (f p.1)^[n + 1] p.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : ℂ × S ⊢ (s.fp^[n] p).2 = (f p.1)^[n] p.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fp2
[438, 1]
[442, 55]
simp only [Function.iterate_zero_apply]
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S ⊢ (s.fp^[0] p).2 = (f p.1)^[0] p.2
no goals
Please generate a tactic in lean4 to solve the state. STATE: case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S ⊢ (s.fp^[0] p).2 = (f p.1)^[0] p.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fp2
[438, 1]
[442, 55]
have c := s.fp1 n p
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a p : ℂ × S n : ℕ h : (s.fp^[n] p).2 = (f p.1)^[n] p.2 ⊢ (s.fp^[n + 1] p).2 = (f p.1)^[n + 1] p.2
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a p : ℂ × S n : ℕ h : (s.fp^[n] p).2 = (f p.1)^[n] p.2 c : (s.fp^[n] p).1 = p.1 ⊢ (s.fp^[n + 1] p).2 = (f p.1)^[n + 1] p.2
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a p : ℂ × S n : ℕ h : (s.fp^[n] p).2 = (f p.1)^[n] p.2 ⊢ (s.fp^[n + 1] p).2 = (f p.1)^[n + 1] p.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fp2
[438, 1]
[442, 55]
simp only [Function.iterate_succ_apply', c, h, fp]
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a p : ℂ × S n : ℕ h : (s.fp^[n] p).2 = (f p.1)^[n] p.2 c : (s.fp^[n] p).1 = p.1 ⊢ (s.fp^[n + 1] p).2 = (f p.1)^[n + 1] p.2
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a p : ℂ × S n : ℕ h : (s.fp^[n] p).2 = (f p.1)^[n] p.2 c : (s.fp^[n] p).1 = p.1 ⊢ (s.fp^[n + 1] p).2 = (f p.1)^[n + 1] p.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_holomorphic
[453, 1]
[468, 23]
intro p m
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ HolomorphicOn (I.prod I) I (uncurry s.bottcherNear) s.near
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near ⊢ HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) p
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ HolomorphicOn (I.prod I) I (uncurry s.bottcherNear) s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_holomorphic
[453, 1]
[468, 23]
have e : uncurry s.bottcherNear = (fun p : ℂ × ℂ ↦ _root_.bottcherNear (s.fl p.1) d p.2) ∘ fun p : ℂ × S ↦ (p.1, extChartAt I a p.2 - extChartAt I a a) := rfl
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near ⊢ HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) p
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near e : uncurry s.bottcherNear = (fun p => _root_.bottcherNear (s.fl p.1) d p.2) ∘ fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ⊢ HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) p
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near ⊢ HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_holomorphic
[453, 1]
[468, 23]
rw [e]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near e : uncurry s.bottcherNear = (fun p => _root_.bottcherNear (s.fl p.1) d p.2) ∘ fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ⊢ HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) p
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near e : uncurry s.bottcherNear = (fun p => _root_.bottcherNear (s.fl p.1) d p.2) ∘ fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ⊢ HolomorphicAt (I.prod I) I ((fun p => _root_.bottcherNear (s.fl p.1) d p.2) ∘ fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) p
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near e : uncurry s.bottcherNear = (fun p => _root_.bottcherNear (s.fl p.1) d p.2) ∘ fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ⊢ HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_holomorphic
[453, 1]
[468, 23]
clear e
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near e : uncurry s.bottcherNear = (fun p => _root_.bottcherNear (s.fl p.1) d p.2) ∘ fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ⊢ HolomorphicAt (I.prod I) I ((fun p => _root_.bottcherNear (s.fl p.1) d p.2) ∘ fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) p
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near ⊢ HolomorphicAt (I.prod I) I ((fun p => _root_.bottcherNear (s.fl p.1) d p.2) ∘ fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) p
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near e : uncurry s.bottcherNear = (fun p => _root_.bottcherNear (s.fl p.1) d p.2) ∘ fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ⊢ HolomorphicAt (I.prod I) I ((fun p => _root_.bottcherNear (s.fl p.1) d p.2) ∘ fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_holomorphic
[453, 1]
[468, 23]
have h1 := (bottcherNear_analytic s.superNearC _ (s.mem_near_to_near' m)).holomorphicAt II I
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near ⊢ HolomorphicAt (I.prod I) I ((fun p => _root_.bottcherNear (s.fl p.1) d p.2) ∘ fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) p
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h1 : HolomorphicAt (I.prod I) I (fun p => _root_.bottcherNear (s.fl p.1) d p.2) (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ⊢ HolomorphicAt (I.prod I) I ((fun p => _root_.bottcherNear (s.fl p.1) d p.2) ∘ fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) p
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near ⊢ HolomorphicAt (I.prod I) I ((fun p => _root_.bottcherNear (s.fl p.1) d p.2) ∘ fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_holomorphic
[453, 1]
[468, 23]
have h2 : HolomorphicAt II II (fun p : ℂ × S ↦ (p.1, extChartAt I a p.2 - extChartAt I a a)) p := by apply holomorphicAt_fst.prod; apply HolomorphicAt.sub exact (HolomorphicAt.extChartAt (s.near_subset_chart m)).comp holomorphicAt_snd exact holomorphicAt_const
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h1 : HolomorphicAt (I.prod I) I (fun p => _root_.bottcherNear (s.fl p.1) d p.2) (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ⊢ HolomorphicAt (I.prod I) I ((fun p => _root_.bottcherNear (s.fl p.1) d p.2) ∘ fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) p
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h1 : HolomorphicAt (I.prod I) I (fun p => _root_.bottcherNear (s.fl p.1) d p.2) (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) h2 : HolomorphicAt (I.prod I) (I.prod I) (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) p ⊢ HolomorphicAt (I.prod I) I ((fun p => _root_.bottcherNear (s.fl p.1) d p.2) ∘ fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) p
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h1 : HolomorphicAt (I.prod I) I (fun p => _root_.bottcherNear (s.fl p.1) d p.2) (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ⊢ HolomorphicAt (I.prod I) I ((fun p => _root_.bottcherNear (s.fl p.1) d p.2) ∘ fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_holomorphic
[453, 1]
[468, 23]
refine h1.comp_of_eq h2 ?_
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h1 : HolomorphicAt (I.prod I) I (fun p => _root_.bottcherNear (s.fl p.1) d p.2) (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) h2 : HolomorphicAt (I.prod I) (I.prod I) (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) p ⊢ HolomorphicAt (I.prod I) I ((fun p => _root_.bottcherNear (s.fl p.1) d p.2) ∘ fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) p
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h1 : HolomorphicAt (I.prod I) I (fun p => _root_.bottcherNear (s.fl p.1) d p.2) (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) h2 : HolomorphicAt (I.prod I) (I.prod I) (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) p ⊢ (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) p = (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h1 : HolomorphicAt (I.prod I) I (fun p => _root_.bottcherNear (s.fl p.1) d p.2) (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) h2 : HolomorphicAt (I.prod I) (I.prod I) (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) p ⊢ HolomorphicAt (I.prod I) I ((fun p => _root_.bottcherNear (s.fl p.1) d p.2) ∘ fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_holomorphic
[453, 1]
[468, 23]
simp only [sub_self]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h1 : HolomorphicAt (I.prod I) I (fun p => _root_.bottcherNear (s.fl p.1) d p.2) (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) h2 : HolomorphicAt (I.prod I) (I.prod I) (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) p ⊢ (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) p = (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h1 : HolomorphicAt (I.prod I) I (fun p => _root_.bottcherNear (s.fl p.1) d p.2) (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) h2 : HolomorphicAt (I.prod I) (I.prod I) (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) p ⊢ (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) p = (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_holomorphic
[453, 1]
[468, 23]
apply holomorphicAt_fst.prod
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h1 : HolomorphicAt (I.prod I) I (fun p => _root_.bottcherNear (s.fl p.1) d p.2) (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ⊢ HolomorphicAt (I.prod I) (I.prod I) (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) p
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h1 : HolomorphicAt (I.prod I) I (fun p => _root_.bottcherNear (s.fl p.1) d p.2) (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ⊢ HolomorphicAt (I.prod I) I (fun x => ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a) p
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h1 : HolomorphicAt (I.prod I) I (fun p => _root_.bottcherNear (s.fl p.1) d p.2) (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ⊢ HolomorphicAt (I.prod I) (I.prod I) (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_holomorphic
[453, 1]
[468, 23]
apply HolomorphicAt.sub
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h1 : HolomorphicAt (I.prod I) I (fun p => _root_.bottcherNear (s.fl p.1) d p.2) (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ⊢ HolomorphicAt (I.prod I) I (fun x => ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a) p
case fa S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h1 : HolomorphicAt (I.prod I) I (fun p => _root_.bottcherNear (s.fl p.1) d p.2) (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ⊢ HolomorphicAt (I.prod I) I (fun x => ↑(extChartAt I a) x.2) p case ga S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h1 : HolomorphicAt (I.prod I) I (fun p => _root_.bottcherNear (s.fl p.1) d p.2) (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ⊢ HolomorphicAt (I.prod I) I (fun x => ↑(extChartAt I a) a) p
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h1 : HolomorphicAt (I.prod I) I (fun p => _root_.bottcherNear (s.fl p.1) d p.2) (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ⊢ HolomorphicAt (I.prod I) I (fun x => ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_holomorphic
[453, 1]
[468, 23]
exact (HolomorphicAt.extChartAt (s.near_subset_chart m)).comp holomorphicAt_snd
case fa S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h1 : HolomorphicAt (I.prod I) I (fun p => _root_.bottcherNear (s.fl p.1) d p.2) (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ⊢ HolomorphicAt (I.prod I) I (fun x => ↑(extChartAt I a) x.2) p case ga S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h1 : HolomorphicAt (I.prod I) I (fun p => _root_.bottcherNear (s.fl p.1) d p.2) (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ⊢ HolomorphicAt (I.prod I) I (fun x => ↑(extChartAt I a) a) p
case ga S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h1 : HolomorphicAt (I.prod I) I (fun p => _root_.bottcherNear (s.fl p.1) d p.2) (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ⊢ HolomorphicAt (I.prod I) I (fun x => ↑(extChartAt I a) a) p
Please generate a tactic in lean4 to solve the state. STATE: case fa S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h1 : HolomorphicAt (I.prod I) I (fun p => _root_.bottcherNear (s.fl p.1) d p.2) (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ⊢ HolomorphicAt (I.prod I) I (fun x => ↑(extChartAt I a) x.2) p case ga S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h1 : HolomorphicAt (I.prod I) I (fun p => _root_.bottcherNear (s.fl p.1) d p.2) (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ⊢ HolomorphicAt (I.prod I) I (fun x => ↑(extChartAt I a) a) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_holomorphic
[453, 1]
[468, 23]
exact holomorphicAt_const
case ga S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h1 : HolomorphicAt (I.prod I) I (fun p => _root_.bottcherNear (s.fl p.1) d p.2) (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ⊢ HolomorphicAt (I.prod I) I (fun x => ↑(extChartAt I a) a) p
no goals
Please generate a tactic in lean4 to solve the state. STATE: case ga S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h1 : HolomorphicAt (I.prod I) I (fun p => _root_.bottcherNear (s.fl p.1) d p.2) (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ⊢ HolomorphicAt (I.prod I) I (fun x => ↑(extChartAt I a) a) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNearIter_holomorphic
[474, 1]
[478, 10]
refine (s.bottcherNear_holomorphic _ ?_).comp₂ holomorphicAt_fst (s.holomorphic_iter _)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near ⊢ HolomorphicAt (I.prod I) I (uncurry (s.bottcherNearIter n)) (c, z)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near ⊢ ((c, z).1, (f (c, z).1)^[n] (c, z).2) ∈ s.near
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near ⊢ HolomorphicAt (I.prod I) I (uncurry (s.bottcherNearIter n)) (c, z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNearIter_holomorphic
[474, 1]
[478, 10]
exact r
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near ⊢ ((c, z).1, (f (c, z).1)^[n] (c, z).2) ∈ s.near
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near ⊢ ((c, z).1, (f (c, z).1)^[n] (c, z).2) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_eqn
[481, 1]
[488, 92]
simp only [Super.bottcherNear]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ s.bottcherNear c (f c z) = s.bottcherNear c z ^ d
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) = _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) ^ d
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ s.bottcherNear c (f c z) = s.bottcherNear c z ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_eqn
[481, 1]
[488, 92]
have e : extChartAt I a (f c z) - extChartAt I a a = s.fl c (extChartAt I a z - extChartAt I a a) := by simp only [Function.comp, Super.fl, _root_.fl, sub_add_cancel, PartialEquiv.left_inv _ (s.near_subset_chart m)]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) = _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) ^ d
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near e : ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a = s.fl c (↑(extChartAt I a) z - ↑(extChartAt I a) a) ⊢ _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) = _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) ^ d
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) = _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_eqn
[481, 1]
[488, 92]
rw [e, _root_.bottcherNear_eqn (s.superNearC.s (Set.mem_univ c)) (s.mem_near_to_near' m)]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near e : ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a = s.fl c (↑(extChartAt I a) z - ↑(extChartAt I a) a) ⊢ _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) = _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) ^ d
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near e : ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a = s.fl c (↑(extChartAt I a) z - ↑(extChartAt I a) a) ⊢ _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) = _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_eqn
[481, 1]
[488, 92]
simp only [Function.comp, Super.fl, _root_.fl, sub_add_cancel, PartialEquiv.left_inv _ (s.near_subset_chart m)]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a = s.fl c (↑(extChartAt I a) z - ↑(extChartAt I a) a)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a = s.fl c (↑(extChartAt I a) z - ↑(extChartAt I a) a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_eqn_iter
[491, 1]
[495, 25]
induction' n with n h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a m : (c, z) ∈ s.near n : ℕ ⊢ s.bottcherNear c ((f c)^[n] z) = s.bottcherNear c z ^ d ^ n
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ s.bottcherNear c ((f c)^[0] z) = s.bottcherNear c z ^ d ^ 0 case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a m : (c, z) ∈ s.near n : ℕ h : s.bottcherNear c ((f c)^[n] z) = s.bottcherNear c z ^ d ^ n ⊢ s.bottcherNear c ((f c)^[n + 1] z) = s.bottcherNear c z ^ d ^ (n + 1)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a m : (c, z) ∈ s.near n : ℕ ⊢ s.bottcherNear c ((f c)^[n] z) = s.bottcherNear c z ^ d ^ n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_eqn_iter
[491, 1]
[495, 25]
simp only [Function.iterate_zero_apply, pow_zero, pow_one]
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ s.bottcherNear c ((f c)^[0] z) = s.bottcherNear c z ^ d ^ 0 case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a m : (c, z) ∈ s.near n : ℕ h : s.bottcherNear c ((f c)^[n] z) = s.bottcherNear c z ^ d ^ n ⊢ s.bottcherNear c ((f c)^[n + 1] z) = s.bottcherNear c z ^ d ^ (n + 1)
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a m : (c, z) ∈ s.near n : ℕ h : s.bottcherNear c ((f c)^[n] z) = s.bottcherNear c z ^ d ^ n ⊢ s.bottcherNear c ((f c)^[n + 1] z) = s.bottcherNear c z ^ d ^ (n + 1)
Please generate a tactic in lean4 to solve the state. STATE: case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ s.bottcherNear c ((f c)^[0] z) = s.bottcherNear c z ^ d ^ 0 case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a m : (c, z) ∈ s.near n : ℕ h : s.bottcherNear c ((f c)^[n] z) = s.bottcherNear c z ^ d ^ n ⊢ s.bottcherNear c ((f c)^[n + 1] z) = s.bottcherNear c z ^ d ^ (n + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_eqn_iter
[491, 1]
[495, 25]
simp only [Function.iterate_succ_apply', s.bottcherNear_eqn (s.iter_stays_near m n), h, ← pow_mul, ← pow_succ]
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a m : (c, z) ∈ s.near n : ℕ h : s.bottcherNear c ((f c)^[n] z) = s.bottcherNear c z ^ d ^ n ⊢ s.bottcherNear c ((f c)^[n + 1] z) = s.bottcherNear c z ^ d ^ (n + 1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a m : (c, z) ∈ s.near n : ℕ h : s.bottcherNear c ((f c)^[n] z) = s.bottcherNear c z ^ d ^ n ⊢ s.bottcherNear c ((f c)^[n + 1] z) = s.bottcherNear c z ^ d ^ (n + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNearp_eqn
[498, 1]
[500, 51]
rcases p with ⟨c, z⟩
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near ⊢ s.bottcherNearp (s.fp p) = s.bottcherNearp p ^ d
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near ⊢ s.bottcherNearp (s.fp (c, z)) = s.bottcherNearp (c, z) ^ d
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near ⊢ s.bottcherNearp (s.fp p) = s.bottcherNearp p ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNearp_eqn
[498, 1]
[500, 51]
exact s.bottcherNear_eqn m
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near ⊢ s.bottcherNearp (s.fp (c, z)) = s.bottcherNearp (c, z) ^ d
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near ⊢ s.bottcherNearp (s.fp (c, z)) = s.bottcherNearp (c, z) ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_lt_one
[503, 1]
[506, 93]
simp only [Super.bottcherNear, mem_setOf]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ Complex.abs (s.bottcherNear c z) < 1
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ Complex.abs (_root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a)) < 1
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ Complex.abs (s.bottcherNear c z) < 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_lt_one
[503, 1]
[506, 93]
exact _root_.bottcherNear_lt_one (s.superNearC.s (Set.mem_univ c)) (s.mem_near_to_near' m)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ Complex.abs (_root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a)) < 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ Complex.abs (_root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a)) < 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_eq_zero
[509, 1]
[516, 58]
simp only [Super.bottcherNear]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ s.bottcherNear c z = 0 ↔ z = a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ z = a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ s.bottcherNear c z = 0 ↔ z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_eq_zero
[509, 1]
[516, 58]
constructor
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ z = a
case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 → z = a case mpr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ z = a → _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_eq_zero
[509, 1]
[516, 58]
intro za
case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 → z = a
case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near za : _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ⊢ z = a
Please generate a tactic in lean4 to solve the state. STATE: case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 → z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_eq_zero
[509, 1]
[516, 58]
contrapose za
case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near za : _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ⊢ z = a
case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near za : ¬z = a ⊢ ¬_root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0
Please generate a tactic in lean4 to solve the state. STATE: case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near za : _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ⊢ z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_eq_zero
[509, 1]
[516, 58]
apply bottcherNear_ne_zero (s.superNearC.s (Set.mem_univ _)) (s.mem_near_to_near' m)
case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near za : ¬z = a ⊢ ¬_root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0
case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near za : ¬z = a ⊢ ↑(extChartAt I a) (c, z).2 - ↑(extChartAt I a) a ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near za : ¬z = a ⊢ ¬_root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_eq_zero
[509, 1]
[516, 58]
simp only [sub_ne_zero]
case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near za : ¬z = a ⊢ ↑(extChartAt I a) (c, z).2 - ↑(extChartAt I a) a ≠ 0
case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near za : ¬z = a ⊢ ↑(extChartAt I a) z ≠ ↑(extChartAt I a) a
Please generate a tactic in lean4 to solve the state. STATE: case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near za : ¬z = a ⊢ ↑(extChartAt I a) (c, z).2 - ↑(extChartAt I a) a ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_eq_zero
[509, 1]
[516, 58]
exact (extChartAt I a).injOn.ne (s.near_subset_chart m) (mem_extChartAt_source I a) za
case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near za : ¬z = a ⊢ ↑(extChartAt I a) z ≠ ↑(extChartAt I a) a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near za : ¬z = a ⊢ ↑(extChartAt I a) z ≠ ↑(extChartAt I a) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_eq_zero
[509, 1]
[516, 58]
intro za
case mpr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ z = a → _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0
case mpr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near za : z = a ⊢ _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0
Please generate a tactic in lean4 to solve the state. STATE: case mpr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near ⊢ z = a → _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_eq_zero
[509, 1]
[516, 58]
simp only [za, sub_self, bottcherNear_zero]
case mpr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near za : z = a ⊢ _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mpr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.near za : z = a ⊢ _root_.bottcherNear (s.fl c) d (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_a
[519, 1]
[520, 62]
simp only [Super.bottcherNear, sub_self, bottcherNear_zero]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ s.bottcherNear c a = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ s.bottcherNear c a = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_mfderiv_ne_zero
[523, 1]
[534, 34]
apply mderiv_comp_ne_zero' (f := _root_.bottcherNear (s.fl c) d)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ mfderiv I I (s.bottcherNear c) a ≠ 0
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ mfderiv I I (_root_.bottcherNear (s.fl c) d) (↑(extChartAt I a) a - ↑(extChartAt I a) a) ≠ 0 case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ mfderiv I I (fun x => ↑(extChartAt I a) x - ↑(extChartAt I a) a) a ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ mfderiv I I (s.bottcherNear c) a ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_mfderiv_ne_zero
[523, 1]
[534, 34]
simp only [sub_self, mfderiv_eq_fderiv, (_root_.bottcherNear_monic (s.superNearC.s (Set.mem_univ c))).hasFDerivAt.fderiv]
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ mfderiv I I (_root_.bottcherNear (s.fl c) d) (↑(extChartAt I a) a - ↑(extChartAt I a) a) ≠ 0
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ContinuousLinearMap.smulRight 1 1 ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ mfderiv I I (_root_.bottcherNear (s.fl c) d) (↑(extChartAt I a) a - ↑(extChartAt I a) a) ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_mfderiv_ne_zero
[523, 1]
[534, 34]
exact ContinuousLinearMap.smulRight_ne_zero ContinuousLinearMap.one_ne_zero (by norm_num)
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ContinuousLinearMap.smulRight 1 1 ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ContinuousLinearMap.smulRight 1 1 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_mfderiv_ne_zero
[523, 1]
[534, 34]
norm_num
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ 1 ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ 1 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_mfderiv_ne_zero
[523, 1]
[534, 34]
have u : (fun z : S ↦ extChartAt I a z - extChartAt I a a) = extChartAt I a - fun _ : S ↦ extChartAt I a a := rfl
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ mfderiv I I (fun x => ↑(extChartAt I a) x - ↑(extChartAt I a) a) a ≠ 0
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ u : (fun z => ↑(extChartAt I a) z - ↑(extChartAt I a) a) = ↑(extChartAt I a) - fun x => ↑(extChartAt I a) a ⊢ mfderiv I I (fun x => ↑(extChartAt I a) x - ↑(extChartAt I a) a) a ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ mfderiv I I (fun x => ↑(extChartAt I a) x - ↑(extChartAt I a) a) a ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_mfderiv_ne_zero
[523, 1]
[534, 34]
rw [u, mfderiv_sub, mfderiv_const, sub_zero]
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ u : (fun z => ↑(extChartAt I a) z - ↑(extChartAt I a) a) = ↑(extChartAt I a) - fun x => ↑(extChartAt I a) a ⊢ mfderiv I I (fun x => ↑(extChartAt I a) x - ↑(extChartAt I a) a) a ≠ 0
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ u : (fun z => ↑(extChartAt I a) z - ↑(extChartAt I a) a) = ↑(extChartAt I a) - fun x => ↑(extChartAt I a) a ⊢ mfderiv I I (↑(extChartAt I a)) a ≠ 0 case a.hf S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ u : (fun z => ↑(extChartAt I a) z - ↑(extChartAt I a) a) = ↑(extChartAt I a) - fun x => ↑(extChartAt I a) a ⊢ MDifferentiableAt I I (↑(extChartAt I a)) a case a.hg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ u : (fun z => ↑(extChartAt I a) z - ↑(extChartAt I a) a) = ↑(extChartAt I a) - fun x => ↑(extChartAt I a) a ⊢ MDifferentiableAt I I (fun x => ↑(extChartAt I a) a) a
Please generate a tactic in lean4 to solve the state. STATE: case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ u : (fun z => ↑(extChartAt I a) z - ↑(extChartAt I a) a) = ↑(extChartAt I a) - fun x => ↑(extChartAt I a) a ⊢ mfderiv I I (fun x => ↑(extChartAt I a) x - ↑(extChartAt I a) a) a ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_mfderiv_ne_zero
[523, 1]
[534, 34]
exact extChartAt_mderiv_ne_zero a
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ u : (fun z => ↑(extChartAt I a) z - ↑(extChartAt I a) a) = ↑(extChartAt I a) - fun x => ↑(extChartAt I a) a ⊢ mfderiv I I (↑(extChartAt I a)) a ≠ 0 case a.hf S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ u : (fun z => ↑(extChartAt I a) z - ↑(extChartAt I a) a) = ↑(extChartAt I a) - fun x => ↑(extChartAt I a) a ⊢ MDifferentiableAt I I (↑(extChartAt I a)) a case a.hg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ u : (fun z => ↑(extChartAt I a) z - ↑(extChartAt I a) a) = ↑(extChartAt I a) - fun x => ↑(extChartAt I a) a ⊢ MDifferentiableAt I I (fun x => ↑(extChartAt I a) a) a
case a.hf S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ u : (fun z => ↑(extChartAt I a) z - ↑(extChartAt I a) a) = ↑(extChartAt I a) - fun x => ↑(extChartAt I a) a ⊢ MDifferentiableAt I I (↑(extChartAt I a)) a case a.hg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ u : (fun z => ↑(extChartAt I a) z - ↑(extChartAt I a) a) = ↑(extChartAt I a) - fun x => ↑(extChartAt I a) a ⊢ MDifferentiableAt I I (fun x => ↑(extChartAt I a) a) a
Please generate a tactic in lean4 to solve the state. STATE: case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ u : (fun z => ↑(extChartAt I a) z - ↑(extChartAt I a) a) = ↑(extChartAt I a) - fun x => ↑(extChartAt I a) a ⊢ mfderiv I I (↑(extChartAt I a)) a ≠ 0 case a.hf S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ u : (fun z => ↑(extChartAt I a) z - ↑(extChartAt I a) a) = ↑(extChartAt I a) - fun x => ↑(extChartAt I a) a ⊢ MDifferentiableAt I I (↑(extChartAt I a)) a case a.hg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ u : (fun z => ↑(extChartAt I a) z - ↑(extChartAt I a) a) = ↑(extChartAt I a) - fun x => ↑(extChartAt I a) a ⊢ MDifferentiableAt I I (fun x => ↑(extChartAt I a) a) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_mfderiv_ne_zero
[523, 1]
[534, 34]
exact (HolomorphicAt.extChartAt (mem_extChartAt_source I a)).mdifferentiableAt
case a.hf S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ u : (fun z => ↑(extChartAt I a) z - ↑(extChartAt I a) a) = ↑(extChartAt I a) - fun x => ↑(extChartAt I a) a ⊢ MDifferentiableAt I I (↑(extChartAt I a)) a case a.hg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ u : (fun z => ↑(extChartAt I a) z - ↑(extChartAt I a) a) = ↑(extChartAt I a) - fun x => ↑(extChartAt I a) a ⊢ MDifferentiableAt I I (fun x => ↑(extChartAt I a) a) a
case a.hg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ u : (fun z => ↑(extChartAt I a) z - ↑(extChartAt I a) a) = ↑(extChartAt I a) - fun x => ↑(extChartAt I a) a ⊢ MDifferentiableAt I I (fun x => ↑(extChartAt I a) a) a
Please generate a tactic in lean4 to solve the state. STATE: case a.hf S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ u : (fun z => ↑(extChartAt I a) z - ↑(extChartAt I a) a) = ↑(extChartAt I a) - fun x => ↑(extChartAt I a) a ⊢ MDifferentiableAt I I (↑(extChartAt I a)) a case a.hg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ u : (fun z => ↑(extChartAt I a) z - ↑(extChartAt I a) a) = ↑(extChartAt I a) - fun x => ↑(extChartAt I a) a ⊢ MDifferentiableAt I I (fun x => ↑(extChartAt I a) a) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_mfderiv_ne_zero
[523, 1]
[534, 34]
apply mdifferentiableAt_const
case a.hg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ u : (fun z => ↑(extChartAt I a) z - ↑(extChartAt I a) a) = ↑(extChartAt I a) - fun x => ↑(extChartAt I a) a ⊢ MDifferentiableAt I I (fun x => ↑(extChartAt I a) a) a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.hg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ u : (fun z => ↑(extChartAt I a) z - ↑(extChartAt I a) a) = ↑(extChartAt I a) - fun x => ↑(extChartAt I a) a ⊢ MDifferentiableAt I I (fun x => ↑(extChartAt I a) a) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_has_inv
[537, 1]
[544, 45]
have h := complex_inverse_fun (s.bottcherNear_holomorphic _ (s.mem_near c)) (s.bottcherNear_mfderiv_ne_zero c)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ∃ bi, HolomorphicAt (I.prod I) I (uncurry bi) (c, 0) ∧ (∀ᶠ (p : ℂ × S) in 𝓝 (c, a), bi p.1 (s.bottcherNear p.1 p.2) = p.2) ∧ ∀ᶠ (p : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear p.1 (bi p.1 p.2) = p.2
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ h : ∃ g, HolomorphicAt (I.prod I) I (uncurry g) (c, s.bottcherNear c a) ∧ (∀ᶠ (x : ℂ × S) in 𝓝 (c, a), g x.1 (s.bottcherNear x.1 x.2) = x.2) ∧ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, s.bottcherNear c a), s.bottcherNear x.1 (g x.1 x.2) = x.2 ⊢ ∃ bi, HolomorphicAt (I.prod I) I (uncurry bi) (c, 0) ∧ (∀ᶠ (p : ℂ × S) in 𝓝 (c, a), bi p.1 (s.bottcherNear p.1 p.2) = p.2) ∧ ∀ᶠ (p : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear p.1 (bi p.1 p.2) = p.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ∃ bi, HolomorphicAt (I.prod I) I (uncurry bi) (c, 0) ∧ (∀ᶠ (p : ℂ × S) in 𝓝 (c, a), bi p.1 (s.bottcherNear p.1 p.2) = p.2) ∧ ∀ᶠ (p : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear p.1 (bi p.1 p.2) = p.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_has_inv
[537, 1]
[544, 45]
simp only [s.bottcherNear_a] at h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ h : ∃ g, HolomorphicAt (I.prod I) I (uncurry g) (c, s.bottcherNear c a) ∧ (∀ᶠ (x : ℂ × S) in 𝓝 (c, a), g x.1 (s.bottcherNear x.1 x.2) = x.2) ∧ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, s.bottcherNear c a), s.bottcherNear x.1 (g x.1 x.2) = x.2 ⊢ ∃ bi, HolomorphicAt (I.prod I) I (uncurry bi) (c, 0) ∧ (∀ᶠ (p : ℂ × S) in 𝓝 (c, a), bi p.1 (s.bottcherNear p.1 p.2) = p.2) ∧ ∀ᶠ (p : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear p.1 (bi p.1 p.2) = p.2
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ h : ∃ g, HolomorphicAt (I.prod I) I (uncurry g) (c, 0) ∧ (∀ᶠ (x : ℂ × S) in 𝓝 (c, a), g x.1 (s.bottcherNear x.1 x.2) = x.2) ∧ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (g x.1 x.2) = x.2 ⊢ ∃ bi, HolomorphicAt (I.prod I) I (uncurry bi) (c, 0) ∧ (∀ᶠ (p : ℂ × S) in 𝓝 (c, a), bi p.1 (s.bottcherNear p.1 p.2) = p.2) ∧ ∀ᶠ (p : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear p.1 (bi p.1 p.2) = p.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ h : ∃ g, HolomorphicAt (I.prod I) I (uncurry g) (c, s.bottcherNear c a) ∧ (∀ᶠ (x : ℂ × S) in 𝓝 (c, a), g x.1 (s.bottcherNear x.1 x.2) = x.2) ∧ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, s.bottcherNear c a), s.bottcherNear x.1 (g x.1 x.2) = x.2 ⊢ ∃ bi, HolomorphicAt (I.prod I) I (uncurry bi) (c, 0) ∧ (∀ᶠ (p : ℂ × S) in 𝓝 (c, a), bi p.1 (s.bottcherNear p.1 p.2) = p.2) ∧ ∀ᶠ (p : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear p.1 (bi p.1 p.2) = p.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.bottcherNear_has_inv
[537, 1]
[544, 45]
exact h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ h : ∃ g, HolomorphicAt (I.prod I) I (uncurry g) (c, 0) ∧ (∀ᶠ (x : ℂ × S) in 𝓝 (c, a), g x.1 (s.bottcherNear x.1 x.2) = x.2) ∧ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (g x.1 x.2) = x.2 ⊢ ∃ bi, HolomorphicAt (I.prod I) I (uncurry bi) (c, 0) ∧ (∀ᶠ (p : ℂ × S) in 𝓝 (c, a), bi p.1 (s.bottcherNear p.1 p.2) = p.2) ∧ ∀ᶠ (p : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear p.1 (bi p.1 p.2) = p.2
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ h : ∃ g, HolomorphicAt (I.prod I) I (uncurry g) (c, 0) ∧ (∀ᶠ (x : ℂ × S) in 𝓝 (c, a), g x.1 (s.bottcherNear x.1 x.2) = x.2) ∧ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (g x.1 x.2) = x.2 ⊢ ∃ bi, HolomorphicAt (I.prod I) I (uncurry bi) (c, 0) ∧ (∀ᶠ (p : ℂ × S) in 𝓝 (c, a), bi p.1 (s.bottcherNear p.1 p.2) = p.2) ∧ ∀ᶠ (p : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear p.1 (bi p.1 p.2) = p.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
have t : ContinuousAt (fun p : ℂ × S ↦ (p.1, extChartAt I a p.2 - extChartAt I a a)) (c, a) := by refine continuousAt_fst.prod (ContinuousAt.sub ?_ continuousAt_const) exact (continuousAt_extChartAt I a).comp_of_eq continuousAt_snd rfl
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), Critical (f p.1) p.2 ↔ p.2 = a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : ContinuousAt (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (c, a) ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), Critical (f p.1) p.2 ↔ p.2 = a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), Critical (f p.1) p.2 ↔ p.2 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
simp only [ContinuousAt, sub_self] at t
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : ContinuousAt (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (c, a) ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), Critical (f p.1) p.2 ↔ p.2 = a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), Critical (f p.1) p.2 ↔ p.2 = a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : ContinuousAt (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (c, a) ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), Critical (f p.1) p.2 ↔ p.2 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
apply (inChart_critical (s.fa (c, a))).mp
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), Critical (f p.1) p.2 ↔ p.2 = a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), Critical (f p.1) p.2 ↔ p.2 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
apply (t.eventually (df_ne_zero s.superNearC (Set.mem_univ c))).mp
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
have am := mem_extChartAt_source I a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
have em := ((isOpen_extChartAt_source I a).eventually_mem am).prod_inr (𝓝 c)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source em : ∀ᶠ (x : ℂ × S) in 𝓝 c ×ˢ 𝓝 a, x.2 ∈ (extChartAt I a).source ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
simp only [← nhds_prod_eq] at em
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source em : ∀ᶠ (x : ℂ × S) in 𝓝 c ×ˢ 𝓝 a, x.2 ∈ (extChartAt I a).source ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source em : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source em : ∀ᶠ (x : ℂ × S) in 𝓝 c ×ˢ 𝓝 a, x.2 ∈ (extChartAt I a).source ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
apply em.mp
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source em : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source em : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source → (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source em : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
have ezm : ∀ᶠ p : ℂ × S in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source := by refine (s.fa _).continuousAt.eventually_mem (extChartAt_source_mem_nhds' I ?_) simp only [uncurry, s.f0, mem_extChartAt_source I a]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source em : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source → (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source em : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source ezm : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source → (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source em : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source → (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
apply ezm.mp
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source em : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source ezm : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source → (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source em : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source ezm : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), f x.1 x.2 ∈ (extChartAt I a).source → x.2 ∈ (extChartAt I a).source → (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source em : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source ezm : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source → (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
apply eventually_of_forall
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source em : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source ezm : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), f x.1 x.2 ∈ (extChartAt I a).source → x.2 ∈ (extChartAt I a).source → (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a)
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source em : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source ezm : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source ⊢ ∀ (x : ℂ × S), f x.1 x.2 ∈ (extChartAt I a).source → x.2 ∈ (extChartAt I a).source → (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source em : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source ezm : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), f x.1 x.2 ∈ (extChartAt I a).source → x.2 ∈ (extChartAt I a).source → (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
clear t em
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source em : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source ezm : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source ⊢ ∀ (x : ℂ × S), f x.1 x.2 ∈ (extChartAt I a).source → x.2 ∈ (extChartAt I a).source → (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a)
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source ⊢ ∀ (x : ℂ × S), f x.1 x.2 ∈ (extChartAt I a).source → x.2 ∈ (extChartAt I a).source → (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a)
Please generate a tactic in lean4 to solve the state. STATE: case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source em : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source ezm : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source ⊢ ∀ (x : ℂ × S), f x.1 x.2 ∈ (extChartAt I a).source → x.2 ∈ (extChartAt I a).source → (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
intro ⟨e, z⟩ ezm zm d0 m0
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source ⊢ ∀ (x : ℂ × S), f x.1 x.2 ∈ (extChartAt I a).source → x.2 ∈ (extChartAt I a).source → (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a)
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f (e, z).1 (e, z).2 ∈ (extChartAt I a).source zm : (e, z).2 ∈ (extChartAt I a).source d0 : deriv (s.fl ((e, z).1, ↑(extChartAt I a) (e, z).2 - ↑(extChartAt I a) a).1) ((e, z).1, ↑(extChartAt I a) (e, z).2 - ↑(extChartAt I a) a).2 = 0 ↔ ((e, z).1, ↑(extChartAt I a) (e, z).2 - ↑(extChartAt I a) a).2 = 0 m0 : mfderiv I I (f (e, z).1) (e, z).2 = 0 ↔ deriv (inChart f c a (e, z).1) (↑(extChartAt I a) (e, z).2) = 0 ⊢ Critical (f (e, z).1) (e, z).2 ↔ (e, z).2 = a
Please generate a tactic in lean4 to solve the state. STATE: case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source ⊢ ∀ (x : ℂ × S), f x.1 x.2 ∈ (extChartAt I a).source → x.2 ∈ (extChartAt I a).source → (deriv (s.fl (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).1) (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0 ↔ (x.1, ↑(extChartAt I a) x.2 - ↑(extChartAt I a) a).2 = 0) → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c a x.1) (↑(extChartAt I a) x.2) = 0) → (Critical (f x.1) x.2 ↔ x.2 = a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
simp only at ezm zm d0 m0 ⊢
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f (e, z).1 (e, z).2 ∈ (extChartAt I a).source zm : (e, z).2 ∈ (extChartAt I a).source d0 : deriv (s.fl ((e, z).1, ↑(extChartAt I a) (e, z).2 - ↑(extChartAt I a) a).1) ((e, z).1, ↑(extChartAt I a) (e, z).2 - ↑(extChartAt I a) a).2 = 0 ↔ ((e, z).1, ↑(extChartAt I a) (e, z).2 - ↑(extChartAt I a) a).2 = 0 m0 : mfderiv I I (f (e, z).1) (e, z).2 = 0 ↔ deriv (inChart f c a (e, z).1) (↑(extChartAt I a) (e, z).2) = 0 ⊢ Critical (f (e, z).1) (e, z).2 ↔ (e, z).2 = a
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source d0 : deriv (s.fl e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ ↑(extChartAt I a) z - ↑(extChartAt I a) a = 0 m0 : mfderiv I I (f e) z = 0 ↔ deriv (inChart f c a e) (↑(extChartAt I a) z) = 0 ⊢ Critical (f e) z ↔ z = a
Please generate a tactic in lean4 to solve the state. STATE: case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f (e, z).1 (e, z).2 ∈ (extChartAt I a).source zm : (e, z).2 ∈ (extChartAt I a).source d0 : deriv (s.fl ((e, z).1, ↑(extChartAt I a) (e, z).2 - ↑(extChartAt I a) a).1) ((e, z).1, ↑(extChartAt I a) (e, z).2 - ↑(extChartAt I a) a).2 = 0 ↔ ((e, z).1, ↑(extChartAt I a) (e, z).2 - ↑(extChartAt I a) a).2 = 0 m0 : mfderiv I I (f (e, z).1) (e, z).2 = 0 ↔ deriv (inChart f c a (e, z).1) (↑(extChartAt I a) (e, z).2) = 0 ⊢ Critical (f (e, z).1) (e, z).2 ↔ (e, z).2 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
simp only [Super.fl, fl, sub_eq_zero, (PartialEquiv.injOn _).eq_iff zm am] at d0
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source d0 : deriv (s.fl e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ ↑(extChartAt I a) z - ↑(extChartAt I a) a = 0 m0 : mfderiv I I (f e) z = 0 ↔ deriv (inChart f c a e) (↑(extChartAt I a) z) = 0 ⊢ Critical (f e) z ↔ z = a
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source m0 : mfderiv I I (f e) z = 0 ↔ deriv (inChart f c a e) (↑(extChartAt I a) z) = 0 d0 : deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ z = a ⊢ Critical (f e) z ↔ z = a
Please generate a tactic in lean4 to solve the state. STATE: case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source d0 : deriv (s.fl e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ ↑(extChartAt I a) z - ↑(extChartAt I a) a = 0 m0 : mfderiv I I (f e) z = 0 ↔ deriv (inChart f c a e) (↑(extChartAt I a) z) = 0 ⊢ Critical (f e) z ↔ z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
simp only [Critical, m0, ← d0]
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source m0 : mfderiv I I (f e) z = 0 ↔ deriv (inChart f c a e) (↑(extChartAt I a) z) = 0 d0 : deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ z = a ⊢ Critical (f e) z ↔ z = a
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source m0 : mfderiv I I (f e) z = 0 ↔ deriv (inChart f c a e) (↑(extChartAt I a) z) = 0 d0 : deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ z = a ⊢ deriv (inChart f c a e) (↑(extChartAt I a) z) = 0 ↔ deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0
Please generate a tactic in lean4 to solve the state. STATE: case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source m0 : mfderiv I I (f e) z = 0 ↔ deriv (inChart f c a e) (↑(extChartAt I a) z) = 0 d0 : deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ z = a ⊢ Critical (f e) z ↔ z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
unfold inChart
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source m0 : mfderiv I I (f e) z = 0 ↔ deriv (inChart f c a e) (↑(extChartAt I a) z) = 0 d0 : deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ z = a ⊢ deriv (inChart f c a e) (↑(extChartAt I a) z) = 0 ↔ deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source m0 : mfderiv I I (f e) z = 0 ↔ deriv (inChart f c a e) (↑(extChartAt I a) z) = 0 d0 : deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ z = a ⊢ deriv (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) (↑(extChartAt I a) z) = 0 ↔ deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0
Please generate a tactic in lean4 to solve the state. STATE: case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source m0 : mfderiv I I (f e) z = 0 ↔ deriv (inChart f c a e) (↑(extChartAt I a) z) = 0 d0 : deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ z = a ⊢ deriv (inChart f c a e) (↑(extChartAt I a) z) = 0 ↔ deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
clear m0 d0
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source m0 : mfderiv I I (f e) z = 0 ↔ deriv (inChart f c a e) (↑(extChartAt I a) z) = 0 d0 : deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ z = a ⊢ deriv (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) (↑(extChartAt I a) z) = 0 ↔ deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source ⊢ deriv (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) (↑(extChartAt I a) z) = 0 ↔ deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0
Please generate a tactic in lean4 to solve the state. STATE: case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source m0 : mfderiv I I (f e) z = 0 ↔ deriv (inChart f c a e) (↑(extChartAt I a) z) = 0 d0 : deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ z = a ⊢ deriv (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) (↑(extChartAt I a) z) = 0 ↔ deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
generalize hg : (fun w ↦ extChartAt I (f c a) (f e ((extChartAt I a).symm w))) = g
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source ⊢ deriv (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) (↑(extChartAt I a) z) = 0 ↔ deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ deriv g (↑(extChartAt I a) z) = 0 ↔ deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0
Please generate a tactic in lean4 to solve the state. STATE: case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source ⊢ deriv (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) (↑(extChartAt I a) z) = 0 ↔ deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
have hg' : extChartAt I a ∘ f e ∘ (extChartAt I a).symm = g := by rw [← hg]; simp only [Function.comp, s.f0]
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ deriv g (↑(extChartAt I a) z) = 0 ↔ deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g hg' : ↑(extChartAt I a) ∘ f e ∘ ↑(extChartAt I a).symm = g ⊢ deriv g (↑(extChartAt I a) z) = 0 ↔ deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0
Please generate a tactic in lean4 to solve the state. STATE: case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ deriv g (↑(extChartAt I a) z) = 0 ↔ deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
rw [_root_.fl, hg']
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g hg' : ↑(extChartAt I a) ∘ f e ∘ ↑(extChartAt I a).symm = g ⊢ deriv g (↑(extChartAt I a) z) = 0 ↔ deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g hg' : ↑(extChartAt I a) ∘ f e ∘ ↑(extChartAt I a).symm = g ⊢ deriv g (↑(extChartAt I a) z) = 0 ↔ deriv ((fun z => z - ↑(extChartAt I a) a) ∘ g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0
Please generate a tactic in lean4 to solve the state. STATE: case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g hg' : ↑(extChartAt I a) ∘ f e ∘ ↑(extChartAt I a).symm = g ⊢ deriv g (↑(extChartAt I a) z) = 0 ↔ deriv (_root_.fl f a e) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
clear hg'
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g hg' : ↑(extChartAt I a) ∘ f e ∘ ↑(extChartAt I a).symm = g ⊢ deriv g (↑(extChartAt I a) z) = 0 ↔ deriv ((fun z => z - ↑(extChartAt I a) a) ∘ g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ deriv g (↑(extChartAt I a) z) = 0 ↔ deriv ((fun z => z - ↑(extChartAt I a) a) ∘ g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0
Please generate a tactic in lean4 to solve the state. STATE: case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g hg' : ↑(extChartAt I a) ∘ f e ∘ ↑(extChartAt I a).symm = g ⊢ deriv g (↑(extChartAt I a) z) = 0 ↔ deriv ((fun z => z - ↑(extChartAt I a) a) ∘ g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
rw [Iff.comm]
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ deriv g (↑(extChartAt I a) z) = 0 ↔ deriv ((fun z => z - ↑(extChartAt I a) a) ∘ g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ deriv ((fun z => z - ↑(extChartAt I a) a) ∘ g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ deriv g (↑(extChartAt I a) z) = 0
Please generate a tactic in lean4 to solve the state. STATE: case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ deriv g (↑(extChartAt I a) z) = 0 ↔ deriv ((fun z => z - ↑(extChartAt I a) a) ∘ g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
have dg : DifferentiableAt ℂ g (extChartAt I a z) := by rw [← hg]; apply AnalyticAt.differentiableAt; apply HolomorphicAt.analyticAt I I simp only [s.f0] apply (HolomorphicAt.extChartAt _).comp; apply (s.fa _).along_snd.comp exact HolomorphicAt.extChartAt_symm (PartialEquiv.map_source _ zm) simp only [PartialEquiv.left_inv _ zm, s.f0]; exact ezm
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ deriv ((fun z => z - ↑(extChartAt I a) a) ∘ g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ deriv g (↑(extChartAt I a) z) = 0
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) ⊢ deriv ((fun z => z - ↑(extChartAt I a) a) ∘ g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ deriv g (↑(extChartAt I a) z) = 0
Please generate a tactic in lean4 to solve the state. STATE: case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ deriv ((fun z => z - ↑(extChartAt I a) a) ∘ g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ deriv g (↑(extChartAt I a) z) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
have d0 : ∀ z, DifferentiableAt ℂ (fun z ↦ z - extChartAt I a a) z := fun z ↦ differentiableAt_id.sub (differentiableAt_const _)
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) ⊢ deriv ((fun z => z - ↑(extChartAt I a) a) ∘ g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ deriv g (↑(extChartAt I a) z) = 0
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z ⊢ deriv ((fun z => z - ↑(extChartAt I a) a) ∘ g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ deriv g (↑(extChartAt I a) z) = 0
Please generate a tactic in lean4 to solve the state. STATE: case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) ⊢ deriv ((fun z => z - ↑(extChartAt I a) a) ∘ g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ deriv g (↑(extChartAt I a) z) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
have d1 : DifferentiableAt ℂ (g ∘ fun z : ℂ ↦ z + extChartAt I a a) (extChartAt I a z - extChartAt I a a) := by apply DifferentiableAt.comp; simp only [sub_add_cancel, dg] exact differentiableAt_id.add (differentiableAt_const _)
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z ⊢ deriv ((fun z => z - ↑(extChartAt I a) a) ∘ g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ deriv g (↑(extChartAt I a) z) = 0
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z d1 : DifferentiableAt ℂ (g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) ⊢ deriv ((fun z => z - ↑(extChartAt I a) a) ∘ g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ deriv g (↑(extChartAt I a) z) = 0
Please generate a tactic in lean4 to solve the state. STATE: case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z ⊢ deriv ((fun z => z - ↑(extChartAt I a) a) ∘ g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ deriv g (↑(extChartAt I a) z) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
simp only [deriv.comp _ (d0 _) d1, deriv_sub_const, deriv_id'', one_mul]
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z d1 : DifferentiableAt ℂ (g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) ⊢ deriv ((fun z => z - ↑(extChartAt I a) a) ∘ g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ deriv g (↑(extChartAt I a) z) = 0
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z d1 : DifferentiableAt ℂ (g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) ⊢ deriv (g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ deriv g (↑(extChartAt I a) z) = 0
Please generate a tactic in lean4 to solve the state. STATE: case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z d1 : DifferentiableAt ℂ (g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) ⊢ deriv ((fun z => z - ↑(extChartAt I a) a) ∘ g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ deriv g (↑(extChartAt I a) z) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
rw [deriv.comp _ _ _]
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z d1 : DifferentiableAt ℂ (g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) ⊢ deriv (g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ deriv g (↑(extChartAt I a) z) = 0
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z d1 : DifferentiableAt ℂ (g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) ⊢ deriv g (↑(extChartAt I a) z - ↑(extChartAt I a) a + ↑(extChartAt I a) a) * deriv (fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ deriv g (↑(extChartAt I a) z) = 0 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z d1 : DifferentiableAt ℂ (g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) ⊢ DifferentiableAt ℂ g (↑(extChartAt I a) z - ↑(extChartAt I a) a + ↑(extChartAt I a) a) S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z d1 : DifferentiableAt ℂ (g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) ⊢ DifferentiableAt ℂ (fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a)
Please generate a tactic in lean4 to solve the state. STATE: case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z d1 : DifferentiableAt ℂ (g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) ⊢ deriv (g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) = 0 ↔ deriv g (↑(extChartAt I a) z) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
refine continuousAt_fst.prod (ContinuousAt.sub ?_ continuousAt_const)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ContinuousAt (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (c, a)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ContinuousAt (fun p => ↑(extChartAt I a) p.2) (c, a)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ContinuousAt (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (c, a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
exact (continuousAt_extChartAt I a).comp_of_eq continuousAt_snd rfl
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ContinuousAt (fun p => ↑(extChartAt I a) p.2) (c, a)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ContinuousAt (fun p => ↑(extChartAt I a) p.2) (c, a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
refine (s.fa _).continuousAt.eventually_mem (extChartAt_source_mem_nhds' I ?_)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source em : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source em : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source ⊢ uncurry f (c, a) ∈ (extChartAt I a).source
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source em : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
simp only [uncurry, s.f0, mem_extChartAt_source I a]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source em : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source ⊢ uncurry f (c, a) ∈ (extChartAt I a).source
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ t : Tendsto (fun p => (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a)) (𝓝 (c, a)) (𝓝 (c, 0)) am : a ∈ (extChartAt I a).source em : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), x.2 ∈ (extChartAt I a).source ⊢ uncurry f (c, a) ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
rw [← hg]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ ↑(extChartAt I a) ∘ f e ∘ ↑(extChartAt I a).symm = g
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ ↑(extChartAt I a) ∘ f e ∘ ↑(extChartAt I a).symm = fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ ↑(extChartAt I a) ∘ f e ∘ ↑(extChartAt I a).symm = g TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
simp only [Function.comp, s.f0]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ ↑(extChartAt I a) ∘ f e ∘ ↑(extChartAt I a).symm = fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ ↑(extChartAt I a) ∘ f e ∘ ↑(extChartAt I a).symm = fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
rw [← hg]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ DifferentiableAt ℂ g (↑(extChartAt I a) z)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ DifferentiableAt ℂ (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) (↑(extChartAt I a) z)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ DifferentiableAt ℂ g (↑(extChartAt I a) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
apply AnalyticAt.differentiableAt
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ DifferentiableAt ℂ (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) (↑(extChartAt I a) z)
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ AnalyticAt ℂ (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) (↑(extChartAt I a) z)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ DifferentiableAt ℂ (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) (↑(extChartAt I a) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
apply HolomorphicAt.analyticAt I I
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ AnalyticAt ℂ (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) (↑(extChartAt I a) z)
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ HolomorphicAt I I (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) (↑(extChartAt I a) z)
Please generate a tactic in lean4 to solve the state. STATE: case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ AnalyticAt ℂ (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) (↑(extChartAt I a) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
simp only [s.f0]
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ HolomorphicAt I I (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) (↑(extChartAt I a) z)
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ HolomorphicAt I I (fun w => ↑(extChartAt I a) (f e (↑(extChartAt I a).symm w))) (↑(extChartAt I a) z)
Please generate a tactic in lean4 to solve the state. STATE: case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ HolomorphicAt I I (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) (↑(extChartAt I a) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
apply (HolomorphicAt.extChartAt _).comp
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ HolomorphicAt I I (fun w => ↑(extChartAt I a) (f e (↑(extChartAt I a).symm w))) (↑(extChartAt I a) z)
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ HolomorphicAt I I (fun x => f e (↑(extChartAt I a).symm x)) (↑(extChartAt I a) z) S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ f e (↑(extChartAt I a).symm (↑(extChartAt I a) z)) ∈ (extChartAt I a).source
Please generate a tactic in lean4 to solve the state. STATE: case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ HolomorphicAt I I (fun w => ↑(extChartAt I a) (f e (↑(extChartAt I a).symm w))) (↑(extChartAt I a) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
apply (s.fa _).along_snd.comp
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ HolomorphicAt I I (fun x => f e (↑(extChartAt I a).symm x)) (↑(extChartAt I a) z) S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ f e (↑(extChartAt I a).symm (↑(extChartAt I a) z)) ∈ (extChartAt I a).source
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ HolomorphicAt I I (fun x => ↑(extChartAt I a).symm x) (↑(extChartAt I a) z) S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ f e (↑(extChartAt I a).symm (↑(extChartAt I a) z)) ∈ (extChartAt I a).source
Please generate a tactic in lean4 to solve the state. STATE: case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ HolomorphicAt I I (fun x => f e (↑(extChartAt I a).symm x)) (↑(extChartAt I a) z) S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ f e (↑(extChartAt I a).symm (↑(extChartAt I a) z)) ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
exact HolomorphicAt.extChartAt_symm (PartialEquiv.map_source _ zm)
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ HolomorphicAt I I (fun x => ↑(extChartAt I a).symm x) (↑(extChartAt I a) z) S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ f e (↑(extChartAt I a).symm (↑(extChartAt I a) z)) ∈ (extChartAt I a).source
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ f e (↑(extChartAt I a).symm (↑(extChartAt I a) z)) ∈ (extChartAt I a).source
Please generate a tactic in lean4 to solve the state. STATE: case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ HolomorphicAt I I (fun x => ↑(extChartAt I a).symm x) (↑(extChartAt I a) z) S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ f e (↑(extChartAt I a).symm (↑(extChartAt I a) z)) ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
simp only [PartialEquiv.left_inv _ zm, s.f0]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ f e (↑(extChartAt I a).symm (↑(extChartAt I a) z)) ∈ (extChartAt I a).source
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ f e z ∈ (extChartAt I a).source
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ f e (↑(extChartAt I a).symm (↑(extChartAt I a) z)) ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
exact ezm
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ f e z ∈ (extChartAt I a).source
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g ⊢ f e z ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
apply DifferentiableAt.comp
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z ⊢ DifferentiableAt ℂ (g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a)
case hg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z ⊢ DifferentiableAt ℂ g (↑(extChartAt I a) z - ↑(extChartAt I a) a + ↑(extChartAt I a) a) case hf S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z ⊢ DifferentiableAt ℂ (fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z ⊢ DifferentiableAt ℂ (g ∘ fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_noncritical_near_a
[548, 1]
[589, 61]
simp only [sub_add_cancel, dg]
case hg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z ⊢ DifferentiableAt ℂ g (↑(extChartAt I a) z - ↑(extChartAt I a) a + ↑(extChartAt I a) a) case hf S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z ⊢ DifferentiableAt ℂ (fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a)
case hf S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z ⊢ DifferentiableAt ℂ (fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a)
Please generate a tactic in lean4 to solve the state. STATE: case hg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z ⊢ DifferentiableAt ℂ g (↑(extChartAt I a) z - ↑(extChartAt I a) a + ↑(extChartAt I a) a) case hf S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ am : a ∈ (extChartAt I a).source ezm✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source e : ℂ z : S ezm : f e z ∈ (extChartAt I a).source zm : z ∈ (extChartAt I a).source g : ℂ → ℂ hg : (fun w => ↑(extChartAt I (f c a)) (f e (↑(extChartAt I a).symm w))) = g dg : DifferentiableAt ℂ g (↑(extChartAt I a) z) d0 : ∀ (z : ℂ), DifferentiableAt ℂ (fun z => z - ↑(extChartAt I a) a) z ⊢ DifferentiableAt ℂ (fun z => z + ↑(extChartAt I a) a) (↑(extChartAt I a) z - ↑(extChartAt I a) a) TACTIC: