url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.iter_a
[81, 1]
[83, 52]
induction' n with n h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ ⊢ (f c)^[n] a = a
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ (f c)^[0] a = a case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : (f c)^[n] a = a ⊢ (f c)^[n + 1] a = a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ ⊢ (f c)^[n] a = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.iter_a
[81, 1]
[83, 52]
simp only [Function.iterate_zero_apply]
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ (f c)^[0] a = a case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : (f c)^[n] a = a ⊢ (f c)^[n + 1] a = a
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : (f c)^[n] a = a ⊢ (f c)^[n + 1] a = a
Please generate a tactic in lean4 to solve the state. STATE: case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ (f c)^[0] a = a case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : (f c)^[n] a = a ⊢ (f c)^[n + 1] a = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.iter_a
[81, 1]
[83, 52]
simp only [Function.iterate_succ_apply', h, s.f0]
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : (f c)^[n] a = a ⊢ (f c)^[n + 1] a = a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : (f c)^[n] a = a ⊢ (f c)^[n + 1] a = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fla
[86, 1]
[102, 72]
rw [@analyticAt_iff_holomorphicAt _ _ (ℂ × ℂ) (ModelProd ℂ ℂ) _ _ _ ℂ ℂ _ _ _ II I]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ AnalyticAt ℂ (uncurry s.fl) (c, 0)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ HolomorphicAt (I.prod I) I (uncurry s.fl) (c, 0)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ AnalyticAt ℂ (uncurry s.fl) (c, 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fla
[86, 1]
[102, 72]
refine (((analyticAt_id _ _).sub analyticAt_const).holomorphicAt I I).comp ?_
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ HolomorphicAt (I.prod I) I (uncurry s.fl) (c, 0)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ HolomorphicAt (I.prod I) I (fun x => (↑(extChartAt I a) ∘ f x.1 ∘ ↑(extChartAt I a).symm) ((fun z => z + ↑(extChartAt I a) a) x.2)) (c, 0)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ HolomorphicAt (I.prod I) I (uncurry s.fl) (c, 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fla
[86, 1]
[102, 72]
refine (HolomorphicAt.extChartAt ?_).comp ?_
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ HolomorphicAt (I.prod I) I (fun x => (↑(extChartAt I a) ∘ f x.1 ∘ ↑(extChartAt I a).symm) ((fun z => z + ↑(extChartAt I a) a) x.2)) (c, 0)
case refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ (f (c, 0).1 ∘ ↑(extChartAt I a).symm) ((fun z => z + ↑(extChartAt I a) a) (c, 0).2) ∈ (extChartAt I a).source case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ HolomorphicAt (I.prod I) I (fun x => (f x.1 ∘ ↑(extChartAt I a).symm) ((fun z => z + ↑(extChartAt I a) a) x.2)) (c, 0)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ HolomorphicAt (I.prod I) I (fun x => (↑(extChartAt I a) ∘ f x.1 ∘ ↑(extChartAt I a).symm) ((fun z => z + ↑(extChartAt I a) a) x.2)) (c, 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fla
[86, 1]
[102, 72]
simp only [s.f0, extChartAt, PartialHomeomorph.extend, PartialEquiv.coe_trans, ModelWithCorners.toPartialEquiv_coe, PartialHomeomorph.coe_coe, Function.comp_apply, zero_add, PartialEquiv.coe_trans_symm, PartialHomeomorph.coe_coe_symm, ModelWithCorners.toPartialEquiv_coe_symm, ModelWithCorners.left_inv, PartialHomeomorph.left_inv, mem_chart_source, PartialEquiv.trans_source, ModelWithCorners.source_eq, Set.preimage_univ, Set.inter_univ]
case refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ (f (c, 0).1 ∘ ↑(extChartAt I a).symm) ((fun z => z + ↑(extChartAt I a) a) (c, 0).2) ∈ (extChartAt I a).source
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ (f (c, 0).1 ∘ ↑(extChartAt I a).symm) ((fun z => z + ↑(extChartAt I a) a) (c, 0).2) ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fla
[86, 1]
[102, 72]
refine (s.fa _).comp₂ holomorphicAt_fst ?_
case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ HolomorphicAt (I.prod I) I (fun x => (f x.1 ∘ ↑(extChartAt I a).symm) ((fun z => z + ↑(extChartAt I a) a) x.2)) (c, 0)
case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ HolomorphicAt (I.prod I) I (fun x => ↑(extChartAt I a).symm ((fun z => z + ↑(extChartAt I a) a) x.2)) (c, 0)
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ HolomorphicAt (I.prod I) I (fun x => (f x.1 ∘ ↑(extChartAt I a).symm) ((fun z => z + ↑(extChartAt I a) a) x.2)) (c, 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fla
[86, 1]
[102, 72]
refine (HolomorphicAt.extChartAt_symm ?_).comp ?_
case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ HolomorphicAt (I.prod I) I (fun x => ↑(extChartAt I a).symm ((fun z => z + ↑(extChartAt I a) a) x.2)) (c, 0)
case refine_2.refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ (fun z => z + ↑(extChartAt I a) a) (c, 0).2 ∈ (extChartAt I a).target case refine_2.refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ HolomorphicAt (I.prod I) I (fun x => (fun z => z + ↑(extChartAt I a) a) x.2) (c, 0)
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ HolomorphicAt (I.prod I) I (fun x => ↑(extChartAt I a).symm ((fun z => z + ↑(extChartAt I a) a) x.2)) (c, 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fla
[86, 1]
[102, 72]
simp only [extChartAt, PartialHomeomorph.extend, PartialEquiv.coe_trans, ModelWithCorners.toPartialEquiv_coe, PartialHomeomorph.coe_coe, Function.comp_apply, zero_add, PartialEquiv.trans_target, ModelWithCorners.target_eq, ModelWithCorners.toPartialEquiv_coe_symm, Set.mem_inter_iff, Set.mem_range_self, Set.mem_preimage, ModelWithCorners.left_inv, PartialHomeomorph.map_source, mem_chart_source, and_self_iff]
case refine_2.refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ (fun z => z + ↑(extChartAt I a) a) (c, 0).2 ∈ (extChartAt I a).target
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2.refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ (fun z => z + ↑(extChartAt I a) a) (c, 0).2 ∈ (extChartAt I a).target TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fla
[86, 1]
[102, 72]
exact ((analyticAt_snd _).add analyticAt_const).holomorphicAt _ _
case refine_2.refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ HolomorphicAt (I.prod I) I (fun x => (fun z => z + ↑(extChartAt I a) a) x.2) (c, 0)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2.refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ HolomorphicAt (I.prod I) I (fun x => (fun z => z + ↑(extChartAt I a) a) x.2) (c, 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.holomorphicAt_iter
[105, 1]
[110, 62]
induction' n with n h
S : Type inst✝⁶ : TopologicalSpace S inst✝⁵ : CompactSpace S inst✝⁴ : T3Space S inst✝³ : ChartedSpace ℂ S inst✝² : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T g : ℂ × T → ℂ h : ℂ × T → S p : ℂ × T n : ℕ ga : HolomorphicAt (I.prod I) I g p ha : HolomorphicAt (I.prod I) I h p ⊢ HolomorphicAt (I.prod I) I (fun p => (f (g p))^[n] (h p)) p
case zero S : Type inst✝⁶ : TopologicalSpace S inst✝⁵ : CompactSpace S inst✝⁴ : T3Space S inst✝³ : ChartedSpace ℂ S inst✝² : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T g : ℂ × T → ℂ h : ℂ × T → S p : ℂ × T ga : HolomorphicAt (I.prod I) I g p ha : HolomorphicAt (I.prod I) I h p ⊢ HolomorphicAt (I.prod I) I (fun p => (f (g p))^[0] (h p)) p case succ S : Type inst✝⁶ : TopologicalSpace S inst✝⁵ : CompactSpace S inst✝⁴ : T3Space S inst✝³ : ChartedSpace ℂ S inst✝² : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T g : ℂ × T → ℂ h✝ : ℂ × T → S p : ℂ × T ga : HolomorphicAt (I.prod I) I g p ha : HolomorphicAt (I.prod I) I h✝ p n : ℕ h : HolomorphicAt (I.prod I) I (fun p => (f (g p))^[n] (h✝ p)) p ⊢ HolomorphicAt (I.prod I) I (fun p => (f (g p))^[n + 1] (h✝ p)) p
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁶ : TopologicalSpace S inst✝⁵ : CompactSpace S inst✝⁴ : T3Space S inst✝³ : ChartedSpace ℂ S inst✝² : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T g : ℂ × T → ℂ h : ℂ × T → S p : ℂ × T n : ℕ ga : HolomorphicAt (I.prod I) I g p ha : HolomorphicAt (I.prod I) I h p ⊢ HolomorphicAt (I.prod I) I (fun p => (f (g p))^[n] (h p)) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.holomorphicAt_iter
[105, 1]
[110, 62]
simp only [Function.iterate_zero, id]
case zero S : Type inst✝⁶ : TopologicalSpace S inst✝⁵ : CompactSpace S inst✝⁴ : T3Space S inst✝³ : ChartedSpace ℂ S inst✝² : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T g : ℂ × T → ℂ h : ℂ × T → S p : ℂ × T ga : HolomorphicAt (I.prod I) I g p ha : HolomorphicAt (I.prod I) I h p ⊢ HolomorphicAt (I.prod I) I (fun p => (f (g p))^[0] (h p)) p case succ S : Type inst✝⁶ : TopologicalSpace S inst✝⁵ : CompactSpace S inst✝⁴ : T3Space S inst✝³ : ChartedSpace ℂ S inst✝² : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T g : ℂ × T → ℂ h✝ : ℂ × T → S p : ℂ × T ga : HolomorphicAt (I.prod I) I g p ha : HolomorphicAt (I.prod I) I h✝ p n : ℕ h : HolomorphicAt (I.prod I) I (fun p => (f (g p))^[n] (h✝ p)) p ⊢ HolomorphicAt (I.prod I) I (fun p => (f (g p))^[n + 1] (h✝ p)) p
case zero S : Type inst✝⁶ : TopologicalSpace S inst✝⁵ : CompactSpace S inst✝⁴ : T3Space S inst✝³ : ChartedSpace ℂ S inst✝² : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T g : ℂ × T → ℂ h : ℂ × T → S p : ℂ × T ga : HolomorphicAt (I.prod I) I g p ha : HolomorphicAt (I.prod I) I h p ⊢ HolomorphicAt (I.prod I) I (fun p => h p) p case succ S : Type inst✝⁶ : TopologicalSpace S inst✝⁵ : CompactSpace S inst✝⁴ : T3Space S inst✝³ : ChartedSpace ℂ S inst✝² : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T g : ℂ × T → ℂ h✝ : ℂ × T → S p : ℂ × T ga : HolomorphicAt (I.prod I) I g p ha : HolomorphicAt (I.prod I) I h✝ p n : ℕ h : HolomorphicAt (I.prod I) I (fun p => (f (g p))^[n] (h✝ p)) p ⊢ HolomorphicAt (I.prod I) I (fun p => (f (g p))^[n + 1] (h✝ p)) p
Please generate a tactic in lean4 to solve the state. STATE: case zero S : Type inst✝⁶ : TopologicalSpace S inst✝⁵ : CompactSpace S inst✝⁴ : T3Space S inst✝³ : ChartedSpace ℂ S inst✝² : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T g : ℂ × T → ℂ h : ℂ × T → S p : ℂ × T ga : HolomorphicAt (I.prod I) I g p ha : HolomorphicAt (I.prod I) I h p ⊢ HolomorphicAt (I.prod I) I (fun p => (f (g p))^[0] (h p)) p case succ S : Type inst✝⁶ : TopologicalSpace S inst✝⁵ : CompactSpace S inst✝⁴ : T3Space S inst✝³ : ChartedSpace ℂ S inst✝² : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T g : ℂ × T → ℂ h✝ : ℂ × T → S p : ℂ × T ga : HolomorphicAt (I.prod I) I g p ha : HolomorphicAt (I.prod I) I h✝ p n : ℕ h : HolomorphicAt (I.prod I) I (fun p => (f (g p))^[n] (h✝ p)) p ⊢ HolomorphicAt (I.prod I) I (fun p => (f (g p))^[n + 1] (h✝ p)) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.holomorphicAt_iter
[105, 1]
[110, 62]
exact ha
case zero S : Type inst✝⁶ : TopologicalSpace S inst✝⁵ : CompactSpace S inst✝⁴ : T3Space S inst✝³ : ChartedSpace ℂ S inst✝² : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T g : ℂ × T → ℂ h : ℂ × T → S p : ℂ × T ga : HolomorphicAt (I.prod I) I g p ha : HolomorphicAt (I.prod I) I h p ⊢ HolomorphicAt (I.prod I) I (fun p => h p) p case succ S : Type inst✝⁶ : TopologicalSpace S inst✝⁵ : CompactSpace S inst✝⁴ : T3Space S inst✝³ : ChartedSpace ℂ S inst✝² : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T g : ℂ × T → ℂ h✝ : ℂ × T → S p : ℂ × T ga : HolomorphicAt (I.prod I) I g p ha : HolomorphicAt (I.prod I) I h✝ p n : ℕ h : HolomorphicAt (I.prod I) I (fun p => (f (g p))^[n] (h✝ p)) p ⊢ HolomorphicAt (I.prod I) I (fun p => (f (g p))^[n + 1] (h✝ p)) p
case succ S : Type inst✝⁶ : TopologicalSpace S inst✝⁵ : CompactSpace S inst✝⁴ : T3Space S inst✝³ : ChartedSpace ℂ S inst✝² : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T g : ℂ × T → ℂ h✝ : ℂ × T → S p : ℂ × T ga : HolomorphicAt (I.prod I) I g p ha : HolomorphicAt (I.prod I) I h✝ p n : ℕ h : HolomorphicAt (I.prod I) I (fun p => (f (g p))^[n] (h✝ p)) p ⊢ HolomorphicAt (I.prod I) I (fun p => (f (g p))^[n + 1] (h✝ p)) p
Please generate a tactic in lean4 to solve the state. STATE: case zero S : Type inst✝⁶ : TopologicalSpace S inst✝⁵ : CompactSpace S inst✝⁴ : T3Space S inst✝³ : ChartedSpace ℂ S inst✝² : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T g : ℂ × T → ℂ h : ℂ × T → S p : ℂ × T ga : HolomorphicAt (I.prod I) I g p ha : HolomorphicAt (I.prod I) I h p ⊢ HolomorphicAt (I.prod I) I (fun p => h p) p case succ S : Type inst✝⁶ : TopologicalSpace S inst✝⁵ : CompactSpace S inst✝⁴ : T3Space S inst✝³ : ChartedSpace ℂ S inst✝² : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T g : ℂ × T → ℂ h✝ : ℂ × T → S p : ℂ × T ga : HolomorphicAt (I.prod I) I g p ha : HolomorphicAt (I.prod I) I h✝ p n : ℕ h : HolomorphicAt (I.prod I) I (fun p => (f (g p))^[n] (h✝ p)) p ⊢ HolomorphicAt (I.prod I) I (fun p => (f (g p))^[n + 1] (h✝ p)) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.holomorphicAt_iter
[105, 1]
[110, 62]
simp_rw [Function.iterate_succ']
case succ S : Type inst✝⁶ : TopologicalSpace S inst✝⁵ : CompactSpace S inst✝⁴ : T3Space S inst✝³ : ChartedSpace ℂ S inst✝² : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T g : ℂ × T → ℂ h✝ : ℂ × T → S p : ℂ × T ga : HolomorphicAt (I.prod I) I g p ha : HolomorphicAt (I.prod I) I h✝ p n : ℕ h : HolomorphicAt (I.prod I) I (fun p => (f (g p))^[n] (h✝ p)) p ⊢ HolomorphicAt (I.prod I) I (fun p => (f (g p))^[n + 1] (h✝ p)) p
case succ S : Type inst✝⁶ : TopologicalSpace S inst✝⁵ : CompactSpace S inst✝⁴ : T3Space S inst✝³ : ChartedSpace ℂ S inst✝² : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T g : ℂ × T → ℂ h✝ : ℂ × T → S p : ℂ × T ga : HolomorphicAt (I.prod I) I g p ha : HolomorphicAt (I.prod I) I h✝ p n : ℕ h : HolomorphicAt (I.prod I) I (fun p => (f (g p))^[n] (h✝ p)) p ⊢ HolomorphicAt (I.prod I) I (fun p => (f (g p) ∘ (f (g p))^[n]) (h✝ p)) p
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁶ : TopologicalSpace S inst✝⁵ : CompactSpace S inst✝⁴ : T3Space S inst✝³ : ChartedSpace ℂ S inst✝² : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T g : ℂ × T → ℂ h✝ : ℂ × T → S p : ℂ × T ga : HolomorphicAt (I.prod I) I g p ha : HolomorphicAt (I.prod I) I h✝ p n : ℕ h : HolomorphicAt (I.prod I) I (fun p => (f (g p))^[n] (h✝ p)) p ⊢ HolomorphicAt (I.prod I) I (fun p => (f (g p))^[n + 1] (h✝ p)) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.holomorphicAt_iter
[105, 1]
[110, 62]
exact (s.fa _).comp₂ ga h
case succ S : Type inst✝⁶ : TopologicalSpace S inst✝⁵ : CompactSpace S inst✝⁴ : T3Space S inst✝³ : ChartedSpace ℂ S inst✝² : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T g : ℂ × T → ℂ h✝ : ℂ × T → S p : ℂ × T ga : HolomorphicAt (I.prod I) I g p ha : HolomorphicAt (I.prod I) I h✝ p n : ℕ h : HolomorphicAt (I.prod I) I (fun p => (f (g p))^[n] (h✝ p)) p ⊢ HolomorphicAt (I.prod I) I (fun p => (f (g p) ∘ (f (g p))^[n]) (h✝ p)) p
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁶ : TopologicalSpace S inst✝⁵ : CompactSpace S inst✝⁴ : T3Space S inst✝³ : ChartedSpace ℂ S inst✝² : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝¹ : TopologicalSpace T inst✝ : ChartedSpace ℂ T g : ℂ × T → ℂ h✝ : ℂ × T → S p : ℂ × T ga : HolomorphicAt (I.prod I) I g p ha : HolomorphicAt (I.prod I) I h✝ p n : ℕ h : HolomorphicAt (I.prod I) I (fun p => (f (g p))^[n] (h✝ p)) p ⊢ HolomorphicAt (I.prod I) I (fun p => (f (g p) ∘ (f (g p))^[n]) (h✝ p)) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.continuous_iter
[113, 1]
[117, 78]
induction' n with n h
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S n : ℕ gc : Continuous g hc : Continuous h ⊢ Continuous fun x => (f (g x))^[n] (h x)
case zero S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S gc : Continuous g hc : Continuous h ⊢ Continuous fun x => (f (g x))^[0] (h x) case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S gc : Continuous g hc : Continuous h✝ n : ℕ h : Continuous fun x => (f (g x))^[n] (h✝ x) ⊢ Continuous fun x => (f (g x))^[n + 1] (h✝ x)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S n : ℕ gc : Continuous g hc : Continuous h ⊢ Continuous fun x => (f (g x))^[n] (h x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.continuous_iter
[113, 1]
[117, 78]
simp only [Function.iterate_zero, id]
case zero S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S gc : Continuous g hc : Continuous h ⊢ Continuous fun x => (f (g x))^[0] (h x) case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S gc : Continuous g hc : Continuous h✝ n : ℕ h : Continuous fun x => (f (g x))^[n] (h✝ x) ⊢ Continuous fun x => (f (g x))^[n + 1] (h✝ x)
case zero S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S gc : Continuous g hc : Continuous h ⊢ Continuous fun x => h x case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S gc : Continuous g hc : Continuous h✝ n : ℕ h : Continuous fun x => (f (g x))^[n] (h✝ x) ⊢ Continuous fun x => (f (g x))^[n + 1] (h✝ x)
Please generate a tactic in lean4 to solve the state. STATE: case zero S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S gc : Continuous g hc : Continuous h ⊢ Continuous fun x => (f (g x))^[0] (h x) case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S gc : Continuous g hc : Continuous h✝ n : ℕ h : Continuous fun x => (f (g x))^[n] (h✝ x) ⊢ Continuous fun x => (f (g x))^[n + 1] (h✝ x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.continuous_iter
[113, 1]
[117, 78]
exact hc
case zero S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S gc : Continuous g hc : Continuous h ⊢ Continuous fun x => h x case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S gc : Continuous g hc : Continuous h✝ n : ℕ h : Continuous fun x => (f (g x))^[n] (h✝ x) ⊢ Continuous fun x => (f (g x))^[n + 1] (h✝ x)
case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S gc : Continuous g hc : Continuous h✝ n : ℕ h : Continuous fun x => (f (g x))^[n] (h✝ x) ⊢ Continuous fun x => (f (g x))^[n + 1] (h✝ x)
Please generate a tactic in lean4 to solve the state. STATE: case zero S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S gc : Continuous g hc : Continuous h ⊢ Continuous fun x => h x case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S gc : Continuous g hc : Continuous h✝ n : ℕ h : Continuous fun x => (f (g x))^[n] (h✝ x) ⊢ Continuous fun x => (f (g x))^[n + 1] (h✝ x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.continuous_iter
[113, 1]
[117, 78]
simp_rw [Function.iterate_succ']
case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S gc : Continuous g hc : Continuous h✝ n : ℕ h : Continuous fun x => (f (g x))^[n] (h✝ x) ⊢ Continuous fun x => (f (g x))^[n + 1] (h✝ x)
case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S gc : Continuous g hc : Continuous h✝ n : ℕ h : Continuous fun x => (f (g x))^[n] (h✝ x) ⊢ Continuous fun x => (f (g x) ∘ (f (g x))^[n]) (h✝ x)
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S gc : Continuous g hc : Continuous h✝ n : ℕ h : Continuous fun x => (f (g x))^[n] (h✝ x) ⊢ Continuous fun x => (f (g x))^[n + 1] (h✝ x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.continuous_iter
[113, 1]
[117, 78]
exact s.fa.continuous.comp (gc.prod_mk h)
case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S gc : Continuous g hc : Continuous h✝ n : ℕ h : Continuous fun x => (f (g x))^[n] (h✝ x) ⊢ Continuous fun x => (f (g x) ∘ (f (g x))^[n]) (h✝ x)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S gc : Continuous g hc : Continuous h✝ n : ℕ h : Continuous fun x => (f (g x))^[n] (h✝ x) ⊢ Continuous fun x => (f (g x) ∘ (f (g x))^[n]) (h✝ x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.continuousOn_iter
[120, 1]
[124, 88]
induction' n with n h
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S t : Set T n : ℕ gc : ContinuousOn g t hc : ContinuousOn h t ⊢ ContinuousOn (fun x => (f (g x))^[n] (h x)) t
case zero S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S t : Set T gc : ContinuousOn g t hc : ContinuousOn h t ⊢ ContinuousOn (fun x => (f (g x))^[0] (h x)) t case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S t : Set T gc : ContinuousOn g t hc : ContinuousOn h✝ t n : ℕ h : ContinuousOn (fun x => (f (g x))^[n] (h✝ x)) t ⊢ ContinuousOn (fun x => (f (g x))^[n + 1] (h✝ x)) t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S t : Set T n : ℕ gc : ContinuousOn g t hc : ContinuousOn h t ⊢ ContinuousOn (fun x => (f (g x))^[n] (h x)) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.continuousOn_iter
[120, 1]
[124, 88]
simp only [Function.iterate_zero, id]
case zero S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S t : Set T gc : ContinuousOn g t hc : ContinuousOn h t ⊢ ContinuousOn (fun x => (f (g x))^[0] (h x)) t case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S t : Set T gc : ContinuousOn g t hc : ContinuousOn h✝ t n : ℕ h : ContinuousOn (fun x => (f (g x))^[n] (h✝ x)) t ⊢ ContinuousOn (fun x => (f (g x))^[n + 1] (h✝ x)) t
case zero S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S t : Set T gc : ContinuousOn g t hc : ContinuousOn h t ⊢ ContinuousOn (fun x => h x) t case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S t : Set T gc : ContinuousOn g t hc : ContinuousOn h✝ t n : ℕ h : ContinuousOn (fun x => (f (g x))^[n] (h✝ x)) t ⊢ ContinuousOn (fun x => (f (g x))^[n + 1] (h✝ x)) t
Please generate a tactic in lean4 to solve the state. STATE: case zero S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S t : Set T gc : ContinuousOn g t hc : ContinuousOn h t ⊢ ContinuousOn (fun x => (f (g x))^[0] (h x)) t case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S t : Set T gc : ContinuousOn g t hc : ContinuousOn h✝ t n : ℕ h : ContinuousOn (fun x => (f (g x))^[n] (h✝ x)) t ⊢ ContinuousOn (fun x => (f (g x))^[n + 1] (h✝ x)) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.continuousOn_iter
[120, 1]
[124, 88]
exact hc
case zero S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S t : Set T gc : ContinuousOn g t hc : ContinuousOn h t ⊢ ContinuousOn (fun x => h x) t case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S t : Set T gc : ContinuousOn g t hc : ContinuousOn h✝ t n : ℕ h : ContinuousOn (fun x => (f (g x))^[n] (h✝ x)) t ⊢ ContinuousOn (fun x => (f (g x))^[n + 1] (h✝ x)) t
case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S t : Set T gc : ContinuousOn g t hc : ContinuousOn h✝ t n : ℕ h : ContinuousOn (fun x => (f (g x))^[n] (h✝ x)) t ⊢ ContinuousOn (fun x => (f (g x))^[n + 1] (h✝ x)) t
Please generate a tactic in lean4 to solve the state. STATE: case zero S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S t : Set T gc : ContinuousOn g t hc : ContinuousOn h t ⊢ ContinuousOn (fun x => h x) t case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S t : Set T gc : ContinuousOn g t hc : ContinuousOn h✝ t n : ℕ h : ContinuousOn (fun x => (f (g x))^[n] (h✝ x)) t ⊢ ContinuousOn (fun x => (f (g x))^[n + 1] (h✝ x)) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.continuousOn_iter
[120, 1]
[124, 88]
simp_rw [Function.iterate_succ']
case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S t : Set T gc : ContinuousOn g t hc : ContinuousOn h✝ t n : ℕ h : ContinuousOn (fun x => (f (g x))^[n] (h✝ x)) t ⊢ ContinuousOn (fun x => (f (g x))^[n + 1] (h✝ x)) t
case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S t : Set T gc : ContinuousOn g t hc : ContinuousOn h✝ t n : ℕ h : ContinuousOn (fun x => (f (g x))^[n] (h✝ x)) t ⊢ ContinuousOn (fun x => (f (g x) ∘ (f (g x))^[n]) (h✝ x)) t
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S t : Set T gc : ContinuousOn g t hc : ContinuousOn h✝ t n : ℕ h : ContinuousOn (fun x => (f (g x))^[n] (h✝ x)) t ⊢ ContinuousOn (fun x => (f (g x))^[n + 1] (h✝ x)) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.continuousOn_iter
[120, 1]
[124, 88]
exact s.fa.continuous.comp_continuousOn (gc.prod h)
case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S t : Set T gc : ContinuousOn g t hc : ContinuousOn h✝ t n : ℕ h : ContinuousOn (fun x => (f (g x))^[n] (h✝ x)) t ⊢ ContinuousOn (fun x => (f (g x) ∘ (f (g x))^[n]) (h✝ x)) t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S t : Set T gc : ContinuousOn g t hc : ContinuousOn h✝ t n : ℕ h : ContinuousOn (fun x => (f (g x))^[n] (h✝ x)) t ⊢ ContinuousOn (fun x => (f (g x) ∘ (f (g x))^[n]) (h✝ x)) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.continuousAt_iter
[127, 1]
[131, 81]
induction' n with n h
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S x : T n : ℕ gc : ContinuousAt g x hc : ContinuousAt h x ⊢ ContinuousAt (fun x => (f (g x))^[n] (h x)) x
case zero S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S x : T gc : ContinuousAt g x hc : ContinuousAt h x ⊢ ContinuousAt (fun x => (f (g x))^[0] (h x)) x case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S x : T gc : ContinuousAt g x hc : ContinuousAt h✝ x n : ℕ h : ContinuousAt (fun x => (f (g x))^[n] (h✝ x)) x ⊢ ContinuousAt (fun x => (f (g x))^[n + 1] (h✝ x)) x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S x : T n : ℕ gc : ContinuousAt g x hc : ContinuousAt h x ⊢ ContinuousAt (fun x => (f (g x))^[n] (h x)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.continuousAt_iter
[127, 1]
[131, 81]
simp only [Function.iterate_zero, id]
case zero S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S x : T gc : ContinuousAt g x hc : ContinuousAt h x ⊢ ContinuousAt (fun x => (f (g x))^[0] (h x)) x case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S x : T gc : ContinuousAt g x hc : ContinuousAt h✝ x n : ℕ h : ContinuousAt (fun x => (f (g x))^[n] (h✝ x)) x ⊢ ContinuousAt (fun x => (f (g x))^[n + 1] (h✝ x)) x
case zero S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S x : T gc : ContinuousAt g x hc : ContinuousAt h x ⊢ ContinuousAt (fun x => h x) x case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S x : T gc : ContinuousAt g x hc : ContinuousAt h✝ x n : ℕ h : ContinuousAt (fun x => (f (g x))^[n] (h✝ x)) x ⊢ ContinuousAt (fun x => (f (g x))^[n + 1] (h✝ x)) x
Please generate a tactic in lean4 to solve the state. STATE: case zero S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S x : T gc : ContinuousAt g x hc : ContinuousAt h x ⊢ ContinuousAt (fun x => (f (g x))^[0] (h x)) x case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S x : T gc : ContinuousAt g x hc : ContinuousAt h✝ x n : ℕ h : ContinuousAt (fun x => (f (g x))^[n] (h✝ x)) x ⊢ ContinuousAt (fun x => (f (g x))^[n + 1] (h✝ x)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.continuousAt_iter
[127, 1]
[131, 81]
exact hc
case zero S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S x : T gc : ContinuousAt g x hc : ContinuousAt h x ⊢ ContinuousAt (fun x => h x) x case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S x : T gc : ContinuousAt g x hc : ContinuousAt h✝ x n : ℕ h : ContinuousAt (fun x => (f (g x))^[n] (h✝ x)) x ⊢ ContinuousAt (fun x => (f (g x))^[n + 1] (h✝ x)) x
case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S x : T gc : ContinuousAt g x hc : ContinuousAt h✝ x n : ℕ h : ContinuousAt (fun x => (f (g x))^[n] (h✝ x)) x ⊢ ContinuousAt (fun x => (f (g x))^[n + 1] (h✝ x)) x
Please generate a tactic in lean4 to solve the state. STATE: case zero S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h : T → S x : T gc : ContinuousAt g x hc : ContinuousAt h x ⊢ ContinuousAt (fun x => h x) x case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S x : T gc : ContinuousAt g x hc : ContinuousAt h✝ x n : ℕ h : ContinuousAt (fun x => (f (g x))^[n] (h✝ x)) x ⊢ ContinuousAt (fun x => (f (g x))^[n + 1] (h✝ x)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.continuousAt_iter
[127, 1]
[131, 81]
simp_rw [Function.iterate_succ']
case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S x : T gc : ContinuousAt g x hc : ContinuousAt h✝ x n : ℕ h : ContinuousAt (fun x => (f (g x))^[n] (h✝ x)) x ⊢ ContinuousAt (fun x => (f (g x))^[n + 1] (h✝ x)) x
case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S x : T gc : ContinuousAt g x hc : ContinuousAt h✝ x n : ℕ h : ContinuousAt (fun x => (f (g x))^[n] (h✝ x)) x ⊢ ContinuousAt (fun x => (f (g x) ∘ (f (g x))^[n]) (h✝ x)) x
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S x : T gc : ContinuousAt g x hc : ContinuousAt h✝ x n : ℕ h : ContinuousAt (fun x => (f (g x))^[n] (h✝ x)) x ⊢ ContinuousAt (fun x => (f (g x))^[n + 1] (h✝ x)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.continuousAt_iter
[127, 1]
[131, 81]
exact (s.fa _).continuousAt.comp (gc.prod h)
case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S x : T gc : ContinuousAt g x hc : ContinuousAt h✝ x n : ℕ h : ContinuousAt (fun x => (f (g x))^[n] (h✝ x)) x ⊢ ContinuousAt (fun x => (f (g x) ∘ (f (g x))^[n]) (h✝ x)) x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a T : Type inst✝ : TopologicalSpace T g : T → ℂ h✝ : T → S x : T gc : ContinuousAt g x hc : ContinuousAt h✝ x n : ℕ h : ContinuousAt (fun x => (f (g x))^[n] (h✝ x)) x ⊢ ContinuousAt (fun x => (f (g x) ∘ (f (g x))^[n]) (h✝ x)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.holomorphic_prod_iter
[139, 1]
[141, 66]
intro p
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ ⊢ Holomorphic (I.prod I) (I.prod I) fun p => (p.1, (f p.1)^[n] p.2)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : ℂ × S ⊢ HolomorphicAt (I.prod I) (I.prod I) (fun p => (p.1, (f p.1)^[n] p.2)) p
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ ⊢ Holomorphic (I.prod I) (I.prod I) fun p => (p.1, (f p.1)^[n] p.2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.holomorphic_prod_iter
[139, 1]
[141, 66]
apply holomorphicAt_fst.prod
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : ℂ × S ⊢ HolomorphicAt (I.prod I) (I.prod I) (fun p => (p.1, (f p.1)^[n] p.2)) p
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : ℂ × S ⊢ HolomorphicAt (I.prod I) I (fun x => (f x.1)^[n] x.2) p
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : ℂ × S ⊢ HolomorphicAt (I.prod I) (I.prod I) (fun p => (p.1, (f p.1)^[n] p.2)) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.holomorphic_prod_iter
[139, 1]
[141, 66]
apply s.holomorphic_iter
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : ℂ × S ⊢ HolomorphicAt (I.prod I) I (fun x => (f x.1)^[n] x.2) p
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : ℂ × S ⊢ HolomorphicAt (I.prod I) I (fun x => (f x.1)^[n] x.2) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fl0
[144, 1]
[146, 37]
simp only [Super.fl, _root_.fl, s.f0, Function.comp_apply, zero_add, PartialEquiv.left_inv, mem_extChartAt_source, sub_self]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ s.fl c 0 = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ s.fl c 0 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
simp only [Critical, mfderiv_eq_fderiv, Super.fl]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ Critical (s.fl c) 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ fderiv ℂ (_root_.fl f a c) 0 = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ Critical (s.fl c) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
have p := (s.fla c).along_snd.leading_approx
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ fderiv ℂ (_root_.fl f a c) 0 = 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : (fun z => uncurry s.fl ((c, 0).1, z) - (z - (c, 0).2) ^ orderAt (fun y => uncurry s.fl ((c, 0).1, y)) (c, 0).2 • leadingCoeff (fun y => uncurry s.fl ((c, 0).1, y)) (c, 0).2) =o[𝓝 (c, 0).2] fun z => (z - (c, 0).2) ^ orderAt (fun y => uncurry s.fl ((c, 0).1, y)) (c, 0).2 ⊢ fderiv ℂ (_root_.fl f a c) 0 = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ fderiv ℂ (_root_.fl f a c) 0 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
simp only [sub_zero, Algebra.id.smul_eq_mul, Super.fl, s.fd, s.fc, mul_one, uncurry] at p
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : (fun z => uncurry s.fl ((c, 0).1, z) - (z - (c, 0).2) ^ orderAt (fun y => uncurry s.fl ((c, 0).1, y)) (c, 0).2 • leadingCoeff (fun y => uncurry s.fl ((c, 0).1, y)) (c, 0).2) =o[𝓝 (c, 0).2] fun z => (z - (c, 0).2) ^ orderAt (fun y => uncurry s.fl ((c, 0).1, y)) (c, 0).2 ⊢ fderiv ℂ (_root_.fl f a c) 0 = 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : (fun z => _root_.fl f a c z - z ^ d) =o[𝓝 0] fun z => z ^ d ⊢ fderiv ℂ (_root_.fl f a c) 0 = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : (fun z => uncurry s.fl ((c, 0).1, z) - (z - (c, 0).2) ^ orderAt (fun y => uncurry s.fl ((c, 0).1, y)) (c, 0).2 • leadingCoeff (fun y => uncurry s.fl ((c, 0).1, y)) (c, 0).2) =o[𝓝 (c, 0).2] fun z => (z - (c, 0).2) ^ orderAt (fun y => uncurry s.fl ((c, 0).1, y)) (c, 0).2 ⊢ fderiv ℂ (_root_.fl f a c) 0 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
generalize hg : _root_.fl f a c = g
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : (fun z => _root_.fl f a c z - z ^ d) =o[𝓝 0] fun z => z ^ d ⊢ fderiv ℂ (_root_.fl f a c) 0 = 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : (fun z => _root_.fl f a c z - z ^ d) =o[𝓝 0] fun z => z ^ d g : ℂ → ℂ hg : _root_.fl f a c = g ⊢ fderiv ℂ g 0 = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : (fun z => _root_.fl f a c z - z ^ d) =o[𝓝 0] fun z => z ^ d ⊢ fderiv ℂ (_root_.fl f a c) 0 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
rw [hg] at p
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : (fun z => _root_.fl f a c z - z ^ d) =o[𝓝 0] fun z => z ^ d g : ℂ → ℂ hg : _root_.fl f a c = g ⊢ fderiv ℂ g 0 = 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g ⊢ fderiv ℂ g 0 = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ p : (fun z => _root_.fl f a c z - z ^ d) =o[𝓝 0] fun z => z ^ d g : ℂ → ℂ hg : _root_.fl f a c = g ⊢ fderiv ℂ g 0 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
have g0 : g 0 = 0 := by rw [← hg]; exact s.fl0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g ⊢ fderiv ℂ g 0 = 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 ⊢ fderiv ℂ g 0 = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g ⊢ fderiv ℂ g 0 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
apply HasFDerivAt.fderiv
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 ⊢ fderiv ℂ g 0 = 0
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 ⊢ HasFDerivAt g 0 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 ⊢ fderiv ℂ g 0 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
simp only [hasFDerivAt_iff_isLittleO_nhds_zero, ContinuousLinearMap.zero_apply, sub_zero, zero_add, g0]
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 ⊢ HasFDerivAt g 0 0
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 ⊢ (fun h => g h - 0 h) =o[𝓝 0] fun h => h
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 ⊢ HasFDerivAt g 0 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
have od : (fun z : ℂ ↦ z ^ d) =o[𝓝 0] (fun z ↦ z) := by rw [Asymptotics.isLittleO_iff]; intro e ep apply ((@Metric.isOpen_ball ℂ _ 0 (min 1 e)).eventually_mem (mem_ball_self (by bound))).mp refine eventually_of_forall fun z b ↦ ?_ simp only at b; rw [mem_ball_zero_iff, Complex.norm_eq_abs, lt_min_iff] at b simp only [Complex.norm_eq_abs, Complex.abs.map_pow] rw [← Nat.sub_add_cancel s.d2, pow_add, pow_two] calc abs z ^ (d - 2) * (abs z * abs z) _ ≤ (1:ℝ) ^ (d - 2) * (abs z * abs z) := by bound _ = abs z * abs z := by simp only [one_pow, one_mul] _ ≤ e * abs z := by bound
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 ⊢ (fun h => g h - 0 h) =o[𝓝 0] fun h => h
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 od : (fun z => z ^ d) =o[𝓝 0] fun z => z ⊢ (fun h => g h - 0 h) =o[𝓝 0] fun h => h
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 ⊢ (fun h => g h - 0 h) =o[𝓝 0] fun h => h TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
have p' := (p.trans od).add od
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 od : (fun z => z ^ d) =o[𝓝 0] fun z => z ⊢ (fun h => g h - 0 h) =o[𝓝 0] fun h => h
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 od : (fun z => z ^ d) =o[𝓝 0] fun z => z p' : (fun x => g x - x ^ d + x ^ d) =o[𝓝 0] fun z => z ⊢ (fun h => g h - 0 h) =o[𝓝 0] fun h => h
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 od : (fun z => z ^ d) =o[𝓝 0] fun z => z ⊢ (fun h => g h - 0 h) =o[𝓝 0] fun h => h TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
simp only [sub_add_cancel] at p'
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 od : (fun z => z ^ d) =o[𝓝 0] fun z => z p' : (fun x => g x - x ^ d + x ^ d) =o[𝓝 0] fun z => z ⊢ (fun h => g h - 0 h) =o[𝓝 0] fun h => h
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 od : (fun z => z ^ d) =o[𝓝 0] fun z => z p' : (fun x => g x) =o[𝓝 0] fun z => z ⊢ (fun h => g h - 0 h) =o[𝓝 0] fun h => h
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 od : (fun z => z ^ d) =o[𝓝 0] fun z => z p' : (fun x => g x - x ^ d + x ^ d) =o[𝓝 0] fun z => z ⊢ (fun h => g h - 0 h) =o[𝓝 0] fun h => h TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
refine p'.congr_left ?_
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 od : (fun z => z ^ d) =o[𝓝 0] fun z => z p' : (fun x => g x) =o[𝓝 0] fun z => z ⊢ (fun h => g h - 0 h) =o[𝓝 0] fun h => h
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 od : (fun z => z ^ d) =o[𝓝 0] fun z => z p' : (fun x => g x) =o[𝓝 0] fun z => z ⊢ ∀ (x : ℂ), g x = g x - 0 x
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 od : (fun z => z ^ d) =o[𝓝 0] fun z => z p' : (fun x => g x) =o[𝓝 0] fun z => z ⊢ (fun h => g h - 0 h) =o[𝓝 0] fun h => h TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
intro z
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 od : (fun z => z ^ d) =o[𝓝 0] fun z => z p' : (fun x => g x) =o[𝓝 0] fun z => z ⊢ ∀ (x : ℂ), g x = g x - 0 x
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 od : (fun z => z ^ d) =o[𝓝 0] fun z => z p' : (fun x => g x) =o[𝓝 0] fun z => z z : ℂ ⊢ g z = g z - 0 z
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 od : (fun z => z ^ d) =o[𝓝 0] fun z => z p' : (fun x => g x) =o[𝓝 0] fun z => z ⊢ ∀ (x : ℂ), g x = g x - 0 x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
exact (sub_zero _).symm
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 od : (fun z => z ^ d) =o[𝓝 0] fun z => z p' : (fun x => g x) =o[𝓝 0] fun z => z z : ℂ ⊢ g z = g z - 0 z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 od : (fun z => z ^ d) =o[𝓝 0] fun z => z p' : (fun x => g x) =o[𝓝 0] fun z => z z : ℂ ⊢ g z = g z - 0 z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
rw [← hg]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g ⊢ g 0 = 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g ⊢ _root_.fl f a c 0 = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g ⊢ g 0 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
exact s.fl0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g ⊢ _root_.fl f a c 0 = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g ⊢ _root_.fl f a c 0 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
rw [Asymptotics.isLittleO_iff]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 ⊢ (fun z => z ^ d) =o[𝓝 0] fun z => z
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 ⊢ ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x : ℂ) in 𝓝 0, ‖x ^ d‖ ≤ c * ‖x‖
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 ⊢ (fun z => z ^ d) =o[𝓝 0] fun z => z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
intro e ep
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 ⊢ ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x : ℂ) in 𝓝 0, ‖x ^ d‖ ≤ c * ‖x‖
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e ⊢ ∀ᶠ (x : ℂ) in 𝓝 0, ‖x ^ d‖ ≤ e * ‖x‖
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 ⊢ ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x : ℂ) in 𝓝 0, ‖x ^ d‖ ≤ c * ‖x‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
apply ((@Metric.isOpen_ball ℂ _ 0 (min 1 e)).eventually_mem (mem_ball_self (by bound))).mp
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e ⊢ ∀ᶠ (x : ℂ) in 𝓝 0, ‖x ^ d‖ ≤ e * ‖x‖
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e ⊢ ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ ball 0 (min 1 e) → ‖x ^ d‖ ≤ e * ‖x‖
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e ⊢ ∀ᶠ (x : ℂ) in 𝓝 0, ‖x ^ d‖ ≤ e * ‖x‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
refine eventually_of_forall fun z b ↦ ?_
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e ⊢ ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ ball 0 (min 1 e) → ‖x ^ d‖ ≤ e * ‖x‖
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e z : ℂ b : z ∈ ball 0 (min 1 e) ⊢ ‖z ^ d‖ ≤ e * ‖z‖
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e ⊢ ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ ball 0 (min 1 e) → ‖x ^ d‖ ≤ e * ‖x‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
rw [mem_ball_zero_iff, Complex.norm_eq_abs, lt_min_iff] at b
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e z : ℂ b : z ∈ ball 0 (min 1 e) ⊢ ‖z ^ d‖ ≤ e * ‖z‖
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e z : ℂ b : Complex.abs z < 1 ∧ Complex.abs z < e ⊢ ‖z ^ d‖ ≤ e * ‖z‖
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e z : ℂ b : z ∈ ball 0 (min 1 e) ⊢ ‖z ^ d‖ ≤ e * ‖z‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
simp only [Complex.norm_eq_abs, Complex.abs.map_pow]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e z : ℂ b : Complex.abs z < 1 ∧ Complex.abs z < e ⊢ ‖z ^ d‖ ≤ e * ‖z‖
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e z : ℂ b : Complex.abs z < 1 ∧ Complex.abs z < e ⊢ Complex.abs z ^ d ≤ e * Complex.abs z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e z : ℂ b : Complex.abs z < 1 ∧ Complex.abs z < e ⊢ ‖z ^ d‖ ≤ e * ‖z‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
rw [← Nat.sub_add_cancel s.d2, pow_add, pow_two]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e z : ℂ b : Complex.abs z < 1 ∧ Complex.abs z < e ⊢ Complex.abs z ^ d ≤ e * Complex.abs z
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e z : ℂ b : Complex.abs z < 1 ∧ Complex.abs z < e ⊢ Complex.abs z ^ (d - 2) * (Complex.abs z * Complex.abs z) ≤ e * Complex.abs z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e z : ℂ b : Complex.abs z < 1 ∧ Complex.abs z < e ⊢ Complex.abs z ^ d ≤ e * Complex.abs z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
calc abs z ^ (d - 2) * (abs z * abs z) _ ≤ (1:ℝ) ^ (d - 2) * (abs z * abs z) := by bound _ = abs z * abs z := by simp only [one_pow, one_mul] _ ≤ e * abs z := by bound
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e z : ℂ b : Complex.abs z < 1 ∧ Complex.abs z < e ⊢ Complex.abs z ^ (d - 2) * (Complex.abs z * Complex.abs z) ≤ e * Complex.abs z
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e z : ℂ b : Complex.abs z < 1 ∧ Complex.abs z < e ⊢ Complex.abs z ^ (d - 2) * (Complex.abs z * Complex.abs z) ≤ e * Complex.abs z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
bound
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e ⊢ 0 < min 1 e
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e ⊢ 0 < min 1 e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
bound
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e z : ℂ b : Complex.abs z < 1 ∧ Complex.abs z < e ⊢ Complex.abs z ^ (d - 2) * (Complex.abs z * Complex.abs z) ≤ 1 ^ (d - 2) * (Complex.abs z * Complex.abs z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e z : ℂ b : Complex.abs z < 1 ∧ Complex.abs z < e ⊢ Complex.abs z ^ (d - 2) * (Complex.abs z * Complex.abs z) ≤ 1 ^ (d - 2) * (Complex.abs z * Complex.abs z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
simp only [one_pow, one_mul]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e z : ℂ b : Complex.abs z < 1 ∧ Complex.abs z < e ⊢ 1 ^ (d - 2) * (Complex.abs z * Complex.abs z) = Complex.abs z * Complex.abs z
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e z : ℂ b : Complex.abs z < 1 ∧ Complex.abs z < e ⊢ 1 ^ (d - 2) * (Complex.abs z * Complex.abs z) = Complex.abs z * Complex.abs z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_0
[149, 1]
[172, 35]
bound
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e z : ℂ b : Complex.abs z < 1 ∧ Complex.abs z < e ⊢ Complex.abs z * Complex.abs z ≤ e * Complex.abs z
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ g : ℂ → ℂ p : (fun z => g z - z ^ d) =o[𝓝 0] fun z => z ^ d hg : _root_.fl f a c = g g0 : g 0 = 0 e : ℝ ep : 0 < e z : ℂ b : Complex.abs z < 1 ∧ Complex.abs z < e ⊢ Complex.abs z * Complex.abs z ≤ e * Complex.abs z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_a
[175, 1]
[188, 32]
have h := s.critical_0 c
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ Critical (f c) a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ h : Critical (s.fl c) 0 ⊢ Critical (f c) a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ Critical (f c) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_a
[175, 1]
[188, 32]
have e := PartialEquiv.left_inv _ (mem_extChartAt_source I a)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ h : Critical (s.fl c) 0 ⊢ Critical (f c) a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ h : Critical (s.fl c) 0 e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a ⊢ Critical (f c) a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ h : Critical (s.fl c) 0 ⊢ Critical (f c) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_a
[175, 1]
[188, 32]
contrapose h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ h : Critical (s.fl c) 0 e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a ⊢ Critical (f c) a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : ¬Critical (f c) a ⊢ ¬Critical (s.fl c) 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ h : Critical (s.fl c) 0 e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a ⊢ Critical (f c) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_a
[175, 1]
[188, 32]
simp only [Critical, Super.fl, fl, ← ne_eq] at h ⊢
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : ¬Critical (f c) a ⊢ ¬Critical (s.fl c) 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (_root_.fl f a c) 0 ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : ¬Critical (f c) a ⊢ ¬Critical (s.fl c) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_a
[175, 1]
[188, 32]
simp only [mfderiv_eq_fderiv, _root_.fl, Function.comp]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (_root_.fl f a c) 0 ≠ 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ fderiv ℂ (fun x => ↑(extChartAt I a) (f c (↑(extChartAt I a).symm (x + ↑(extChartAt I a) a))) - ↑(extChartAt I a) a) 0 ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (_root_.fl f a c) 0 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_a
[175, 1]
[188, 32]
rw [fderiv_sub_const, ←mfderiv_eq_fderiv]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ fderiv ℂ (fun x => ↑(extChartAt I a) (f c (↑(extChartAt I a).symm (x + ↑(extChartAt I a) a))) - ↑(extChartAt I a) a) 0 ≠ 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (fun x => ↑(extChartAt I a) (f c (↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)))) 0 ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ fderiv ℂ (fun x => ↑(extChartAt I a) (f c (↑(extChartAt I a).symm (x + ↑(extChartAt I a) a))) - ↑(extChartAt I a) a) 0 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_a
[175, 1]
[188, 32]
apply mderiv_comp_ne_zero' (extChartAt_mderiv_ne_zero' ?_)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (fun x => ↑(extChartAt I a) (f c (↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)))) 0 ≠ 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (fun x => f c (↑(extChartAt I a).symm (x + ↑(extChartAt I a) a))) 0 ≠ 0 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ f c (↑(extChartAt I a).symm (0 + ↑(extChartAt I a) a)) ∈ (extChartAt I a).source
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (fun x => ↑(extChartAt I a) (f c (↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)))) 0 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_a
[175, 1]
[188, 32]
apply mderiv_comp_ne_zero' (f := f c)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (fun x => f c (↑(extChartAt I a).symm (x + ↑(extChartAt I a) a))) 0 ≠ 0
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (f c) (↑(extChartAt I a).symm (0 + ↑(extChartAt I a) a)) ≠ 0 case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) 0 ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (fun x => f c (↑(extChartAt I a).symm (x + ↑(extChartAt I a) a))) 0 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_a
[175, 1]
[188, 32]
rw [zero_add, e]
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (f c) (↑(extChartAt I a).symm (0 + ↑(extChartAt I a) a)) ≠ 0
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (f c) a ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (f c) (↑(extChartAt I a).symm (0 + ↑(extChartAt I a) a)) ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_a
[175, 1]
[188, 32]
exact h
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (f c) a ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (f c) a ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_a
[175, 1]
[188, 32]
apply mderiv_comp_ne_zero' (extChartAt_symm_mderiv_ne_zero' ?_)
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) 0 ≠ 0
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (fun x => x + ↑(extChartAt I a) a) 0 ≠ 0 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ 0 + ↑(extChartAt I a) a ∈ (extChartAt I a).target
Please generate a tactic in lean4 to solve the state. STATE: case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) 0 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_a
[175, 1]
[188, 32]
rw [mfderiv_eq_fderiv, fderiv_add_const, ←mfderiv_eq_fderiv]
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (fun x => x + ↑(extChartAt I a) a) 0 ≠ 0
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (fun x => x) 0 ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (fun x => x + ↑(extChartAt I a) a) 0 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_a
[175, 1]
[188, 32]
exact id_mderiv_ne_zero
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (fun x => x) 0 ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ mfderiv I I (fun x => x) 0 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_a
[175, 1]
[188, 32]
rw [zero_add]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ 0 + ↑(extChartAt I a) a ∈ (extChartAt I a).target
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ ↑(extChartAt I a) a ∈ (extChartAt I a).target
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ 0 + ↑(extChartAt I a) a ∈ (extChartAt I a).target TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_a
[175, 1]
[188, 32]
apply mem_extChartAt_target
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ ↑(extChartAt I a) a ∈ (extChartAt I a).target
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ ↑(extChartAt I a) a ∈ (extChartAt I a).target TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_a
[175, 1]
[188, 32]
simp only [zero_add, e, s.f0]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ f c (↑(extChartAt I a).symm (0 + ↑(extChartAt I a) a)) ∈ (extChartAt I a).source
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ a ∈ (extChartAt I a).source
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ f c (↑(extChartAt I a).symm (0 + ↑(extChartAt I a) a)) ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.critical_a
[175, 1]
[188, 32]
apply mem_extChartAt_source
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ a ∈ (extChartAt I a).source
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a h : mfderiv I I (f c) a ≠ 0 ⊢ a ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_nontrivial
[191, 1]
[204, 63]
refine ⟨(s.fa _).along_snd, ?_⟩
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ NontrivialHolomorphicAt (f c) a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ∃ᶠ (w : S) in 𝓝 a, f c w ≠ f c a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ NontrivialHolomorphicAt (f c) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_nontrivial
[191, 1]
[204, 63]
simp only [s.f0]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ∃ᶠ (w : S) in 𝓝 a, f c w ≠ f c a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ∃ᶠ (w : S) in 𝓝 a, f c w ≠ a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ∃ᶠ (w : S) in 𝓝 a, f c w ≠ f c a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_nontrivial
[191, 1]
[204, 63]
contrapose n
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∃ᶠ (w : ℂ) in 𝓝 0, s.fl c w ≠ 0 ⊢ ∃ᶠ (w : S) in 𝓝 a, f c w ≠ a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ¬∃ᶠ (w : S) in 𝓝 a, f c w ≠ a ⊢ ¬∃ᶠ (w : ℂ) in 𝓝 0, s.fl c w ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∃ᶠ (w : ℂ) in 𝓝 0, s.fl c w ≠ 0 ⊢ ∃ᶠ (w : S) in 𝓝 a, f c w ≠ a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_nontrivial
[191, 1]
[204, 63]
simp only [Filter.not_frequently, not_not, Super.fl, fl, Function.comp, sub_eq_zero] at n ⊢
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ¬∃ᶠ (w : S) in 𝓝 a, f c w ≠ a ⊢ ¬∃ᶠ (w : ℂ) in 𝓝 0, s.fl c w ≠ 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∀ᶠ (x : S) in 𝓝 a, f c x = a ⊢ ∀ᶠ (x : ℂ) in 𝓝 0, _root_.fl f a c x = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ¬∃ᶠ (w : S) in 𝓝 a, f c w ≠ a ⊢ ¬∃ᶠ (w : ℂ) in 𝓝 0, s.fl c w ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_nontrivial
[191, 1]
[204, 63]
have gc : ContinuousAt (fun x ↦ (extChartAt I a).symm (x + extChartAt I a a)) 0 := by refine (continuousAt_extChartAt_symm I a).comp_of_eq ?_ (by simp only [zero_add]) exact continuousAt_id.add continuousAt_const
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∀ᶠ (x : S) in 𝓝 a, f c x = a ⊢ ∀ᶠ (x : ℂ) in 𝓝 0, _root_.fl f a c x = 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∀ᶠ (x : S) in 𝓝 a, f c x = a gc : ContinuousAt (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) 0 ⊢ ∀ᶠ (x : ℂ) in 𝓝 0, _root_.fl f a c x = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∀ᶠ (x : S) in 𝓝 a, f c x = a ⊢ ∀ᶠ (x : ℂ) in 𝓝 0, _root_.fl f a c x = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_nontrivial
[191, 1]
[204, 63]
simp only [ContinuousAt, zero_add, PartialEquiv.left_inv _ (mem_extChartAt_source _ _)] at gc
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∀ᶠ (x : S) in 𝓝 a, f c x = a gc : ContinuousAt (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) 0 ⊢ ∀ᶠ (x : ℂ) in 𝓝 0, _root_.fl f a c x = 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∀ᶠ (x : S) in 𝓝 a, f c x = a gc : Tendsto (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) (𝓝 0) (𝓝 a) ⊢ ∀ᶠ (x : ℂ) in 𝓝 0, _root_.fl f a c x = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∀ᶠ (x : S) in 𝓝 a, f c x = a gc : ContinuousAt (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) 0 ⊢ ∀ᶠ (x : ℂ) in 𝓝 0, _root_.fl f a c x = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_nontrivial
[191, 1]
[204, 63]
refine (gc.eventually n).mp (eventually_of_forall ?_)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∀ᶠ (x : S) in 𝓝 a, f c x = a gc : Tendsto (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) (𝓝 0) (𝓝 a) ⊢ ∀ᶠ (x : ℂ) in 𝓝 0, _root_.fl f a c x = 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∀ᶠ (x : S) in 𝓝 a, f c x = a gc : Tendsto (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) (𝓝 0) (𝓝 a) ⊢ ∀ (x : ℂ), f c (↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = a → _root_.fl f a c x = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∀ᶠ (x : S) in 𝓝 a, f c x = a gc : Tendsto (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) (𝓝 0) (𝓝 a) ⊢ ∀ᶠ (x : ℂ) in 𝓝 0, _root_.fl f a c x = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_nontrivial
[191, 1]
[204, 63]
intro x h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∀ᶠ (x : S) in 𝓝 a, f c x = a gc : Tendsto (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) (𝓝 0) (𝓝 a) ⊢ ∀ (x : ℂ), f c (↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = a → _root_.fl f a c x = 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∀ᶠ (x : S) in 𝓝 a, f c x = a gc : Tendsto (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) (𝓝 0) (𝓝 a) x : ℂ h : f c (↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = a ⊢ _root_.fl f a c x = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∀ᶠ (x : S) in 𝓝 a, f c x = a gc : Tendsto (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) (𝓝 0) (𝓝 a) ⊢ ∀ (x : ℂ), f c (↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = a → _root_.fl f a c x = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_nontrivial
[191, 1]
[204, 63]
simp only [_root_.fl, Function.comp, h, sub_self]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∀ᶠ (x : S) in 𝓝 a, f c x = a gc : Tendsto (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) (𝓝 0) (𝓝 a) x : ℂ h : f c (↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = a ⊢ _root_.fl f a c x = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∀ᶠ (x : S) in 𝓝 a, f c x = a gc : Tendsto (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) (𝓝 0) (𝓝 a) x : ℂ h : f c (↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = a ⊢ _root_.fl f a c x = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_nontrivial
[191, 1]
[204, 63]
have e := (nontrivialHolomorphicAt_of_order (s.fla c).along_snd ?_).nonconst
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ∃ᶠ (w : ℂ) in 𝓝 0, s.fl c w ≠ 0
case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ∃ᶠ (w : ℂ) in 𝓝 (c, 0).2, uncurry s.fl ((c, 0).1, w) ≠ uncurry s.fl ((c, 0).1, (c, 0).2) ⊢ ∃ᶠ (w : ℂ) in 𝓝 0, s.fl c w ≠ 0 case refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ orderAt (fun y => uncurry s.fl ((c, 0).1, y)) (c, 0).2 ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ∃ᶠ (w : ℂ) in 𝓝 0, s.fl c w ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_nontrivial
[191, 1]
[204, 63]
simp only [s.fl0, uncurry] at e
case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ∃ᶠ (w : ℂ) in 𝓝 (c, 0).2, uncurry s.fl ((c, 0).1, w) ≠ uncurry s.fl ((c, 0).1, (c, 0).2) ⊢ ∃ᶠ (w : ℂ) in 𝓝 0, s.fl c w ≠ 0
case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ∃ᶠ (w : ℂ) in 𝓝 0, s.fl c w ≠ 0 ⊢ ∃ᶠ (w : ℂ) in 𝓝 0, s.fl c w ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ∃ᶠ (w : ℂ) in 𝓝 (c, 0).2, uncurry s.fl ((c, 0).1, w) ≠ uncurry s.fl ((c, 0).1, (c, 0).2) ⊢ ∃ᶠ (w : ℂ) in 𝓝 0, s.fl c w ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_nontrivial
[191, 1]
[204, 63]
exact e
case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ∃ᶠ (w : ℂ) in 𝓝 0, s.fl c w ≠ 0 ⊢ ∃ᶠ (w : ℂ) in 𝓝 0, s.fl c w ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ e : ∃ᶠ (w : ℂ) in 𝓝 0, s.fl c w ≠ 0 ⊢ ∃ᶠ (w : ℂ) in 𝓝 0, s.fl c w ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_nontrivial
[191, 1]
[204, 63]
simp only [Super.fl, s.fd, uncurry]
case refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ orderAt (fun y => uncurry s.fl ((c, 0).1, y)) (c, 0).2 ≠ 0
case refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ d ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ orderAt (fun y => uncurry s.fl ((c, 0).1, y)) (c, 0).2 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_nontrivial
[191, 1]
[204, 63]
exact s.d0
case refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ d ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ d ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_nontrivial
[191, 1]
[204, 63]
refine (continuousAt_extChartAt_symm I a).comp_of_eq ?_ (by simp only [zero_add])
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∀ᶠ (x : S) in 𝓝 a, f c x = a ⊢ ContinuousAt (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∀ᶠ (x : S) in 𝓝 a, f c x = a ⊢ ContinuousAt (fun x => x + ↑(extChartAt I a) a) 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∀ᶠ (x : S) in 𝓝 a, f c x = a ⊢ ContinuousAt (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_nontrivial
[191, 1]
[204, 63]
exact continuousAt_id.add continuousAt_const
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∀ᶠ (x : S) in 𝓝 a, f c x = a ⊢ ContinuousAt (fun x => x + ↑(extChartAt I a) a) 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∀ᶠ (x : S) in 𝓝 a, f c x = a ⊢ ContinuousAt (fun x => x + ↑(extChartAt I a) a) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.f_nontrivial
[191, 1]
[204, 63]
simp only [zero_add]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∀ᶠ (x : S) in 𝓝 a, f c x = a ⊢ 0 + ↑(extChartAt I a) a = ↑(extChartAt I a) a
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a c : ℂ n : ∀ᶠ (x : S) in 𝓝 a, f c x = a ⊢ 0 + ↑(extChartAt I a) a = ↑(extChartAt I a) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.stays_in_chart
[207, 1]
[211, 98]
apply ContinuousAt.eventually_mem_nhd
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source
case fc S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ContinuousAt (fun y => f y.1 y.2) (c, a) case m S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ (extChartAt I a).source ∈ 𝓝 (f (c, a).1 (c, a).2)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), f p.1 p.2 ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.stays_in_chart
[207, 1]
[211, 98]
exact (s.fa.continuous.comp continuous_id).continuousAt
case fc S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ContinuousAt (fun y => f y.1 y.2) (c, a) case m S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ (extChartAt I a).source ∈ 𝓝 (f (c, a).1 (c, a).2)
case m S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ (extChartAt I a).source ∈ 𝓝 (f (c, a).1 (c, a).2)
Please generate a tactic in lean4 to solve the state. STATE: case fc S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ContinuousAt (fun y => f y.1 y.2) (c, a) case m S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ (extChartAt I a).source ∈ 𝓝 (f (c, a).1 (c, a).2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.stays_in_chart
[207, 1]
[211, 98]
simp only [s.f0, Function.comp_id, Function.uncurry_apply_pair, extChartAt_source_mem_nhds I a]
case m S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ (extChartAt I a).source ∈ 𝓝 (f (c, a).1 (c, a).2)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case m S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ (extChartAt I a).source ∈ 𝓝 (f (c, a).1 (c, a).2) TACTIC: