url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
rw [← hg]
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ⊢ AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z)
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ⊢ AnalyticAt ℂ (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) (↑(extChartAt 𝓘(ℂ, ℂ) z) z)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ⊢ AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
exact n.holomorphicAt.2
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ⊢ AnalyticAt ℂ (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) (↑(extChartAt 𝓘(ℂ, ℂ) z) z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ⊢ AnalyticAt ℂ (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
contrapose h
case inl X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : ∀ᶠ (z_1 : ℂ) in 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) z) z), g z_1 = g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z)
case inl X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : ¬𝓝 (f z) ≤ Filter.map f (𝓝 z) ⊢ ¬∀ᶠ (z_1 : ℂ) in 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) z) z), g z_1 = g (↑(extChartAt 𝓘(ℂ, ℂ) z) z)
Please generate a tactic in lean4 to solve the state. STATE: case inl X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : ∀ᶠ (z_1 : ℂ) in 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) z) z), g z_1 = g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
clear h
case inl X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : ¬𝓝 (f z) ≤ Filter.map f (𝓝 z) ⊢ ¬∀ᶠ (z_1 : ℂ) in 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) z) z), g z_1 = g (↑(extChartAt 𝓘(ℂ, ℂ) z) z)
case inl X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ ¬∀ᶠ (z_1 : ℂ) in 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) z) z), g z_1 = g (↑(extChartAt 𝓘(ℂ, ℂ) z) z)
Please generate a tactic in lean4 to solve the state. STATE: case inl X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : ¬𝓝 (f z) ≤ Filter.map f (𝓝 z) ⊢ ¬∀ᶠ (z_1 : ℂ) in 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) z) z), g z_1 = g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
simp only [Filter.not_eventually]
case inl X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ ¬∀ᶠ (z_1 : ℂ) in 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) z) z), g z_1 = g (↑(extChartAt 𝓘(ℂ, ℂ) z) z)
case inl X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ ∃ᶠ (x : ℂ) in 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) z) z), ¬g x = g (↑(extChartAt 𝓘(ℂ, ℂ) z) z)
Please generate a tactic in lean4 to solve the state. STATE: case inl X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ ¬∀ᶠ (z_1 : ℂ) in 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) z) z), g z_1 = g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
apply n.inCharts.nonconst.mp
case inl X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ ∃ᶠ (x : ℂ) in 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) z) z), ¬g x = g (↑(extChartAt 𝓘(ℂ, ℂ) z) z)
case inl X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) z) z), ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x)) ≠ ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) z))) → ¬g x = g (↑(extChartAt 𝓘(ℂ, ℂ) z) z)
Please generate a tactic in lean4 to solve the state. STATE: case inl X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ ∃ᶠ (x : ℂ) in 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) z) z), ¬g x = g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
simp only [← hg, Ne, imp_self, Filter.eventually_true]
case inl X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) z) z), ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x)) ≠ ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) z))) → ¬g x = g (↑(extChartAt 𝓘(ℂ, ℂ) z) z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inl X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) z) z), ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x)) ≠ ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) z))) → ¬g x = g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
simp only [← extChartAt_map_nhds' I z, Filter.map_map] at h
case inr X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (g (↑(extChartAt 𝓘(ℂ, ℂ) z) z)) ≤ Filter.map g (𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) z) z)) ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z)
case inr X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (g (↑(extChartAt 𝓘(ℂ, ℂ) z) z)) ≤ Filter.map (g ∘ ↑(extChartAt 𝓘(ℂ, ℂ) z)) (𝓝 z) ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z)
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (g (↑(extChartAt 𝓘(ℂ, ℂ) z) z)) ≤ Filter.map g (𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) z) z)) ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
replace h := @Filter.map_mono _ _ (extChartAt I (f z)).symm _ _ h
case inr X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (g (↑(extChartAt 𝓘(ℂ, ℂ) z) z)) ≤ Filter.map (g ∘ ↑(extChartAt 𝓘(ℂ, ℂ) z)) (𝓝 z) ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z)
case inr X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm) (𝓝 (g (↑(extChartAt 𝓘(ℂ, ℂ) z) z))) ≤ Filter.map (↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm) (Filter.map (g ∘ ↑(extChartAt 𝓘(ℂ, ℂ) z)) (𝓝 z)) ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z)
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (g (↑(extChartAt 𝓘(ℂ, ℂ) z) z)) ≤ Filter.map (g ∘ ↑(extChartAt 𝓘(ℂ, ℂ) z)) (𝓝 z) ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
simp only [← hg] at h
case inr X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm) (𝓝 (g (↑(extChartAt 𝓘(ℂ, ℂ) z) z))) ≤ Filter.map (↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm) (Filter.map (g ∘ ↑(extChartAt 𝓘(ℂ, ℂ) z)) (𝓝 z)) ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z)
case inr X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm) (𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) z))))) ≤ Filter.map (↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm) (Filter.map ((fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) ∘ ↑(extChartAt 𝓘(ℂ, ℂ) z)) (𝓝 z)) ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z)
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm) (𝓝 (g (↑(extChartAt 𝓘(ℂ, ℂ) z) z))) ≤ Filter.map (↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm) (Filter.map (g ∘ ↑(extChartAt 𝓘(ℂ, ℂ) z)) (𝓝 z)) ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
rw [PartialEquiv.left_inv _ (mem_extChartAt_source I z)] at h
case inr X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm) (𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) z))))) ≤ Filter.map (↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm) (Filter.map ((fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) ∘ ↑(extChartAt 𝓘(ℂ, ℂ) z)) (𝓝 z)) ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z)
case inr X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm) (𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f z))) ≤ Filter.map (↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm) (Filter.map ((fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) ∘ ↑(extChartAt 𝓘(ℂ, ℂ) z)) (𝓝 z)) ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z)
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm) (𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) z))))) ≤ Filter.map (↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm) (Filter.map ((fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) ∘ ↑(extChartAt 𝓘(ℂ, ℂ) z)) (𝓝 z)) ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
simp only [extChartAt_symm_map_nhds' I (f z), Filter.map_map, Function.comp] at h
case inr X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm) (𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f z))) ≤ Filter.map (↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm) (Filter.map ((fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) ∘ ↑(extChartAt 𝓘(ℂ, ℂ) z)) (𝓝 z)) ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z)
case inr X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (f z) ≤ Filter.map (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x))))) (𝓝 z) ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z)
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm) (𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f z))) ≤ Filter.map (↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm) (Filter.map ((fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) ∘ ↑(extChartAt 𝓘(ℂ, ℂ) z)) (𝓝 z)) ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
have e : (fun w ↦ (extChartAt I (f z)).symm (extChartAt I (f z) (f ((extChartAt I z).symm (extChartAt I z w))))) =ᶠ[𝓝 z] f := by apply ((isOpen_extChartAt_source I z).eventually_mem (mem_extChartAt_source I z)).mp apply (n.holomorphicAt.continuousAt.eventually_mem (extChartAt_source_mem_nhds I (f z))).mp refine eventually_of_forall fun w fm m ↦ ?_ simp only [PartialEquiv.left_inv _ m, PartialEquiv.left_inv _ fm]
case inr X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (f z) ≤ Filter.map (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x))))) (𝓝 z) ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z)
case inr X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (f z) ≤ Filter.map (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x))))) (𝓝 z) e : (𝓝 z).EventuallyEq (fun w => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) w))))) f ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z)
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (f z) ≤ Filter.map (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x))))) (𝓝 z) ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
rw [Filter.map_congr e] at h
case inr X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (f z) ≤ Filter.map (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x))))) (𝓝 z) e : (𝓝 z).EventuallyEq (fun w => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) w))))) f ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z)
case inr X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (f z) ≤ Filter.map f (𝓝 z) e : (𝓝 z).EventuallyEq (fun w => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) w))))) f ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z)
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (f z) ≤ Filter.map (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x))))) (𝓝 z) e : (𝓝 z).EventuallyEq (fun w => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) w))))) f ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
exact h
case inr X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (f z) ≤ Filter.map f (𝓝 z) e : (𝓝 z).EventuallyEq (fun w => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) w))))) f ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (f z) ≤ Filter.map f (𝓝 z) e : (𝓝 z).EventuallyEq (fun w => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) w))))) f ⊢ 𝓝 (f z) ≤ Filter.map f (𝓝 z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
apply ((isOpen_extChartAt_source I z).eventually_mem (mem_extChartAt_source I z)).mp
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (f z) ≤ Filter.map (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x))))) (𝓝 z) ⊢ (𝓝 z).EventuallyEq (fun w => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) w))))) f
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (f z) ≤ Filter.map (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x))))) (𝓝 z) ⊢ ∀ᶠ (x : S) in 𝓝 z, x ∈ (extChartAt 𝓘(ℂ, ℂ) z).source → (fun w => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) w))))) x = f x
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (f z) ≤ Filter.map (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x))))) (𝓝 z) ⊢ (𝓝 z).EventuallyEq (fun w => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) w))))) f TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
apply (n.holomorphicAt.continuousAt.eventually_mem (extChartAt_source_mem_nhds I (f z))).mp
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (f z) ≤ Filter.map (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x))))) (𝓝 z) ⊢ ∀ᶠ (x : S) in 𝓝 z, x ∈ (extChartAt 𝓘(ℂ, ℂ) z).source → (fun w => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) w))))) x = f x
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (f z) ≤ Filter.map (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x))))) (𝓝 z) ⊢ ∀ᶠ (x : S) in 𝓝 z, f x ∈ (extChartAt 𝓘(ℂ, ℂ) (f z)).source → x ∈ (extChartAt 𝓘(ℂ, ℂ) z).source → (fun w => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) w))))) x = f x
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (f z) ≤ Filter.map (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x))))) (𝓝 z) ⊢ ∀ᶠ (x : S) in 𝓝 z, x ∈ (extChartAt 𝓘(ℂ, ℂ) z).source → (fun w => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) w))))) x = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
refine eventually_of_forall fun w fm m ↦ ?_
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (f z) ≤ Filter.map (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x))))) (𝓝 z) ⊢ ∀ᶠ (x : S) in 𝓝 z, f x ∈ (extChartAt 𝓘(ℂ, ℂ) (f z)).source → x ∈ (extChartAt 𝓘(ℂ, ℂ) z).source → (fun w => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) w))))) x = f x
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (f z) ≤ Filter.map (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x))))) (𝓝 z) w : S fm : f w ∈ (extChartAt 𝓘(ℂ, ℂ) (f z)).source m : w ∈ (extChartAt 𝓘(ℂ, ℂ) z).source ⊢ (fun w => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) w))))) w = f w
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (f z) ≤ Filter.map (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x))))) (𝓝 z) ⊢ ∀ᶠ (x : S) in 𝓝 z, f x ∈ (extChartAt 𝓘(ℂ, ℂ) (f z)).source → x ∈ (extChartAt 𝓘(ℂ, ℂ) z).source → (fun w => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) w))))) x = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
simp only [PartialEquiv.left_inv _ m, PartialEquiv.left_inv _ fm]
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (f z) ≤ Filter.map (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x))))) (𝓝 z) w : S fm : f w ∈ (extChartAt 𝓘(ℂ, ℂ) (f z)).source m : w ∈ (extChartAt 𝓘(ℂ, ℂ) z).source ⊢ (fun w => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) w))))) w = f w
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : S → T z : S n : NontrivialHolomorphicAt f z g : ℂ → ℂ hg : (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ g (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (f z) ≤ Filter.map (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x))))) (𝓝 z) w : S fm : f w ∈ (extChartAt 𝓘(ℂ, ℂ) (f z)).source m : w ∈ (extChartAt 𝓘(ℂ, ℂ) z).source ⊢ (fun w => ↑(extChartAt 𝓘(ℂ, ℂ) (f z)).symm (↑(extChartAt 𝓘(ℂ, ℂ) (f z)) (f (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) w))))) w = f w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
refine le_antisymm ?_ (continuousAt_fst.prod fa.continuousAt)
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) ⊢ 𝓝 (c, f c z) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) ⊢ 𝓝 (c, f c z) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
generalize hg : (fun e x ↦ extChartAt I (f c z) (f e ((extChartAt I z).symm x))) = g
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
have ga : AnalyticAt ℂ (uncurry g) (c, extChartAt I z z) := by rw [← hg]; exact (holomorphicAt_iff.mp fa).2
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
have gn : NontrivialHolomorphicAt (g c) (extChartAt I z z) := by rw [← hg]; exact n.inCharts
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
have h := gn.nhds_le_map_nhds_param' ga
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (c, g c (↑(extChartAt 𝓘(ℂ, ℂ) z) z)) ≤ Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z)) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
simp only [nhds_prod_eq, ← extChartAt_map_nhds' I z, Filter.map_map, Filter.prod_map_id_map_eq, Function.comp] at h
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (c, g c (↑(extChartAt 𝓘(ℂ, ℂ) z) z)) ≤ Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z)) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 c ×ˢ 𝓝 (g c (↑(extChartAt 𝓘(ℂ, ℂ) z) z)) ≤ Filter.map (fun x => (x.1, g x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))) (𝓝 c ×ˢ 𝓝 z) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 (c, g c (↑(extChartAt 𝓘(ℂ, ℂ) z) z)) ≤ Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z)) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
replace h := @Filter.map_mono _ _ (fun p : ℂ × ℂ ↦ (p.1, (extChartAt I (f c z)).symm p.2)) _ _ h
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 c ×ˢ 𝓝 (g c (↑(extChartAt 𝓘(ℂ, ℂ) z) z)) ≤ Filter.map (fun x => (x.1, g x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))) (𝓝 c ×ˢ 𝓝 z) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (g c (↑(extChartAt 𝓘(ℂ, ℂ) z) z))) ≤ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, g x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))) (𝓝 c ×ˢ 𝓝 z)) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : 𝓝 c ×ˢ 𝓝 (g c (↑(extChartAt 𝓘(ℂ, ℂ) z) z)) ≤ Filter.map (fun x => (x.1, g x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))) (𝓝 c ×ˢ 𝓝 z) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
simp only [← hg] at h
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (g c (↑(extChartAt 𝓘(ℂ, ℂ) z) z))) ≤ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, g x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))) (𝓝 c ×ˢ 𝓝 z)) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) z))))) ≤ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 c ×ˢ 𝓝 z)) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (g c (↑(extChartAt 𝓘(ℂ, ℂ) z) z))) ≤ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, g x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))) (𝓝 c ×ˢ 𝓝 z)) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
rw [PartialEquiv.left_inv _ (mem_extChartAt_source I z)] at h
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) z))))) ≤ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 c ×ˢ 𝓝 z)) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) ≤ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 c ×ˢ 𝓝 z)) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) z))))) ≤ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 c ×ˢ 𝓝 z)) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
have pe := Filter.prod_map_id_map_eq (f := 𝓝 c) (g := 𝓝 (extChartAt I (f c z) (f c z))) (m := fun x ↦ (extChartAt I (f c z)).symm x)
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) ≤ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 c ×ˢ 𝓝 z)) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) ≤ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 c ×ˢ 𝓝 z)) pe : 𝓝 c ×ˢ Filter.map (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm x) (𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) = Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) ≤ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 c ×ˢ 𝓝 z)) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
rw [extChartAt_symm_map_nhds', ←nhds_prod_eq] at pe
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) ≤ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 c ×ˢ 𝓝 z)) pe : 𝓝 c ×ˢ Filter.map (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm x) (𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) = Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) ≤ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 c ×ˢ 𝓝 z)) pe : 𝓝 (c, f c z) = Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) ≤ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 c ×ˢ 𝓝 z)) pe : 𝓝 c ×ˢ Filter.map (fun x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm x) (𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) = Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
refine _root_.trans (le_of_eq pe) (_root_.trans h (le_of_eq ?_))
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) ≤ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 c ×ˢ 𝓝 z)) pe : 𝓝 (c, f c z) = Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) ≤ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 c ×ˢ 𝓝 z)) pe : 𝓝 (c, f c z) = Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) ⊢ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 c ×ˢ 𝓝 z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) ≤ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 c ×ˢ 𝓝 z)) pe : 𝓝 (c, f c z) = Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) ⊢ 𝓝 (c, f c z) ≤ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
clear h pe
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) ≤ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 c ×ˢ 𝓝 z)) pe : 𝓝 (c, f c z) = Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) ⊢ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 c ×ˢ 𝓝 z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 c ×ˢ 𝓝 z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) ≤ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 c ×ˢ 𝓝 z)) pe : 𝓝 (c, f c z) = Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (𝓝 c ×ˢ 𝓝 (↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f c z))) ⊢ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 c ×ˢ 𝓝 z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
rw [←nhds_prod_eq, Filter.map_map]
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 c ×ˢ 𝓝 z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ Filter.map ((fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 (c, z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ Filter.map (fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 c ×ˢ 𝓝 z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
apply Filter.map_congr
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ Filter.map ((fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 (c, z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
case h X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ (𝓝 (c, z)).EventuallyEq ((fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) fun p => (p.1, f p.1 p.2)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ Filter.map ((fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (𝓝 (c, z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
apply ((isOpen_extChartAt_source II (c, z)).eventually_mem (mem_extChartAt_source II (c, z))).mp
case h X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ (𝓝 (c, z)).EventuallyEq ((fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) fun p => (p.1, f p.1 p.2)
case h X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, z), x ∈ (extChartAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) (c, z)).source → ((fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ (𝓝 (c, z)).EventuallyEq ((fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) fun p => (p.1, f p.1 p.2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
apply (fa.continuousAt.eventually_mem (extChartAt_source_mem_nhds I (f c z))).mp
case h X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, z), x ∈ (extChartAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) (c, z)).source → ((fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x
case h X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, z), uncurry f x ∈ (extChartAt 𝓘(ℂ, ℂ) (f c z)).source → x ∈ (extChartAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) (c, z)).source → ((fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, z), x ∈ (extChartAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) (c, z)).source → ((fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
apply eventually_of_forall
case h X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, z), uncurry f x ∈ (extChartAt 𝓘(ℂ, ℂ) (f c z)).source → x ∈ (extChartAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) (c, z)).source → ((fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x
case h.hp X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ ∀ (x : ℂ × S), uncurry f x ∈ (extChartAt 𝓘(ℂ, ℂ) (f c z)).source → x ∈ (extChartAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) (c, z)).source → ((fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, z), uncurry f x ∈ (extChartAt 𝓘(ℂ, ℂ) (f c z)).source → x ∈ (extChartAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) (c, z)).source → ((fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
intro ⟨e, w⟩ fm m
case h.hp X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ ∀ (x : ℂ × S), uncurry f x ∈ (extChartAt 𝓘(ℂ, ℂ) (f c z)).source → x ∈ (extChartAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) (c, z)).source → ((fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x
case h.hp X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) e : ℂ w : S fm : uncurry f (e, w) ∈ (extChartAt 𝓘(ℂ, ℂ) (f c z)).source m : (e, w) ∈ (extChartAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) (c, z)).source ⊢ ((fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (e, w) = (fun p => (p.1, f p.1 p.2)) (e, w)
Please generate a tactic in lean4 to solve the state. STATE: case h.hp X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ ∀ (x : ℂ × S), uncurry f x ∈ (extChartAt 𝓘(ℂ, ℂ) (f c z)).source → x ∈ (extChartAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) (c, z)).source → ((fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
simp only [Function.comp, uncurry, extChartAt_prod, PartialEquiv.prod_source, mem_prod_eq] at fm m
case h.hp X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) e : ℂ w : S fm : uncurry f (e, w) ∈ (extChartAt 𝓘(ℂ, ℂ) (f c z)).source m : (e, w) ∈ (extChartAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) (c, z)).source ⊢ ((fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (e, w) = (fun p => (p.1, f p.1 p.2)) (e, w)
case h.hp X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) e : ℂ w : S fm : f e w ∈ (extChartAt 𝓘(ℂ, ℂ) (f c z)).source m : e ∈ (extChartAt 𝓘(ℂ, ℂ) c).source ∧ w ∈ (extChartAt 𝓘(ℂ, ℂ) z).source ⊢ ((fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (e, w) = (fun p => (p.1, f p.1 p.2)) (e, w)
Please generate a tactic in lean4 to solve the state. STATE: case h.hp X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) e : ℂ w : S fm : uncurry f (e, w) ∈ (extChartAt 𝓘(ℂ, ℂ) (f c z)).source m : (e, w) ∈ (extChartAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) (c, z)).source ⊢ ((fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (e, w) = (fun p => (p.1, f p.1 p.2)) (e, w) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
simp only [Function.comp, PartialEquiv.left_inv _ m.2, PartialEquiv.left_inv _ fm]
case h.hp X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) e : ℂ w : S fm : f e w ∈ (extChartAt 𝓘(ℂ, ℂ) (f c z)).source m : e ∈ (extChartAt 𝓘(ℂ, ℂ) c).source ∧ w ∈ (extChartAt 𝓘(ℂ, ℂ) z).source ⊢ ((fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (e, w) = (fun p => (p.1, f p.1 p.2)) (e, w)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.hp X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) e : ℂ w : S fm : f e w ∈ (extChartAt 𝓘(ℂ, ℂ) (f c z)).source m : e ∈ (extChartAt 𝓘(ℂ, ℂ) c).source ∧ w ∈ (extChartAt 𝓘(ℂ, ℂ) z).source ⊢ ((fun p => (p.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f x.1 (↑(extChartAt 𝓘(ℂ, ℂ) z).symm (↑(extChartAt 𝓘(ℂ, ℂ) z) x.2))))) (e, w) = (fun p => (p.1, f p.1 p.2)) (e, w) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
rw [← hg]
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ⊢ AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z)
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ⊢ AnalyticAt ℂ (uncurry fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ⊢ AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
exact (holomorphicAt_iff.mp fa).2
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ⊢ AnalyticAt ℂ (uncurry fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ⊢ AnalyticAt ℂ (uncurry fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
rw [← hg]
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z)
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ NontrivialHolomorphicAt ((fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ NontrivialHolomorphicAt (g c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
exact n.inCharts
X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ NontrivialHolomorphicAt ((fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S cms : AnalyticManifold 𝓘(ℂ, ℂ) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace ℂ T cmt : AnalyticManifold 𝓘(ℂ, ℂ) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace ℂ U cmu : AnalyticManifold 𝓘(ℂ, ℂ) U f : ℂ → S → T c : ℂ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (𝓘(ℂ, ℂ).prod 𝓘(ℂ, ℂ)) 𝓘(ℂ, ℂ) (uncurry f) (c, z) g : ℂ → ℂ → ℂ hg : (fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) = g ga : AnalyticAt ℂ (uncurry g) (c, ↑(extChartAt 𝓘(ℂ, ℂ) z) z) ⊢ NontrivialHolomorphicAt ((fun e x => ↑(extChartAt 𝓘(ℂ, ℂ) (f c z)) (f e (↑(extChartAt 𝓘(ℂ, ℂ) z).symm x))) c) (↑(extChartAt 𝓘(ℂ, ℂ) z) z) TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Option.bind_const_none
[23, 1]
[24, 22]
cases x <;> simp
α : Type u_1 β : Type u_2 x : Option α ⊢ (Option.bind x fun x => none) = none
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 β : Type u_2 x : Option α ⊢ (Option.bind x fun x => none) = none TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Option.isNone_false_iff_isSome
[28, 1]
[29, 22]
cases x <;> simp
α : Type u_1 x : Option α ⊢ isNone x = false ↔ isSome x = true
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x : Option α ⊢ isNone x = false ↔ isSome x = true TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Fin.tuple_sequence₁
[56, 1]
[58, 41]
simp [Fin.tupleSequence, functor_norm]
m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α : Fin 1 → Type u x : (i : Fin 1) → m (α i) ⊢ tupleSequence x = do let r₀ ← x 0 pure (cons r₀ default)
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α : Fin 1 → Type u x : (i : Fin 1) → m (α i) ⊢ tupleSequence x = do let r₀ ← x 0 pure (cons r₀ default) TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Fin.tuple_sequence₂
[62, 1]
[66, 6]
simp [Fin.tupleSequence, functor_norm]
m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α : Fin 2 → Type u x : (i : Fin 2) → m (α i) ⊢ tupleSequence x = do let r₀ ← x 0 let r₁ ← x 1 pure (cons r₀ (cons r₁ default))
m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α : Fin 2 → Type u x : (i : Fin 2) → m (α i) ⊢ (do let r ← x 0 let x ← tail x 0 pure (cons r (cons x default))) = do let r₀ ← x 0 let r₁ ← x 1 pure (cons r₀ (cons r₁ default))
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α : Fin 2 → Type u x : (i : Fin 2) → m (α i) ⊢ tupleSequence x = do let r₀ ← x 0 let r₁ ← x 1 pure (cons r₀ (cons r₁ default)) TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Fin.tuple_sequence₂
[62, 1]
[66, 6]
rfl
m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α : Fin 2 → Type u x : (i : Fin 2) → m (α i) ⊢ (do let r ← x 0 let x ← tail x 0 pure (cons r (cons x default))) = do let r₀ ← x 0 let r₁ ← x 1 pure (cons r₀ (cons r₁ default))
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α : Fin 2 → Type u x : (i : Fin 2) → m (α i) ⊢ (do let r ← x 0 let x ← tail x 0 pure (cons r (cons x default))) = do let r₀ ← x 0 let r₁ ← x 1 pure (cons r₀ (cons r₁ default)) TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Option.bind_isSome
[74, 1]
[75, 84]
cases x <;> simp
m : Type u → Type v inst✝ : Monad m α : Type u_1 β : Type u_2 x : Option α y : α → Option β ⊢ isSome (Option.bind x y) = true ↔ ∃ (h : isSome x = true), isSome (y (get x h)) = true
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝ : Monad m α : Type u_1 β : Type u_2 x : Option α y : α → Option β ⊢ isSome (Option.bind x y) = true ↔ ∃ (h : isSome x = true), isSome (y (get x h)) = true TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Option.map_isSome
[79, 1]
[80, 19]
cases x <;> simp
m : Type u → Type v inst✝ : Monad m α β : Type u_1 x : Option α y : α → β ⊢ isSome (y <$> x) = isSome x
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝ : Monad m α β : Type u_1 x : Option α y : α → β ⊢ isSome (y <$> x) = isSome x TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Option.not_isSome'
[84, 1]
[84, 92]
cases x <;> simp
m : Type u → Type v inst✝ : Monad m α : Type u_1 x : Option α ⊢ (!decide (isSome x = isNone x)) = true
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝ : Monad m α : Type u_1 x : Option α ⊢ (!decide (isSome x = isNone x)) = true TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Option.guardProp_isSome
[92, 1]
[95, 22]
dsimp only [Option.guardProp]
m : Type u → Type v inst✝¹ : Monad m α : Type u_1 p : Prop inst✝ : Decidable p x : α ⊢ isSome (guardProp p x) = true ↔ p
m : Type u → Type v inst✝¹ : Monad m α : Type u_1 p : Prop inst✝ : Decidable p x : α ⊢ isSome (if p then some x else none) = true ↔ p
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝¹ : Monad m α : Type u_1 p : Prop inst✝ : Decidable p x : α ⊢ isSome (guardProp p x) = true ↔ p TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Option.guardProp_isSome
[92, 1]
[95, 22]
split_ifs <;> simpa
m : Type u → Type v inst✝¹ : Monad m α : Type u_1 p : Prop inst✝ : Decidable p x : α ⊢ isSome (if p then some x else none) = true ↔ p
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝¹ : Monad m α : Type u_1 p : Prop inst✝ : Decidable p x : α ⊢ isSome (if p then some x else none) = true ↔ p TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Option.coe_part_dom
[99, 1]
[99, 100]
cases x <;> simp
m : Type u → Type v inst✝ : Monad m α : Type u_1 x : Option α ⊢ (↑x).Dom ↔ isSome x = true
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝ : Monad m α : Type u_1 x : Option α ⊢ (↑x).Dom ↔ isSome x = true TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Option.coe_part_eq_some
[103, 1]
[104, 74]
simp [Part.eq_some_iff]
m : Type u → Type v inst✝ : Monad m α : Type u_1 x : Option α y : α ⊢ ↑x = Part.some y ↔ x = some y
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝ : Monad m α : Type u_1 x : Option α y : α ⊢ ↑x = Part.some y ↔ x = some y TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
List.get?_isSome_iff
[108, 1]
[110, 35]
rw [← not_iff_not]
m : Type u → Type v inst✝ : Monad m α : Type u_1 x : List α n : ℕ ⊢ Option.isSome (get? x n) = true ↔ n < length x
m : Type u → Type v inst✝ : Monad m α : Type u_1 x : List α n : ℕ ⊢ ¬Option.isSome (get? x n) = true ↔ ¬n < length x
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝ : Monad m α : Type u_1 x : List α n : ℕ ⊢ Option.isSome (get? x n) = true ↔ n < length x TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
List.get?_isSome_iff
[108, 1]
[110, 35]
simp [Option.isNone_iff_eq_none]
m : Type u → Type v inst✝ : Monad m α : Type u_1 x : List α n : ℕ ⊢ ¬Option.isSome (get? x n) = true ↔ ¬n < length x
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝ : Monad m α : Type u_1 x : List α n : ℕ ⊢ ¬Option.isSome (get? x n) = true ↔ ¬n < length x TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Option.map_is_some'
[114, 1]
[115, 19]
cases x <;> simp
m : Type u → Type v inst✝ : Monad m α : Type u_1 β : Type u_2 x : Option α f : α → β ⊢ isSome (Option.map f x) = isSome x
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝ : Monad m α : Type u_1 β : Type u_2 x : Option α f : α → β ⊢ isSome (Option.map f x) = isSome x TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
List.zipWith_fst
[118, 1]
[121, 11]
erw [← List.map_uncurry_zip_eq_zipWith, List.map_fst_zip]
m : Type u → Type v inst✝ : Monad m α : Type u_1 β : Type u_2 l₁ : List α l₂ : List β hl : length l₁ ≤ length l₂ ⊢ zipWith (fun a b => a) l₁ l₂ = l₁
case a m : Type u → Type v inst✝ : Monad m α : Type u_1 β : Type u_2 l₁ : List α l₂ : List β hl : length l₁ ≤ length l₂ ⊢ length l₁ ≤ length l₂
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝ : Monad m α : Type u_1 β : Type u_2 l₁ : List α l₂ : List β hl : length l₁ ≤ length l₂ ⊢ zipWith (fun a b => a) l₁ l₂ = l₁ TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
List.zipWith_fst
[118, 1]
[121, 11]
exact hl
case a m : Type u → Type v inst✝ : Monad m α : Type u_1 β : Type u_2 l₁ : List α l₂ : List β hl : length l₁ ≤ length l₂ ⊢ length l₁ ≤ length l₂
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a m : Type u → Type v inst✝ : Monad m α : Type u_1 β : Type u_2 l₁ : List α l₂ : List β hl : length l₁ ≤ length l₂ ⊢ length l₁ ≤ length l₂ TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
List.zipWith_snd
[124, 1]
[127, 11]
erw [← List.map_uncurry_zip_eq_zipWith, List.map_snd_zip]
m : Type u → Type v inst✝ : Monad m α : Type u_1 β : Type u_2 l₁ : List α l₂ : List β hl : length l₂ ≤ length l₁ ⊢ zipWith (fun a b => b) l₁ l₂ = l₂
case a m : Type u → Type v inst✝ : Monad m α : Type u_1 β : Type u_2 l₁ : List α l₂ : List β hl : length l₂ ≤ length l₁ ⊢ length l₂ ≤ length l₁
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝ : Monad m α : Type u_1 β : Type u_2 l₁ : List α l₂ : List β hl : length l₂ ≤ length l₁ ⊢ zipWith (fun a b => b) l₁ l₂ = l₂ TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
List.zipWith_snd
[124, 1]
[127, 11]
exact hl
case a m : Type u → Type v inst✝ : Monad m α : Type u_1 β : Type u_2 l₁ : List α l₂ : List β hl : length l₂ ≤ length l₁ ⊢ length l₂ ≤ length l₁
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a m : Type u → Type v inst✝ : Monad m α : Type u_1 β : Type u_2 l₁ : List α l₂ : List β hl : length l₂ ≤ length l₁ ⊢ length l₂ ≤ length l₁ TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Multiset.map_get
[134, 1]
[136, 36]
simp [Finset.univ, Fintype.elems]
m : Type u → Type v inst✝ : Monad m α : Type u_1 l : List α ⊢ map (List.get l) Finset.univ.val = ↑l
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝ : Monad m α : Type u_1 l : List α ⊢ map (List.get l) Finset.univ.val = ↑l TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Multiset.get_zero
[142, 1]
[142, 88]
simp [Multiset.get]
m : Type u → Type v inst✝ : Monad m α : Type u_1 ⊢ get 0 = none
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝ : Monad m α : Type u_1 ⊢ get 0 = none TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Multiset.get_singleton
[144, 1]
[144, 105]
simp [Multiset.get]
m : Type u → Type v inst✝ : Monad m α : Type u_1 a : α ⊢ get {a} = some a
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝ : Monad m α : Type u_1 a : α ⊢ get {a} = some a TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
le_false_iff
[147, 1]
[147, 72]
decide
m : Type u → Type v inst✝ : Monad m ⊢ ∀ {b : Bool}, b ≤ false ↔ b = false
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝ : Monad m ⊢ ∀ {b : Bool}, b ≤ false ↔ b = false TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
lt_true_iff
[151, 1]
[151, 70]
decide
m : Type u → Type v inst✝ : Monad m ⊢ ∀ {b : Bool}, b < true ↔ b = false
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝ : Monad m ⊢ ∀ {b : Bool}, b < true ↔ b = false TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
false_lt_iff
[155, 1]
[155, 71]
decide
m : Type u → Type v inst✝ : Monad m ⊢ ∀ {b : Bool}, false < b ↔ b = true
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝ : Monad m ⊢ ∀ {b : Bool}, false < b ↔ b = true TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
ne_min_of_ne_and_ne
[158, 1]
[159, 81]
rcases min_choice x y with h | h <;> rw [h] <;> assumption
m : Type u → Type v inst✝¹ : Monad m ι : Type u_1 inst✝ : LinearOrder ι a x y : ι hx : a ≠ x hy : a ≠ y ⊢ a ≠ min x y
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝¹ : Monad m ι : Type u_1 inst✝ : LinearOrder ι a x y : ι hx : a ≠ x hy : a ≠ y ⊢ a ≠ min x y TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
max_ne_self_iff
[163, 1]
[167, 31]
rw [max_def]
m : Type u → Type v inst✝¹ : Monad m ι : Type u_1 inst✝ : LinearOrder ι a b : ι ⊢ ¬a = max a b ↔ a < b
m : Type u → Type v inst✝¹ : Monad m ι : Type u_1 inst✝ : LinearOrder ι a b : ι ⊢ (¬a = if a ≤ b then b else a) ↔ a < b
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝¹ : Monad m ι : Type u_1 inst✝ : LinearOrder ι a b : ι ⊢ ¬a = max a b ↔ a < b TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
max_ne_self_iff
[163, 1]
[167, 31]
split_ifs with h
m : Type u → Type v inst✝¹ : Monad m ι : Type u_1 inst✝ : LinearOrder ι a b : ι ⊢ (¬a = if a ≤ b then b else a) ↔ a < b
case pos m : Type u → Type v inst✝¹ : Monad m ι : Type u_1 inst✝ : LinearOrder ι a b : ι h : a ≤ b ⊢ ¬a = b ↔ a < b case neg m : Type u → Type v inst✝¹ : Monad m ι : Type u_1 inst✝ : LinearOrder ι a b : ι h : ¬a ≤ b ⊢ ¬a = a ↔ a < b
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝¹ : Monad m ι : Type u_1 inst✝ : LinearOrder ι a b : ι ⊢ (¬a = if a ≤ b then b else a) ↔ a < b TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
max_ne_self_iff
[163, 1]
[167, 31]
simpa using h
case pos m : Type u → Type v inst✝¹ : Monad m ι : Type u_1 inst✝ : LinearOrder ι a b : ι h : a ≤ b ⊢ ¬a = b ↔ a < b
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos m : Type u → Type v inst✝¹ : Monad m ι : Type u_1 inst✝ : LinearOrder ι a b : ι h : a ≤ b ⊢ ¬a = b ↔ a < b TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
max_ne_self_iff
[163, 1]
[167, 31]
simpa using le_of_not_ge h
case neg m : Type u → Type v inst✝¹ : Monad m ι : Type u_1 inst✝ : LinearOrder ι a b : ι h : ¬a ≤ b ⊢ ¬a = a ↔ a < b
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg m : Type u → Type v inst✝¹ : Monad m ι : Type u_1 inst✝ : LinearOrder ι a b : ι h : ¬a ≤ b ⊢ ¬a = a ↔ a < b TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
max_ne_self_iff'
[171, 1]
[172, 22]
rw [max_comm]
m : Type u → Type v inst✝¹ : Monad m ι : Type u_1 inst✝ : LinearOrder ι a b : ι ⊢ ¬b = max a b ↔ b < a
m : Type u → Type v inst✝¹ : Monad m ι : Type u_1 inst✝ : LinearOrder ι a b : ι ⊢ ¬b = max b a ↔ b < a
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝¹ : Monad m ι : Type u_1 inst✝ : LinearOrder ι a b : ι ⊢ ¬b = max a b ↔ b < a TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
max_ne_self_iff'
[171, 1]
[172, 22]
simp
m : Type u → Type v inst✝¹ : Monad m ι : Type u_1 inst✝ : LinearOrder ι a b : ι ⊢ ¬b = max b a ↔ b < a
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝¹ : Monad m ι : Type u_1 inst✝ : LinearOrder ι a b : ι ⊢ ¬b = max b a ↔ b < a TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
WithTop.isSome_iff_lt_top
[180, 1]
[183, 6]
rw [← not_iff_not, Bool.eq_false_eq_not_eq_true, Option.not_isSome, Option.isNone_iff_eq_none, lt_top_iff_ne_top, Ne, Classical.not_not]
m : Type u → Type v inst✝¹ : Monad m ι : Type inst✝ : PartialOrder ι x : WithTop ι ⊢ Option.isSome x = true ↔ x < ⊤
m : Type u → Type v inst✝¹ : Monad m ι : Type inst✝ : PartialOrder ι x : WithTop ι ⊢ x = none ↔ x = ⊤
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝¹ : Monad m ι : Type inst✝ : PartialOrder ι x : WithTop ι ⊢ Option.isSome x = true ↔ x < ⊤ TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
WithTop.isSome_iff_lt_top
[180, 1]
[183, 6]
rfl
m : Type u → Type v inst✝¹ : Monad m ι : Type inst✝ : PartialOrder ι x : WithTop ι ⊢ x = none ↔ x = ⊤
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝¹ : Monad m ι : Type inst✝ : PartialOrder ι x : WithTop ι ⊢ x = none ↔ x = ⊤ TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.le_iff''
[233, 1]
[237, 8]
rw [Prod.Lex.le_iff', le_iff_lt_or_eq]
m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : PartialOrder α inst✝ : Preorder β x y : Lex (α × β) ⊢ x ≤ y ↔ x.1 ≤ y.1 ∧ (x.1 = y.1 → x.2 ≤ y.2)
m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : PartialOrder α inst✝ : Preorder β x y : Lex (α × β) ⊢ x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 ≤ y.2 ↔ (x.1 < y.1 ∨ x.1 = y.1) ∧ (x.1 = y.1 → x.2 ≤ y.2)
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : PartialOrder α inst✝ : Preorder β x y : Lex (α × β) ⊢ x ≤ y ↔ x.1 ≤ y.1 ∧ (x.1 = y.1 → x.2 ≤ y.2) TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.le_iff''
[233, 1]
[237, 8]
have := @ne_of_lt _ _ x.1 y.1
m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : PartialOrder α inst✝ : Preorder β x y : Lex (α × β) ⊢ x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 ≤ y.2 ↔ (x.1 < y.1 ∨ x.1 = y.1) ∧ (x.1 = y.1 → x.2 ≤ y.2)
m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : PartialOrder α inst✝ : Preorder β x y : Lex (α × β) this : x.1 < y.1 → x.1 ≠ y.1 ⊢ x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 ≤ y.2 ↔ (x.1 < y.1 ∨ x.1 = y.1) ∧ (x.1 = y.1 → x.2 ≤ y.2)
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : PartialOrder α inst✝ : Preorder β x y : Lex (α × β) ⊢ x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 ≤ y.2 ↔ (x.1 < y.1 ∨ x.1 = y.1) ∧ (x.1 = y.1 → x.2 ≤ y.2) TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.le_iff''
[233, 1]
[237, 8]
tauto
m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : PartialOrder α inst✝ : Preorder β x y : Lex (α × β) this : x.1 < y.1 → x.1 ≠ y.1 ⊢ x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 ≤ y.2 ↔ (x.1 < y.1 ∨ x.1 = y.1) ∧ (x.1 = y.1 → x.2 ≤ y.2)
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : PartialOrder α inst✝ : Preorder β x y : Lex (α × β) this : x.1 < y.1 → x.1 ≠ y.1 ⊢ x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 ≤ y.2 ↔ (x.1 < y.1 ∨ x.1 = y.1) ∧ (x.1 = y.1 → x.2 ≤ y.2) TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.lt_iff''
[244, 1]
[248, 8]
rw [lt_iff', le_iff_lt_or_eq]
m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : PartialOrder α inst✝ : Preorder β x y : Lex (α × β) ⊢ x < y ↔ x.1 ≤ y.1 ∧ (x.1 = y.1 → x.2 < y.2)
m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : PartialOrder α inst✝ : Preorder β x y : Lex (α × β) ⊢ x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 < y.2 ↔ (x.1 < y.1 ∨ x.1 = y.1) ∧ (x.1 = y.1 → x.2 < y.2)
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : PartialOrder α inst✝ : Preorder β x y : Lex (α × β) ⊢ x < y ↔ x.1 ≤ y.1 ∧ (x.1 = y.1 → x.2 < y.2) TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.lt_iff''
[244, 1]
[248, 8]
have : x.1 < y.1 → ¬x.1 = y.1 := ne_of_lt
m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : PartialOrder α inst✝ : Preorder β x y : Lex (α × β) ⊢ x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 < y.2 ↔ (x.1 < y.1 ∨ x.1 = y.1) ∧ (x.1 = y.1 → x.2 < y.2)
m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : PartialOrder α inst✝ : Preorder β x y : Lex (α × β) this : x.1 < y.1 → ¬x.1 = y.1 ⊢ x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 < y.2 ↔ (x.1 < y.1 ∨ x.1 = y.1) ∧ (x.1 = y.1 → x.2 < y.2)
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : PartialOrder α inst✝ : Preorder β x y : Lex (α × β) ⊢ x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 < y.2 ↔ (x.1 < y.1 ∨ x.1 = y.1) ∧ (x.1 = y.1 → x.2 < y.2) TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.lt_iff''
[244, 1]
[248, 8]
tauto
m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : PartialOrder α inst✝ : Preorder β x y : Lex (α × β) this : x.1 < y.1 → ¬x.1 = y.1 ⊢ x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 < y.2 ↔ (x.1 < y.1 ∨ x.1 = y.1) ∧ (x.1 = y.1 → x.2 < y.2)
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : PartialOrder α inst✝ : Preorder β x y : Lex (α × β) this : x.1 < y.1 → ¬x.1 = y.1 ⊢ x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 < y.2 ↔ (x.1 < y.1 ∨ x.1 = y.1) ∧ (x.1 = y.1 → x.2 < y.2) TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.fst_le_of_le
[251, 1]
[255, 26]
rw [Prod.Lex.le_iff'] at h
m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : Preorder β x y : Lex (α × β) h : x ≤ y ⊢ x.1 ≤ y.1
m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : Preorder β x y : Lex (α × β) h : x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 ≤ y.2 ⊢ x.1 ≤ y.1
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : Preorder β x y : Lex (α × β) h : x ≤ y ⊢ x.1 ≤ y.1 TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.fst_le_of_le
[251, 1]
[255, 26]
cases h with | inl h => exact h.le | inr h => exact h.1.le
m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : Preorder β x y : Lex (α × β) h : x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 ≤ y.2 ⊢ x.1 ≤ y.1
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : Preorder β x y : Lex (α × β) h : x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 ≤ y.2 ⊢ x.1 ≤ y.1 TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.fst_le_of_le
[251, 1]
[255, 26]
exact h.le
case inl m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : Preorder β x y : Lex (α × β) h : x.1 < y.1 ⊢ x.1 ≤ y.1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inl m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : Preorder β x y : Lex (α × β) h : x.1 < y.1 ⊢ x.1 ≤ y.1 TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.fst_le_of_le
[251, 1]
[255, 26]
exact h.1.le
case inr m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : Preorder β x y : Lex (α × β) h : x.1 = y.1 ∧ x.2 ≤ y.2 ⊢ x.1 ≤ y.1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inr m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : Preorder β x y : Lex (α × β) h : x.1 = y.1 ∧ x.2 ≤ y.2 ⊢ x.1 ≤ y.1 TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.fst_lt_of_lt_of_le
[258, 1]
[263, 33]
rw [Prod.Lex.lt_iff'] at h
m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : PartialOrder β x y : Lex (α × β) h : x < y h' : y.2 ≤ x.2 ⊢ x.1 < y.1
m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : PartialOrder β x y : Lex (α × β) h : x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 < y.2 h' : y.2 ≤ x.2 ⊢ x.1 < y.1
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : PartialOrder β x y : Lex (α × β) h : x < y h' : y.2 ≤ x.2 ⊢ x.1 < y.1 TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.fst_lt_of_lt_of_le
[258, 1]
[263, 33]
cases h with | inl h => exact h | inr h => cases h.2.not_le h'
m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : PartialOrder β x y : Lex (α × β) h : x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 < y.2 h' : y.2 ≤ x.2 ⊢ x.1 < y.1
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : PartialOrder β x y : Lex (α × β) h : x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 < y.2 h' : y.2 ≤ x.2 ⊢ x.1 < y.1 TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.fst_lt_of_lt_of_le
[258, 1]
[263, 33]
exact h
case inl m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : PartialOrder β x y : Lex (α × β) h' : y.2 ≤ x.2 h : x.1 < y.1 ⊢ x.1 < y.1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inl m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : PartialOrder β x y : Lex (α × β) h' : y.2 ≤ x.2 h : x.1 < y.1 ⊢ x.1 < y.1 TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.fst_lt_of_lt_of_le
[258, 1]
[263, 33]
cases h.2.not_le h'
case inr m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : PartialOrder β x y : Lex (α × β) h' : y.2 ≤ x.2 h : x.1 = y.1 ∧ x.2 < y.2 ⊢ x.1 < y.1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inr m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : PartialOrder β x y : Lex (α × β) h' : y.2 ≤ x.2 h : x.1 = y.1 ∧ x.2 < y.2 ⊢ x.1 < y.1 TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.mk_fst_mono_iff
[275, 1]
[276, 56]
simp [le_iff']
m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : Preorder β x : α y₁ y₂ : β ⊢ (x, y₁) ≤ (x, y₂) ↔ y₁ ≤ y₂
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : Preorder β x : α y₁ y₂ : β ⊢ (x, y₁) ≤ (x, y₂) ↔ y₁ ≤ y₂ TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.mk_fst_mono_lt_iff
[280, 1]
[281, 56]
simp [lt_iff']
m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : Preorder β x : α y₁ y₂ : β ⊢ (x, y₁) < (x, y₂) ↔ y₁ < y₂
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : Preorder β x : α y₁ y₂ : β ⊢ (x, y₁) < (x, y₂) ↔ y₁ < y₂ TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.mk_snd_mono_le_iff
[285, 1]
[286, 57]
simp [le_iff'']
m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : PartialOrder α inst✝ : Preorder β x₁ x₂ : α y : β ⊢ (x₁, y) ≤ (x₂, y) ↔ x₁ ≤ x₂
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : PartialOrder α inst✝ : Preorder β x₁ x₂ : α y : β ⊢ (x₁, y) ≤ (x₂, y) ↔ x₁ ≤ x₂ TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.mk_snd_mono_lt_iff
[290, 1]
[291, 56]
simp [lt_iff']
m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : Preorder β x₁ x₂ : α y : β ⊢ (x₁, y) < (x₂, y) ↔ x₁ < x₂
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝² : Monad m α : Type u_1 β : Type u_2 r₁ : α → α → Prop r₂ : β → β → Prop inst✝¹ : Preorder α inst✝ : Preorder β x₁ x₂ : α y : β ⊢ (x₁, y) < (x₂, y) ↔ x₁ < x₂ TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.mk_false_lt_mk_true_iff
[295, 1]
[296, 96]
simp [lt_iff', le_iff_lt_or_eq]
m : Type u → Type v inst✝¹ : Monad m α : Type u_1 β : Type ?u.49210 r₁ : α → α → Prop r₂ : β → β → Prop inst✝ : PartialOrder α x₁ x₂ : α ⊢ (x₁, false) < (x₂, true) ↔ x₁ ≤ x₂
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝¹ : Monad m α : Type u_1 β : Type ?u.49210 r₁ : α → α → Prop r₂ : β → β → Prop inst✝ : PartialOrder α x₁ x₂ : α ⊢ (x₁, false) < (x₂, true) ↔ x₁ ≤ x₂ TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.mk_true_le_mk_false_iff_lt
[300, 1]
[301, 75]
simp [le_iff']
m : Type u → Type v inst✝¹ : Monad m α : Type u_1 β : Type ?u.50081 r₁ : α → α → Prop r₂ : β → β → Prop inst✝ : PartialOrder α x y : α ⊢ (x, true) ≤ (y, false) ↔ x < y
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝¹ : Monad m α : Type u_1 β : Type ?u.50081 r₁ : α → α → Prop r₂ : β → β → Prop inst✝ : PartialOrder α x y : α ⊢ (x, true) ≤ (y, false) ↔ x < y TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.mk_true_lt_iff_lt
[305, 1]
[306, 68]
simp [lt_iff']
m : Type u → Type v inst✝¹ : Monad m α : Type u_1 β : Type ?u.51649 r₁ : α → α → Prop r₂ : β → β → Prop inst✝ : PartialOrder α x : α y : Lex (α × Bool) ⊢ (x, true) < y ↔ x < y.1
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝¹ : Monad m α : Type u_1 β : Type ?u.51649 r₁ : α → α → Prop r₂ : β → β → Prop inst✝ : PartialOrder α x : α y : Lex (α × Bool) ⊢ (x, true) < y ↔ x < y.1 TACTIC:
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.lt_mk_true_iff
[308, 1]
[310, 26]
simp [lt_iff', le_iff']
m : Type u → Type v inst✝¹ : Monad m α : Type u_1 β : Type ?u.53384 r₁ : α → α → Prop r₂ : β → β → Prop inst✝ : PartialOrder α x : Lex (α × Bool) y : α ⊢ x < (y, true) ↔ x ≤ (y, false)
no goals
Please generate a tactic in lean4 to solve the state. STATE: m : Type u → Type v inst✝¹ : Monad m α : Type u_1 β : Type ?u.53384 r₁ : α → α → Prop r₂ : β → β → Prop inst✝ : PartialOrder α x : Lex (α × Bool) y : α ⊢ x < (y, true) ↔ x ≤ (y, false) TACTIC: