url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fr_prop
[214, 1]
[235, 82]
rcases(s.fla c).exists_ball_analyticOn with ⟨r0, r0p, fla⟩
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ∃ r > 0, AnalyticOn ℂ (uncurry s.fl) (ball (c, 0) r) ∧ ∀ p ∈ (extChartAt (I.prod I) (c, a)).source, ↑(extChartAt (I.prod I) (c, a)) p ∈ ball (↑(extChartAt (I.prod I) (c, a)) (c, a)) r → f p.1 p.2 ∈ (extChartAt I a).source
case intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s.fl) (ball (c, 0) r0) ⊢ ∃ r > 0, AnalyticOn ℂ (uncurry s.fl) (ball (c, 0) r) ∧ ∀ p ∈ (extChartAt (I.prod I) (c, a)).source, ↑(extChartAt (I.prod I) (c, a)) p ∈ ball (↑(extChartAt (I.prod I) (c, a)) (c, a)) r → f p.1 p.2 ∈ (extChartAt I a).source
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ ∃ r > 0, AnalyticOn ℂ (uncurry s.fl) (ball (c, 0) r) ∧ ∀ p ∈ (extChartAt (I.prod I) (c, a)).source, ↑(extChartAt (I.prod I) (c, a)) p ∈ ball (↑(extChartAt (I.prod I) (c, a)) (c, a)) r → f p.1 p.2 ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fr_prop
[214, 1]
[235, 82]
rcases eventually_nhds_iff.mp (s.stays_in_chart c) with ⟨t, tp, ot, ta⟩
case intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s.fl) (ball (c, 0) r0) ⊢ ∃ r > 0, AnalyticOn ℂ (uncurry s.fl) (ball (c, 0) r) ∧ ∀ p ∈ (extChartAt (I.prod I) (c, a)).source, ↑(extChartAt (I.prod I) (c, a)) p ∈ ball (↑(extChartAt (I.prod I) (c, a)) (c, a)) r → f p.1 p.2 ∈ (extChartAt I a).source
case intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ⊢ ∃ r > 0, AnalyticOn ℂ (uncurry s.fl) (ball (c, 0) r) ∧ ∀ p ∈ (extChartAt (I.prod I) (c, a)).source, ↑(extChartAt (I.prod I) (c, a)) p ∈ ball (↑(extChartAt (I.prod I) (c, a)) (c, a)) r → f p.1 p.2 ∈ (extChartAt I a).source
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s.fl) (ball (c, 0) r0) ⊢ ∃ r > 0, AnalyticOn ℂ (uncurry s.fl) (ball (c, 0) r) ∧ ∀ p ∈ (extChartAt (I.prod I) (c, a)).source, ↑(extChartAt (I.prod I) (c, a)) p ∈ ball (↑(extChartAt (I.prod I) (c, a)) (c, a)) r → f p.1 p.2 ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fr_prop
[214, 1]
[235, 82]
set ch := extChartAt II (c, a)
case intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ⊢ ∃ r > 0, AnalyticOn ℂ (uncurry s.fl) (ball (c, 0) r) ∧ ∀ p ∈ (extChartAt (I.prod I) (c, a)).source, ↑(extChartAt (I.prod I) (c, a)) p ∈ ball (↑(extChartAt (I.prod I) (c, a)) (c, a)) r → f p.1 p.2 ∈ (extChartAt I a).source
case intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) ⊢ ∃ r > 0, AnalyticOn ℂ (uncurry s.fl) (ball (c, 0) r) ∧ ∀ p ∈ ch.source, ↑ch p ∈ ball (↑ch (c, a)) r → f p.1 p.2 ∈ (extChartAt I a).source
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ⊢ ∃ r > 0, AnalyticOn ℂ (uncurry s.fl) (ball (c, 0) r) ∧ ∀ p ∈ (extChartAt (I.prod I) (c, a)).source, ↑(extChartAt (I.prod I) (c, a)) p ∈ ball (↑(extChartAt (I.prod I) (c, a)) (c, a)) r → f p.1 p.2 ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fr_prop
[214, 1]
[235, 82]
set s := ch.target ∩ ch.symm ⁻¹' t
case intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) ⊢ ∃ r > 0, AnalyticOn ℂ (uncurry s.fl) (ball (c, 0) r) ∧ ∀ p ∈ ch.source, ↑ch p ∈ ball (↑ch (c, a)) r → f p.1 p.2 ∈ (extChartAt I a).source
case intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t ⊢ ∃ r > 0, AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r) ∧ ∀ p ∈ ch.source, ↑ch p ∈ ball (↑ch (c, a)) r → f p.1 p.2 ∈ (extChartAt I a).source
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) ⊢ ∃ r > 0, AnalyticOn ℂ (uncurry s.fl) (ball (c, 0) r) ∧ ∀ p ∈ ch.source, ↑ch p ∈ ball (↑ch (c, a)) r → f p.1 p.2 ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fr_prop
[214, 1]
[235, 82]
have os : IsOpen s := (continuousOn_extChartAt_symm II (c, a)).isOpen_inter_preimage (isOpen_extChartAt_target II (c, a)) ot
case intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t ⊢ ∃ r > 0, AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r) ∧ ∀ p ∈ ch.source, ↑ch p ∈ ball (↑ch (c, a)) r → f p.1 p.2 ∈ (extChartAt I a).source
case intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s ⊢ ∃ r > 0, AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r) ∧ ∀ p ∈ ch.source, ↑ch p ∈ ball (↑ch (c, a)) r → f p.1 p.2 ∈ (extChartAt I a).source
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t ⊢ ∃ r > 0, AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r) ∧ ∀ p ∈ ch.source, ↑ch p ∈ ball (↑ch (c, a)) r → f p.1 p.2 ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fr_prop
[214, 1]
[235, 82]
have m : ch (c, a) ∈ s := by apply Set.mem_inter (mem_extChartAt_target _ _) rw [Set.mem_preimage, ch.left_inv (mem_extChartAt_source _ _)] exact ta
case intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s ⊢ ∃ r > 0, AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r) ∧ ∀ p ∈ ch.source, ↑ch p ∈ ball (↑ch (c, a)) r → f p.1 p.2 ∈ (extChartAt I a).source
case intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s ⊢ ∃ r > 0, AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r) ∧ ∀ p ∈ ch.source, ↑ch p ∈ ball (↑ch (c, a)) r → f p.1 p.2 ∈ (extChartAt I a).source
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s ⊢ ∃ r > 0, AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r) ∧ ∀ p ∈ ch.source, ↑ch p ∈ ball (↑ch (c, a)) r → f p.1 p.2 ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fr_prop
[214, 1]
[235, 82]
rcases Metric.isOpen_iff.mp os (ch (c, a)) m with ⟨r1, r1p, rs⟩
case intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s ⊢ ∃ r > 0, AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r) ∧ ∀ p ∈ ch.source, ↑ch p ∈ ball (↑ch (c, a)) r → f p.1 p.2 ∈ (extChartAt I a).source
case intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s ⊢ ∃ r > 0, AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r) ∧ ∀ p ∈ ch.source, ↑ch p ∈ ball (↑ch (c, a)) r → f p.1 p.2 ∈ (extChartAt I a).source
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s ⊢ ∃ r > 0, AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r) ∧ ∀ p ∈ ch.source, ↑ch p ∈ ball (↑ch (c, a)) r → f p.1 p.2 ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fr_prop
[214, 1]
[235, 82]
apply Set.mem_inter (mem_extChartAt_target _ _)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s ⊢ ↑ch (c, a) ∈ s
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s ⊢ ↑(extChartAt (I.prod I) (c, a)) (c, a) ∈ ↑ch.symm ⁻¹' t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s ⊢ ↑ch (c, a) ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fr_prop
[214, 1]
[235, 82]
rw [Set.mem_preimage, ch.left_inv (mem_extChartAt_source _ _)]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s ⊢ ↑(extChartAt (I.prod I) (c, a)) (c, a) ∈ ↑ch.symm ⁻¹' t
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s ⊢ (c, a) ∈ t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s ⊢ ↑(extChartAt (I.prod I) (c, a)) (c, a) ∈ ↑ch.symm ⁻¹' t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fr_prop
[214, 1]
[235, 82]
exact ta
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s ⊢ (c, a) ∈ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s ⊢ (c, a) ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fr_prop
[214, 1]
[235, 82]
use min r0 r1, by bound
case intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s ⊢ ∃ r > 0, AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r) ∧ ∀ p ∈ ch.source, ↑ch p ∈ ball (↑ch (c, a)) r → f p.1 p.2 ∈ (extChartAt I a).source
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s ⊢ AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) (min r0 r1)) ∧ ∀ p ∈ ch.source, ↑ch p ∈ ball (↑ch (c, a)) (min r0 r1) → f p.1 p.2 ∈ (extChartAt I a).source
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s ⊢ ∃ r > 0, AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r) ∧ ∀ p ∈ ch.source, ↑ch p ∈ ball (↑ch (c, a)) r → f p.1 p.2 ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fr_prop
[214, 1]
[235, 82]
use fla.mono (Metric.ball_subset_ball (by bound))
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s ⊢ AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) (min r0 r1)) ∧ ∀ p ∈ ch.source, ↑ch p ∈ ball (↑ch (c, a)) (min r0 r1) → f p.1 p.2 ∈ (extChartAt I a).source
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s ⊢ ∀ p ∈ ch.source, ↑ch p ∈ ball (↑ch (c, a)) (min r0 r1) → f p.1 p.2 ∈ (extChartAt I a).source
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s ⊢ AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) (min r0 r1)) ∧ ∀ p ∈ ch.source, ↑ch p ∈ ball (↑ch (c, a)) (min r0 r1) → f p.1 p.2 ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fr_prop
[214, 1]
[235, 82]
intro p ps pr
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s ⊢ ∀ p ∈ ch.source, ↑ch p ∈ ball (↑ch (c, a)) (min r0 r1) → f p.1 p.2 ∈ (extChartAt I a).source
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s p : ℂ × S ps : p ∈ ch.source pr : ↑ch p ∈ ball (↑ch (c, a)) (min r0 r1) ⊢ f p.1 p.2 ∈ (extChartAt I a).source
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s ⊢ ∀ p ∈ ch.source, ↑ch p ∈ ball (↑ch (c, a)) (min r0 r1) → f p.1 p.2 ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fr_prop
[214, 1]
[235, 82]
apply tp p
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s p : ℂ × S ps : p ∈ ch.source pr : ↑ch p ∈ ball (↑ch (c, a)) (min r0 r1) ⊢ f p.1 p.2 ∈ (extChartAt I a).source
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s p : ℂ × S ps : p ∈ ch.source pr : ↑ch p ∈ ball (↑ch (c, a)) (min r0 r1) ⊢ p ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s p : ℂ × S ps : p ∈ ch.source pr : ↑ch p ∈ ball (↑ch (c, a)) (min r0 r1) ⊢ f p.1 p.2 ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fr_prop
[214, 1]
[235, 82]
rw [← ch.left_inv ps, ← Set.mem_preimage]
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s p : ℂ × S ps : p ∈ ch.source pr : ↑ch p ∈ ball (↑ch (c, a)) (min r0 r1) ⊢ p ∈ t
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s p : ℂ × S ps : p ∈ ch.source pr : ↑ch p ∈ ball (↑ch (c, a)) (min r0 r1) ⊢ ↑ch p ∈ ↑ch.symm ⁻¹' t
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s p : ℂ × S ps : p ∈ ch.source pr : ↑ch p ∈ ball (↑ch (c, a)) (min r0 r1) ⊢ p ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fr_prop
[214, 1]
[235, 82]
exact Set.mem_of_mem_inter_right (rs (Metric.ball_subset_ball (by bound) pr))
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s p : ℂ × S ps : p ∈ ch.source pr : ↑ch p ∈ ball (↑ch (c, a)) (min r0 r1) ⊢ ↑ch p ∈ ↑ch.symm ⁻¹' t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s p : ℂ × S ps : p ∈ ch.source pr : ↑ch p ∈ ball (↑ch (c, a)) (min r0 r1) ⊢ ↑ch p ∈ ↑ch.symm ⁻¹' t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fr_prop
[214, 1]
[235, 82]
bound
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s ⊢ min r0 r1 > 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s ⊢ min r0 r1 > 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fr_prop
[214, 1]
[235, 82]
bound
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s ⊢ min r0 r1 ≤ r0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s ⊢ min r0 r1 ≤ r0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.fr_prop
[214, 1]
[235, 82]
bound
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s p : ℂ × S ps : p ∈ ch.source pr : ↑ch p ∈ ball (↑ch (c, a)) (min r0 r1) ⊢ min r0 r1 ≤ r1
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s✝ : Super f d a c : ℂ r0 : ℝ r0p : 0 < r0 fla : AnalyticOn ℂ (uncurry s✝.fl) (ball (c, 0) r0) t : Set (ℂ × S) tp : ∀ x ∈ t, f x.1 x.2 ∈ (extChartAt I a).source ot : IsOpen t ta : (c, a) ∈ t ch : PartialEquiv (ℂ × S) (ℂ × ℂ) := extChartAt (I.prod I) (c, a) s : Set (ℂ × ℂ) := ch.target ∩ ↑ch.symm ⁻¹' t os : IsOpen s m : ↑ch (c, a) ∈ s r1 : ℝ r1p : r1 > 0 rs : ball (↑ch (c, a)) r1 ⊆ s p : ℂ × S ps : p ∈ ch.source pr : ↑ch p ∈ ball (↑ch (c, a)) (min r0 r1) ⊢ min r0 r1 ≤ r1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
prod_zero_mem_ball
[262, 1]
[264, 87]
simp only [Metric.mem_ball] at m
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ c b : ℂ r : ℝ m : b ∈ ball c r ⊢ (b, 0) ∈ ball (c, 0) r
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ c b : ℂ r : ℝ m : dist b c < r ⊢ (b, 0) ∈ ball (c, 0) r
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ c b : ℂ r : ℝ m : b ∈ ball c r ⊢ (b, 0) ∈ ball (c, 0) r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
prod_zero_mem_ball
[262, 1]
[264, 87]
simpa only [Metric.mem_ball, dist_prod_same_right]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ c b : ℂ r : ℝ m : dist b c < r ⊢ (b, 0) ∈ ball (c, 0) r
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ c b : ℂ r : ℝ m : dist b c < r ⊢ (b, 0) ∈ ball (c, 0) r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.exists_superNearC
[277, 1]
[279, 71]
refine s.superAtC.superNearC' s.fls_open fun c _ ↦ ?_
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ ∃ t ⊆ s.fls, SuperNearC s.fl d univ t
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ x✝ : c ∈ univ ⊢ (c, 0) ∈ s.fls
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ ∃ t ⊆ s.fls, SuperNearC s.fl d univ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.exists_superNearC
[277, 1]
[279, 71]
rw [Super.fls, Set.mem_iUnion]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ x✝ : c ∈ univ ⊢ (c, 0) ∈ s.fls
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ x✝ : c ∈ univ ⊢ ∃ i, (c, 0) ∈ ball (i, 0) (s.fr i)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ x✝ : c ∈ univ ⊢ (c, 0) ∈ s.fls TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.exists_superNearC
[277, 1]
[279, 71]
use c
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ x✝ : c ∈ univ ⊢ ∃ i, (c, 0) ∈ ball (i, 0) (s.fr i)
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ x✝ : c ∈ univ ⊢ (c, 0) ∈ ball (c, 0) (s.fr c)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ x✝ : c ∈ univ ⊢ ∃ i, (c, 0) ∈ ball (i, 0) (s.fr i) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.exists_superNearC
[277, 1]
[279, 71]
exact mem_ball_self (s.frp c)
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ x✝ : c ∈ univ ⊢ (c, 0) ∈ ball (c, 0) (s.fr c)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ x✝ : c ∈ univ ⊢ (c, 0) ∈ ball (c, 0) (s.fr c) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.isOpen_near
[297, 1]
[300, 19]
apply (continuousOn_extChartAt _ _).isOpen_inter_preimage (isOpen_extChartAt_source _ _)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ IsOpen s.near
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ IsOpen {p | (p.1, p.2 - ↑(extChartAt I a) a) ∈ s.near'}
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ IsOpen s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.isOpen_near
[297, 1]
[300, 19]
exact IsOpen.preimage (continuous_fst.prod_mk (continuous_snd.sub continuous_const)) s.superNearC.o
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ IsOpen {p | (p.1, p.2 - ↑(extChartAt I a) a) ∈ s.near'}
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ IsOpen {p | (p.1, p.2 - ↑(extChartAt I a) a) ∈ s.near'} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.mem_near
[303, 1]
[307, 45]
simp only [Super.near, extChartAt_prod, PartialEquiv.prod_source, Set.mem_prod, Set.mem_inter_iff, mem_extChartAt_source, extChartAt_eq_refl, PartialEquiv.refl_source, Set.mem_univ, true_and_iff, Set.mem_preimage, PartialEquiv.prod_coe, PartialEquiv.refl_coe, id, Set.mem_setOf_eq, sub_self]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ (c, a) ∈ s.near
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ (c, 0) ∈ s.near'
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ (c, a) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.mem_near
[303, 1]
[307, 45]
exact (s.superNearC.s (Set.mem_univ _)).t0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ (c, 0) ∈ s.near'
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a c : ℂ ⊢ (c, 0) ∈ s.near' TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.near_subset_chart
[310, 1]
[314, 12]
have h := Set.mem_of_mem_inter_left m
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near ⊢ z ∈ (extChartAt I a).source
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near h : (c, z) ∈ (extChartAt (I.prod I) (0, a)).source ⊢ z ∈ (extChartAt I a).source
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near ⊢ z ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.near_subset_chart
[310, 1]
[314, 12]
simp only [extChartAt_prod, PartialEquiv.prod_source, Set.mem_prod_eq] at h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near h : (c, z) ∈ (extChartAt (I.prod I) (0, a)).source ⊢ z ∈ (extChartAt I a).source
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near h : c ∈ (extChartAt I 0).source ∧ z ∈ (extChartAt I a).source ⊢ z ∈ (extChartAt I a).source
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near h : (c, z) ∈ (extChartAt (I.prod I) (0, a)).source ⊢ z ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.near_subset_chart
[310, 1]
[314, 12]
exact h.2
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near h : c ∈ (extChartAt I 0).source ∧ z ∈ (extChartAt I a).source ⊢ z ∈ (extChartAt I a).source
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near h : c ∈ (extChartAt I 0).source ∧ z ∈ (extChartAt I a).source ⊢ z ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.mem_near_to_near'
[316, 1]
[321, 10]
have h := Set.mem_of_mem_inter_right m
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near ⊢ (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ∈ s.near'
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h : p ∈ ↑(extChartAt (I.prod I) (0, a)) ⁻¹' {p | (p.1, p.2 - ↑(extChartAt I a) a) ∈ s.near'} ⊢ (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ∈ s.near'
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near ⊢ (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ∈ s.near' TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.mem_near_to_near'
[316, 1]
[321, 10]
simp only [Set.mem_preimage, extChartAt_prod, PartialEquiv.prod_coe, extChartAt_eq_refl, PartialEquiv.refl_coe, id] at h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h : p ∈ ↑(extChartAt (I.prod I) (0, a)) ⁻¹' {p | (p.1, p.2 - ↑(extChartAt I a) a) ∈ s.near'} ⊢ (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ∈ s.near'
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h : (p.1, ↑(extChartAt I a) p.2) ∈ {p | (p.1, p.2 - ↑(extChartAt I a) a) ∈ s.near'} ⊢ (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ∈ s.near'
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h : p ∈ ↑(extChartAt (I.prod I) (0, a)) ⁻¹' {p | (p.1, p.2 - ↑(extChartAt I a) a) ∈ s.near'} ⊢ (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ∈ s.near' TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.mem_near_to_near'
[316, 1]
[321, 10]
exact h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h : (p.1, ↑(extChartAt I a) p.2) ∈ {p | (p.1, p.2 - ↑(extChartAt I a) a) ∈ s.near'} ⊢ (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ∈ s.near'
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S m : p ∈ s.near h : (p.1, ↑(extChartAt I a) p.2) ∈ {p | (p.1, p.2 - ↑(extChartAt I a) a) ∈ s.near'} ⊢ (p.1, ↑(extChartAt I a) p.2 - ↑(extChartAt I a) a) ∈ s.near' TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.stays_near
[324, 1]
[346, 12]
simp only [Super.near, extChartAt_prod, PartialEquiv.prod_source, Set.mem_prod, Set.mem_inter_iff, mem_extChartAt_source, extChartAt_eq_refl, PartialEquiv.refl_source, Set.mem_univ, true_and_iff, Set.mem_preimage, PartialEquiv.prod_coe, PartialEquiv.refl_coe, id, Set.mem_setOf_eq, sub_self] at m ⊢
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near ⊢ (c, f c z) ∈ s.near
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' ⊢ f c z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) ∈ s.near'
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near ⊢ (c, f c z) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.stays_near
[324, 1]
[346, 12]
rcases mem_iUnion.mp (s.near_subset' m.2) with ⟨b, mb⟩
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' ⊢ f c z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) ∈ s.near'
case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ ball (b, 0) (s.fr b) ⊢ f c z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) ∈ s.near'
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' ⊢ f c z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) ∈ s.near' TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.stays_near
[324, 1]
[346, 12]
simp only [mem_ball_iff_norm, Prod.norm_def, max_lt_iff, Prod.fst_sub, Prod.snd_sub, sub_zero] at mb
case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ ball (b, 0) (s.fr b) ⊢ f c z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) ∈ s.near'
case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b ⊢ f c z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) ∈ s.near'
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ ball (b, 0) (s.fr b) ⊢ f c z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) ∈ s.near' TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.stays_near
[324, 1]
[346, 12]
constructor
case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b ⊢ f c z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) ∈ s.near'
case intro.left S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b ⊢ f c z ∈ (extChartAt I a).source case intro.right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b ⊢ (c, ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) ∈ s.near'
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b ⊢ f c z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) ∈ s.near' TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.stays_near
[324, 1]
[346, 12]
apply s.fr_stays b (c, z)
case intro.left S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b ⊢ f c z ∈ (extChartAt I a).source
case intro.left.ps S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b ⊢ (c, z) ∈ (extChartAt (I.prod I) (b, a)).source case intro.left.pr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b ⊢ ↑(extChartAt (I.prod I) (b, a)) (c, z) ∈ ball (↑(extChartAt (I.prod I) (b, a)) (b, a)) (s.fr b)
Please generate a tactic in lean4 to solve the state. STATE: case intro.left S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b ⊢ f c z ∈ (extChartAt I a).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.stays_near
[324, 1]
[346, 12]
simp only [m.1, Super.near, extChartAt_prod, PartialEquiv.prod_source, Set.mem_prod, Set.mem_inter_iff, mem_extChartAt_source, extChartAt_eq_refl, PartialEquiv.refl_source, Set.mem_univ, true_and_iff, Set.mem_preimage, PartialEquiv.prod_coe, PartialEquiv.refl_coe, id, Set.mem_setOf_eq, sub_self]
case intro.left.ps S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b ⊢ (c, z) ∈ (extChartAt (I.prod I) (b, a)).source case intro.left.pr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b ⊢ ↑(extChartAt (I.prod I) (b, a)) (c, z) ∈ ball (↑(extChartAt (I.prod I) (b, a)) (b, a)) (s.fr b)
case intro.left.pr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b ⊢ ↑(extChartAt (I.prod I) (b, a)) (c, z) ∈ ball (↑(extChartAt (I.prod I) (b, a)) (b, a)) (s.fr b)
Please generate a tactic in lean4 to solve the state. STATE: case intro.left.ps S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b ⊢ (c, z) ∈ (extChartAt (I.prod I) (b, a)).source case intro.left.pr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b ⊢ ↑(extChartAt (I.prod I) (b, a)) (c, z) ∈ ball (↑(extChartAt (I.prod I) (b, a)) (b, a)) (s.fr b) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.stays_near
[324, 1]
[346, 12]
simp only [m.1, mb.1, mb.2, Super.near, extChartAt_prod, PartialEquiv.prod_source, Set.mem_prod, Set.mem_inter_iff, mem_extChartAt_source, extChartAt_eq_refl, PartialEquiv.refl_source, Set.mem_univ, true_and_iff, Set.mem_preimage, PartialEquiv.prod_coe, PartialEquiv.refl_coe, id, Set.mem_setOf_eq, sub_self, mem_ball_iff_norm, Prod.norm_def, max_lt_iff, Prod.fst_sub, Prod.snd_sub, sub_zero]
case intro.left.pr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b ⊢ ↑(extChartAt (I.prod I) (b, a)) (c, z) ∈ ball (↑(extChartAt (I.prod I) (b, a)) (b, a)) (s.fr b)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.left.pr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b ⊢ ↑(extChartAt (I.prod I) (b, a)) (c, z) ∈ ball (↑(extChartAt (I.prod I) (b, a)) (b, a)) (s.fr b) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.stays_near
[324, 1]
[346, 12]
have h := (s.superNearC.s (Set.mem_univ c)).ft m.2
case intro.right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b ⊢ (c, ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) ∈ s.near'
case intro.right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b h : s.fl c (↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ {z | (c, z) ∈ s.near'} ⊢ (c, ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) ∈ s.near'
Please generate a tactic in lean4 to solve the state. STATE: case intro.right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b ⊢ (c, ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) ∈ s.near' TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.stays_near
[324, 1]
[346, 12]
simp only [Super.fl, _root_.fl, Function.comp, sub_add_cancel, PartialEquiv.left_inv _ m.1] at h
case intro.right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b h : s.fl c (↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ {z | (c, z) ∈ s.near'} ⊢ (c, ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) ∈ s.near'
case intro.right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b h : ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a ∈ {z | (c, z) ∈ s.near'} ⊢ (c, ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) ∈ s.near'
Please generate a tactic in lean4 to solve the state. STATE: case intro.right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b h : s.fl c (↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ {z | (c, z) ∈ s.near'} ⊢ (c, ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) ∈ s.near' TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.stays_near
[324, 1]
[346, 12]
exact h
case intro.right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b h : ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a ∈ {z | (c, z) ∈ s.near'} ⊢ (c, ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) ∈ s.near'
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : z ∈ (extChartAt I a).source ∧ (c, ↑(extChartAt I a) z - ↑(extChartAt I a) a) ∈ s.near' b : ℂ mb : ‖c - b‖ < s.fr b ∧ ‖↑(extChartAt I a) z - ↑(extChartAt I a) a‖ < s.fr b h : ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a ∈ {z | (c, z) ∈ s.near'} ⊢ (c, ↑(extChartAt I a) (f c z) - ↑(extChartAt I a) a) ∈ s.near' TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.iter_stays_near
[349, 1]
[352, 82]
induction' n with n h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near n : ℕ ⊢ (c, (f c)^[n] z) ∈ s.near
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near ⊢ (c, (f c)^[0] z) ∈ s.near case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near n : ℕ h : (c, (f c)^[n] z) ∈ s.near ⊢ (c, (f c)^[n + 1] z) ∈ s.near
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near n : ℕ ⊢ (c, (f c)^[n] z) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.iter_stays_near
[349, 1]
[352, 82]
simp only [Function.iterate_zero, id, m]
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near ⊢ (c, (f c)^[0] z) ∈ s.near case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near n : ℕ h : (c, (f c)^[n] z) ∈ s.near ⊢ (c, (f c)^[n + 1] z) ∈ s.near
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near n : ℕ h : (c, (f c)^[n] z) ∈ s.near ⊢ (c, (f c)^[n + 1] z) ∈ s.near
Please generate a tactic in lean4 to solve the state. STATE: case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near ⊢ (c, (f c)^[0] z) ∈ s.near case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near n : ℕ h : (c, (f c)^[n] z) ∈ s.near ⊢ (c, (f c)^[n + 1] z) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.iter_stays_near
[349, 1]
[352, 82]
simp only [Nat.add_succ, Function.iterate_succ', s.stays_near h, Function.comp]
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near n : ℕ h : (c, (f c)^[n] z) ∈ s.near ⊢ (c, (f c)^[n + 1] z) ∈ s.near
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n✝ : ℕ s : Super f d a c : ℂ z : S m : (c, z) ∈ s.near n : ℕ h : (c, (f c)^[n] z) ∈ s.near ⊢ (c, (f c)^[n + 1] z) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.iter_stays_near'
[355, 1]
[357, 88]
rw [← Nat.sub_add_cancel ab, Function.iterate_add_apply]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a b : ℕ m : (c, (f c)^[a] z) ∈ s.near ab : a ≤ b ⊢ (c, (f c)^[b] z) ∈ s.near
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a b : ℕ m : (c, (f c)^[a] z) ∈ s.near ab : a ≤ b ⊢ (c, (f c)^[b - a] ((f c)^[a] z)) ∈ s.near
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a b : ℕ m : (c, (f c)^[a] z) ∈ s.near ab : a ≤ b ⊢ (c, (f c)^[b] z) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.iter_stays_near'
[355, 1]
[357, 88]
exact s.iter_stays_near m _
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a b : ℕ m : (c, (f c)^[a] z) ∈ s.near ab : a ≤ b ⊢ (c, (f c)^[b - a] ((f c)^[a] z)) ∈ s.near
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a b : ℕ m : (c, (f c)^[a] z) ∈ s.near ab : a ≤ b ⊢ (c, (f c)^[b - a] ((f c)^[a] z)) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.reaches_near
[360, 1]
[364, 85]
rw [Attracts, Filter.tendsto_iff_forall_eventually_mem] at a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ z : S a : Attracts (f c) z a✝ ⊢ ∀ᶠ (n : ℕ) in atTop, (c, (f c)^[n] z) ∈ s.near
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ z : S a : ∀ s ∈ 𝓝 a✝, ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ s ⊢ ∀ᶠ (n : ℕ) in atTop, (c, (f c)^[n] z) ∈ s.near
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ z : S a : Attracts (f c) z a✝ ⊢ ∀ᶠ (n : ℕ) in atTop, (c, (f c)^[n] z) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.reaches_near
[360, 1]
[364, 85]
have e := a {z | (c, z) ∈ s.near} ?_
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ z : S a : ∀ s ∈ 𝓝 a✝, ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ s ⊢ ∀ᶠ (n : ℕ) in atTop, (c, (f c)^[n] z) ∈ s.near
case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ z : S a : ∀ s ∈ 𝓝 a✝, ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ s e : ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ {z | (c, z) ∈ s.near} ⊢ ∀ᶠ (n : ℕ) in atTop, (c, (f c)^[n] z) ∈ s.near case refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ z : S a : ∀ s ∈ 𝓝 a✝, ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ s ⊢ {z | (c, z) ∈ s.near} ∈ 𝓝 a✝
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ z : S a : ∀ s ∈ 𝓝 a✝, ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ s ⊢ ∀ᶠ (n : ℕ) in atTop, (c, (f c)^[n] z) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.reaches_near
[360, 1]
[364, 85]
exact e
case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ z : S a : ∀ s ∈ 𝓝 a✝, ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ s e : ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ {z | (c, z) ∈ s.near} ⊢ ∀ᶠ (n : ℕ) in atTop, (c, (f c)^[n] z) ∈ s.near case refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ z : S a : ∀ s ∈ 𝓝 a✝, ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ s ⊢ {z | (c, z) ∈ s.near} ∈ 𝓝 a✝
case refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ z : S a : ∀ s ∈ 𝓝 a✝, ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ s ⊢ {z | (c, z) ∈ s.near} ∈ 𝓝 a✝
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ z : S a : ∀ s ∈ 𝓝 a✝, ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ s e : ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ {z | (c, z) ∈ s.near} ⊢ ∀ᶠ (n : ℕ) in atTop, (c, (f c)^[n] z) ∈ s.near case refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ z : S a : ∀ s ∈ 𝓝 a✝, ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ s ⊢ {z | (c, z) ∈ s.near} ∈ 𝓝 a✝ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.reaches_near
[360, 1]
[364, 85]
apply IsOpen.mem_nhds
case refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ z : S a : ∀ s ∈ 𝓝 a✝, ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ s ⊢ {z | (c, z) ∈ s.near} ∈ 𝓝 a✝
case refine_1.hs S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ z : S a : ∀ s ∈ 𝓝 a✝, ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ s ⊢ IsOpen {z | (c, z) ∈ s.near} case refine_1.hx S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ z : S a : ∀ s ∈ 𝓝 a✝, ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ s ⊢ a✝ ∈ {z | (c, z) ∈ s.near}
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ z : S a : ∀ s ∈ 𝓝 a✝, ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ s ⊢ {z | (c, z) ∈ s.near} ∈ 𝓝 a✝ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.reaches_near
[360, 1]
[364, 85]
apply IsOpen.snd_preimage s.isOpen_near
case refine_1.hs S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ z : S a : ∀ s ∈ 𝓝 a✝, ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ s ⊢ IsOpen {z | (c, z) ∈ s.near} case refine_1.hx S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ z : S a : ∀ s ∈ 𝓝 a✝, ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ s ⊢ a✝ ∈ {z | (c, z) ∈ s.near}
case refine_1.hx S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ z : S a : ∀ s ∈ 𝓝 a✝, ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ s ⊢ a✝ ∈ {z | (c, z) ∈ s.near}
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hs S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ z : S a : ∀ s ∈ 𝓝 a✝, ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ s ⊢ IsOpen {z | (c, z) ∈ s.near} case refine_1.hx S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ z : S a : ∀ s ∈ 𝓝 a✝, ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ s ⊢ a✝ ∈ {z | (c, z) ∈ s.near} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.reaches_near
[360, 1]
[364, 85]
exact s.mem_near c
case refine_1.hx S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ z : S a : ∀ s ∈ 𝓝 a✝, ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ s ⊢ a✝ ∈ {z | (c, z) ∈ s.near}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hx S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z✝ : S d n : ℕ s : Super f d a✝ z : S a : ∀ s ∈ 𝓝 a✝, ∀ᶠ (x : ℕ) in atTop, (f c)^[x] z ∈ s ⊢ a✝ ∈ {z | (c, z) ∈ s.near} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
have m := s.mem_near_to_near' r
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near ⊢ Attracts (f c) z a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' ⊢ Attracts (f c) z a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near ⊢ Attracts (f c) z a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
have t := iterates_tendsto (s.superNearC.s (Set.mem_univ c)) m
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' ⊢ Attracts (f c) z a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) ⊢ Attracts (f c) z a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' ⊢ Attracts (f c) z a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
generalize hg : (fun x : ℂ ↦ (extChartAt I a).symm (x + extChartAt I a a)) = g
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) ⊢ Attracts (f c) z a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g ⊢ Attracts (f c) z a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) ⊢ Attracts (f c) z a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
have gc : ContinuousAt g 0 := by rw [← hg] refine (continuousAt_extChartAt_symm'' I ?_).comp (continuous_id.add continuous_const).continuousAt simp only [zero_add]; exact mem_extChartAt_target I a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g ⊢ Attracts (f c) z a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g gc : ContinuousAt g 0 ⊢ Attracts (f c) z a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g ⊢ Attracts (f c) z a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
have g0 : g 0 = a := by simp only [← hg]; simp only [zero_add]; exact PartialEquiv.left_inv _ (mem_extChartAt_source _ _)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g gc : ContinuousAt g 0 ⊢ Attracts (f c) z a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g gc : ContinuousAt g 0 g0 : g 0 = a ⊢ Attracts (f c) z a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g gc : ContinuousAt g 0 ⊢ Attracts (f c) z a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
have h := gc.tendsto.comp t
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g gc : ContinuousAt g 0 g0 : g 0 = a ⊢ Attracts (f c) z a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g gc : ContinuousAt g 0 g0 : g 0 = a h : Tendsto (g ∘ fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 (g 0)) ⊢ Attracts (f c) z a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g gc : ContinuousAt g 0 g0 : g 0 = a ⊢ Attracts (f c) z a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
clear t gc m
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g gc : ContinuousAt g 0 g0 : g 0 = a h : Tendsto (g ∘ fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 (g 0)) ⊢ Attracts (f c) z a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a h : Tendsto (g ∘ fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 (g 0)) ⊢ Attracts (f c) z a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g gc : ContinuousAt g 0 g0 : g 0 = a h : Tendsto (g ∘ fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 (g 0)) ⊢ Attracts (f c) z a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
simp only [Function.comp, g0] at h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a h : Tendsto (g ∘ fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 (g 0)) ⊢ Attracts (f c) z a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a h : Tendsto (fun x => g ((s.fl c)^[x] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a))) atTop (𝓝 a) ⊢ Attracts (f c) z a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a h : Tendsto (g ∘ fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 (g 0)) ⊢ Attracts (f c) z a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
rw [← attracts_shift n]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a h : Tendsto (fun x => g ((s.fl c)^[x] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a))) atTop (𝓝 a) ⊢ Attracts (f c) z a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a h : Tendsto (fun x => g ((s.fl c)^[x] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a))) atTop (𝓝 a) ⊢ Attracts (f c) ((f c)^[n] z) a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a h : Tendsto (fun x => g ((s.fl c)^[x] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a))) atTop (𝓝 a) ⊢ Attracts (f c) z a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
refine Filter.Tendsto.congr ?_ h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a h : Tendsto (fun x => g ((s.fl c)^[x] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a))) atTop (𝓝 a) ⊢ Attracts (f c) ((f c)^[n] z) a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a h : Tendsto (fun x => g ((s.fl c)^[x] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a))) atTop (𝓝 a) ⊢ ∀ (x : ℕ), g ((s.fl c)^[x] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a)) = (f c)^[x] ((f c)^[n] z)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a h : Tendsto (fun x => g ((s.fl c)^[x] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a))) atTop (𝓝 a) ⊢ Attracts (f c) ((f c)^[n] z) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
clear h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a h : Tendsto (fun x => g ((s.fl c)^[x] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a))) atTop (𝓝 a) ⊢ ∀ (x : ℕ), g ((s.fl c)^[x] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a)) = (f c)^[x] ((f c)^[n] z)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a ⊢ ∀ (x : ℕ), g ((s.fl c)^[x] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a)) = (f c)^[x] ((f c)^[n] z)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a h : Tendsto (fun x => g ((s.fl c)^[x] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a))) atTop (𝓝 a) ⊢ ∀ (x : ℕ), g ((s.fl c)^[x] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a)) = (f c)^[x] ((f c)^[n] z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
intro k
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a ⊢ ∀ (x : ℕ), g ((s.fl c)^[x] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a)) = (f c)^[x] ((f c)^[n] z)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ ⊢ g ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a)) = (f c)^[k] ((f c)^[n] z)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a ⊢ ∀ (x : ℕ), g ((s.fl c)^[x] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a)) = (f c)^[x] ((f c)^[n] z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
simp only [← hg]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ ⊢ g ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a)) = (f c)^[k] ((f c)^[n] z)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ ⊢ ↑(extChartAt I a).symm ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ ⊢ g ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a)) = (f c)^[k] ((f c)^[n] z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
induction' k with k h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ ⊢ ↑(extChartAt I a).symm ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z)
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a ⊢ ↑(extChartAt I a).symm ((s.fl c)^[0] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[0] ((f c)^[n] z) case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ h : ↑(extChartAt I a).symm ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) ⊢ ↑(extChartAt I a).symm ((s.fl c)^[k + 1] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k + 1] ((f c)^[n] z)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ ⊢ ↑(extChartAt I a).symm ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
simp only [Function.iterate_zero_apply]
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a ⊢ ↑(extChartAt I a).symm ((s.fl c)^[0] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[0] ((f c)^[n] z) case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ h : ↑(extChartAt I a).symm ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) ⊢ ↑(extChartAt I a).symm ((s.fl c)^[k + 1] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k + 1] ((f c)^[n] z)
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a ⊢ ↑(extChartAt I a).symm (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a + ↑(extChartAt I a) a) = (f c)^[n] z case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ h : ↑(extChartAt I a).symm ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) ⊢ ↑(extChartAt I a).symm ((s.fl c)^[k + 1] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k + 1] ((f c)^[n] z)
Please generate a tactic in lean4 to solve the state. STATE: case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a ⊢ ↑(extChartAt I a).symm ((s.fl c)^[0] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[0] ((f c)^[n] z) case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ h : ↑(extChartAt I a).symm ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) ⊢ ↑(extChartAt I a).symm ((s.fl c)^[k + 1] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k + 1] ((f c)^[n] z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
rw [sub_add_cancel]
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a ⊢ ↑(extChartAt I a).symm (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a + ↑(extChartAt I a) a) = (f c)^[n] z case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ h : ↑(extChartAt I a).symm ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) ⊢ ↑(extChartAt I a).symm ((s.fl c)^[k + 1] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k + 1] ((f c)^[n] z)
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a ⊢ ↑(extChartAt I a).symm (↑(extChartAt I a) ((f c)^[n] z)) = (f c)^[n] z case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ h : ↑(extChartAt I a).symm ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) ⊢ ↑(extChartAt I a).symm ((s.fl c)^[k + 1] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k + 1] ((f c)^[n] z)
Please generate a tactic in lean4 to solve the state. STATE: case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a ⊢ ↑(extChartAt I a).symm (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a + ↑(extChartAt I a) a) = (f c)^[n] z case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ h : ↑(extChartAt I a).symm ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) ⊢ ↑(extChartAt I a).symm ((s.fl c)^[k + 1] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k + 1] ((f c)^[n] z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
exact PartialEquiv.left_inv _ (s.near_subset_chart r)
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a ⊢ ↑(extChartAt I a).symm (↑(extChartAt I a) ((f c)^[n] z)) = (f c)^[n] z case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ h : ↑(extChartAt I a).symm ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) ⊢ ↑(extChartAt I a).symm ((s.fl c)^[k + 1] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k + 1] ((f c)^[n] z)
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ h : ↑(extChartAt I a).symm ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) ⊢ ↑(extChartAt I a).symm ((s.fl c)^[k + 1] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k + 1] ((f c)^[n] z)
Please generate a tactic in lean4 to solve the state. STATE: case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a ⊢ ↑(extChartAt I a).symm (↑(extChartAt I a) ((f c)^[n] z)) = (f c)^[n] z case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ h : ↑(extChartAt I a).symm ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) ⊢ ↑(extChartAt I a).symm ((s.fl c)^[k + 1] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k + 1] ((f c)^[n] z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
simp only [Function.iterate_succ_apply']
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ h : ↑(extChartAt I a).symm ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) ⊢ ↑(extChartAt I a).symm ((s.fl c)^[k + 1] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k + 1] ((f c)^[n] z)
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ h : ↑(extChartAt I a).symm ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) ⊢ ↑(extChartAt I a).symm (s.fl c ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a)) + ↑(extChartAt I a) a) = f c ((f c)^[k] ((f c)^[n] z))
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ h : ↑(extChartAt I a).symm ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) ⊢ ↑(extChartAt I a).symm ((s.fl c)^[k + 1] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k + 1] ((f c)^[n] z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
generalize hx : (s.fl c)^[k] (extChartAt I a ((f c)^[n] z) - extChartAt I a a) = x
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ h : ↑(extChartAt I a).symm ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) ⊢ ↑(extChartAt I a).symm (s.fl c ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a)) + ↑(extChartAt I a) a) = f c ((f c)^[k] ((f c)^[n] z))
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ h : ↑(extChartAt I a).symm ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) x : ℂ hx : (s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) = x ⊢ ↑(extChartAt I a).symm (s.fl c x + ↑(extChartAt I a) a) = f c ((f c)^[k] ((f c)^[n] z))
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ h : ↑(extChartAt I a).symm ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) ⊢ ↑(extChartAt I a).symm (s.fl c ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a)) + ↑(extChartAt I a) a) = f c ((f c)^[k] ((f c)^[n] z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
rw [hx] at h
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ h : ↑(extChartAt I a).symm ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) x : ℂ hx : (s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) = x ⊢ ↑(extChartAt I a).symm (s.fl c x + ↑(extChartAt I a) a) = f c ((f c)^[k] ((f c)^[n] z))
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ x : ℂ h : ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) hx : (s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) = x ⊢ ↑(extChartAt I a).symm (s.fl c x + ↑(extChartAt I a) a) = f c ((f c)^[k] ((f c)^[n] z))
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ h : ↑(extChartAt I a).symm ((s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) x : ℂ hx : (s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) = x ⊢ ↑(extChartAt I a).symm (s.fl c x + ↑(extChartAt I a) a) = f c ((f c)^[k] ((f c)^[n] z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
simp only [Super.fl, _root_.fl, Function.comp, sub_add_cancel, h, ←Function.iterate_succ_apply' (f c)]
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ x : ℂ h : ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) hx : (s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) = x ⊢ ↑(extChartAt I a).symm (s.fl c x + ↑(extChartAt I a) a) = f c ((f c)^[k] ((f c)^[n] z))
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ x : ℂ h : ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) hx : (s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) = x ⊢ ↑(extChartAt I a).symm (↑(extChartAt I a) ((f c)^[k.succ] ((f c)^[n] z))) = (f c)^[k.succ] ((f c)^[n] z)
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ x : ℂ h : ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) hx : (s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) = x ⊢ ↑(extChartAt I a).symm (s.fl c x + ↑(extChartAt I a) a) = f c ((f c)^[k] ((f c)^[n] z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
apply PartialEquiv.left_inv _ (s.near_subset_chart (s.iter_stays_near r _))
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ x : ℂ h : ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) hx : (s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) = x ⊢ ↑(extChartAt I a).symm (↑(extChartAt I a) ((f c)^[k.succ] ((f c)^[n] z))) = (f c)^[k.succ] ((f c)^[n] z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g g0 : g 0 = a k : ℕ x : ℂ h : ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a) = (f c)^[k] ((f c)^[n] z) hx : (s.fl c)^[k] (↑(extChartAt I a) ((f c)^[n] z) - ↑(extChartAt I a) a) = x ⊢ ↑(extChartAt I a).symm (↑(extChartAt I a) ((f c)^[k.succ] ((f c)^[n] z))) = (f c)^[k.succ] ((f c)^[n] z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
rw [← hg]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g ⊢ ContinuousAt g 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g ⊢ ContinuousAt (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g ⊢ ContinuousAt g 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
refine (continuousAt_extChartAt_symm'' I ?_).comp (continuous_id.add continuous_const).continuousAt
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g ⊢ ContinuousAt (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) 0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g ⊢ 0 + ↑(extChartAt I a) a ∈ (extChartAt I a).target
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g ⊢ ContinuousAt (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
simp only [zero_add]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g ⊢ 0 + ↑(extChartAt I a) a ∈ (extChartAt I a).target
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g ⊢ ↑(extChartAt I a) a ∈ (extChartAt I a).target
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g ⊢ 0 + ↑(extChartAt I a) a ∈ (extChartAt I a).target TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
exact mem_extChartAt_target I a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g ⊢ ↑(extChartAt I a) a ∈ (extChartAt I a).target
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g ⊢ ↑(extChartAt I a) a ∈ (extChartAt I a).target TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
simp only [← hg]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g gc : ContinuousAt g 0 ⊢ g 0 = a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g gc : ContinuousAt g 0 ⊢ ↑(extChartAt I a).symm (0 + ↑(extChartAt I a) a) = a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g gc : ContinuousAt g 0 ⊢ g 0 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
simp only [zero_add]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g gc : ContinuousAt g 0 ⊢ ↑(extChartAt I a).symm (0 + ↑(extChartAt I a) a) = a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g gc : ContinuousAt g 0 ⊢ ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g gc : ContinuousAt g 0 ⊢ ↑(extChartAt I a).symm (0 + ↑(extChartAt I a) a) = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.attracts
[367, 1]
[390, 78]
exact PartialEquiv.left_inv _ (mem_extChartAt_source _ _)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g gc : ContinuousAt g 0 ⊢ ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near m : ((c, (f c)^[n] z).1, ↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a) ∈ s.near' t : Tendsto (fun n_1 => (s.fl c)^[n_1] (↑(extChartAt I a) (c, (f c)^[n] z).2 - ↑(extChartAt I a) a)) atTop (𝓝 0) g : ℂ → S hg : (fun x => ↑(extChartAt I a).symm (x + ↑(extChartAt I a) a)) = g gc : ContinuousAt g 0 ⊢ ↑(extChartAt I a).symm (↑(extChartAt I a) a) = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.isOpen_basin
[402, 1]
[403, 89]
simp only [Super.basin, setOf_exists]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ IsOpen s.basin
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ IsOpen (⋃ i, {x | (x.1, (f x.1)^[i] x.2) ∈ s.near})
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ IsOpen s.basin TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.isOpen_basin
[402, 1]
[403, 89]
exact isOpen_iUnion fun n ↦ s.isOpen_preimage n
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ IsOpen (⋃ i, {x | (x.1, (f x.1)^[i] x.2) ∈ s.near})
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ IsOpen (⋃ i, {x | (x.1, (f x.1)^[i] x.2) ∈ s.near}) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.basin_stays
[406, 1]
[412, 30]
simp only [Super.basin, Set.mem_setOf] at m
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.basin ⊢ ∀ᶠ (n : ℕ) in atTop, (c, (f c)^[n] z) ∈ s.near
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ ∀ᶠ (n : ℕ) in atTop, (c, (f c)^[n] z) ∈ s.near
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.basin ⊢ ∀ᶠ (n : ℕ) in atTop, (c, (f c)^[n] z) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.basin_stays
[406, 1]
[412, 30]
rcases m with ⟨n, m⟩
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ ∀ᶠ (n : ℕ) in atTop, (c, (f c)^[n] z) ∈ s.near
case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ m : (c, (f c)^[n] z) ∈ s.near ⊢ ∀ᶠ (n : ℕ) in atTop, (c, (f c)^[n] z) ∈ s.near
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ ∀ᶠ (n : ℕ) in atTop, (c, (f c)^[n] z) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.basin_stays
[406, 1]
[412, 30]
rw [Filter.eventually_atTop]
case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ m : (c, (f c)^[n] z) ∈ s.near ⊢ ∀ᶠ (n : ℕ) in atTop, (c, (f c)^[n] z) ∈ s.near
case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ m : (c, (f c)^[n] z) ∈ s.near ⊢ ∃ a_1, ∀ b ≥ a_1, (c, (f c)^[b] z) ∈ s.near
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ m : (c, (f c)^[n] z) ∈ s.near ⊢ ∀ᶠ (n : ℕ) in atTop, (c, (f c)^[n] z) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.basin_stays
[406, 1]
[412, 30]
use n
case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ m : (c, (f c)^[n] z) ∈ s.near ⊢ ∃ a_1, ∀ b ≥ a_1, (c, (f c)^[b] z) ∈ s.near
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ m : (c, (f c)^[n] z) ∈ s.near ⊢ ∀ b ≥ n, (c, (f c)^[b] z) ∈ s.near
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ m : (c, (f c)^[n] z) ∈ s.near ⊢ ∃ a_1, ∀ b ≥ a_1, (c, (f c)^[b] z) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.basin_stays
[406, 1]
[412, 30]
intro k kn
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ m : (c, (f c)^[n] z) ∈ s.near ⊢ ∀ b ≥ n, (c, (f c)^[b] z) ∈ s.near
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ m : (c, (f c)^[n] z) ∈ s.near k : ℕ kn : k ≥ n ⊢ (c, (f c)^[k] z) ∈ s.near
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ m : (c, (f c)^[n] z) ∈ s.near ⊢ ∀ b ≥ n, (c, (f c)^[b] z) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.basin_stays
[406, 1]
[412, 30]
rw [← Nat.sub_add_cancel kn, Function.iterate_add_apply]
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ m : (c, (f c)^[n] z) ∈ s.near k : ℕ kn : k ≥ n ⊢ (c, (f c)^[k] z) ∈ s.near
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ m : (c, (f c)^[n] z) ∈ s.near k : ℕ kn : k ≥ n ⊢ (c, (f c)^[k - n] ((f c)^[n] z)) ∈ s.near
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ m : (c, (f c)^[n] z) ∈ s.near k : ℕ kn : k ≥ n ⊢ (c, (f c)^[k] z) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.basin_stays
[406, 1]
[412, 30]
exact s.iter_stays_near m _
case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ m : (c, (f c)^[n] z) ∈ s.near k : ℕ kn : k ≥ n ⊢ (c, (f c)^[k - n] ((f c)^[n] z)) ∈ s.near
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ m : (c, (f c)^[n] z) ∈ s.near k : ℕ kn : k ≥ n ⊢ (c, (f c)^[k - n] ((f c)^[n] z)) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.basin_attracts
[415, 1]
[416, 43]
rcases m with ⟨n, m⟩
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.basin ⊢ Attracts (f c) z a
case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ m : ((c, z).1, (f (c, z).1)^[n] (c, z).2) ∈ s.near ⊢ Attracts (f c) z a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a m : (c, z) ∈ s.basin ⊢ Attracts (f c) z a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.basin_attracts
[415, 1]
[416, 43]
exact s.attracts m
case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ m : ((c, z).1, (f (c, z).1)^[n] (c, z).2) ∈ s.near ⊢ Attracts (f c) z a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ m : ((c, z).1, (f (c, z).1)^[n] (c, z).2) ∈ s.near ⊢ Attracts (f c) z a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.basin_iff_attracts
[419, 1]
[423, 29]
constructor
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ (c, z) ∈ s.basin ↔ Attracts (f c) z a
case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ (c, z) ∈ s.basin → Attracts (f c) z a case mpr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ Attracts (f c) z a → (c, z) ∈ s.basin
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ (c, z) ∈ s.basin ↔ Attracts (f c) z a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.basin_iff_attracts
[419, 1]
[423, 29]
exact s.basin_attracts
case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ (c, z) ∈ s.basin → Attracts (f c) z a case mpr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ Attracts (f c) z a → (c, z) ∈ s.basin
case mpr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ Attracts (f c) z a → (c, z) ∈ s.basin
Please generate a tactic in lean4 to solve the state. STATE: case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ (c, z) ∈ s.basin → Attracts (f c) z a case mpr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ Attracts (f c) z a → (c, z) ∈ s.basin TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.basin_iff_attracts
[419, 1]
[423, 29]
intro h
case mpr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ Attracts (f c) z a → (c, z) ∈ s.basin
case mpr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : Attracts (f c) z a ⊢ (c, z) ∈ s.basin
Please generate a tactic in lean4 to solve the state. STATE: case mpr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ Attracts (f c) z a → (c, z) ∈ s.basin TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/BottcherNearM.lean
Super.basin_iff_attracts
[419, 1]
[423, 29]
rcases tendsto_atTop_nhds.mp h {z | (c, z) ∈ s.near} (s.mem_near c) (s.isOpen_near.snd_preimage c) with ⟨n, h⟩
case mpr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : Attracts (f c) z a ⊢ (c, z) ∈ s.basin
case mpr.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a h✝ : Attracts (f c) z a n : ℕ h : ∀ (n_1 : ℕ), n ≤ n_1 → (f c)^[n_1] z ∈ {z | (c, z) ∈ s.near} ⊢ (c, z) ∈ s.basin
Please generate a tactic in lean4 to solve the state. STATE: case mpr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : Attracts (f c) z a ⊢ (c, z) ∈ s.basin TACTIC: