url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Config.io_reg_haltedOn
[62, 9]
[63, 28]
simp [Config.haltedOn]
R L : Type o : ℕ r : R → ℕ ⊢ regs (haltedOn o r) WithIO.io = o
no goals
Please generate a tactic in lean4 to solve the state. STATE: R L : Type o : ℕ r : R → ℕ ⊢ regs (haltedOn o r) WithIO.io = o TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.stepsTo_functional
[91, 1]
[96, 54]
match c with | {ip,regs} => cases ip <;> (simp [step] at h1 h2; cases h1; cases h2; rfl)
R✝ L✝ : Type Start✝ : ?m.35746 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.35760) true R L : Type x✝ : Sort ?u.35745 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.35760) true c d1 d2 : Config R L h1 : c [P]==> d1 h2 : c [P]==> d2 ⊢ d1 = d2
no goals
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.35746 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.35760) true R L : Type x✝ : Sort ?u.35745 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.35760) true c d1 d2 : Config R L h1 : c [P]==> d1 h2 : c [P]==> d2 ⊢ d1 = d2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.stepsTo_functional
[91, 1]
[96, 54]
cases ip <;> (simp [step] at h1 h2; cases h1; cases h2; rfl)
R✝ L✝ : Type Start✝ : ?m.35746 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.35760) true R L : Type x✝ : Sort ?u.35745 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.35760) true c d1 d2 : Config R L ip : Option L regs : R → ℕ h1 : { ip := ip, regs := regs } [P]==> d1 h2 : { ip := ip, regs := regs } [P]==> d2 ⊢ d1 = d2
no goals
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.35746 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.35760) true R L : Type x✝ : Sort ?u.35745 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.35760) true c d1 d2 : Config R L ip : Option L regs : R → ℕ h1 : { ip := ip, regs := regs } [P]==> d1 h2 : { ip := ip, regs := regs } [P]==> d2 ⊢ d1 = d2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.stepsTo_functional
[91, 1]
[96, 54]
simp [step] at h1 h2
case some R✝ L✝ : Type Start✝ : ?m.35746 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.35760) true R L : Type x✝ : Sort ?u.35745 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.35760) true c d1 d2 : Config R L regs : R → ℕ val✝ : L h1 : { ip := some val✝, regs := regs } [P]==> d1 h2 : { ip := some val✝, regs := regs } [P]==> d2 ⊢ d1 = d2
case some R✝ L✝ : Type Start✝ : ?m.35746 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.35760) true R L : Type x✝ : Sort ?u.35745 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.35760) true c d1 d2 : Config R L regs : R → ℕ val✝ : L h1 : (match P val✝ with | Instr.inc r l => { ip := l, regs := Function.update regs r (regs r + 1) } | Instr.dec r l k => match regs r with | Nat.succ n => { ip := l, regs := Function.update regs r n } | 0 => { ip := k, regs := regs }) = d1 h2 : (match P val✝ with | Instr.inc r l => { ip := l, regs := Function.update regs r (regs r + 1) } | Instr.dec r l k => match regs r with | Nat.succ n => { ip := l, regs := Function.update regs r n } | 0 => { ip := k, regs := regs }) = d2 ⊢ d1 = d2
Please generate a tactic in lean4 to solve the state. STATE: case some R✝ L✝ : Type Start✝ : ?m.35746 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.35760) true R L : Type x✝ : Sort ?u.35745 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.35760) true c d1 d2 : Config R L regs : R → ℕ val✝ : L h1 : { ip := some val✝, regs := regs } [P]==> d1 h2 : { ip := some val✝, regs := regs } [P]==> d2 ⊢ d1 = d2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.stepsTo_functional
[91, 1]
[96, 54]
cases h1
case some R✝ L✝ : Type Start✝ : ?m.35746 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.35760) true R L : Type x✝ : Sort ?u.35745 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.35760) true c d1 d2 : Config R L regs : R → ℕ val✝ : L h1 : (match P val✝ with | Instr.inc r l => { ip := l, regs := Function.update regs r (regs r + 1) } | Instr.dec r l k => match regs r with | Nat.succ n => { ip := l, regs := Function.update regs r n } | 0 => { ip := k, regs := regs }) = d1 h2 : (match P val✝ with | Instr.inc r l => { ip := l, regs := Function.update regs r (regs r + 1) } | Instr.dec r l k => match regs r with | Nat.succ n => { ip := l, regs := Function.update regs r n } | 0 => { ip := k, regs := regs }) = d2 ⊢ d1 = d2
case some.refl R✝ L✝ : Type Start✝ : ?m.35746 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.35760) true R L : Type x✝ : Sort ?u.35745 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.35760) true c d2 : Config R L regs : R → ℕ val✝ : L h2 : (match P val✝ with | Instr.inc r l => { ip := l, regs := Function.update regs r (regs r + 1) } | Instr.dec r l k => match regs r with | Nat.succ n => { ip := l, regs := Function.update regs r n } | 0 => { ip := k, regs := regs }) = d2 ⊢ (match P val✝ with | Instr.inc r l => { ip := l, regs := Function.update regs r (regs r + 1) } | Instr.dec r l k => match regs r with | Nat.succ n => { ip := l, regs := Function.update regs r n } | 0 => { ip := k, regs := regs }) = d2
Please generate a tactic in lean4 to solve the state. STATE: case some R✝ L✝ : Type Start✝ : ?m.35746 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.35760) true R L : Type x✝ : Sort ?u.35745 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.35760) true c d1 d2 : Config R L regs : R → ℕ val✝ : L h1 : (match P val✝ with | Instr.inc r l => { ip := l, regs := Function.update regs r (regs r + 1) } | Instr.dec r l k => match regs r with | Nat.succ n => { ip := l, regs := Function.update regs r n } | 0 => { ip := k, regs := regs }) = d1 h2 : (match P val✝ with | Instr.inc r l => { ip := l, regs := Function.update regs r (regs r + 1) } | Instr.dec r l k => match regs r with | Nat.succ n => { ip := l, regs := Function.update regs r n } | 0 => { ip := k, regs := regs }) = d2 ⊢ d1 = d2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.stepsTo_functional
[91, 1]
[96, 54]
cases h2
case some.refl R✝ L✝ : Type Start✝ : ?m.35746 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.35760) true R L : Type x✝ : Sort ?u.35745 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.35760) true c d2 : Config R L regs : R → ℕ val✝ : L h2 : (match P val✝ with | Instr.inc r l => { ip := l, regs := Function.update regs r (regs r + 1) } | Instr.dec r l k => match regs r with | Nat.succ n => { ip := l, regs := Function.update regs r n } | 0 => { ip := k, regs := regs }) = d2 ⊢ (match P val✝ with | Instr.inc r l => { ip := l, regs := Function.update regs r (regs r + 1) } | Instr.dec r l k => match regs r with | Nat.succ n => { ip := l, regs := Function.update regs r n } | 0 => { ip := k, regs := regs }) = d2
case some.refl.refl R✝ L✝ : Type Start✝ : ?m.35746 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.35760) true R L : Type x✝ : Sort ?u.35745 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.35760) true c : Config R L regs : R → ℕ val✝ : L ⊢ (match P val✝ with | Instr.inc r l => { ip := l, regs := Function.update regs r (regs r + 1) } | Instr.dec r l k => match regs r with | Nat.succ n => { ip := l, regs := Function.update regs r n } | 0 => { ip := k, regs := regs }) = match P val✝ with | Instr.inc r l => { ip := l, regs := Function.update regs r (regs r + 1) } | Instr.dec r l k => match regs r with | Nat.succ n => { ip := l, regs := Function.update regs r n } | 0 => { ip := k, regs := regs }
Please generate a tactic in lean4 to solve the state. STATE: case some.refl R✝ L✝ : Type Start✝ : ?m.35746 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.35760) true R L : Type x✝ : Sort ?u.35745 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.35760) true c d2 : Config R L regs : R → ℕ val✝ : L h2 : (match P val✝ with | Instr.inc r l => { ip := l, regs := Function.update regs r (regs r + 1) } | Instr.dec r l k => match regs r with | Nat.succ n => { ip := l, regs := Function.update regs r n } | 0 => { ip := k, regs := regs }) = d2 ⊢ (match P val✝ with | Instr.inc r l => { ip := l, regs := Function.update regs r (regs r + 1) } | Instr.dec r l k => match regs r with | Nat.succ n => { ip := l, regs := Function.update regs r n } | 0 => { ip := k, regs := regs }) = d2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.stepsTo_functional
[91, 1]
[96, 54]
rfl
case some.refl.refl R✝ L✝ : Type Start✝ : ?m.35746 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.35760) true R L : Type x✝ : Sort ?u.35745 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.35760) true c : Config R L regs : R → ℕ val✝ : L ⊢ (match P val✝ with | Instr.inc r l => { ip := l, regs := Function.update regs r (regs r + 1) } | Instr.dec r l k => match regs r with | Nat.succ n => { ip := l, regs := Function.update regs r n } | 0 => { ip := k, regs := regs }) = match P val✝ with | Instr.inc r l => { ip := l, regs := Function.update regs r (regs r + 1) } | Instr.dec r l k => match regs r with | Nat.succ n => { ip := l, regs := Function.update regs r n } | 0 => { ip := k, regs := regs }
no goals
Please generate a tactic in lean4 to solve the state. STATE: case some.refl.refl R✝ L✝ : Type Start✝ : ?m.35746 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.35760) true R L : Type x✝ : Sort ?u.35745 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.35760) true c : Config R L regs : R → ℕ val✝ : L ⊢ (match P val✝ with | Instr.inc r l => { ip := l, regs := Function.update regs r (regs r + 1) } | Instr.dec r l k => match regs r with | Nat.succ n => { ip := l, regs := Function.update regs r n } | 0 => { ip := k, regs := regs }) = match P val✝ with | Instr.inc r l => { ip := l, regs := Function.update regs r (regs r + 1) } | Instr.dec r l k => match regs r with | Nat.succ n => { ip := l, regs := Function.update regs r n } | 0 => { ip := k, regs := regs } TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_fixpoint
[98, 1]
[108, 17]
induction h using Relation.ReflTransGen.head_induction_on
R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d : Config R L h : c [P]==>* d ⊢ Config.is_halted c = true → c = d
case refl R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d : Config R L ⊢ Config.is_halted d = true → d = d case head R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d a✝¹ c✝ : Config R L h'✝ : a✝¹ [P]==> c✝ h✝ : Relation.ReflTransGen (stepsTo P) c✝ d a✝ : Config.is_halted c✝ = true → c✝ = d ⊢ Config.is_halted a✝¹ = true → a✝¹ = d
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d : Config R L h : c [P]==>* d ⊢ Config.is_halted c = true → c = d TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_fixpoint
[98, 1]
[108, 17]
case refl => simp
R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d : Config R L ⊢ Config.is_halted d = true → d = d
no goals
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d : Config R L ⊢ Config.is_halted d = true → d = d TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_fixpoint
[98, 1]
[108, 17]
case head c' d' h _ ih => intro hc' simp [Config.is_halted] at hc' ih ⊢ simp [step, hc'] at h cases h apply ih hc'
R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d c' d' : Config R L h : c' [P]==> d' h✝ : Relation.ReflTransGen (stepsTo P) d' d ih : Config.is_halted d' = true → d' = d ⊢ Config.is_halted c' = true → c' = d
no goals
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d c' d' : Config R L h : c' [P]==> d' h✝ : Relation.ReflTransGen (stepsTo P) d' d ih : Config.is_halted d' = true → d' = d ⊢ Config.is_halted c' = true → c' = d TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_fixpoint
[98, 1]
[108, 17]
simp
R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d : Config R L ⊢ Config.is_halted d = true → d = d
no goals
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d : Config R L ⊢ Config.is_halted d = true → d = d TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_fixpoint
[98, 1]
[108, 17]
intro hc'
R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d c' d' : Config R L h : c' [P]==> d' h✝ : Relation.ReflTransGen (stepsTo P) d' d ih : Config.is_halted d' = true → d' = d ⊢ Config.is_halted c' = true → c' = d
R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d c' d' : Config R L h : c' [P]==> d' h✝ : Relation.ReflTransGen (stepsTo P) d' d ih : Config.is_halted d' = true → d' = d hc' : Config.is_halted c' = true ⊢ c' = d
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d c' d' : Config R L h : c' [P]==> d' h✝ : Relation.ReflTransGen (stepsTo P) d' d ih : Config.is_halted d' = true → d' = d ⊢ Config.is_halted c' = true → c' = d TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_fixpoint
[98, 1]
[108, 17]
simp [Config.is_halted] at hc' ih ⊢
R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d c' d' : Config R L h : c' [P]==> d' h✝ : Relation.ReflTransGen (stepsTo P) d' d ih : Config.is_halted d' = true → d' = d hc' : Config.is_halted c' = true ⊢ c' = d
R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d c' d' : Config R L h : c' [P]==> d' h✝ : Relation.ReflTransGen (stepsTo P) d' d hc' : c'.ip = none ih : d'.ip = none → d' = d ⊢ c' = d
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d c' d' : Config R L h : c' [P]==> d' h✝ : Relation.ReflTransGen (stepsTo P) d' d ih : Config.is_halted d' = true → d' = d hc' : Config.is_halted c' = true ⊢ c' = d TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_fixpoint
[98, 1]
[108, 17]
simp [step, hc'] at h
R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d c' d' : Config R L h : c' [P]==> d' h✝ : Relation.ReflTransGen (stepsTo P) d' d hc' : c'.ip = none ih : d'.ip = none → d' = d ⊢ c' = d
R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d c' d' : Config R L h✝ : Relation.ReflTransGen (stepsTo P) d' d hc' : c'.ip = none ih : d'.ip = none → d' = d h : c' = d' ⊢ c' = d
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d c' d' : Config R L h : c' [P]==> d' h✝ : Relation.ReflTransGen (stepsTo P) d' d hc' : c'.ip = none ih : d'.ip = none → d' = d ⊢ c' = d TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_fixpoint
[98, 1]
[108, 17]
cases h
R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d c' d' : Config R L h✝ : Relation.ReflTransGen (stepsTo P) d' d hc' : c'.ip = none ih : d'.ip = none → d' = d h : c' = d' ⊢ c' = d
case refl R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d c' : Config R L hc' : c'.ip = none h✝ : Relation.ReflTransGen (stepsTo P) c' d ih : c'.ip = none → c' = d ⊢ c' = d
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d c' d' : Config R L h✝ : Relation.ReflTransGen (stepsTo P) d' d hc' : c'.ip = none ih : d'.ip = none → d' = d h : c' = d' ⊢ c' = d TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_fixpoint
[98, 1]
[108, 17]
apply ih hc'
case refl R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d c' : Config R L hc' : c'.ip = none h✝ : Relation.ReflTransGen (stepsTo P) c' d ih : c'.ip = none → c' = d ⊢ c' = d
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refl R✝ L✝ : Type Start✝ : ?m.45031 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.45045) true R L : Type x✝ : Sort ?u.45030 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.45045) true c d c' : Config R L hc' : c'.ip = none h✝ : Relation.ReflTransGen (stepsTo P) c' d ih : c'.ip = none → c' = d ⊢ c' = d TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_unique
[110, 1]
[131, 15]
induction h1 using Relation.ReflTransGen.head_induction_on
R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true c d1 d2 : Config R L h1 : c [P]==>* d1 h2 : c [P]==>* d2 hd1 : Config.is_halted d1 = true hd2 : Config.is_halted d2 = true ⊢ d1 = d2
case refl R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true c d1 d2 : Config R L hd1 : Config.is_halted d1 = true hd2 : Config.is_halted d2 = true h2 : d1 [P]==>* d2 ⊢ d1 = d2 case head R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true c d1 d2 : Config R L hd1 : Config.is_halted d1 = true hd2 : Config.is_halted d2 = true a✝¹ c✝ : Config R L h'✝ : a✝¹ [P]==> c✝ h✝ : Relation.ReflTransGen (stepsTo P) c✝ d1 a✝ : c✝ [P]==>* d2 → d1 = d2 h2 : a✝¹ [P]==>* d2 ⊢ d1 = d2
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true c d1 d2 : Config R L h1 : c [P]==>* d1 h2 : c [P]==>* d2 hd1 : Config.is_halted d1 = true hd2 : Config.is_halted d2 = true ⊢ d1 = d2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_unique
[110, 1]
[131, 15]
case refl => apply halt_is_fixpoint _ h2 hd1
R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true c d1 d2 : Config R L hd1 : Config.is_halted d1 = true hd2 : Config.is_halted d2 = true h2 : d1 [P]==>* d2 ⊢ d1 = d2
no goals
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true c d1 d2 : Config R L hd1 : Config.is_halted d1 = true hd2 : Config.is_halted d2 = true h2 : d1 [P]==>* d2 ⊢ d1 = d2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_unique
[110, 1]
[131, 15]
case head c' d' h _h ih => apply ih clear ih _h hd1 d1 c cases Relation.ReflTransGen.cases_head h2 <;> clear h2 case inl h2 => cases h2 have : d2 = d' := by apply halt_is_fixpoint . exact Relation.ReflTransGen.single h . exact hd2 cases this; apply Relation.ReflTransGen.refl case inr h2 => rcases h2 with ⟨c,hc,h2⟩ have : c = d' := stepsTo_functional _ hc h cases this exact h2
R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true c d1 d2 : Config R L hd1 : Config.is_halted d1 = true hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' _h : Relation.ReflTransGen (stepsTo P) d' d1 ih : d' [P]==>* d2 → d1 = d2 h2 : c' [P]==>* d2 ⊢ d1 = d2
no goals
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true c d1 d2 : Config R L hd1 : Config.is_halted d1 = true hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' _h : Relation.ReflTransGen (stepsTo P) d' d1 ih : d' [P]==>* d2 → d1 = d2 h2 : c' [P]==>* d2 ⊢ d1 = d2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_unique
[110, 1]
[131, 15]
apply halt_is_fixpoint _ h2 hd1
R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true c d1 d2 : Config R L hd1 : Config.is_halted d1 = true hd2 : Config.is_halted d2 = true h2 : d1 [P]==>* d2 ⊢ d1 = d2
no goals
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true c d1 d2 : Config R L hd1 : Config.is_halted d1 = true hd2 : Config.is_halted d2 = true h2 : d1 [P]==>* d2 ⊢ d1 = d2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_unique
[110, 1]
[131, 15]
apply ih
R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true c d1 d2 : Config R L hd1 : Config.is_halted d1 = true hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' _h : Relation.ReflTransGen (stepsTo P) d' d1 ih : d' [P]==>* d2 → d1 = d2 h2 : c' [P]==>* d2 ⊢ d1 = d2
R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true c d1 d2 : Config R L hd1 : Config.is_halted d1 = true hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' _h : Relation.ReflTransGen (stepsTo P) d' d1 ih : d' [P]==>* d2 → d1 = d2 h2 : c' [P]==>* d2 ⊢ d' [P]==>* d2
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true c d1 d2 : Config R L hd1 : Config.is_halted d1 = true hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' _h : Relation.ReflTransGen (stepsTo P) d' d1 ih : d' [P]==>* d2 → d1 = d2 h2 : c' [P]==>* d2 ⊢ d1 = d2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_unique
[110, 1]
[131, 15]
clear ih _h hd1 d1 c
R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true c d1 d2 : Config R L hd1 : Config.is_halted d1 = true hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' _h : Relation.ReflTransGen (stepsTo P) d' d1 ih : d' [P]==>* d2 → d1 = d2 h2 : c' [P]==>* d2 ⊢ d' [P]==>* d2
R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' h2 : c' [P]==>* d2 ⊢ d' [P]==>* d2
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true c d1 d2 : Config R L hd1 : Config.is_halted d1 = true hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' _h : Relation.ReflTransGen (stepsTo P) d' d1 ih : d' [P]==>* d2 → d1 = d2 h2 : c' [P]==>* d2 ⊢ d' [P]==>* d2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_unique
[110, 1]
[131, 15]
cases Relation.ReflTransGen.cases_head h2 <;> clear h2
R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' h2 : c' [P]==>* d2 ⊢ d' [P]==>* d2
case inl R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' h✝ : c' = d2 ⊢ d' [P]==>* d2 case inr R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' h✝ : ∃ c, (c' [P]==> c) ∧ Relation.ReflTransGen (stepsTo P) c d2 ⊢ d' [P]==>* d2
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' h2 : c' [P]==>* d2 ⊢ d' [P]==>* d2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_unique
[110, 1]
[131, 15]
case inl h2 => cases h2 have : d2 = d' := by apply halt_is_fixpoint . exact Relation.ReflTransGen.single h . exact hd2 cases this; apply Relation.ReflTransGen.refl
R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' h2 : c' = d2 ⊢ d' [P]==>* d2
no goals
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' h2 : c' = d2 ⊢ d' [P]==>* d2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_unique
[110, 1]
[131, 15]
case inr h2 => rcases h2 with ⟨c,hc,h2⟩ have : c = d' := stepsTo_functional _ hc h cases this exact h2
R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' h2 : ∃ c, (c' [P]==> c) ∧ Relation.ReflTransGen (stepsTo P) c d2 ⊢ d' [P]==>* d2
no goals
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' h2 : ∃ c, (c' [P]==> c) ∧ Relation.ReflTransGen (stepsTo P) c d2 ⊢ d' [P]==>* d2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_unique
[110, 1]
[131, 15]
cases h2
R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' h2 : c' = d2 ⊢ d' [P]==>* d2
case refl R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' ⊢ d' [P]==>* d2
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' h2 : c' = d2 ⊢ d' [P]==>* d2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_unique
[110, 1]
[131, 15]
have : d2 = d' := by apply halt_is_fixpoint . exact Relation.ReflTransGen.single h . exact hd2
case refl R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' ⊢ d' [P]==>* d2
case refl R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' this : d2 = d' ⊢ d' [P]==>* d2
Please generate a tactic in lean4 to solve the state. STATE: case refl R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' ⊢ d' [P]==>* d2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_unique
[110, 1]
[131, 15]
cases this
case refl R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' this : d2 = d' ⊢ d' [P]==>* d2
case refl.refl R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true h : d2 [P]==> d2 ⊢ d2 [P]==>* d2
Please generate a tactic in lean4 to solve the state. STATE: case refl R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' this : d2 = d' ⊢ d' [P]==>* d2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_unique
[110, 1]
[131, 15]
apply Relation.ReflTransGen.refl
case refl.refl R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true h : d2 [P]==> d2 ⊢ d2 [P]==>* d2
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refl.refl R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true h : d2 [P]==> d2 ⊢ d2 [P]==>* d2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_unique
[110, 1]
[131, 15]
apply halt_is_fixpoint
R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' ⊢ d2 = d'
case h R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' ⊢ d2 [?P]==>* d' case a R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' ⊢ Config.is_halted d2 = true case P R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' ⊢ Prog R L
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' ⊢ d2 = d' TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_unique
[110, 1]
[131, 15]
. exact Relation.ReflTransGen.single h
case h R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' ⊢ d2 [?P]==>* d' case a R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' ⊢ Config.is_halted d2 = true case P R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' ⊢ Prog R L
case a R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' ⊢ Config.is_halted d2 = true
Please generate a tactic in lean4 to solve the state. STATE: case h R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' ⊢ d2 [?P]==>* d' case a R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' ⊢ Config.is_halted d2 = true case P R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' ⊢ Prog R L TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_unique
[110, 1]
[131, 15]
. exact hd2
case a R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' ⊢ Config.is_halted d2 = true
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' ⊢ Config.is_halted d2 = true TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_unique
[110, 1]
[131, 15]
exact Relation.ReflTransGen.single h
case h R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' ⊢ d2 [?P]==>* d'
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' ⊢ d2 [?P]==>* d' TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_unique
[110, 1]
[131, 15]
exact hd2
case a R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' ⊢ Config.is_halted d2 = true
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true d' : Config R L h : d2 [P]==> d' ⊢ Config.is_halted d2 = true TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_unique
[110, 1]
[131, 15]
rcases h2 with ⟨c,hc,h2⟩
R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' h2 : ∃ c, (c' [P]==> c) ∧ Relation.ReflTransGen (stepsTo P) c d2 ⊢ d' [P]==>* d2
case intro.intro R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' c : Config R L hc : c' [P]==> c h2 : Relation.ReflTransGen (stepsTo P) c d2 ⊢ d' [P]==>* d2
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' h2 : ∃ c, (c' [P]==> c) ∧ Relation.ReflTransGen (stepsTo P) c d2 ⊢ d' [P]==>* d2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_unique
[110, 1]
[131, 15]
have : c = d' := stepsTo_functional _ hc h
case intro.intro R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' c : Config R L hc : c' [P]==> c h2 : Relation.ReflTransGen (stepsTo P) c d2 ⊢ d' [P]==>* d2
case intro.intro R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' c : Config R L hc : c' [P]==> c h2 : Relation.ReflTransGen (stepsTo P) c d2 this : c = d' ⊢ d' [P]==>* d2
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' c : Config R L hc : c' [P]==> c h2 : Relation.ReflTransGen (stepsTo P) c d2 ⊢ d' [P]==>* d2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_unique
[110, 1]
[131, 15]
cases this
case intro.intro R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' c : Config R L hc : c' [P]==> c h2 : Relation.ReflTransGen (stepsTo P) c d2 this : c = d' ⊢ d' [P]==>* d2
case intro.intro.refl R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true c' d' : Config R L h hc : c' [P]==> d' h2 : Relation.ReflTransGen (stepsTo P) d' d2 ⊢ d' [P]==>* d2
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true c' d' : Config R L h : c' [P]==> d' c : Config R L hc : c' [P]==> c h2 : Relation.ReflTransGen (stepsTo P) c d2 this : c = d' ⊢ d' [P]==>* d2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.halt_is_unique
[110, 1]
[131, 15]
exact h2
case intro.intro.refl R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true c' d' : Config R L h hc : c' [P]==> d' h2 : Relation.ReflTransGen (stepsTo P) d' d2 ⊢ d' [P]==>* d2
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.refl R✝ L✝ : Type Start✝ : ?m.50738 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.50752) true R L : Type x✝ : Sort ?u.50737 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.50752) true d2 : Config R L hd2 : Config.is_halted d2 = true c' d' : Config R L h hc : c' [P]==> d' h2 : Relation.ReflTransGen (stepsTo P) d' d2 ⊢ d' [P]==>* d2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.stepsToTrans_of_not_halts_stepsToTransRefl_halts
[133, 1]
[142, 46]
cases Relation.ReflTransGen.cases_head h
R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c d : Config R L h : c [P]==>* d hc : ¬Config.is_halted c = true hd : Config.is_halted d = true ⊢ c [P]==>+ d
case inl R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c d : Config R L h : c [P]==>* d hc : ¬Config.is_halted c = true hd : Config.is_halted d = true h✝ : c = d ⊢ c [P]==>+ d case inr R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c d : Config R L h : c [P]==>* d hc : ¬Config.is_halted c = true hd : Config.is_halted d = true h✝ : ∃ c_1, (c [P]==> c_1) ∧ Relation.ReflTransGen (stepsTo P) c_1 d ⊢ c [P]==>+ d
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c d : Config R L h : c [P]==>* d hc : ¬Config.is_halted c = true hd : Config.is_halted d = true ⊢ c [P]==>+ d TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.stepsToTrans_of_not_halts_stepsToTransRefl_halts
[133, 1]
[142, 46]
clear h
case inl R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c d : Config R L h : c [P]==>* d hc : ¬Config.is_halted c = true hd : Config.is_halted d = true h✝ : c = d ⊢ c [P]==>+ d case inr R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c d : Config R L h : c [P]==>* d hc : ¬Config.is_halted c = true hd : Config.is_halted d = true h✝ : ∃ c_1, (c [P]==> c_1) ∧ Relation.ReflTransGen (stepsTo P) c_1 d ⊢ c [P]==>+ d
case inl R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c d : Config R L hc : ¬Config.is_halted c = true hd : Config.is_halted d = true h✝ : c = d ⊢ c [P]==>+ d case inr R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c d : Config R L h : c [P]==>* d hc : ¬Config.is_halted c = true hd : Config.is_halted d = true h✝ : ∃ c_1, (c [P]==> c_1) ∧ Relation.ReflTransGen (stepsTo P) c_1 d ⊢ c [P]==>+ d
Please generate a tactic in lean4 to solve the state. STATE: case inl R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c d : Config R L h : c [P]==>* d hc : ¬Config.is_halted c = true hd : Config.is_halted d = true h✝ : c = d ⊢ c [P]==>+ d case inr R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c d : Config R L h : c [P]==>* d hc : ¬Config.is_halted c = true hd : Config.is_halted d = true h✝ : ∃ c_1, (c [P]==> c_1) ∧ Relation.ReflTransGen (stepsTo P) c_1 d ⊢ c [P]==>+ d TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.stepsToTrans_of_not_halts_stepsToTransRefl_halts
[133, 1]
[142, 46]
case inl heq => cases heq; contradiction
R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c d : Config R L hc : ¬Config.is_halted c = true hd : Config.is_halted d = true heq : c = d ⊢ c [P]==>+ d
no goals
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c d : Config R L hc : ¬Config.is_halted c = true hd : Config.is_halted d = true heq : c = d ⊢ c [P]==>+ d TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.stepsToTrans_of_not_halts_stepsToTransRefl_halts
[133, 1]
[142, 46]
case inr h => rcases h with ⟨c',hc_c',hc'_d⟩ exact Relation.TransGen.head' hc_c' hc'_d
R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c d : Config R L h✝ : c [P]==>* d hc : ¬Config.is_halted c = true hd : Config.is_halted d = true h : ∃ c_1, (c [P]==> c_1) ∧ Relation.ReflTransGen (stepsTo P) c_1 d ⊢ c [P]==>+ d
no goals
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c d : Config R L h✝ : c [P]==>* d hc : ¬Config.is_halted c = true hd : Config.is_halted d = true h : ∃ c_1, (c [P]==> c_1) ∧ Relation.ReflTransGen (stepsTo P) c_1 d ⊢ c [P]==>+ d TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.stepsToTrans_of_not_halts_stepsToTransRefl_halts
[133, 1]
[142, 46]
cases heq
R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c d : Config R L hc : ¬Config.is_halted c = true hd : Config.is_halted d = true heq : c = d ⊢ c [P]==>+ d
case refl R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c : Config R L hc : ¬Config.is_halted c = true hd : Config.is_halted c = true ⊢ c [P]==>+ c
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c d : Config R L hc : ¬Config.is_halted c = true hd : Config.is_halted d = true heq : c = d ⊢ c [P]==>+ d TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.stepsToTrans_of_not_halts_stepsToTransRefl_halts
[133, 1]
[142, 46]
contradiction
case refl R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c : Config R L hc : ¬Config.is_halted c = true hd : Config.is_halted c = true ⊢ c [P]==>+ c
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refl R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c : Config R L hc : ¬Config.is_halted c = true hd : Config.is_halted c = true ⊢ c [P]==>+ c TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.stepsToTrans_of_not_halts_stepsToTransRefl_halts
[133, 1]
[142, 46]
rcases h with ⟨c',hc_c',hc'_d⟩
R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c d : Config R L h✝ : c [P]==>* d hc : ¬Config.is_halted c = true hd : Config.is_halted d = true h : ∃ c_1, (c [P]==> c_1) ∧ Relation.ReflTransGen (stepsTo P) c_1 d ⊢ c [P]==>+ d
case intro.intro R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c d : Config R L h : c [P]==>* d hc : ¬Config.is_halted c = true hd : Config.is_halted d = true c' : Config R L hc_c' : c [P]==> c' hc'_d : Relation.ReflTransGen (stepsTo P) c' d ⊢ c [P]==>+ d
Please generate a tactic in lean4 to solve the state. STATE: R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c d : Config R L h✝ : c [P]==>* d hc : ¬Config.is_halted c = true hd : Config.is_halted d = true h : ∃ c_1, (c [P]==> c_1) ∧ Relation.ReflTransGen (stepsTo P) c_1 d ⊢ c [P]==>+ d TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.stepsToTrans_of_not_halts_stepsToTransRefl_halts
[133, 1]
[142, 46]
exact Relation.TransGen.head' hc_c' hc'_d
case intro.intro R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c d : Config R L h : c [P]==>* d hc : ¬Config.is_halted c = true hd : Config.is_halted d = true c' : Config R L hc_c' : c [P]==> c' hc'_d : Relation.ReflTransGen (stepsTo P) c' d ⊢ c [P]==>+ d
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro R✝ L✝ : Type Start✝ : ?m.51733 P✝ : Prog R✝ L✝ inst✝¹ : DecidableEq R✝ S✝ : sorryAx (Sort ?u.51747) true R L : Type x✝ : Sort ?u.51732 Start : x✝ P : Prog R L inst✝ : DecidableEq R S : sorryAx (Sort ?u.51747) true c d : Config R L h : c [P]==>* d hc : ¬Config.is_halted c = true hd : Config.is_halted d = true c' : Config R L hc_c' : c [P]==> c' hc'_d : Relation.ReflTransGen (stepsTo P) c' d ⊢ c [P]==>+ d TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
match h1, h2 with | ⟨regs1,h1'⟩, ⟨regs2,h2'⟩ => clear h1 h2 generalize Config.init _ _ = c1 at h1' h2' clear i induction h1' using Relation.ReflTransGen.head_induction_on <;> clear c1 case refl => have : o1 = (Config.haltedOn (L := L) o1 regs1).regs .io := by simp [Config.haltedOn] rw [this] have := halt_is_fixpoint _ h2' (by simp) rw [this] simp case head c d h _ ih => apply ih; clear ih cases Relation.ReflTransGen.cases_head h2' <;> clear h2' case inl h2' => cases h2' have : _ = d := by apply halt_is_fixpoint _ (Relation.ReflTransGen.single h) simp rw [←this] case inr h2' => rcases h2' with ⟨c',hc,h⟩ have : c' = d := stepsTo_functional _ hc ‹_› rw [←this] exact h
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L i o1 o2 : ℕ h1 : evals S i o1 h2 : evals S i o2 ⊢ o1 = o2
no goals
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L i o1 o2 : ℕ h1 : evals S i o1 h2 : evals S i o2 ⊢ o1 = o2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
clear h1 h2
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L i o1 o2 : ℕ h1 : evals S i o1 h2 : evals S i o2 regs1 : R → ℕ h1' : Config.init i (some S.start) [S.prog]==>* Config.haltedOn o1 regs1 regs2 : R → ℕ h2' : Config.init i (some S.start) [S.prog]==>* Config.haltedOn o2 regs2 ⊢ o1 = o2
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L i o1 o2 : ℕ regs1 : R → ℕ h1' : Config.init i (some S.start) [S.prog]==>* Config.haltedOn o1 regs1 regs2 : R → ℕ h2' : Config.init i (some S.start) [S.prog]==>* Config.haltedOn o2 regs2 ⊢ o1 = o2
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L i o1 o2 : ℕ h1 : evals S i o1 h2 : evals S i o2 regs1 : R → ℕ h1' : Config.init i (some S.start) [S.prog]==>* Config.haltedOn o1 regs1 regs2 : R → ℕ h2' : Config.init i (some S.start) [S.prog]==>* Config.haltedOn o2 regs2 ⊢ o1 = o2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
generalize Config.init _ _ = c1 at h1' h2'
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L i o1 o2 : ℕ regs1 : R → ℕ h1' : Config.init i (some S.start) [S.prog]==>* Config.haltedOn o1 regs1 regs2 : R → ℕ h2' : Config.init i (some S.start) [S.prog]==>* Config.haltedOn o2 regs2 ⊢ o1 = o2
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L i o1 o2 : ℕ regs1 regs2 : R → ℕ c1 : Config (WithIO R) L h1' : c1 [S.prog]==>* Config.haltedOn o1 regs1 h2' : c1 [S.prog]==>* Config.haltedOn o2 regs2 ⊢ o1 = o2
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L i o1 o2 : ℕ regs1 : R → ℕ h1' : Config.init i (some S.start) [S.prog]==>* Config.haltedOn o1 regs1 regs2 : R → ℕ h2' : Config.init i (some S.start) [S.prog]==>* Config.haltedOn o2 regs2 ⊢ o1 = o2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
clear i
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L i o1 o2 : ℕ regs1 regs2 : R → ℕ c1 : Config (WithIO R) L h1' : c1 [S.prog]==>* Config.haltedOn o1 regs1 h2' : c1 [S.prog]==>* Config.haltedOn o2 regs2 ⊢ o1 = o2
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c1 : Config (WithIO R) L h1' : c1 [S.prog]==>* Config.haltedOn o1 regs1 h2' : c1 [S.prog]==>* Config.haltedOn o2 regs2 ⊢ o1 = o2
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L i o1 o2 : ℕ regs1 regs2 : R → ℕ c1 : Config (WithIO R) L h1' : c1 [S.prog]==>* Config.haltedOn o1 regs1 h2' : c1 [S.prog]==>* Config.haltedOn o2 regs2 ⊢ o1 = o2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
induction h1' using Relation.ReflTransGen.head_induction_on <;> clear c1
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c1 : Config (WithIO R) L h1' : c1 [S.prog]==>* Config.haltedOn o1 regs1 h2' : c1 [S.prog]==>* Config.haltedOn o2 regs2 ⊢ o1 = o2
case refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ h2' : Config.haltedOn o1 regs1 [S.prog]==>* Config.haltedOn o2 regs2 ⊢ o1 = o2 case head R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ a✝¹ c✝ : Config (WithIO R) L h'✝ : a✝¹ [S.prog]==> c✝ h✝ : Relation.ReflTransGen (stepsTo S.prog) c✝ (Config.haltedOn o1 regs1) a✝ : c✝ [S.prog]==>* Config.haltedOn o2 regs2 → o1 = o2 h2' : a✝¹ [S.prog]==>* Config.haltedOn o2 regs2 ⊢ o1 = o2
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c1 : Config (WithIO R) L h1' : c1 [S.prog]==>* Config.haltedOn o1 regs1 h2' : c1 [S.prog]==>* Config.haltedOn o2 regs2 ⊢ o1 = o2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
case refl => have : o1 = (Config.haltedOn (L := L) o1 regs1).regs .io := by simp [Config.haltedOn] rw [this] have := halt_is_fixpoint _ h2' (by simp) rw [this] simp
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ h2' : Config.haltedOn o1 regs1 [S.prog]==>* Config.haltedOn o2 regs2 ⊢ o1 = o2
no goals
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ h2' : Config.haltedOn o1 regs1 [S.prog]==>* Config.haltedOn o2 regs2 ⊢ o1 = o2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
case head c d h _ ih => apply ih; clear ih cases Relation.ReflTransGen.cases_head h2' <;> clear h2' case inl h2' => cases h2' have : _ = d := by apply halt_is_fixpoint _ (Relation.ReflTransGen.single h) simp rw [←this] case inr h2' => rcases h2' with ⟨c',hc,h⟩ have : c' = d := stepsTo_functional _ hc ‹_› rw [←this] exact h
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) ih : d [S.prog]==>* Config.haltedOn o2 regs2 → o1 = o2 h2' : c [S.prog]==>* Config.haltedOn o2 regs2 ⊢ o1 = o2
no goals
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) ih : d [S.prog]==>* Config.haltedOn o2 regs2 → o1 = o2 h2' : c [S.prog]==>* Config.haltedOn o2 regs2 ⊢ o1 = o2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
have : o1 = (Config.haltedOn (L := L) o1 regs1).regs .io := by simp [Config.haltedOn]
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ h2' : Config.haltedOn o1 regs1 [S.prog]==>* Config.haltedOn o2 regs2 ⊢ o1 = o2
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ h2' : Config.haltedOn o1 regs1 [S.prog]==>* Config.haltedOn o2 regs2 this : o1 = Config.regs (Config.haltedOn o1 regs1) WithIO.io ⊢ o1 = o2
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ h2' : Config.haltedOn o1 regs1 [S.prog]==>* Config.haltedOn o2 regs2 ⊢ o1 = o2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
rw [this]
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ h2' : Config.haltedOn o1 regs1 [S.prog]==>* Config.haltedOn o2 regs2 this : o1 = Config.regs (Config.haltedOn o1 regs1) WithIO.io ⊢ o1 = o2
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ h2' : Config.haltedOn o1 regs1 [S.prog]==>* Config.haltedOn o2 regs2 this : o1 = Config.regs (Config.haltedOn o1 regs1) WithIO.io ⊢ Config.regs (Config.haltedOn o1 regs1) WithIO.io = o2
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ h2' : Config.haltedOn o1 regs1 [S.prog]==>* Config.haltedOn o2 regs2 this : o1 = Config.regs (Config.haltedOn o1 regs1) WithIO.io ⊢ o1 = o2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
have := halt_is_fixpoint _ h2' (by simp)
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ h2' : Config.haltedOn o1 regs1 [S.prog]==>* Config.haltedOn o2 regs2 this : o1 = Config.regs (Config.haltedOn o1 regs1) WithIO.io ⊢ Config.regs (Config.haltedOn o1 regs1) WithIO.io = o2
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ h2' : Config.haltedOn o1 regs1 [S.prog]==>* Config.haltedOn o2 regs2 this✝ : o1 = Config.regs (Config.haltedOn o1 regs1) WithIO.io this : Config.haltedOn o1 regs1 = Config.haltedOn o2 regs2 ⊢ Config.regs (Config.haltedOn o1 regs1) WithIO.io = o2
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ h2' : Config.haltedOn o1 regs1 [S.prog]==>* Config.haltedOn o2 regs2 this : o1 = Config.regs (Config.haltedOn o1 regs1) WithIO.io ⊢ Config.regs (Config.haltedOn o1 regs1) WithIO.io = o2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
rw [this]
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ h2' : Config.haltedOn o1 regs1 [S.prog]==>* Config.haltedOn o2 regs2 this✝ : o1 = Config.regs (Config.haltedOn o1 regs1) WithIO.io this : Config.haltedOn o1 regs1 = Config.haltedOn o2 regs2 ⊢ Config.regs (Config.haltedOn o1 regs1) WithIO.io = o2
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ h2' : Config.haltedOn o1 regs1 [S.prog]==>* Config.haltedOn o2 regs2 this✝ : o1 = Config.regs (Config.haltedOn o1 regs1) WithIO.io this : Config.haltedOn o1 regs1 = Config.haltedOn o2 regs2 ⊢ Config.regs (Config.haltedOn o2 regs2) WithIO.io = o2
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ h2' : Config.haltedOn o1 regs1 [S.prog]==>* Config.haltedOn o2 regs2 this✝ : o1 = Config.regs (Config.haltedOn o1 regs1) WithIO.io this : Config.haltedOn o1 regs1 = Config.haltedOn o2 regs2 ⊢ Config.regs (Config.haltedOn o1 regs1) WithIO.io = o2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
simp
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ h2' : Config.haltedOn o1 regs1 [S.prog]==>* Config.haltedOn o2 regs2 this✝ : o1 = Config.regs (Config.haltedOn o1 regs1) WithIO.io this : Config.haltedOn o1 regs1 = Config.haltedOn o2 regs2 ⊢ Config.regs (Config.haltedOn o2 regs2) WithIO.io = o2
no goals
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ h2' : Config.haltedOn o1 regs1 [S.prog]==>* Config.haltedOn o2 regs2 this✝ : o1 = Config.regs (Config.haltedOn o1 regs1) WithIO.io this : Config.haltedOn o1 regs1 = Config.haltedOn o2 regs2 ⊢ Config.regs (Config.haltedOn o2 regs2) WithIO.io = o2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
simp [Config.haltedOn]
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ h2' : Config.haltedOn o1 regs1 [S.prog]==>* Config.haltedOn o2 regs2 ⊢ o1 = Config.regs (Config.haltedOn o1 regs1) WithIO.io
no goals
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ h2' : Config.haltedOn o1 regs1 [S.prog]==>* Config.haltedOn o2 regs2 ⊢ o1 = Config.regs (Config.haltedOn o1 regs1) WithIO.io TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
simp
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ h2' : Config.haltedOn o1 regs1 [S.prog]==>* Config.haltedOn o2 regs2 this : o1 = Config.regs (Config.haltedOn o1 regs1) WithIO.io ⊢ Config.is_halted (Config.haltedOn o1 regs1) = true
no goals
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ h2' : Config.haltedOn o1 regs1 [S.prog]==>* Config.haltedOn o2 regs2 this : o1 = Config.regs (Config.haltedOn o1 regs1) WithIO.io ⊢ Config.is_halted (Config.haltedOn o1 regs1) = true TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
apply ih
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) ih : d [S.prog]==>* Config.haltedOn o2 regs2 → o1 = o2 h2' : c [S.prog]==>* Config.haltedOn o2 regs2 ⊢ o1 = o2
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) ih : d [S.prog]==>* Config.haltedOn o2 regs2 → o1 = o2 h2' : c [S.prog]==>* Config.haltedOn o2 regs2 ⊢ d [S.prog]==>* Config.haltedOn o2 regs2
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) ih : d [S.prog]==>* Config.haltedOn o2 regs2 → o1 = o2 h2' : c [S.prog]==>* Config.haltedOn o2 regs2 ⊢ o1 = o2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
clear ih
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) ih : d [S.prog]==>* Config.haltedOn o2 regs2 → o1 = o2 h2' : c [S.prog]==>* Config.haltedOn o2 regs2 ⊢ d [S.prog]==>* Config.haltedOn o2 regs2
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h2' : c [S.prog]==>* Config.haltedOn o2 regs2 ⊢ d [S.prog]==>* Config.haltedOn o2 regs2
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) ih : d [S.prog]==>* Config.haltedOn o2 regs2 → o1 = o2 h2' : c [S.prog]==>* Config.haltedOn o2 regs2 ⊢ d [S.prog]==>* Config.haltedOn o2 regs2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
cases Relation.ReflTransGen.cases_head h2' <;> clear h2'
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h2' : c [S.prog]==>* Config.haltedOn o2 regs2 ⊢ d [S.prog]==>* Config.haltedOn o2 regs2
case inl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h : c [S.prog]==> d h✝¹ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h✝ : c = Config.haltedOn o2 regs2 ⊢ d [S.prog]==>* Config.haltedOn o2 regs2 case inr R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h : c [S.prog]==> d h✝¹ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h✝ : ∃ c_1, (c [S.prog]==> c_1) ∧ Relation.ReflTransGen (stepsTo S.prog) c_1 (Config.haltedOn o2 regs2) ⊢ d [S.prog]==>* Config.haltedOn o2 regs2
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h2' : c [S.prog]==>* Config.haltedOn o2 regs2 ⊢ d [S.prog]==>* Config.haltedOn o2 regs2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
case inl h2' => cases h2' have : _ = d := by apply halt_is_fixpoint _ (Relation.ReflTransGen.single h) simp rw [←this]
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h2' : c = Config.haltedOn o2 regs2 ⊢ d [S.prog]==>* Config.haltedOn o2 regs2
no goals
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h2' : c = Config.haltedOn o2 regs2 ⊢ d [S.prog]==>* Config.haltedOn o2 regs2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
case inr h2' => rcases h2' with ⟨c',hc,h⟩ have : c' = d := stepsTo_functional _ hc ‹_› rw [←this] exact h
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h2' : ∃ c_1, (c [S.prog]==> c_1) ∧ Relation.ReflTransGen (stepsTo S.prog) c_1 (Config.haltedOn o2 regs2) ⊢ d [S.prog]==>* Config.haltedOn o2 regs2
no goals
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h2' : ∃ c_1, (c [S.prog]==> c_1) ∧ Relation.ReflTransGen (stepsTo S.prog) c_1 (Config.haltedOn o2 regs2) ⊢ d [S.prog]==>* Config.haltedOn o2 regs2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
cases h2'
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h2' : c = Config.haltedOn o2 regs2 ⊢ d [S.prog]==>* Config.haltedOn o2 regs2
case refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ d : Config (WithIO R) L h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h : Config.haltedOn o2 regs2 [S.prog]==> d ⊢ d [S.prog]==>* Config.haltedOn o2 regs2
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h2' : c = Config.haltedOn o2 regs2 ⊢ d [S.prog]==>* Config.haltedOn o2 regs2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
have : _ = d := by apply halt_is_fixpoint _ (Relation.ReflTransGen.single h) simp
case refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ d : Config (WithIO R) L h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h : Config.haltedOn o2 regs2 [S.prog]==> d ⊢ d [S.prog]==>* Config.haltedOn o2 regs2
case refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ d : Config (WithIO R) L h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h : Config.haltedOn o2 regs2 [S.prog]==> d this : Config.haltedOn o2 regs2 = d ⊢ d [S.prog]==>* Config.haltedOn o2 regs2
Please generate a tactic in lean4 to solve the state. STATE: case refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ d : Config (WithIO R) L h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h : Config.haltedOn o2 regs2 [S.prog]==> d ⊢ d [S.prog]==>* Config.haltedOn o2 regs2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
rw [←this]
case refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ d : Config (WithIO R) L h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h : Config.haltedOn o2 regs2 [S.prog]==> d this : Config.haltedOn o2 regs2 = d ⊢ d [S.prog]==>* Config.haltedOn o2 regs2
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ d : Config (WithIO R) L h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h : Config.haltedOn o2 regs2 [S.prog]==> d this : Config.haltedOn o2 regs2 = d ⊢ d [S.prog]==>* Config.haltedOn o2 regs2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
apply halt_is_fixpoint _ (Relation.ReflTransGen.single h)
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ d : Config (WithIO R) L h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h : Config.haltedOn o2 regs2 [S.prog]==> d ⊢ ?m.54568 = d
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ d : Config (WithIO R) L h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h : Config.haltedOn o2 regs2 [S.prog]==> d ⊢ Config.is_halted (Config.haltedOn o2 regs2) = true
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ d : Config (WithIO R) L h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h : Config.haltedOn o2 regs2 [S.prog]==> d ⊢ ?m.54568 = d TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
simp
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ d : Config (WithIO R) L h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h : Config.haltedOn o2 regs2 [S.prog]==> d ⊢ Config.is_halted (Config.haltedOn o2 regs2) = true
no goals
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ d : Config (WithIO R) L h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h : Config.haltedOn o2 regs2 [S.prog]==> d ⊢ Config.is_halted (Config.haltedOn o2 regs2) = true TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
rcases h2' with ⟨c',hc,h⟩
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h2' : ∃ c_1, (c [S.prog]==> c_1) ∧ Relation.ReflTransGen (stepsTo S.prog) c_1 (Config.haltedOn o2 regs2) ⊢ d [S.prog]==>* Config.haltedOn o2 regs2
case intro.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h✝¹ : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) c' : Config (WithIO R) L hc : c [S.prog]==> c' h : Relation.ReflTransGen (stepsTo S.prog) c' (Config.haltedOn o2 regs2) ⊢ d [S.prog]==>* Config.haltedOn o2 regs2
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) h2' : ∃ c_1, (c [S.prog]==> c_1) ∧ Relation.ReflTransGen (stepsTo S.prog) c_1 (Config.haltedOn o2 regs2) ⊢ d [S.prog]==>* Config.haltedOn o2 regs2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
have : c' = d := stepsTo_functional _ hc ‹_›
case intro.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h✝¹ : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) c' : Config (WithIO R) L hc : c [S.prog]==> c' h : Relation.ReflTransGen (stepsTo S.prog) c' (Config.haltedOn o2 regs2) ⊢ d [S.prog]==>* Config.haltedOn o2 regs2
case intro.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h✝¹ : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) c' : Config (WithIO R) L hc : c [S.prog]==> c' h : Relation.ReflTransGen (stepsTo S.prog) c' (Config.haltedOn o2 regs2) this : c' = d ⊢ d [S.prog]==>* Config.haltedOn o2 regs2
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h✝¹ : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) c' : Config (WithIO R) L hc : c [S.prog]==> c' h : Relation.ReflTransGen (stepsTo S.prog) c' (Config.haltedOn o2 regs2) ⊢ d [S.prog]==>* Config.haltedOn o2 regs2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
rw [←this]
case intro.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h✝¹ : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) c' : Config (WithIO R) L hc : c [S.prog]==> c' h : Relation.ReflTransGen (stepsTo S.prog) c' (Config.haltedOn o2 regs2) this : c' = d ⊢ d [S.prog]==>* Config.haltedOn o2 regs2
case intro.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h✝¹ : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) c' : Config (WithIO R) L hc : c [S.prog]==> c' h : Relation.ReflTransGen (stepsTo S.prog) c' (Config.haltedOn o2 regs2) this : c' = d ⊢ c' [S.prog]==>* Config.haltedOn o2 regs2
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h✝¹ : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) c' : Config (WithIO R) L hc : c [S.prog]==> c' h : Relation.ReflTransGen (stepsTo S.prog) c' (Config.haltedOn o2 regs2) this : c' = d ⊢ d [S.prog]==>* Config.haltedOn o2 regs2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.evals_functional
[157, 1]
[186, 14]
exact h
case intro.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h✝¹ : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) c' : Config (WithIO R) L hc : c [S.prog]==> c' h : Relation.ReflTransGen (stepsTo S.prog) c' (Config.haltedOn o2 regs2) this : c' = d ⊢ c' [S.prog]==>* Config.haltedOn o2 regs2
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L o1 o2 : ℕ regs1 regs2 : R → ℕ c d : Config (WithIO R) L h✝¹ : c [S.prog]==> d h✝ : Relation.ReflTransGen (stepsTo S.prog) d (Config.haltedOn o1 regs1) c' : Config (WithIO R) L hc : c [S.prog]==> c' h : Relation.ReflTransGen (stepsTo S.prog) c' (Config.haltedOn o2 regs2) this : c' = d ⊢ c' [S.prog]==>* Config.haltedOn o2 regs2 TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
suffices ∀ c hc, eval.aux S.prog ⟨c,hc⟩ = m ↔ ∃ regs, c [S.prog]==>* Config.haltedOn m regs from this _ _
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L n : ℕ hn : haltsOn S n m : ℕ ⊢ eval S n hn = m ↔ evals S n m
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L n : ℕ hn : haltsOn S n m : ℕ ⊢ ∀ (c : Config (WithIO R) L) (hc : halts S.prog c), eval.aux S.prog { config := c, halts := hc } = m ↔ ∃ regs, c [S.prog]==>* Config.haltedOn m regs
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L n : ℕ hn : haltsOn S n m : ℕ ⊢ eval S n hn = m ↔ evals S n m TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
clear hn n
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L n : ℕ hn : haltsOn S n m : ℕ ⊢ ∀ (c : Config (WithIO R) L) (hc : halts S.prog c), eval.aux S.prog { config := c, halts := hc } = m ↔ ∃ regs, c [S.prog]==>* Config.haltedOn m regs
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ ⊢ ∀ (c : Config (WithIO R) L) (hc : halts S.prog c), eval.aux S.prog { config := c, halts := hc } = m ↔ ∃ regs, c [S.prog]==>* Config.haltedOn m regs
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L n : ℕ hn : haltsOn S n m : ℕ ⊢ ∀ (c : Config (WithIO R) L) (hc : halts S.prog c), eval.aux S.prog { config := c, halts := hc } = m ↔ ∃ regs, c [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
intro c hc
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ ⊢ ∀ (c : Config (WithIO R) L) (hc : halts S.prog c), eval.aux S.prog { config := c, halts := hc } = m ↔ ∃ regs, c [S.prog]==>* Config.haltedOn m regs
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c : Config (WithIO R) L hc : halts S.prog c ⊢ eval.aux S.prog { config := c, halts := hc } = m ↔ ∃ regs, c [S.prog]==>* Config.haltedOn m regs
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ ⊢ ∀ (c : Config (WithIO R) L) (hc : halts S.prog c), eval.aux S.prog { config := c, halts := hc } = m ↔ ∃ regs, c [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
rcases hc with ⟨d,h,hd⟩
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c : Config (WithIO R) L hc : halts S.prog c ⊢ eval.aux S.prog { config := c, halts := hc } = m ↔ ∃ regs, c [S.prog]==>* Config.haltedOn m regs
case intro.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L h : c [S.prog]==>* d hd : Config.is_halted d = true ⊢ eval.aux S.prog { config := c, halts := (_ : ∃ d, (c [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ ∃ regs, c [S.prog]==>* Config.haltedOn m regs
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c : Config (WithIO R) L hc : halts S.prog c ⊢ eval.aux S.prog { config := c, halts := hc } = m ↔ ∃ regs, c [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
induction h using Relation.ReflTransGen.head_induction_on
case intro.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L h : c [S.prog]==>* d hd : Config.is_halted d = true ⊢ eval.aux S.prog { config := c, halts := (_ : ∃ d, (c [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ ∃ regs, c [S.prog]==>* Config.haltedOn m regs
case intro.intro.refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true ⊢ eval.aux S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) } = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs case intro.intro.head R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true a✝¹ c✝ : Config (WithIO R) L h'✝ : a✝¹ [S.prog]==> c✝ h✝ : Relation.ReflTransGen (stepsTo S.prog) c✝ d a✝ : eval.aux S.prog { config := c✝, halts := (_ : ∃ d, (c✝ [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ ∃ regs, c✝ [S.prog]==>* Config.haltedOn m regs ⊢ eval.aux S.prog { config := a✝¹, halts := (_ : ∃ d, (a✝¹ [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ ∃ regs, a✝¹ [S.prog]==>* Config.haltedOn m regs
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L h : c [S.prog]==>* d hd : Config.is_halted d = true ⊢ eval.aux S.prog { config := c, halts := (_ : ∃ d, (c [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ ∃ regs, c [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
case refl => unfold eval.aux split case h_2 h => rw [hd] at h contradiction next h => clear h simp constructor <;> intro h . use fun r => d.regs (.internal r) have : d = Config.haltedOn m (fun r => d.regs (.internal r)) := by rcases d with ⟨ip,regs⟩ simp at hd; cases hd simp [Config.haltedOn] funext r cases r <;> simp at h ⊢ . exact h rw [this] at * cases this exact .refl . rcases h with ⟨regs,h⟩ have := halt_is_fixpoint _ h hd clear h hd cases this simp
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true ⊢ eval.aux S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) } = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs
no goals
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true ⊢ eval.aux S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) } = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
unfold eval.aux
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true ⊢ eval.aux S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) } = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true ⊢ (match hc : Config.is_halted { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config with | true => Config.regs { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config, halts := (_ : halts S.prog (step S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config)) }; let_fun this := (_ : { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config.ip = none → False); eval.aux S.prog c') = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true ⊢ eval.aux S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) } = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
split
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true ⊢ (match hc : Config.is_halted { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config with | true => Config.regs { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config, halts := (_ : halts S.prog (step S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config)) }; let_fun this := (_ : { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config.ip = none → False); eval.aux S.prog c') = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs
case h_1 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true heq✝ : Config.is_halted { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config = true ⊢ Config.regs { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config WithIO.io = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs case h_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true heq✝ : Config.is_halted { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config = false ⊢ (let c' := { config := step S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config, halts := (_ : halts S.prog (step S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config)) }; let_fun this := (_ : { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config.ip = none → False); eval.aux S.prog c') = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true ⊢ (match hc : Config.is_halted { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config with | true => Config.regs { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config, halts := (_ : halts S.prog (step S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config)) }; let_fun this := (_ : { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config.ip = none → False); eval.aux S.prog c') = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
case h_2 h => rw [hd] at h contradiction
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.is_halted { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config = false ⊢ (let c' := { config := step S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config, halts := (_ : halts S.prog (step S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config)) }; let_fun this := (_ : { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config.ip = none → False); eval.aux S.prog c') = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs
no goals
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.is_halted { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config = false ⊢ (let c' := { config := step S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config, halts := (_ : halts S.prog (step S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config)) }; let_fun this := (_ : { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config.ip = none → False); eval.aux S.prog c') = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
next h => clear h simp constructor <;> intro h . use fun r => d.regs (.internal r) have : d = Config.haltedOn m (fun r => d.regs (.internal r)) := by rcases d with ⟨ip,regs⟩ simp at hd; cases hd simp [Config.haltedOn] funext r cases r <;> simp at h ⊢ . exact h rw [this] at * cases this exact .refl . rcases h with ⟨regs,h⟩ have := halt_is_fixpoint _ h hd clear h hd cases this simp
case h_1 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true heq✝ : Config.is_halted { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config = true ⊢ Config.regs { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config WithIO.io = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h_1 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true heq✝ : Config.is_halted { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config = true ⊢ Config.regs { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config WithIO.io = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
rw [hd] at h
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.is_halted { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config = false ⊢ (let c' := { config := step S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config, halts := (_ : halts S.prog (step S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config)) }; let_fun this := (_ : { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config.ip = none → False); eval.aux S.prog c') = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h✝ : Config.is_halted { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config = false h : true = false ⊢ (let c' := { config := step S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config, halts := (_ : halts S.prog (step S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config)) }; let_fun this := (_ : { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config.ip = none → False); eval.aux S.prog c') = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.is_halted { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config = false ⊢ (let c' := { config := step S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config, halts := (_ : halts S.prog (step S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config)) }; let_fun this := (_ : { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config.ip = none → False); eval.aux S.prog c') = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
contradiction
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h✝ : Config.is_halted { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config = false h : true = false ⊢ (let c' := { config := step S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config, halts := (_ : halts S.prog (step S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config)) }; let_fun this := (_ : { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config.ip = none → False); eval.aux S.prog c') = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs
no goals
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h✝ : Config.is_halted { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config = false h : true = false ⊢ (let c' := { config := step S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config, halts := (_ : halts S.prog (step S.prog { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config)) }; let_fun this := (_ : { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config.ip = none → False); eval.aux S.prog c') = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
clear h
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.is_halted { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config = true ⊢ Config.regs { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config WithIO.io = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true ⊢ Config.regs { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config WithIO.io = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.is_halted { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config = true ⊢ Config.regs { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config WithIO.io = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
simp
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true ⊢ Config.regs { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config WithIO.io = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true ⊢ Config.regs d WithIO.io = m ↔ ∃ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m regs)
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true ⊢ Config.regs { config := d, halts := (_ : ∃ d_1, (d [S.prog]==>* d_1) ∧ Config.is_halted d_1 = true) }.config WithIO.io = m ↔ ∃ regs, d [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
constructor <;> intro h
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true ⊢ Config.regs d WithIO.io = m ↔ ∃ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m regs)
case mp R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.regs d WithIO.io = m ⊢ ∃ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m regs) case mpr R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : ∃ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m regs) ⊢ Config.regs d WithIO.io = m
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true ⊢ Config.regs d WithIO.io = m ↔ ∃ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m regs) TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
. use fun r => d.regs (.internal r) have : d = Config.haltedOn m (fun r => d.regs (.internal r)) := by rcases d with ⟨ip,regs⟩ simp at hd; cases hd simp [Config.haltedOn] funext r cases r <;> simp at h ⊢ . exact h rw [this] at * cases this exact .refl
case mp R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.regs d WithIO.io = m ⊢ ∃ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m regs) case mpr R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : ∃ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m regs) ⊢ Config.regs d WithIO.io = m
case mpr R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : ∃ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m regs) ⊢ Config.regs d WithIO.io = m
Please generate a tactic in lean4 to solve the state. STATE: case mp R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.regs d WithIO.io = m ⊢ ∃ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m regs) case mpr R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : ∃ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m regs) ⊢ Config.regs d WithIO.io = m TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
. rcases h with ⟨regs,h⟩ have := halt_is_fixpoint _ h hd clear h hd cases this simp
case mpr R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : ∃ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m regs) ⊢ Config.regs d WithIO.io = m
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mpr R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : ∃ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m regs) ⊢ Config.regs d WithIO.io = m TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
use fun r => d.regs (.internal r)
case mp R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.regs d WithIO.io = m ⊢ ∃ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m regs)
case mp R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.regs d WithIO.io = m ⊢ Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m fun r => Config.regs d (WithIO.internal r))
Please generate a tactic in lean4 to solve the state. STATE: case mp R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.regs d WithIO.io = m ⊢ ∃ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m regs) TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
have : d = Config.haltedOn m (fun r => d.regs (.internal r)) := by rcases d with ⟨ip,regs⟩ simp at hd; cases hd simp [Config.haltedOn] funext r cases r <;> simp at h ⊢ . exact h
case mp R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.regs d WithIO.io = m ⊢ Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m fun r => Config.regs d (WithIO.internal r))
case mp R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.regs d WithIO.io = m this : d = Config.haltedOn m fun r => Config.regs d (WithIO.internal r) ⊢ Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m fun r => Config.regs d (WithIO.internal r))
Please generate a tactic in lean4 to solve the state. STATE: case mp R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.regs d WithIO.io = m ⊢ Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m fun r => Config.regs d (WithIO.internal r)) TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
rw [this] at *
case mp R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.regs d WithIO.io = m this : d = Config.haltedOn m fun r => Config.regs d (WithIO.internal r) ⊢ Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m fun r => Config.regs d (WithIO.internal r))
case mp R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.regs d WithIO.io = m this : (Config.haltedOn m fun r => Config.regs d (WithIO.internal r)) = Config.haltedOn m fun r => Config.regs (Config.haltedOn m fun r => Config.regs d (WithIO.internal r)) (WithIO.internal r) ⊢ Relation.ReflTransGen (fun c d => step S.prog c = d) (Config.haltedOn m fun r => Config.regs d (WithIO.internal r)) (Config.haltedOn m fun r => Config.regs (Config.haltedOn m fun r => Config.regs d (WithIO.internal r)) (WithIO.internal r))
Please generate a tactic in lean4 to solve the state. STATE: case mp R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.regs d WithIO.io = m this : d = Config.haltedOn m fun r => Config.regs d (WithIO.internal r) ⊢ Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m fun r => Config.regs d (WithIO.internal r)) TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
cases this
case mp R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.regs d WithIO.io = m this : (Config.haltedOn m fun r => Config.regs d (WithIO.internal r)) = Config.haltedOn m fun r => Config.regs (Config.haltedOn m fun r => Config.regs d (WithIO.internal r)) (WithIO.internal r) ⊢ Relation.ReflTransGen (fun c d => step S.prog c = d) (Config.haltedOn m fun r => Config.regs d (WithIO.internal r)) (Config.haltedOn m fun r => Config.regs (Config.haltedOn m fun r => Config.regs d (WithIO.internal r)) (WithIO.internal r))
case mp.refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.regs d WithIO.io = m ⊢ Relation.ReflTransGen (fun c d => step S.prog c = d) (Config.haltedOn m fun r => Config.regs d (WithIO.internal r)) (Config.haltedOn m fun r => Config.regs (Config.haltedOn m fun r => Config.regs d (WithIO.internal r)) (WithIO.internal r))
Please generate a tactic in lean4 to solve the state. STATE: case mp R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.regs d WithIO.io = m this : (Config.haltedOn m fun r => Config.regs d (WithIO.internal r)) = Config.haltedOn m fun r => Config.regs (Config.haltedOn m fun r => Config.regs d (WithIO.internal r)) (WithIO.internal r) ⊢ Relation.ReflTransGen (fun c d => step S.prog c = d) (Config.haltedOn m fun r => Config.regs d (WithIO.internal r)) (Config.haltedOn m fun r => Config.regs (Config.haltedOn m fun r => Config.regs d (WithIO.internal r)) (WithIO.internal r)) TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
exact .refl
case mp.refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.regs d WithIO.io = m ⊢ Relation.ReflTransGen (fun c d => step S.prog c = d) (Config.haltedOn m fun r => Config.regs d (WithIO.internal r)) (Config.haltedOn m fun r => Config.regs (Config.haltedOn m fun r => Config.regs d (WithIO.internal r)) (WithIO.internal r))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mp.refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.regs d WithIO.io = m ⊢ Relation.ReflTransGen (fun c d => step S.prog c = d) (Config.haltedOn m fun r => Config.regs d (WithIO.internal r)) (Config.haltedOn m fun r => Config.regs (Config.haltedOn m fun r => Config.regs d (WithIO.internal r)) (WithIO.internal r)) TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
rcases d with ⟨ip,regs⟩
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.regs d WithIO.io = m ⊢ d = Config.haltedOn m fun r => Config.regs d (WithIO.internal r)
case mk R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c : Config (WithIO R) L ip : Option L regs : WithIO R → ℕ hd : Config.is_halted { ip := ip, regs := regs } = true h : Config.regs { ip := ip, regs := regs } WithIO.io = m ⊢ { ip := ip, regs := regs } = Config.haltedOn m fun r => Config.regs { ip := ip, regs := regs } (WithIO.internal r)
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c d : Config (WithIO R) L hd : Config.is_halted d = true h : Config.regs d WithIO.io = m ⊢ d = Config.haltedOn m fun r => Config.regs d (WithIO.internal r) TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
simp at hd
case mk R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c : Config (WithIO R) L ip : Option L regs : WithIO R → ℕ hd : Config.is_halted { ip := ip, regs := regs } = true h : Config.regs { ip := ip, regs := regs } WithIO.io = m ⊢ { ip := ip, regs := regs } = Config.haltedOn m fun r => Config.regs { ip := ip, regs := regs } (WithIO.internal r)
case mk R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c : Config (WithIO R) L ip : Option L regs : WithIO R → ℕ h : Config.regs { ip := ip, regs := regs } WithIO.io = m hd : ip = none ⊢ { ip := ip, regs := regs } = Config.haltedOn m fun r => Config.regs { ip := ip, regs := regs } (WithIO.internal r)
Please generate a tactic in lean4 to solve the state. STATE: case mk R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c : Config (WithIO R) L ip : Option L regs : WithIO R → ℕ hd : Config.is_halted { ip := ip, regs := regs } = true h : Config.regs { ip := ip, regs := regs } WithIO.io = m ⊢ { ip := ip, regs := regs } = Config.haltedOn m fun r => Config.regs { ip := ip, regs := regs } (WithIO.internal r) TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
cases hd
case mk R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c : Config (WithIO R) L ip : Option L regs : WithIO R → ℕ h : Config.regs { ip := ip, regs := regs } WithIO.io = m hd : ip = none ⊢ { ip := ip, regs := regs } = Config.haltedOn m fun r => Config.regs { ip := ip, regs := regs } (WithIO.internal r)
case mk.refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c : Config (WithIO R) L regs : WithIO R → ℕ h : Config.regs { ip := none, regs := regs } WithIO.io = m ⊢ { ip := none, regs := regs } = Config.haltedOn m fun r => Config.regs { ip := none, regs := regs } (WithIO.internal r)
Please generate a tactic in lean4 to solve the state. STATE: case mk R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c : Config (WithIO R) L ip : Option L regs : WithIO R → ℕ h : Config.regs { ip := ip, regs := regs } WithIO.io = m hd : ip = none ⊢ { ip := ip, regs := regs } = Config.haltedOn m fun r => Config.regs { ip := ip, regs := regs } (WithIO.internal r) TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
simp [Config.haltedOn]
case mk.refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c : Config (WithIO R) L regs : WithIO R → ℕ h : Config.regs { ip := none, regs := regs } WithIO.io = m ⊢ { ip := none, regs := regs } = Config.haltedOn m fun r => Config.regs { ip := none, regs := regs } (WithIO.internal r)
case mk.refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c : Config (WithIO R) L regs : WithIO R → ℕ h : Config.regs { ip := none, regs := regs } WithIO.io = m ⊢ regs = fun x => match x with | WithIO.io => m | WithIO.internal r => regs (WithIO.internal r)
Please generate a tactic in lean4 to solve the state. STATE: case mk.refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : ℕ c : Config (WithIO R) L regs : WithIO R → ℕ h : Config.regs { ip := none, regs := regs } WithIO.io = m ⊢ { ip := none, regs := regs } = Config.haltedOn m fun r => Config.regs { ip := none, regs := regs } (WithIO.internal r) TACTIC: