url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.approx_potential_large
[132, 1]
[151, 9]
linarith
c' z' : β„‚ z : Box cz : Complex.abs c' ≀ Complex.abs z' z6 : 6 ≀ Complex.abs z' zm : z' ∈ approx z ⊒ 0 < Complex.abs z'
no goals
Please generate a tactic in lean4 to solve the state. STATE: c' z' : β„‚ z : Box cz : Complex.abs c' ≀ Complex.abs z' z6 : 6 ≀ Complex.abs z' zm : z' ∈ approx z ⊒ 0 < Complex.abs z' TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
set s := superF 2
c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating ⊒ β‹―.potential c' ↑z' ∈ approx (c.potential z n r).1
c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 ⊒ s.potential c' ↑z' ∈ approx (c.potential z n r).1
Please generate a tactic in lean4 to solve the state. STATE: c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating ⊒ β‹―.potential c' ↑z' ∈ approx (c.potential z n r).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
rw [Box.potential]
c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 ⊒ s.potential c' ↑z' ∈ approx (c.potential z n r).1
c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 ⊒ s.potential c' ↑z' ∈ approx (let cs := c.normSq.hi; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan ∨ 16 < zs ∨ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
Please generate a tactic in lean4 to solve the state. STATE: c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 ⊒ s.potential c' ↑z' ∈ approx (c.potential z n r).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
generalize hcs : (normSq c).hi = cs
c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 ⊒ s.potential c' ↑z' ∈ approx (let cs := c.normSq.hi; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan ∨ 16 < zs ∨ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs ⊒ s.potential c' ↑z' ∈ approx (let cs := cs; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan ∨ 16 < zs ∨ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
Please generate a tactic in lean4 to solve the state. STATE: c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 ⊒ s.potential c' ↑z' ∈ approx (let cs := c.normSq.hi; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan ∨ 16 < zs ∨ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
generalize hi : iterate c z (cs.max 9) n = i
c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs ⊒ s.potential c' ↑z' ∈ approx (let cs := cs; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan ∨ 16 < zs ∨ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i ⊒ s.potential c' ↑z' ∈ approx (let cs := cs; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan ∨ 16 < zs ∨ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
Please generate a tactic in lean4 to solve the state. STATE: c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs ⊒ s.potential c' ↑z' ∈ approx (let cs := cs; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan ∨ 16 < zs ∨ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
by_cases csn : cs = nan
c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i ⊒ s.potential c' ↑z' ∈ approx (let cs := cs; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan ∨ 16 < zs ∨ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
case pos c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : cs = nan ⊒ s.potential c' ↑z' ∈ approx (let cs := cs; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan ∨ 16 < zs ∨ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1 case neg c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan ⊒ s.potential c' ↑z' ∈ approx (let cs := cs; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan ∨ 16 < zs ∨ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
Please generate a tactic in lean4 to solve the state. STATE: c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i ⊒ s.potential c' ↑z' ∈ approx (let cs := cs; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan ∨ 16 < zs ∨ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [hi, Interval.hi_eq_nan, Floating.val_lt_val]
case neg c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan ⊒ s.potential c' ↑z' ∈ approx (let cs := cs; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan ∨ 16 < zs ∨ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
case neg c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan ⊒ s.potential c' ↑z' ∈ approx (match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan ∨ 16.val < i.z.normSq.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
Please generate a tactic in lean4 to solve the state. STATE: case neg c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan ⊒ s.potential c' ↑z' ∈ approx (let cs := cs; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan ∨ 16 < zs ∨ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
generalize hie : i.exit = ie
case neg c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan ⊒ s.potential c' ↑z' ∈ approx (match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan ∨ 16.val < i.z.normSq.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
case neg c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan ie : Exit hie : i.exit = ie ⊒ s.potential c' ↑z' ∈ approx (match ie with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan ∨ 16.val < i.z.normSq.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
Please generate a tactic in lean4 to solve the state. STATE: case neg c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan ⊒ s.potential c' ↑z' ∈ approx (match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan ∨ 16.val < i.z.normSq.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
induction ie
case neg c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan ie : Exit hie : i.exit = ie ⊒ s.potential c' ↑z' ∈ approx (match ie with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan ∨ 16.val < i.z.normSq.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
case neg.count c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count ⊒ s.potential c' ↑z' ∈ approx (match Exit.count with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan ∨ 16.val < i.z.normSq.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1 case neg.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large ⊒ s.potential c' ↑z' ∈ approx (match Exit.large with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan ∨ 16.val < i.z.normSq.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1 case neg.nan c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.nan ⊒ s.potential c' ↑z' ∈ approx (match Exit.nan with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan ∨ 16.val < i.z.normSq.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
Please generate a tactic in lean4 to solve the state. STATE: case neg c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan ie : Exit hie : i.exit = ie ⊒ s.potential c' ↑z' ∈ approx (match ie with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan ∨ 16.val < i.z.normSq.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [csn, Floating.nan_max, iterate_nan, Interval.approx_nan, mem_univ]
case pos c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : cs = nan ⊒ s.potential c' ↑z' ∈ approx (let cs := cs; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan ∨ 16 < zs ∨ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : cs = nan ⊒ s.potential c' ↑z' ∈ approx (let cs := cs; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan ∨ 16 < zs ∨ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
generalize hzs : (normSq i.z) = zs
case neg.count c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count ⊒ s.potential c' ↑z' ∈ approx (match Exit.count with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan ∨ 16.val < i.z.normSq.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
case neg.count c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs ⊒ s.potential c' ↑z' ∈ approx (match Exit.count with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if zs = nan ∨ 16.val < zs.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
Please generate a tactic in lean4 to solve the state. STATE: case neg.count c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count ⊒ s.potential c' ↑z' ∈ approx (match Exit.count with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan ∨ 16.val < i.z.normSq.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
by_cases bad : zs = nan ∨ (16 : Floating).val < zs.hi.val ∨ (16 : Floating).val < cs.val
case neg.count c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs ⊒ s.potential c' ↑z' ∈ approx (match Exit.count with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if zs = nan ∨ 16.val < zs.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
case pos c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs bad : zs = nan ∨ 16.val < zs.hi.val ∨ 16.val < cs.val ⊒ s.potential c' ↑z' ∈ approx (match Exit.count with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if zs = nan ∨ 16.val < zs.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1 case neg c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs bad : Β¬(zs = nan ∨ 16.val < zs.hi.val ∨ 16.val < cs.val) ⊒ s.potential c' ↑z' ∈ approx (match Exit.count with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if zs = nan ∨ 16.val < zs.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
Please generate a tactic in lean4 to solve the state. STATE: case neg.count c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs ⊒ s.potential c' ↑z' ∈ approx (match Exit.count with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if zs = nan ∨ 16.val < zs.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [Floating.val_lt_val, bad, ↓reduceIte, Interval.approx_nan, mem_univ]
case pos c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs bad : zs = nan ∨ 16.val < zs.hi.val ∨ 16.val < cs.val ⊒ s.potential c' ↑z' ∈ approx (match Exit.count with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if zs = nan ∨ 16.val < zs.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs bad : zs = nan ∨ 16.val < zs.hi.val ∨ 16.val < cs.val ⊒ s.potential c' ↑z' ∈ approx (match Exit.count with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if zs = nan ∨ 16.val < zs.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [bad, ↓reduceIte]
case neg c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs bad : Β¬(zs = nan ∨ 16.val < zs.hi.val ∨ 16.val < cs.val) ⊒ s.potential c' ↑z' ∈ approx (match Exit.count with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if zs = nan ∨ 16.val < zs.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
case neg c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs bad : Β¬(zs = nan ∨ 16.val < zs.hi.val ∨ 16.val < cs.val) ⊒ s.potential c' ↑z' ∈ approx (potential_small.iter_sqrt i.n)
Please generate a tactic in lean4 to solve the state. STATE: case neg c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs bad : Β¬(zs = nan ∨ 16.val < zs.hi.val ∨ 16.val < cs.val) ⊒ s.potential c' ↑z' ∈ approx (match Exit.count with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if zs = nan ∨ 16.val < zs.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [not_or, not_lt, ←hzs] at bad
case neg c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs bad : Β¬(zs = nan ∨ 16.val < zs.hi.val ∨ 16.val < cs.val) ⊒ s.potential c' ↑z' ∈ approx (potential_small.iter_sqrt i.n)
case neg c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs bad : Β¬i.z.normSq = nan ∧ i.z.normSq.hi.val ≀ 16.val ∧ cs.val ≀ 16.val ⊒ s.potential c' ↑z' ∈ approx (potential_small.iter_sqrt i.n)
Please generate a tactic in lean4 to solve the state. STATE: case neg c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs bad : Β¬(zs = nan ∨ 16.val < zs.hi.val ∨ 16.val < cs.val) ⊒ s.potential c' ↑z' ∈ approx (potential_small.iter_sqrt i.n) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
rcases bad with ⟨zsn, z4, c4⟩
case neg c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs bad : Β¬i.z.normSq = nan ∧ i.z.normSq.hi.val ≀ 16.val ∧ cs.val ≀ 16.val ⊒ s.potential c' ↑z' ∈ approx (potential_small.iter_sqrt i.n)
case neg.intro.intro c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16.val c4 : cs.val ≀ 16.val ⊒ s.potential c' ↑z' ∈ approx (potential_small.iter_sqrt i.n)
Please generate a tactic in lean4 to solve the state. STATE: case neg c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs bad : Β¬i.z.normSq = nan ∧ i.z.normSq.hi.val ≀ 16.val ∧ cs.val ≀ 16.val ⊒ s.potential c' ↑z' ∈ approx (potential_small.iter_sqrt i.n) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
rw [Floating.val_ofNat] at c4 z4
case neg.intro.intro c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16.val c4 : cs.val ≀ 16.val ⊒ s.potential c' ↑z' ∈ approx (potential_small.iter_sqrt i.n)
case neg.intro.intro c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ ↑16 c4 : cs.val ≀ ↑16 ⊒ s.potential c' ↑z' ∈ approx (potential_small.iter_sqrt i.n)
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro.intro c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16.val c4 : cs.val ≀ 16.val ⊒ s.potential c' ↑z' ∈ approx (potential_small.iter_sqrt i.n) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [← hcs, Nat.cast_ofNat, Interval.hi_eq_nan] at c4 z4 csn zsn
case neg.intro.intro c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ ↑16 c4 : cs.val ≀ ↑16 ⊒ s.potential c' ↑z' ∈ approx (potential_small.iter_sqrt i.n)
case neg.intro.intro c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan ⊒ s.potential c' ↑z' ∈ approx (potential_small.iter_sqrt i.n)
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro.intro c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ ↑16 c4 : cs.val ≀ ↑16 ⊒ s.potential c' ↑z' ∈ approx (potential_small.iter_sqrt i.n) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
apply Interval.mem_approx_iter_sqrt' s.potential_nonneg
case neg.intro.intro c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan ⊒ s.potential c' ↑z' ∈ approx (potential_small.iter_sqrt i.n)
case neg.intro.intro c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan ⊒ s.potential c' ↑z' ^ 2 ^ i.n ∈ approx potential_small
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro.intro c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan ⊒ s.potential c' ↑z' ∈ approx (potential_small.iter_sqrt i.n) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [←s.potential_eqn_iter, f_f'_iter]
case neg.intro.intro c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan ⊒ s.potential c' ↑z' ^ 2 ^ i.n ∈ approx potential_small
case neg.intro.intro c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan ⊒ s.potential c' ↑((f' 2 c')^[i.n] z') ∈ approx potential_small
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro.intro c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan ⊒ s.potential c' ↑z' ^ 2 ^ i.n ∈ approx potential_small TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
generalize hw' : (f' 2 c')^[i.n] z' = w'
case neg.intro.intro c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan ⊒ s.potential c' ↑((f' 2 c')^[i.n] z') ∈ approx potential_small
case neg.intro.intro c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan w' : β„‚ hw' : (f' 2 c')^[i.n] z' = w' ⊒ s.potential c' ↑w' ∈ approx potential_small
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro.intro c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan ⊒ s.potential c' ↑((f' 2 c')^[i.n] z') ∈ approx potential_small TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
have le4 : Real.sqrt 16 ≀ 4 := by rw [Real.sqrt_le_iff]; norm_num
case neg.intro.intro c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan w' : β„‚ hw' : (f' 2 c')^[i.n] z' = w' ⊒ s.potential c' ↑w' ∈ approx potential_small
case neg.intro.intro c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan w' : β„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : √16 ≀ 4 ⊒ s.potential c' ↑w' ∈ approx potential_small
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro.intro c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan w' : β„‚ hw' : (f' 2 c')^[i.n] z' = w' ⊒ s.potential c' ↑w' ∈ approx potential_small TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
apply approx_potential_small
case neg.intro.intro c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan w' : β„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : √16 ≀ 4 ⊒ s.potential c' ↑w' ∈ approx potential_small
case neg.intro.intro.c4 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan w' : β„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : √16 ≀ 4 ⊒ Complex.abs c' ≀ 4 case neg.intro.intro.z4 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan w' : β„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : √16 ≀ 4 ⊒ Complex.abs w' ≀ 4
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro.intro c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan w' : β„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : √16 ≀ 4 ⊒ s.potential c' ↑w' ∈ approx potential_small TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
rw [Real.sqrt_le_iff]
c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan w' : β„‚ hw' : (f' 2 c')^[i.n] z' = w' ⊒ √16 ≀ 4
c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan w' : β„‚ hw' : (f' 2 c')^[i.n] z' = w' ⊒ 0 ≀ 4 ∧ 16 ≀ 4 ^ 2
Please generate a tactic in lean4 to solve the state. STATE: c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan w' : β„‚ hw' : (f' 2 c')^[i.n] z' = w' ⊒ √16 ≀ 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
norm_num
c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan w' : β„‚ hw' : (f' 2 c')^[i.n] z' = w' ⊒ 0 ≀ 4 ∧ 16 ≀ 4 ^ 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan w' : β„‚ hw' : (f' 2 c')^[i.n] z' = w' ⊒ 0 ≀ 4 ∧ 16 ≀ 4 ^ 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
exact le_trans (Box.abs_le_sqrt_normSq cm csn) (le_trans (Real.sqrt_le_sqrt c4) le4)
case neg.intro.intro.c4 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan w' : β„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : √16 ≀ 4 ⊒ Complex.abs c' ≀ 4
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro.intro.c4 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan w' : β„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : √16 ≀ 4 ⊒ Complex.abs c' ≀ 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
refine le_trans (Box.abs_le_sqrt_normSq ?_ zsn) (le_trans (Real.sqrt_le_sqrt z4) le4)
case neg.intro.intro.z4 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan w' : β„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : √16 ≀ 4 ⊒ Complex.abs w' ≀ 4
case neg.intro.intro.z4 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan w' : β„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : √16 ≀ 4 ⊒ w' ∈ approx i.z
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro.intro.z4 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan w' : β„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : √16 ≀ 4 ⊒ Complex.abs w' ≀ 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
rw [←hw', ←hi]
case neg.intro.intro.z4 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan w' : β„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : √16 ≀ 4 ⊒ w' ∈ approx i.z
case neg.intro.intro.z4 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan w' : β„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : √16 ≀ 4 ⊒ (f' 2 c')^[(iterate c z (cs.max 9) n).n] z' ∈ approx (iterate c z (cs.max 9) n).z
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro.intro.z4 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan w' : β„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : √16 ≀ 4 ⊒ w' ∈ approx i.z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
exact mem_approx_iterate cm zm _
case neg.intro.intro.z4 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan w' : β„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : √16 ≀ 4 ⊒ (f' 2 c')^[(iterate c z (cs.max 9) n).n] z' ∈ approx (iterate c z (cs.max 9) n).z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro.intro.z4 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : Β¬i.z.normSq = nan z4 : i.z.normSq.hi.val ≀ 16 c4 : c.normSq.hi.val ≀ 16 csn : Β¬c.normSq = nan w' : β„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : √16 ≀ 4 ⊒ (f' 2 c')^[(iterate c z (cs.max 9) n).n] z' ∈ approx (iterate c z (cs.max 9) n).z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
generalize hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j
case neg.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large ⊒ s.potential c' ↑z' ∈ approx (match Exit.large with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan ∨ 16.val < i.z.normSq.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
case neg.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j ⊒ s.potential c' ↑z' ∈ approx (match Exit.large with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan ∨ 16.val < i.z.normSq.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
Please generate a tactic in lean4 to solve the state. STATE: case neg.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large ⊒ s.potential c' ↑z' ∈ approx (match Exit.large with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan ∨ 16.val < i.z.normSq.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [hj]
case neg.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j ⊒ s.potential c' ↑z' ∈ approx (match Exit.large with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan ∨ 16.val < i.z.normSq.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
case neg.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j ⊒ s.potential c' ↑z' ∈ approx (match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1
Please generate a tactic in lean4 to solve the state. STATE: case neg.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j ⊒ s.potential c' ↑z' ∈ approx (match Exit.large with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan ∨ 16.val < i.z.normSq.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
generalize hje : j.exit = je
case neg.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j ⊒ s.potential c' ↑z' ∈ approx (match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1
case neg.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j je : Exit hje : j.exit = je ⊒ s.potential c' ↑z' ∈ approx (match je with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1
Please generate a tactic in lean4 to solve the state. STATE: case neg.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j ⊒ s.potential c' ↑z' ∈ approx (match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
induction je
case neg.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j je : Exit hje : j.exit = je ⊒ s.potential c' ↑z' ∈ approx (match je with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1
case neg.large.count c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.count ⊒ s.potential c' ↑z' ∈ approx (match Exit.count with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1 case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.large ⊒ s.potential c' ↑z' ∈ approx (match Exit.large with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1 case neg.large.nan c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.nan ⊒ s.potential c' ↑z' ∈ approx (match Exit.nan with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1
Please generate a tactic in lean4 to solve the state. STATE: case neg.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j je : Exit hje : j.exit = je ⊒ s.potential c' ↑z' ∈ approx (match je with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [Interval.approx_nan, mem_univ]
case neg.large.count c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.count ⊒ s.potential c' ↑z' ∈ approx (match Exit.count with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.count c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.count ⊒ s.potential c' ↑z' ∈ approx (match Exit.count with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only
case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.large ⊒ s.potential c' ↑z' ∈ approx (match Exit.large with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1
case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.large ⊒ s.potential c' ↑z' ∈ approx (j.z.potential_large.iter_sqrt (i.n + j.n))
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.large ⊒ s.potential c' ↑z' ∈ approx (match Exit.large with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
generalize hn : i.n + j.n = n
case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.large ⊒ s.potential c' ↑z' ∈ approx (j.z.potential_large.iter_sqrt (i.n + j.n))
case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.large n : β„• hn : i.n + j.n = n ⊒ s.potential c' ↑z' ∈ approx (j.z.potential_large.iter_sqrt n)
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.large ⊒ s.potential c' ↑z' ∈ approx (j.z.potential_large.iter_sqrt (i.n + j.n)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
apply Interval.mem_approx_iter_sqrt' s.potential_nonneg
case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.large n : β„• hn : i.n + j.n = n ⊒ s.potential c' ↑z' ∈ approx (j.z.potential_large.iter_sqrt n)
case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.large n : β„• hn : i.n + j.n = n ⊒ s.potential c' ↑z' ^ 2 ^ n ∈ approx j.z.potential_large
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.large n : β„• hn : i.n + j.n = n ⊒ s.potential c' ↑z' ∈ approx (j.z.potential_large.iter_sqrt n) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [←s.potential_eqn_iter, f_f'_iter, ←hj] at hje ⊒
case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.large n : β„• hn : i.n + j.n = n ⊒ s.potential c' ↑z' ^ 2 ^ n ∈ approx j.z.potential_large
case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large ⊒ s.potential c' ↑((f' 2 c')^[n] z') ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.large n : β„• hn : i.n + j.n = n ⊒ s.potential c' ↑z' ^ 2 ^ n ∈ approx j.z.potential_large TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
generalize hw' : (f' 2 c')^[n] z' = w'
case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large ⊒ s.potential c' ↑((f' 2 c')^[n] z') ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' ⊒ s.potential c' ↑w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large ⊒ s.potential c' ↑((f' 2 c')^[n] z') ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
have izm : (f' 2 c')^[i.n] z' ∈ approx i.z := by rw [←hi]; exact mem_approx_iterate cm zm _
case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' ⊒ s.potential c' ↑w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z ⊒ s.potential c' ↑w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' ⊒ s.potential c' ↑w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
have jl := iterate_large cm izm hje
case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z ⊒ s.potential c' ↑w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : ((r.mul r true).max (cs.max 36)).val < Complex.abs ((f' 2 c')^[(iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n] ((f' 2 c')^[i.n] z')) ^ 2 ⊒ s.potential c' ↑w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z ⊒ s.potential c' ↑w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
have jrn := ne_nan_of_iterate (hje.trans_ne (by decide))
case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : ((r.mul r true).max (cs.max 36)).val < Complex.abs ((f' 2 c')^[(iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n] ((f' 2 c')^[i.n] z')) ^ 2 ⊒ s.potential c' ↑w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : ((r.mul r true).max (cs.max 36)).val < Complex.abs ((f' 2 c')^[(iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n] ((f' 2 c')^[i.n] z')) ^ 2 jrn : (r.mul r true).max (cs.max 36) β‰  nan ⊒ s.potential c' ↑w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : ((r.mul r true).max (cs.max 36)).val < Complex.abs ((f' 2 c')^[(iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n] ((f' 2 c')^[i.n] z')) ^ 2 ⊒ s.potential c' ↑w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [hj, ← Function.iterate_add_apply, add_comm _ i.n, hn, hw'] at jl
case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : ((r.mul r true).max (cs.max 36)).val < Complex.abs ((f' 2 c')^[(iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n] ((f' 2 c')^[i.n] z')) ^ 2 jrn : (r.mul r true).max (cs.max 36) β‰  nan ⊒ s.potential c' ↑w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jrn : (r.mul r true).max (cs.max 36) β‰  nan jl : ((r.mul r true).max (cs.max 36)).val < Complex.abs w' ^ 2 ⊒ s.potential c' ↑w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : ((r.mul r true).max (cs.max 36)).val < Complex.abs ((f' 2 c')^[(iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n] ((f' 2 c')^[i.n] z')) ^ 2 jrn : (r.mul r true).max (cs.max 36) β‰  nan ⊒ s.potential c' ↑w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [ne_eq, Floating.max_eq_nan, not_or] at jrn
case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jrn : (r.mul r true).max (cs.max 36) β‰  nan jl : ((r.mul r true).max (cs.max 36)).val < Complex.abs w' ^ 2 ⊒ s.potential c' ↑w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : ((r.mul r true).max (cs.max 36)).val < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ s.potential c' ↑w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jrn : (r.mul r true).max (cs.max 36) β‰  nan jl : ((r.mul r true).max (cs.max 36)).val < Complex.abs w' ^ 2 ⊒ s.potential c' ↑w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
rw [Floating.val_max jrn.1 (Floating.max_ne_nan.mpr jrn.2), Floating.val_max jrn.2.1 jrn.2.2, max_lt_iff, max_lt_iff, Floating.val_ofNat, Nat.cast_eq_ofNat] at jl
case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : ((r.mul r true).max (cs.max 36)).val < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ s.potential c' ↑w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ s.potential c' ↑w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : ((r.mul r true).max (cs.max 36)).val < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ s.potential c' ↑w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
apply approx_potential_large
case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ s.potential c' ↑w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
case neg.large.large.cz c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ Complex.abs c' ≀ Complex.abs w' case neg.large.large.z6 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ 6 ≀ Complex.abs w' case neg.large.large.zm c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.large c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ s.potential c' ↑w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
rw [←hi]
c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' ⊒ (f' 2 c')^[i.n] z' ∈ approx i.z
c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' ⊒ (f' 2 c')^[(iterate c z (cs.max 9) n✝).n] z' ∈ approx (iterate c z (cs.max 9) n✝).z
Please generate a tactic in lean4 to solve the state. STATE: c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' ⊒ (f' 2 c')^[i.n] z' ∈ approx i.z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
exact mem_approx_iterate cm zm _
c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' ⊒ (f' 2 c')^[(iterate c z (cs.max 9) n✝).n] z' ∈ approx (iterate c z (cs.max 9) n✝).z
no goals
Please generate a tactic in lean4 to solve the state. STATE: c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' ⊒ (f' 2 c')^[(iterate c z (cs.max 9) n✝).n] z' ∈ approx (iterate c z (cs.max 9) n✝).z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
decide
c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : ((r.mul r true).max (cs.max 36)).val < Complex.abs ((f' 2 c')^[(iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n] ((f' 2 c')^[i.n] z')) ^ 2 ⊒ Exit.large β‰  Exit.nan
no goals
Please generate a tactic in lean4 to solve the state. STATE: c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : ((r.mul r true).max (cs.max 36)).val < Complex.abs ((f' 2 c')^[(iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n] ((f' 2 c')^[i.n] z')) ^ 2 ⊒ Exit.large β‰  Exit.nan TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
refine le_trans ?_ (le_trans (Real.sqrt_le_sqrt jl.2.1.le) ?_)
case neg.large.large.cz c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ Complex.abs c' ≀ Complex.abs w'
case neg.large.large.cz.refine_1 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ Complex.abs c' ≀ cs.val.sqrt case neg.large.large.cz.refine_2 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ (Complex.abs w' ^ 2).sqrt ≀ Complex.abs w'
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.large.cz c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ Complex.abs c' ≀ Complex.abs w' TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [← hcs, Interval.hi_eq_nan] at csn ⊒
case neg.large.large.cz.refine_1 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ Complex.abs c' ≀ cs.val.sqrt
case neg.large.large.cz.refine_1 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan csn : Β¬c.normSq = nan ⊒ Complex.abs c' ≀ c.normSq.hi.val.sqrt
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.large.cz.refine_1 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ Complex.abs c' ≀ cs.val.sqrt TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
exact abs_le_sqrt_normSq cm csn
case neg.large.large.cz.refine_1 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan csn : Β¬c.normSq = nan ⊒ Complex.abs c' ≀ c.normSq.hi.val.sqrt
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.large.cz.refine_1 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan csn : Β¬c.normSq = nan ⊒ Complex.abs c' ≀ c.normSq.hi.val.sqrt TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [apply_nonneg, Real.sqrt_sq, le_refl]
case neg.large.large.cz.refine_2 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ (Complex.abs w' ^ 2).sqrt ≀ Complex.abs w'
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.large.cz.refine_2 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ (Complex.abs w' ^ 2).sqrt ≀ Complex.abs w' TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
refine le_trans ?_ (le_trans (Real.sqrt_le_sqrt jl.2.2.le) ?_)
case neg.large.large.z6 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ 6 ≀ Complex.abs w'
case neg.large.large.z6.refine_1 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ 6 ≀ √36 case neg.large.large.z6.refine_2 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ (Complex.abs w' ^ 2).sqrt ≀ Complex.abs w'
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.large.z6 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ 6 ≀ Complex.abs w' TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
have e : (36 : ℝ) = 6 ^ 2 := by norm_num
case neg.large.large.z6.refine_1 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ 6 ≀ √36
case neg.large.large.z6.refine_1 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan e : 36 = 6 ^ 2 ⊒ 6 ≀ √36
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.large.z6.refine_1 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ 6 ≀ √36 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
rw [e, Real.sqrt_sq (by norm_num)]
case neg.large.large.z6.refine_1 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan e : 36 = 6 ^ 2 ⊒ 6 ≀ √36
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.large.z6.refine_1 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan e : 36 = 6 ^ 2 ⊒ 6 ≀ √36 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
norm_num
c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ 36 = 6 ^ 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ 36 = 6 ^ 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
norm_num
c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan e : 36 = 6 ^ 2 ⊒ 0 ≀ 6
no goals
Please generate a tactic in lean4 to solve the state. STATE: c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan e : 36 = 6 ^ 2 ⊒ 0 ≀ 6 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [apply_nonneg, Real.sqrt_sq, le_refl]
case neg.large.large.z6.refine_2 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ (Complex.abs w' ^ 2).sqrt ≀ Complex.abs w'
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.large.z6.refine_2 c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ (Complex.abs w' ^ 2).sqrt ≀ Complex.abs w' TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
rw [←hw', ←hn, add_comm _ j.n, Function.iterate_add_apply, ←hj]
case neg.large.large.zm c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z
case neg.large.large.zm c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ (f' 2 c')^[(iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n] ((f' 2 c')^[i.n] z') ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.large.zm c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ w' ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
exact mem_approx_iterate cm izm _
case neg.large.large.zm c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ (f' 2 c')^[(iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n] ((f' 2 c')^[i.n] z') ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.large.zm c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n✝ : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n✝ = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : β„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : β„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' ∈ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 ∧ cs.val < Complex.abs w' ^ 2 ∧ 36 < Complex.abs w' ^ 2 jrn : Β¬r.mul r true = nan ∧ Β¬cs = nan ∧ Β¬36 = nan ⊒ (f' 2 c')^[(iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n] ((f' 2 c')^[i.n] z') ∈ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [Interval.approx_nan, mem_univ]
case neg.large.nan c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.nan ⊒ s.potential c' ↑z' ∈ approx (match Exit.nan with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.large.nan c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.nan ⊒ s.potential c' ↑z' ∈ approx (match Exit.nan with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [Interval.approx_nan, mem_univ]
case neg.nan c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.nan ⊒ s.potential c' ↑z' ∈ approx (match Exit.nan with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan ∨ 16.val < i.z.normSq.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.nan c' z' : β„‚ c z : Box cm : c' ∈ approx c zm : z' ∈ approx z n : β„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : Β¬cs = nan hie : i.exit = Exit.nan ⊒ s.potential c' ↑z' ∈ approx (match Exit.nan with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan ∨ 16.val < i.z.normSq.hi.val ∨ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential'
[214, 1]
[217, 83]
simp only [_root_.potential, RiemannSphere.fill_coe, mem_approx_potential cm cm]
c' : β„‚ c : Box cm : c' ∈ approx c n : β„• r : Floating ⊒ _root_.potential 2 ↑c' ∈ approx (c.potential c n r).1
no goals
Please generate a tactic in lean4 to solve the state. STATE: c' : β„‚ c : Box cm : c' ∈ approx c n : β„• r : Floating ⊒ _root_.potential 2 ↑c' ∈ approx (c.potential c n r).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
have fh : HolomorphicOn I I f (closedBall z r) := fun _ m ↦ (fa _ m).holomorphicAt I I
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– ⊒ NontrivialHolomorphicAt f z
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) ⊒ NontrivialHolomorphicAt f z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– ⊒ NontrivialHolomorphicAt f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
have zs : z ∈ closedBall z r := mem_closedBall_self rp.le
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) ⊒ NontrivialHolomorphicAt f z
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ⊒ NontrivialHolomorphicAt f z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) ⊒ NontrivialHolomorphicAt f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
use fh _ zs
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ⊒ NontrivialHolomorphicAt f z
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ⊒ βˆƒαΆ  (w : β„‚) in 𝓝 z, f w β‰  f z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ⊒ NontrivialHolomorphicAt f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
contrapose ef
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ⊒ βˆƒαΆ  (w : β„‚) in 𝓝 z, f w β‰  f z
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : Β¬βˆƒαΆ  (w : β„‚) in 𝓝 z, f w β‰  f z ⊒ Β¬βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€–
Please generate a tactic in lean4 to solve the state. STATE: case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ⊒ βˆƒαΆ  (w : β„‚) in 𝓝 z, f w β‰  f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
simp only [Filter.not_frequently, not_not] at ef
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : Β¬βˆƒαΆ  (w : β„‚) in 𝓝 z, f w β‰  f z ⊒ Β¬βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€–
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z ⊒ Β¬βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€–
Please generate a tactic in lean4 to solve the state. STATE: case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : Β¬βˆƒαΆ  (w : β„‚) in 𝓝 z, f w β‰  f z ⊒ Β¬βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
simp only [not_forall, not_le]
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z ⊒ Β¬βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€–
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z ⊒ βˆƒ x, βˆƒ (_ : x ∈ sphere z r), β€–f x - f zβ€– < e
Please generate a tactic in lean4 to solve the state. STATE: case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z ⊒ Β¬βˆ€ w ∈ sphere z r, e ≀ β€–f w - f zβ€– TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
have zrs : z + r ∈ sphere z r := by simp only [mem_sphere, Complex.dist_eq, add_sub_cancel_left, Complex.abs_ofReal, abs_of_pos rp]
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z ⊒ βˆƒ x, βˆƒ (_ : x ∈ sphere z r), β€–f x - f zβ€– < e
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z zrs : z + ↑r ∈ sphere z r ⊒ βˆƒ x, βˆƒ (_ : x ∈ sphere z r), β€–f x - f zβ€– < e
Please generate a tactic in lean4 to solve the state. STATE: case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z ⊒ βˆƒ x, βˆƒ (_ : x ∈ sphere z r), β€–f x - f zβ€– < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
use z + r, zrs
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z zrs : z + ↑r ∈ sphere z r ⊒ βˆƒ x, βˆƒ (_ : x ∈ sphere z r), β€–f x - f zβ€– < e
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z zrs : z + ↑r ∈ sphere z r ⊒ β€–f (z + ↑r) - f zβ€– < e
Please generate a tactic in lean4 to solve the state. STATE: case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z zrs : z + ↑r ∈ sphere z r ⊒ βˆƒ x, βˆƒ (_ : x ∈ sphere z r), β€–f x - f zβ€– < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
simp only [fh.const_of_locally_const' zs (convex_closedBall z r).isPreconnected ef (z + r) (Metric.sphere_subset_closedBall zrs), sub_self, norm_zero, ep]
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z zrs : z + ↑r ∈ sphere z r ⊒ β€–f (z + ↑r) - f zβ€– < e
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z zrs : z + ↑r ∈ sphere z r ⊒ β€–f (z + ↑r) - f zβ€– < e TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
simp only [mem_sphere, Complex.dist_eq, add_sub_cancel_left, Complex.abs_ofReal, abs_of_pos rp]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z ⊒ z + ↑r ∈ sphere z r
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ z : β„‚ e r : ℝ fa : AnalyticOn β„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (closedBall z r) zs : z ∈ closedBall z r ef : βˆ€αΆ  (x : β„‚) in 𝓝 z, f x = f z ⊒ z + ↑r ∈ sphere z r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
have fn : βˆ€ d, d ∈ u β†’ βˆƒαΆ  w in 𝓝 z, f d w β‰  f d z := by refine fun d m ↦ (nontrivial_local_of_global (fa.along_snd.mono ?_) rp ep (ef d m)).nonconst simp only [← closedBall_prod_same, mem_prod_eq, setOf_mem_eq, iff_true_iff.mpr m, true_and_iff, subset_refl]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– ⊒ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r ∈ 𝓝 (c, f c z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z ⊒ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r ∈ 𝓝 (c, f c z)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– ⊒ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r ∈ 𝓝 (c, f c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
have op : βˆ€ d, d ∈ u β†’ ball (f d z) (e / 2) βŠ† f d '' closedBall z r := by intro d du; refine DiffContOnCl.ball_subset_image_closedBall ?_ rp (ef d du) (fn d du) have e : f d = uncurry f ∘ fun w ↦ (d, w) := rfl rw [e]; apply DifferentiableOn.diffContOnCl; apply AnalyticOn.differentiableOn refine fa.comp (analyticOn_const.prod (analyticOn_id _)) ?_ intro w wr; simp only [closure_ball _ rp.ne'] at wr simp only [← closedBall_prod_same, mem_prod_eq, du, wr, true_and_iff, du]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z ⊒ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r ∈ 𝓝 (c, f c z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r ⊒ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r ∈ 𝓝 (c, f c z)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z ⊒ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r ∈ 𝓝 (c, f c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
rcases Metric.continuousAt_iff.mp (fa (c, z) (mk_mem_prod (mem_of_mem_nhds un) (mem_closedBall_self rp.le))).continuousAt (e / 4) (by linarith) with ⟨s, sp, sh⟩
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r ⊒ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r ∈ 𝓝 (c, f c z)
case intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r ∈ 𝓝 (c, f c z)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r ⊒ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r ∈ 𝓝 (c, f c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
rw [mem_nhds_prod_iff]
case intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r ∈ 𝓝 (c, f c z)
case intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ βˆƒ u_1 ∈ 𝓝 c, βˆƒ v ∈ 𝓝 (f c z), u_1 Γ—Λ’ v βŠ† (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r ∈ 𝓝 (c, f c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
refine ⟨u ∩ ball c s, Filter.inter_mem un (Metric.ball_mem_nhds c (by linarith)), ?_⟩
case intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ βˆƒ u_1 ∈ 𝓝 c, βˆƒ v ∈ 𝓝 (f c z), u_1 Γ—Λ’ v βŠ† (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r
case intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ βˆƒ v ∈ 𝓝 (f c z), (u ∩ ball c s) Γ—Λ’ v βŠ† (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ βˆƒ u_1 ∈ 𝓝 c, βˆƒ v ∈ 𝓝 (f c z), u_1 Γ—Λ’ v βŠ† (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
use ball (f c z) (e / 4), Metric.ball_mem_nhds _ (by linarith)
case intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ βˆƒ v ∈ 𝓝 (f c z), (u ∩ ball c s) Γ—Λ’ v βŠ† (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r
case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ (u ∩ ball c s) Γ—Λ’ ball (f c z) (e / 4) βŠ† (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ βˆƒ v ∈ 𝓝 (f c z), (u ∩ ball c s) Γ—Λ’ v βŠ† (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
intro ⟨d, w⟩ m
case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ (u ∩ ball c s) Γ—Λ’ ball (f c z) (e / 4) βŠ† (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r
case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d, w) ∈ (u ∩ ball c s) Γ—Λ’ ball (f c z) (e / 4) ⊒ (d, w) ∈ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ (u ∩ ball c s) Γ—Λ’ ball (f c z) (e / 4) βŠ† (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
simp only [mem_inter_iff, mem_prod_eq, mem_image, @mem_ball _ _ c, lt_min_iff] at m op ⊒
case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d, w) ∈ (u ∩ ball c s) Γ—Λ’ ball (f c z) (e / 4) ⊒ (d, w) ∈ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r
case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w)
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d, w) ∈ (u ∩ ball c s) Γ—Λ’ ball (f c z) (e / 4) ⊒ (d, w) ∈ (fun p => (p.1, f p.1 p.2)) '' u Γ—Λ’ closedBall z r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
have wm : w ∈ ball (f d z) (e / 2) := by simp only [mem_ball] at m ⊒ specialize @sh ⟨d, z⟩; simp only [Prod.dist_eq, dist_self, Function.uncurry] at sh specialize sh (max_lt m.1.2 sp); rw [dist_comm] at sh calc dist w (f d z) _ ≀ dist w (f c z) + dist (f c z) (f d z) := by bound _ < e / 4 + dist (f c z) (f d z) := by linarith [m.2] _ ≀ e / 4 + e / 4 := by linarith [sh] _ = e / 2 := by ring
case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w)
case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w)
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
specialize op d m.1.1 wm
case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w)
case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) op : w ∈ f d '' closedBall z r ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w)
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
rcases (mem_image _ _ _).mp op with ⟨y, yr, yw⟩
case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) op : w ∈ f d '' closedBall z r ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w)
case right.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) op : w ∈ f d '' closedBall z r y : β„‚ yr : y ∈ closedBall z r yw : f d y = w ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w)
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) op : w ∈ f d '' closedBall z r ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
use⟨d, y⟩
case right.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) op : w ∈ f d '' closedBall z r y : β„‚ yr : y ∈ closedBall z r yw : f d y = w ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w)
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) op : w ∈ f d '' closedBall z r y : β„‚ yr : y ∈ closedBall z r yw : f d y = w ⊒ ((d, y).1 ∈ u ∧ (d, y).2 ∈ closedBall z r) ∧ ((d, y).1, f (d, y).1 (d, y).2) = (d, w)
Please generate a tactic in lean4 to solve the state. STATE: case right.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) op : w ∈ f d '' closedBall z r y : β„‚ yr : y ∈ closedBall z r yw : f d y = w ⊒ βˆƒ x, (x.1 ∈ u ∧ x.2 ∈ closedBall z r) ∧ (x.1, f x.1 x.2) = (d, w) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
simp only [mem_prod_eq, Prod.ext_iff, yw, and_true_iff, eq_self_iff_true, true_and_iff, yr, m.1.1]
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) op : w ∈ f d '' closedBall z r y : β„‚ yr : y ∈ closedBall z r yw : f d y = w ⊒ ((d, y).1 ∈ u ∧ (d, y).2 ∈ closedBall z r) ∧ ((d, y).1, f (d, y).1 (d, y).2) = (d, w)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) wm : w ∈ ball (f d z) (e / 2) op : w ∈ f d '' closedBall z r y : β„‚ yr : y ∈ closedBall z r yw : f d y = w ⊒ ((d, y).1 ∈ u ∧ (d, y).2 ∈ closedBall z r) ∧ ((d, y).1, f (d, y).1 (d, y).2) = (d, w) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
refine fun d m ↦ (nontrivial_local_of_global (fa.along_snd.mono ?_) rp ep (ef d m)).nonconst
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– ⊒ βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– d : β„‚ m : d ∈ u ⊒ closedBall z r βŠ† {y | (d, y) ∈ u Γ—Λ’ closedBall z r}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– ⊒ βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
simp only [← closedBall_prod_same, mem_prod_eq, setOf_mem_eq, iff_true_iff.mpr m, true_and_iff, subset_refl]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– d : β„‚ m : d ∈ u ⊒ closedBall z r βŠ† {y | (d, y) ∈ u Γ—Λ’ closedBall z r}
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– d : β„‚ m : d ∈ u ⊒ closedBall z r βŠ† {y | (d, y) ∈ u Γ—Λ’ closedBall z r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
intro d du
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z ⊒ βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u ⊒ ball (f d z) (e / 2) βŠ† f d '' closedBall z r
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z ⊒ βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
refine DiffContOnCl.ball_subset_image_closedBall ?_ rp (ef d du) (fn d du)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u ⊒ ball (f d z) (e / 2) βŠ† f d '' closedBall z r
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u ⊒ DiffContOnCl β„‚ (f d) (ball z r)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u ⊒ ball (f d z) (e / 2) βŠ† f d '' closedBall z r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
have e : f d = uncurry f ∘ fun w ↦ (d, w) := rfl
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u ⊒ DiffContOnCl β„‚ (f d) (ball z r)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) ⊒ DiffContOnCl β„‚ (f d) (ball z r)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u ⊒ DiffContOnCl β„‚ (f d) (ball z r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
rw [e]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) ⊒ DiffContOnCl β„‚ (f d) (ball z r)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) ⊒ DiffContOnCl β„‚ (uncurry f ∘ fun w => (d, w)) (ball z r)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) ⊒ DiffContOnCl β„‚ (f d) (ball z r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
apply DifferentiableOn.diffContOnCl
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) ⊒ DiffContOnCl β„‚ (uncurry f ∘ fun w => (d, w)) (ball z r)
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) ⊒ DifferentiableOn β„‚ (uncurry f ∘ fun w => (d, w)) (closure (ball z r))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) ⊒ DiffContOnCl β„‚ (uncurry f ∘ fun w => (d, w)) (ball z r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
apply AnalyticOn.differentiableOn
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) ⊒ DifferentiableOn β„‚ (uncurry f ∘ fun w => (d, w)) (closure (ball z r))
case h.h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) ⊒ AnalyticOn β„‚ (uncurry f ∘ fun w => (d, w)) (closure (ball z r))
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) ⊒ DifferentiableOn β„‚ (uncurry f ∘ fun w => (d, w)) (closure (ball z r)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
refine fa.comp (analyticOn_const.prod (analyticOn_id _)) ?_
case h.h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) ⊒ AnalyticOn β„‚ (uncurry f ∘ fun w => (d, w)) (closure (ball z r))
case h.h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) ⊒ MapsTo (fun w => (d, w)) (closure (ball z r)) (u Γ—Λ’ closedBall z r)
Please generate a tactic in lean4 to solve the state. STATE: case h.h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) ⊒ AnalyticOn β„‚ (uncurry f ∘ fun w => (d, w)) (closure (ball z r)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
intro w wr
case h.h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) ⊒ MapsTo (fun w => (d, w)) (closure (ball z r)) (u Γ—Λ’ closedBall z r)
case h.h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) w : β„‚ wr : w ∈ closure (ball z r) ⊒ (fun w => (d, w)) w ∈ u Γ—Λ’ closedBall z r
Please generate a tactic in lean4 to solve the state. STATE: case h.h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) ⊒ MapsTo (fun w => (d, w)) (closure (ball z r)) (u Γ—Λ’ closedBall z r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
simp only [closure_ball _ rp.ne'] at wr
case h.h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) w : β„‚ wr : w ∈ closure (ball z r) ⊒ (fun w => (d, w)) w ∈ u Γ—Λ’ closedBall z r
case h.h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) w : β„‚ wr : w ∈ closedBall z r ⊒ (fun w => (d, w)) w ∈ u Γ—Λ’ closedBall z r
Please generate a tactic in lean4 to solve the state. STATE: case h.h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) w : β„‚ wr : w ∈ closure (ball z r) ⊒ (fun w => (d, w)) w ∈ u Γ—Λ’ closedBall z r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
simp only [← closedBall_prod_same, mem_prod_eq, du, wr, true_and_iff, du]
case h.h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) w : β„‚ wr : w ∈ closedBall z r ⊒ (fun w => (d, w)) w ∈ u Γ—Λ’ closedBall z r
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e✝ r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e✝ un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e✝ ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z d : β„‚ du : d ∈ u e : f d = uncurry f ∘ fun w => (d, w) w : β„‚ wr : w ∈ closedBall z r ⊒ (fun w => (d, w)) w ∈ u Γ—Λ’ closedBall z r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
linarith
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r ⊒ e / 4 > 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r ⊒ e / 4 > 0 TACTIC: