url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
funext r
case mk.refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c : Config (WithIO R) L regs : WithIO R β†’ β„• h : Config.regs { ip := none, regs := regs } WithIO.io = m ⊒ regs = fun x => match x with | WithIO.io => m | WithIO.internal r => regs (WithIO.internal r)
case mk.refl.h R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c : Config (WithIO R) L regs : WithIO R β†’ β„• h : Config.regs { ip := none, regs := regs } WithIO.io = m r : WithIO R ⊒ regs r = match r with | WithIO.io => m | WithIO.internal r => regs (WithIO.internal r)
Please generate a tactic in lean4 to solve the state. STATE: case mk.refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c : Config (WithIO R) L regs : WithIO R β†’ β„• h : Config.regs { ip := none, regs := regs } WithIO.io = m ⊒ regs = fun x => match x with | WithIO.io => m | WithIO.internal r => regs (WithIO.internal r) TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
cases r <;> simp at h ⊒
case mk.refl.h R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c : Config (WithIO R) L regs : WithIO R β†’ β„• h : Config.regs { ip := none, regs := regs } WithIO.io = m r : WithIO R ⊒ regs r = match r with | WithIO.io => m | WithIO.internal r => regs (WithIO.internal r)
case mk.refl.h.io R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c : Config (WithIO R) L regs : WithIO R β†’ β„• h : regs WithIO.io = m ⊒ regs WithIO.io = m
Please generate a tactic in lean4 to solve the state. STATE: case mk.refl.h R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c : Config (WithIO R) L regs : WithIO R β†’ β„• h : Config.regs { ip := none, regs := regs } WithIO.io = m r : WithIO R ⊒ regs r = match r with | WithIO.io => m | WithIO.internal r => regs (WithIO.internal r) TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
. exact h
case mk.refl.h.io R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c : Config (WithIO R) L regs : WithIO R β†’ β„• h : regs WithIO.io = m ⊒ regs WithIO.io = m
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mk.refl.h.io R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c : Config (WithIO R) L regs : WithIO R β†’ β„• h : regs WithIO.io = m ⊒ regs WithIO.io = m TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
exact h
case mk.refl.h.io R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c : Config (WithIO R) L regs : WithIO R β†’ β„• h : regs WithIO.io = m ⊒ regs WithIO.io = m
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mk.refl.h.io R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c : Config (WithIO R) L regs : WithIO R β†’ β„• h : regs WithIO.io = m ⊒ regs WithIO.io = m TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
rcases h with ⟨regs,h⟩
case mpr R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c d : Config (WithIO R) L hd : Config.is_halted d = true h : βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m regs) ⊒ Config.regs d WithIO.io = m
case mpr.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c d : Config (WithIO R) L hd : Config.is_halted d = true regs : R β†’ β„• h : Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m regs) ⊒ Config.regs d WithIO.io = m
Please generate a tactic in lean4 to solve the state. STATE: case mpr R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c d : Config (WithIO R) L hd : Config.is_halted d = true h : βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m regs) ⊒ Config.regs d WithIO.io = m TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
have := halt_is_fixpoint _ h hd
case mpr.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c d : Config (WithIO R) L hd : Config.is_halted d = true regs : R β†’ β„• h : Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m regs) ⊒ Config.regs d WithIO.io = m
case mpr.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c d : Config (WithIO R) L hd : Config.is_halted d = true regs : R β†’ β„• h : Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m regs) this : d = Config.haltedOn m regs ⊒ Config.regs d WithIO.io = m
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c d : Config (WithIO R) L hd : Config.is_halted d = true regs : R β†’ β„• h : Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m regs) ⊒ Config.regs d WithIO.io = m TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
clear h hd
case mpr.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c d : Config (WithIO R) L hd : Config.is_halted d = true regs : R β†’ β„• h : Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m regs) this : d = Config.haltedOn m regs ⊒ Config.regs d WithIO.io = m
case mpr.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c d : Config (WithIO R) L regs : R β†’ β„• this : d = Config.haltedOn m regs ⊒ Config.regs d WithIO.io = m
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c d : Config (WithIO R) L hd : Config.is_halted d = true regs : R β†’ β„• h : Relation.ReflTransGen (fun c d => step S.prog c = d) d (Config.haltedOn m regs) this : d = Config.haltedOn m regs ⊒ Config.regs d WithIO.io = m TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
cases this
case mpr.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c d : Config (WithIO R) L regs : R β†’ β„• this : d = Config.haltedOn m regs ⊒ Config.regs d WithIO.io = m
case mpr.intro.refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c : Config (WithIO R) L regs : R β†’ β„• ⊒ Config.regs (Config.haltedOn m regs) WithIO.io = m
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c d : Config (WithIO R) L regs : R β†’ β„• this : d = Config.haltedOn m regs ⊒ Config.regs d WithIO.io = m TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
simp
case mpr.intro.refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c : Config (WithIO R) L regs : R β†’ β„• ⊒ Config.regs (Config.haltedOn m regs) WithIO.io = m
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c : Config (WithIO R) L regs : R β†’ β„• ⊒ Config.regs (Config.haltedOn m regs) WithIO.io = m TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
clear c
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs ⊒ eval.aux S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, a [S.prog]==>* Config.haltedOn m regs
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs ⊒ eval.aux S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, a [S.prog]==>* Config.haltedOn m regs
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• c d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs ⊒ eval.aux S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, a [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
unfold eval.aux
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs ⊒ eval.aux S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, a [S.prog]==>* Config.haltedOn m regs
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs ⊒ (match hc : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config with | true => Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m ↔ βˆƒ regs, a [S.prog]==>* Config.haltedOn m regs
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs ⊒ eval.aux S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, a [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
constructor <;> intro h
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs ⊒ (match hc : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config with | true => Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m ↔ βˆƒ regs, a [S.prog]==>* Config.haltedOn m regs
case mp R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs h : (match hc : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config with | true => Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m ⊒ βˆƒ regs, a [S.prog]==>* Config.haltedOn m regs case mpr R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs h : βˆƒ regs, a [S.prog]==>* Config.haltedOn m regs ⊒ (match hc : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config with | true => Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs ⊒ (match hc : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config with | true => Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m ↔ βˆƒ regs, a [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
. rcases h with ⟨regs,h⟩ split next ha => simp only at * have := halt_is_fixpoint _ h ha simp [this] next ha => simp cases ha_to_b apply ih.mpr use regs have := stepsToTrans_of_not_halts_stepsToTransRefl_halts _ h ?_ ?_ . rcases Relation.TransGen.head'_iff.mp this with ⟨e,rfl,he⟩ exact he . simp at ha; simp [ha] . simp
case mpr R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs h : βˆƒ regs, a [S.prog]==>* Config.haltedOn m regs ⊒ (match hc : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config with | true => Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mpr R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs h : βˆƒ regs, a [S.prog]==>* Config.haltedOn m regs ⊒ (match hc : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config with | true => Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
rcases this with ⟨regs,h⟩
case mp R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs h : (match hc : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config with | true => Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m this : βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs ⊒ βˆƒ regs, a [S.prog]==>* Config.haltedOn m regs
case mp.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs h✝ : (match hc : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config with | true => Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m regs : R β†’ β„• h : b [S.prog]==>* Config.haltedOn m regs ⊒ βˆƒ regs, a [S.prog]==>* Config.haltedOn m regs
Please generate a tactic in lean4 to solve the state. STATE: case mp R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs h : (match hc : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config with | true => Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m this : βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs ⊒ βˆƒ regs, a [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
use regs
case mp.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs h✝ : (match hc : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config with | true => Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m regs : R β†’ β„• h : b [S.prog]==>* Config.haltedOn m regs ⊒ βˆƒ regs, a [S.prog]==>* Config.haltedOn m regs
case mp.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs h✝ : (match hc : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config with | true => Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m regs : R β†’ β„• h : b [S.prog]==>* Config.haltedOn m regs ⊒ a [S.prog]==>* Config.haltedOn m regs
Please generate a tactic in lean4 to solve the state. STATE: case mp.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs h✝ : (match hc : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config with | true => Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m regs : R β†’ β„• h : b [S.prog]==>* Config.haltedOn m regs ⊒ βˆƒ regs, a [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
exact .head ha_to_b h
case mp.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs h✝ : (match hc : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config with | true => Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m regs : R β†’ β„• h : b [S.prog]==>* Config.haltedOn m regs ⊒ a [S.prog]==>* Config.haltedOn m regs
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mp.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs h✝ : (match hc : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config with | true => Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m regs : R β†’ β„• h : b [S.prog]==>* Config.haltedOn m regs ⊒ a [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
simp at *
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs h : (match hc : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config with | true => Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m ⊒ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs) h : (match hc : Config.is_halted a with | true => Config.regs a WithIO.io | false => eval.aux S.prog { config := step S.prog a, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }) = m ⊒ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs)
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs h : (match hc : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config with | true => Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m ⊒ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
split at h
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs) h : (match hc : Config.is_halted a with | true => Config.regs a WithIO.io | false => eval.aux S.prog { config := step S.prog a, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }) = m ⊒ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs)
case h_1 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs) heq✝ : Config.is_halted a = true h : Config.regs a WithIO.io = m ⊒ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs) case h_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs) heq✝ : Config.is_halted a = false h : eval.aux S.prog { config := step S.prog a, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) } = m ⊒ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs)
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs) h : (match hc : Config.is_halted a with | true => Config.regs a WithIO.io | false => eval.aux S.prog { config := step S.prog a, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }) = m ⊒ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs) TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
. apply ih.mp cases ha_to_b exact h
case h_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs) heq✝ : Config.is_halted a = false h : eval.aux S.prog { config := step S.prog a, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) } = m ⊒ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs) heq✝ : Config.is_halted a = false h : eval.aux S.prog { config := step S.prog a, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) } = m ⊒ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs) TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
have : a = b := halt_is_fixpoint _ (.single ha_to_b) β€Ή_β€Ί
case h_1 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs) heq✝ : Config.is_halted a = true h : Config.regs a WithIO.io = m ⊒ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs)
case h_1 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs) heq✝ : Config.is_halted a = true h : Config.regs a WithIO.io = m this : a = b ⊒ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs)
Please generate a tactic in lean4 to solve the state. STATE: case h_1 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs) heq✝ : Config.is_halted a = true h : Config.regs a WithIO.io = m ⊒ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs) TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
cases this
case h_1 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs) heq✝ : Config.is_halted a = true h : Config.regs a WithIO.io = m this : a = b ⊒ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs)
case h_1.refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L heq✝ : Config.is_halted a = true h : Config.regs a WithIO.io = m ha_to_b : a [S.prog]==> a hb_to_d : Relation.ReflTransGen (stepsTo S.prog) a d ih : eval.aux S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) a (Config.haltedOn m regs) ⊒ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) a (Config.haltedOn m regs)
Please generate a tactic in lean4 to solve the state. STATE: case h_1 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs) heq✝ : Config.is_halted a = true h : Config.regs a WithIO.io = m this : a = b ⊒ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs) TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
rw [this]
case h_1.refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L heq✝ : Config.is_halted a = true h : Config.regs a WithIO.io = m ha_to_b : a [S.prog]==> a hb_to_d : Relation.ReflTransGen (stepsTo S.prog) a d ih : eval.aux S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) a (Config.haltedOn m regs) this : a = Config.haltedOn m fun x => Config.regs a (WithIO.internal x) ⊒ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) a (Config.haltedOn m regs)
case h_1.refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L heq✝ : Config.is_halted a = true h : Config.regs a WithIO.io = m ha_to_b : a [S.prog]==> a hb_to_d : Relation.ReflTransGen (stepsTo S.prog) a d ih : eval.aux S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) a (Config.haltedOn m regs) this : a = Config.haltedOn m fun x => Config.regs a (WithIO.internal x) ⊒ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) (Config.haltedOn m fun x => Config.regs a (WithIO.internal x)) (Config.haltedOn m regs)
Please generate a tactic in lean4 to solve the state. STATE: case h_1.refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L heq✝ : Config.is_halted a = true h : Config.regs a WithIO.io = m ha_to_b : a [S.prog]==> a hb_to_d : Relation.ReflTransGen (stepsTo S.prog) a d ih : eval.aux S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) a (Config.haltedOn m regs) this : a = Config.haltedOn m fun x => Config.regs a (WithIO.internal x) ⊒ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) a (Config.haltedOn m regs) TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
refine ⟨_, Relation.ReflTransGen.refl⟩
case h_1.refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L heq✝ : Config.is_halted a = true h : Config.regs a WithIO.io = m ha_to_b : a [S.prog]==> a hb_to_d : Relation.ReflTransGen (stepsTo S.prog) a d ih : eval.aux S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) a (Config.haltedOn m regs) this : a = Config.haltedOn m fun x => Config.regs a (WithIO.internal x) ⊒ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) (Config.haltedOn m fun x => Config.regs a (WithIO.internal x)) (Config.haltedOn m regs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h_1.refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L heq✝ : Config.is_halted a = true h : Config.regs a WithIO.io = m ha_to_b : a [S.prog]==> a hb_to_d : Relation.ReflTransGen (stepsTo S.prog) a d ih : eval.aux S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) a (Config.haltedOn m regs) this : a = Config.haltedOn m fun x => Config.regs a (WithIO.internal x) ⊒ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) (Config.haltedOn m fun x => Config.regs a (WithIO.internal x)) (Config.haltedOn m regs) TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
cases a
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L heq✝ : Config.is_halted a = true h : Config.regs a WithIO.io = m ha_to_b : a [S.prog]==> a hb_to_d : Relation.ReflTransGen (stepsTo S.prog) a d ih : eval.aux S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) a (Config.haltedOn m regs) ⊒ a = Config.haltedOn m fun x => Config.regs a (WithIO.internal x)
case mk R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true ip✝ : Option L regs✝ : WithIO R β†’ β„• heq✝ : Config.is_halted { ip := ip✝, regs := regs✝ } = true h : Config.regs { ip := ip✝, regs := regs✝ } WithIO.io = m ha_to_b : { ip := ip✝, regs := regs✝ } [S.prog]==> { ip := ip✝, regs := regs✝ } hb_to_d : Relation.ReflTransGen (stepsTo S.prog) { ip := ip✝, regs := regs✝ } d ih : eval.aux S.prog { config := { ip := ip✝, regs := regs✝ }, halts := (_ : βˆƒ d, ({ ip := ip✝, regs := regs✝ } [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) { ip := ip✝, regs := regs✝ } (Config.haltedOn m regs) ⊒ { ip := ip✝, regs := regs✝ } = Config.haltedOn m fun x => Config.regs { ip := ip✝, regs := regs✝ } (WithIO.internal x)
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L heq✝ : Config.is_halted a = true h : Config.regs a WithIO.io = m ha_to_b : a [S.prog]==> a hb_to_d : Relation.ReflTransGen (stepsTo S.prog) a d ih : eval.aux S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) a (Config.haltedOn m regs) ⊒ a = Config.haltedOn m fun x => Config.regs a (WithIO.internal x) TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
simp at *
case mk R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true ip✝ : Option L regs✝ : WithIO R β†’ β„• heq✝ : Config.is_halted { ip := ip✝, regs := regs✝ } = true h : Config.regs { ip := ip✝, regs := regs✝ } WithIO.io = m ha_to_b : { ip := ip✝, regs := regs✝ } [S.prog]==> { ip := ip✝, regs := regs✝ } hb_to_d : Relation.ReflTransGen (stepsTo S.prog) { ip := ip✝, regs := regs✝ } d ih : eval.aux S.prog { config := { ip := ip✝, regs := regs✝ }, halts := (_ : βˆƒ d, ({ ip := ip✝, regs := regs✝ } [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) { ip := ip✝, regs := regs✝ } (Config.haltedOn m regs) ⊒ { ip := ip✝, regs := regs✝ } = Config.haltedOn m fun x => Config.regs { ip := ip✝, regs := regs✝ } (WithIO.internal x)
case mk R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true ip✝ : Option L regs✝ : WithIO R β†’ β„• h : regs✝ WithIO.io = m ha_to_b : step S.prog { ip := ip✝, regs := regs✝ } = { ip := ip✝, regs := regs✝ } hb_to_d : Relation.ReflTransGen (stepsTo S.prog) { ip := ip✝, regs := regs✝ } d ih : eval.aux S.prog { config := { ip := ip✝, regs := regs✝ }, halts := (_ : βˆƒ d, ({ ip := ip✝, regs := regs✝ } [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) { ip := ip✝, regs := regs✝ } (Config.haltedOn m regs) heq✝ : ip✝ = none ⊒ { ip := ip✝, regs := regs✝ } = Config.haltedOn m fun x => regs✝ (WithIO.internal x)
Please generate a tactic in lean4 to solve the state. STATE: case mk R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true ip✝ : Option L regs✝ : WithIO R β†’ β„• heq✝ : Config.is_halted { ip := ip✝, regs := regs✝ } = true h : Config.regs { ip := ip✝, regs := regs✝ } WithIO.io = m ha_to_b : { ip := ip✝, regs := regs✝ } [S.prog]==> { ip := ip✝, regs := regs✝ } hb_to_d : Relation.ReflTransGen (stepsTo S.prog) { ip := ip✝, regs := regs✝ } d ih : eval.aux S.prog { config := { ip := ip✝, regs := regs✝ }, halts := (_ : βˆƒ d, ({ ip := ip✝, regs := regs✝ } [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) { ip := ip✝, regs := regs✝ } (Config.haltedOn m regs) ⊒ { ip := ip✝, regs := regs✝ } = Config.haltedOn m fun x => Config.regs { ip := ip✝, regs := regs✝ } (WithIO.internal x) TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
simp [Config.haltedOn, *]
case mk R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true ip✝ : Option L regs✝ : WithIO R β†’ β„• h : regs✝ WithIO.io = m ha_to_b : step S.prog { ip := ip✝, regs := regs✝ } = { ip := ip✝, regs := regs✝ } hb_to_d : Relation.ReflTransGen (stepsTo S.prog) { ip := ip✝, regs := regs✝ } d ih : eval.aux S.prog { config := { ip := ip✝, regs := regs✝ }, halts := (_ : βˆƒ d, ({ ip := ip✝, regs := regs✝ } [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) { ip := ip✝, regs := regs✝ } (Config.haltedOn m regs) heq✝ : ip✝ = none ⊒ { ip := ip✝, regs := regs✝ } = Config.haltedOn m fun x => regs✝ (WithIO.internal x)
case mk R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true ip✝ : Option L regs✝ : WithIO R β†’ β„• h : regs✝ WithIO.io = m ha_to_b : step S.prog { ip := ip✝, regs := regs✝ } = { ip := ip✝, regs := regs✝ } hb_to_d : Relation.ReflTransGen (stepsTo S.prog) { ip := ip✝, regs := regs✝ } d ih : eval.aux S.prog { config := { ip := ip✝, regs := regs✝ }, halts := (_ : βˆƒ d, ({ ip := ip✝, regs := regs✝ } [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) { ip := ip✝, regs := regs✝ } (Config.haltedOn m regs) heq✝ : ip✝ = none ⊒ regs✝ = fun x => match x with | WithIO.io => m | WithIO.internal r => regs✝ (WithIO.internal r)
Please generate a tactic in lean4 to solve the state. STATE: case mk R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true ip✝ : Option L regs✝ : WithIO R β†’ β„• h : regs✝ WithIO.io = m ha_to_b : step S.prog { ip := ip✝, regs := regs✝ } = { ip := ip✝, regs := regs✝ } hb_to_d : Relation.ReflTransGen (stepsTo S.prog) { ip := ip✝, regs := regs✝ } d ih : eval.aux S.prog { config := { ip := ip✝, regs := regs✝ }, halts := (_ : βˆƒ d, ({ ip := ip✝, regs := regs✝ } [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) { ip := ip✝, regs := regs✝ } (Config.haltedOn m regs) heq✝ : ip✝ = none ⊒ { ip := ip✝, regs := regs✝ } = Config.haltedOn m fun x => regs✝ (WithIO.internal x) TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
funext x
case mk R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true ip✝ : Option L regs✝ : WithIO R β†’ β„• h : regs✝ WithIO.io = m ha_to_b : step S.prog { ip := ip✝, regs := regs✝ } = { ip := ip✝, regs := regs✝ } hb_to_d : Relation.ReflTransGen (stepsTo S.prog) { ip := ip✝, regs := regs✝ } d ih : eval.aux S.prog { config := { ip := ip✝, regs := regs✝ }, halts := (_ : βˆƒ d, ({ ip := ip✝, regs := regs✝ } [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) { ip := ip✝, regs := regs✝ } (Config.haltedOn m regs) heq✝ : ip✝ = none ⊒ regs✝ = fun x => match x with | WithIO.io => m | WithIO.internal r => regs✝ (WithIO.internal r)
case mk.h R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true ip✝ : Option L regs✝ : WithIO R β†’ β„• h : regs✝ WithIO.io = m ha_to_b : step S.prog { ip := ip✝, regs := regs✝ } = { ip := ip✝, regs := regs✝ } hb_to_d : Relation.ReflTransGen (stepsTo S.prog) { ip := ip✝, regs := regs✝ } d ih : eval.aux S.prog { config := { ip := ip✝, regs := regs✝ }, halts := (_ : βˆƒ d, ({ ip := ip✝, regs := regs✝ } [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) { ip := ip✝, regs := regs✝ } (Config.haltedOn m regs) heq✝ : ip✝ = none x : WithIO R ⊒ regs✝ x = match x with | WithIO.io => m | WithIO.internal r => regs✝ (WithIO.internal r)
Please generate a tactic in lean4 to solve the state. STATE: case mk R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true ip✝ : Option L regs✝ : WithIO R β†’ β„• h : regs✝ WithIO.io = m ha_to_b : step S.prog { ip := ip✝, regs := regs✝ } = { ip := ip✝, regs := regs✝ } hb_to_d : Relation.ReflTransGen (stepsTo S.prog) { ip := ip✝, regs := regs✝ } d ih : eval.aux S.prog { config := { ip := ip✝, regs := regs✝ }, halts := (_ : βˆƒ d, ({ ip := ip✝, regs := regs✝ } [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) { ip := ip✝, regs := regs✝ } (Config.haltedOn m regs) heq✝ : ip✝ = none ⊒ regs✝ = fun x => match x with | WithIO.io => m | WithIO.internal r => regs✝ (WithIO.internal r) TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
split <;> simp [*]
case mk.h R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true ip✝ : Option L regs✝ : WithIO R β†’ β„• h : regs✝ WithIO.io = m ha_to_b : step S.prog { ip := ip✝, regs := regs✝ } = { ip := ip✝, regs := regs✝ } hb_to_d : Relation.ReflTransGen (stepsTo S.prog) { ip := ip✝, regs := regs✝ } d ih : eval.aux S.prog { config := { ip := ip✝, regs := regs✝ }, halts := (_ : βˆƒ d, ({ ip := ip✝, regs := regs✝ } [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) { ip := ip✝, regs := regs✝ } (Config.haltedOn m regs) heq✝ : ip✝ = none x : WithIO R ⊒ regs✝ x = match x with | WithIO.io => m | WithIO.internal r => regs✝ (WithIO.internal r)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mk.h R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true ip✝ : Option L regs✝ : WithIO R β†’ β„• h : regs✝ WithIO.io = m ha_to_b : step S.prog { ip := ip✝, regs := regs✝ } = { ip := ip✝, regs := regs✝ } hb_to_d : Relation.ReflTransGen (stepsTo S.prog) { ip := ip✝, regs := regs✝ } d ih : eval.aux S.prog { config := { ip := ip✝, regs := regs✝ }, halts := (_ : βˆƒ d, ({ ip := ip✝, regs := regs✝ } [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) { ip := ip✝, regs := regs✝ } (Config.haltedOn m regs) heq✝ : ip✝ = none x : WithIO R ⊒ regs✝ x = match x with | WithIO.io => m | WithIO.internal r => regs✝ (WithIO.internal r) TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
apply ih.mp
case h_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs) heq✝ : Config.is_halted a = false h : eval.aux S.prog { config := step S.prog a, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) } = m ⊒ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs)
case h_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs) heq✝ : Config.is_halted a = false h : eval.aux S.prog { config := step S.prog a, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) } = m ⊒ eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m
Please generate a tactic in lean4 to solve the state. STATE: case h_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs) heq✝ : Config.is_halted a = false h : eval.aux S.prog { config := step S.prog a, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) } = m ⊒ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs) TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
cases ha_to_b
case h_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs) heq✝ : Config.is_halted a = false h : eval.aux S.prog { config := step S.prog a, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) } = m ⊒ eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m
case h_2.refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L heq✝ : Config.is_halted a = false hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) (step S.prog a) (Config.haltedOn m regs) h : eval.aux S.prog { config := step S.prog a, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) } = m ⊒ eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m
Please generate a tactic in lean4 to solve the state. STATE: case h_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) b (Config.haltedOn m regs) heq✝ : Config.is_halted a = false h : eval.aux S.prog { config := step S.prog a, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) } = m ⊒ eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
exact h
case h_2.refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L heq✝ : Config.is_halted a = false hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) (step S.prog a) (Config.haltedOn m regs) h : eval.aux S.prog { config := step S.prog a, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) } = m ⊒ eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h_2.refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L heq✝ : Config.is_halted a = false hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, Relation.ReflTransGen (fun c d => step S.prog c = d) (step S.prog a) (Config.haltedOn m regs) h : eval.aux S.prog { config := step S.prog a, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) } = m ⊒ eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
rcases h with ⟨regs,h⟩
case mpr R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs h : βˆƒ regs, a [S.prog]==>* Config.haltedOn m regs ⊒ (match hc : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config with | true => Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m
case mpr.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs ⊒ (match hc : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config with | true => Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m
Please generate a tactic in lean4 to solve the state. STATE: case mpr R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs h : βˆƒ regs, a [S.prog]==>* Config.haltedOn m regs ⊒ (match hc : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config with | true => Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
split
case mpr.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs ⊒ (match hc : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config with | true => Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m
case mpr.intro.h_1 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs heq✝ : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = true ⊒ Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io = m case mpr.intro.h_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs heq✝ : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ (let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs ⊒ (match hc : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config with | true => Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io | false => let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
next ha => simp only at * have := halt_is_fixpoint _ h ha simp [this]
case mpr.intro.h_1 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs heq✝ : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = true ⊒ Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io = m case mpr.intro.h_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs heq✝ : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ (let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m
case mpr.intro.h_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs heq✝ : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ (let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.h_1 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs heq✝ : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = true ⊒ Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io = m case mpr.intro.h_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs heq✝ : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ (let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
next ha => simp cases ha_to_b apply ih.mpr use regs have := stepsToTrans_of_not_halts_stepsToTransRefl_halts _ h ?_ ?_ . rcases Relation.TransGen.head'_iff.mp this with ⟨e,rfl,he⟩ exact he . simp at ha; simp [ha] . simp
case mpr.intro.h_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs heq✝ : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ (let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.h_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs heq✝ : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ (let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
simp only at *
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = true ⊒ Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io = m
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted a = true ⊒ Config.regs a WithIO.io = m
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = true ⊒ Config.regs { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config WithIO.io = m TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
have := halt_is_fixpoint _ h ha
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted a = true ⊒ Config.regs a WithIO.io = m
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted a = true this : a = Config.haltedOn m regs ⊒ Config.regs a WithIO.io = m
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted a = true ⊒ Config.regs a WithIO.io = m TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
simp [this]
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted a = true this : a = Config.haltedOn m regs ⊒ Config.regs a WithIO.io = m
no goals
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted a = true this : a = Config.haltedOn m regs ⊒ Config.regs a WithIO.io = m TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
simp
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ (let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ eval.aux S.prog { config := step S.prog a, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) } = m
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ (let c' := { config := step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) }; let_fun this := (_ : { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config.ip = none β†’ False); eval.aux S.prog c') = m TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
cases ha_to_b
R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ eval.aux S.prog { config := step S.prog a, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) } = m
case refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ eval.aux S.prog { config := step S.prog a, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) } = m
Please generate a tactic in lean4 to solve the state. STATE: R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a b : Config (WithIO R) L ha_to_b : a [S.prog]==> b hb_to_d : Relation.ReflTransGen (stepsTo S.prog) b d ih : eval.aux S.prog { config := b, halts := (_ : βˆƒ d, (b [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, b [S.prog]==>* Config.haltedOn m regs regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ eval.aux S.prog { config := step S.prog a, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) } = m TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
apply ih.mpr
case refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ eval.aux S.prog { config := step S.prog a, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) } = m
case refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs
Please generate a tactic in lean4 to solve the state. STATE: case refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ eval.aux S.prog { config := step S.prog a, halts := (_ : halts S.prog (step S.prog { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config)) } = m TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
use regs
case refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs
case refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ step S.prog a [S.prog]==>* Config.haltedOn m regs
Please generate a tactic in lean4 to solve the state. STATE: case refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
have := stepsToTrans_of_not_halts_stepsToTransRefl_halts _ h ?_ ?_
case refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ step S.prog a [S.prog]==>* Config.haltedOn m regs
case refl.refine_3 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false this : a [S.prog]==>+ Config.haltedOn m regs ⊒ step S.prog a [S.prog]==>* Config.haltedOn m regs case refl.refine_1 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ Β¬Config.is_halted a = true case refl.refine_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ Config.is_halted (Config.haltedOn m regs) = true
Please generate a tactic in lean4 to solve the state. STATE: case refl R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ step S.prog a [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
. rcases Relation.TransGen.head'_iff.mp this with ⟨e,rfl,he⟩ exact he
case refl.refine_3 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false this : a [S.prog]==>+ Config.haltedOn m regs ⊒ step S.prog a [S.prog]==>* Config.haltedOn m regs case refl.refine_1 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ Β¬Config.is_halted a = true case refl.refine_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ Config.is_halted (Config.haltedOn m regs) = true
case refl.refine_1 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ Β¬Config.is_halted a = true case refl.refine_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ Config.is_halted (Config.haltedOn m regs) = true
Please generate a tactic in lean4 to solve the state. STATE: case refl.refine_3 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false this : a [S.prog]==>+ Config.haltedOn m regs ⊒ step S.prog a [S.prog]==>* Config.haltedOn m regs case refl.refine_1 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ Β¬Config.is_halted a = true case refl.refine_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ Config.is_halted (Config.haltedOn m regs) = true TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
. simp at ha; simp [ha]
case refl.refine_1 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ Β¬Config.is_halted a = true case refl.refine_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ Config.is_halted (Config.haltedOn m regs) = true
case refl.refine_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ Config.is_halted (Config.haltedOn m regs) = true
Please generate a tactic in lean4 to solve the state. STATE: case refl.refine_1 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ Β¬Config.is_halted a = true case refl.refine_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ Config.is_halted (Config.haltedOn m regs) = true TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
. simp
case refl.refine_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ Config.is_halted (Config.haltedOn m regs) = true
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refl.refine_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ Config.is_halted (Config.haltedOn m regs) = true TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
rcases Relation.TransGen.head'_iff.mp this with ⟨e,rfl,he⟩
case refl.refine_3 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false this : a [S.prog]==>+ Config.haltedOn m regs ⊒ step S.prog a [S.prog]==>* Config.haltedOn m regs
case refl.refine_3.intro.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false this : a [S.prog]==>+ Config.haltedOn m regs he : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) (Config.haltedOn m regs) ⊒ step S.prog a [S.prog]==>* Config.haltedOn m regs
Please generate a tactic in lean4 to solve the state. STATE: case refl.refine_3 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false this : a [S.prog]==>+ Config.haltedOn m regs ⊒ step S.prog a [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
exact he
case refl.refine_3.intro.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false this : a [S.prog]==>+ Config.haltedOn m regs he : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) (Config.haltedOn m regs) ⊒ step S.prog a [S.prog]==>* Config.haltedOn m regs
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refl.refine_3.intro.intro R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false this : a [S.prog]==>+ Config.haltedOn m regs he : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) (Config.haltedOn m regs) ⊒ step S.prog a [S.prog]==>* Config.haltedOn m regs TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
simp at ha
case refl.refine_1 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ Β¬Config.is_halted a = true
case refl.refine_1 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted a = false ⊒ Β¬Config.is_halted a = true
Please generate a tactic in lean4 to solve the state. STATE: case refl.refine_1 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ Β¬Config.is_halted a = true TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
simp [ha]
case refl.refine_1 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted a = false ⊒ Β¬Config.is_halted a = true
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refl.refine_1 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted a = false ⊒ Β¬Config.is_halted a = true TACTIC:
https://github.com/JamesGallicchio/lean_rms.git
b2eba106861c05584458e01a241153abd30d0b5b
RegMachine/Basic.lean
RegMachine.Prog.Start.eval_eq
[239, 1]
[308, 15]
simp
case refl.refine_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ Config.is_halted (Config.haltedOn m regs) = true
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refl.refine_2 R L : Type P : Prog R L inst✝ : DecidableEq R S : Start (WithIO R) L m : β„• d : Config (WithIO R) L hd : Config.is_halted d = true a : Config (WithIO R) L regs : R β†’ β„• h : a [S.prog]==>* Config.haltedOn m regs hb_to_d : Relation.ReflTransGen (stepsTo S.prog) (step S.prog a) d ih : eval.aux S.prog { config := step S.prog a, halts := (_ : βˆƒ d, (step S.prog a [S.prog]==>* d) ∧ Config.is_halted d = true) } = m ↔ βˆƒ regs, step S.prog a [S.prog]==>* Config.haltedOn m regs ha : Config.is_halted { config := a, halts := (_ : βˆƒ d, (a [S.prog]==>* d) ∧ Config.is_halted d = true) }.config = false ⊒ Config.is_halted (Config.haltedOn m regs) = true TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section03_functions/sheet1.lean
injective_def
[9, 1]
[12, 6]
rfl
X Y Z : Type f : X β†’ Y ⊒ Injective f ↔ βˆ€ (a b : X), f a = f b β†’ a = b
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y Z : Type f : X β†’ Y ⊒ Injective f ↔ βˆ€ (a b : X), f a = f b β†’ a = b TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section03_functions/sheet1.lean
surjective_def
[14, 1]
[17, 6]
rfl
X Y Z : Type f : X β†’ Y ⊒ Surjective f ↔ βˆ€ (b : Y), βˆƒ a, f a = b
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y Z : Type f : X β†’ Y ⊒ Surjective f ↔ βˆ€ (b : Y), βˆƒ a, f a = b TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section03_functions/sheet1.lean
id_eval
[21, 1]
[24, 6]
rfl
X Y Z : Type x : X ⊒ id x = x
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y Z : Type x : X ⊒ id x = x TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section03_functions/sheet1.lean
comp_eval
[28, 1]
[31, 6]
rfl
X Y Z : Type f : X β†’ Y g : Y β†’ Z x : X ⊒ (g ∘ f) x = g (f x)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y Z : Type f : X β†’ Y g : Y β†’ Z x : X ⊒ (g ∘ f) x = g (f x) TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet3.lean
tends_to_def
[9, 1]
[13, 6]
rfl
a : β„• β†’ ℝ t : ℝ ⊒ tends_to a t ↔ βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅
no goals
Please generate a tactic in lean4 to solve the state. STATE: a : β„• β†’ ℝ t : ℝ ⊒ tends_to a t ↔ βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet3.lean
tends_to_thirtyseven
[17, 1]
[24, 11]
rw [tends_to_def]
⊒ tends_to (fun x => 37) 37
⊒ βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |37 - 37| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: ⊒ tends_to (fun x => 37) 37 TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet3.lean
tends_to_thirtyseven
[17, 1]
[24, 11]
intro Ξ΅ hΞ΅
⊒ βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |37 - 37| < Ξ΅
Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |37 - 37| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: ⊒ βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |37 - 37| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet3.lean
tends_to_thirtyseven
[17, 1]
[24, 11]
use 0
Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |37 - 37| < Ξ΅
case h Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ ⊒ βˆ€ (n : β„•), 0 ≀ n β†’ |37 - 37| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |37 - 37| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet3.lean
tends_to_thirtyseven
[17, 1]
[24, 11]
intro n _
case h Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ ⊒ βˆ€ (n : β„•), 0 ≀ n β†’ |37 - 37| < Ξ΅
case h Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ n : β„• a✝ : 0 ≀ n ⊒ |37 - 37| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: case h Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ ⊒ βˆ€ (n : β„•), 0 ≀ n β†’ |37 - 37| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet3.lean
tends_to_thirtyseven
[17, 1]
[24, 11]
norm_num
case h Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ n : β„• a✝ : 0 ≀ n ⊒ |37 - 37| < Ξ΅
case h Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ n : β„• a✝ : 0 ≀ n ⊒ 0 < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: case h Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ n : β„• a✝ : 0 ≀ n ⊒ |37 - 37| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet3.lean
tends_to_thirtyseven
[17, 1]
[24, 11]
apply hΞ΅
case h Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ n : β„• a✝ : 0 ≀ n ⊒ 0 < Ξ΅
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ n : β„• a✝ : 0 ≀ n ⊒ 0 < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet3.lean
tends_to_const
[26, 1]
[33, 11]
rw [tends_to_def]
c : ℝ ⊒ tends_to (fun x => c) c
c : ℝ ⊒ βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |c - c| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: c : ℝ ⊒ tends_to (fun x => c) c TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet3.lean
tends_to_const
[26, 1]
[33, 11]
intro Ξ΅ hΞ΅
c : ℝ ⊒ βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |c - c| < Ξ΅
c Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |c - c| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: c : ℝ ⊒ βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |c - c| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet3.lean
tends_to_const
[26, 1]
[33, 11]
use 0
c Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |c - c| < Ξ΅
case h c Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ ⊒ βˆ€ (n : β„•), 0 ≀ n β†’ |c - c| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: c Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |c - c| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet3.lean
tends_to_const
[26, 1]
[33, 11]
intro n _
case h c Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ ⊒ βˆ€ (n : β„•), 0 ≀ n β†’ |c - c| < Ξ΅
case h c Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ n : β„• a✝ : 0 ≀ n ⊒ |c - c| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: case h c Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ ⊒ βˆ€ (n : β„•), 0 ≀ n β†’ |c - c| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet3.lean
tends_to_const
[26, 1]
[33, 11]
norm_num
case h c Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ n : β„• a✝ : 0 ≀ n ⊒ |c - c| < Ξ΅
case h c Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ n : β„• a✝ : 0 ≀ n ⊒ 0 < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: case h c Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ n : β„• a✝ : 0 ≀ n ⊒ |c - c| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet3.lean
tends_to_const
[26, 1]
[33, 11]
apply hΞ΅
case h c Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ n : β„• a✝ : 0 ≀ n ⊒ 0 < Ξ΅
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h c Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ n : β„• a✝ : 0 ≀ n ⊒ 0 < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet3.lean
tends_to_add_const
[35, 1]
[48, 7]
rw [tends_to_def] at *
a : β„• β†’ ℝ t c : ℝ h : tends_to a t ⊒ tends_to (fun n => a n + c) (t + c)
a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ ⊒ βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + c - (t + c)| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: a : β„• β†’ ℝ t c : ℝ h : tends_to a t ⊒ tends_to (fun n => a n + c) (t + c) TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet3.lean
tends_to_add_const
[35, 1]
[48, 7]
intro Ξ΅ hΞ΅
a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ ⊒ βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + c - (t + c)| < Ξ΅
a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + c - (t + c)| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ ⊒ βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + c - (t + c)| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet3.lean
tends_to_add_const
[35, 1]
[48, 7]
have hΞ΅' := h Ξ΅ $ hΞ΅
a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + c - (t + c)| < Ξ΅
a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ hΞ΅' : βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + c - (t + c)| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + c - (t + c)| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet3.lean
tends_to_add_const
[35, 1]
[48, 7]
obtain ⟨B', hΡ''⟩ := hΡ'
a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ hΞ΅' : βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + c - (t + c)| < Ξ΅
case intro a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ B' : β„• hΞ΅'' : βˆ€ (n : β„•), B' ≀ n β†’ |a n - t| < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + c - (t + c)| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ hΞ΅' : βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + c - (t + c)| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet3.lean
tends_to_add_const
[35, 1]
[48, 7]
use B'
case intro a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ B' : β„• hΞ΅'' : βˆ€ (n : β„•), B' ≀ n β†’ |a n - t| < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + c - (t + c)| < Ξ΅
case h a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ B' : β„• hΞ΅'' : βˆ€ (n : β„•), B' ≀ n β†’ |a n - t| < Ξ΅ ⊒ βˆ€ (n : β„•), B' ≀ n β†’ |a n + c - (t + c)| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: case intro a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ B' : β„• hΞ΅'' : βˆ€ (n : β„•), B' ≀ n β†’ |a n - t| < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + c - (t + c)| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet3.lean
tends_to_add_const
[35, 1]
[48, 7]
intro n hn
case h a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ B' : β„• hΞ΅'' : βˆ€ (n : β„•), B' ≀ n β†’ |a n - t| < Ξ΅ ⊒ βˆ€ (n : β„•), B' ≀ n β†’ |a n + c - (t + c)| < Ξ΅
case h a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ B' : β„• hΞ΅'' : βˆ€ (n : β„•), B' ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : B' ≀ n ⊒ |a n + c - (t + c)| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: case h a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ B' : β„• hΞ΅'' : βˆ€ (n : β„•), B' ≀ n β†’ |a n - t| < Ξ΅ ⊒ βˆ€ (n : β„•), B' ≀ n β†’ |a n + c - (t + c)| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet3.lean
tends_to_add_const
[35, 1]
[48, 7]
have h' := hΞ΅'' n hn
case h a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ B' : β„• hΞ΅'' : βˆ€ (n : β„•), B' ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : B' ≀ n ⊒ |a n + c - (t + c)| < Ξ΅
case h a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ B' : β„• hΞ΅'' : βˆ€ (n : β„•), B' ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : B' ≀ n h' : |a n - t| < Ξ΅ ⊒ |a n + c - (t + c)| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: case h a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ B' : β„• hΞ΅'' : βˆ€ (n : β„•), B' ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : B' ≀ n ⊒ |a n + c - (t + c)| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet3.lean
tends_to_add_const
[35, 1]
[48, 7]
norm_num
case h a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ B' : β„• hΞ΅'' : βˆ€ (n : β„•), B' ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : B' ≀ n h' : |a n - t| < Ξ΅ ⊒ |a n + c - (t + c)| < Ξ΅
case h a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ B' : β„• hΞ΅'' : βˆ€ (n : β„•), B' ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : B' ≀ n h' : |a n - t| < Ξ΅ ⊒ |a n - t| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: case h a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ B' : β„• hΞ΅'' : βˆ€ (n : β„•), B' ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : B' ≀ n h' : |a n - t| < Ξ΅ ⊒ |a n + c - (t + c)| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet3.lean
tends_to_add_const
[35, 1]
[48, 7]
apply h'
case h a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ B' : β„• hΞ΅'' : βˆ€ (n : β„•), B' ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : B' ≀ n h' : |a n - t| < Ξ΅ ⊒ |a n - t| < Ξ΅
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h a : β„• β†’ ℝ t c : ℝ h : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅ : 0 < Ξ΅ B' : β„• hΞ΅'' : βˆ€ (n : β„•), B' ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : B' ≀ n h' : |a n - t| < Ξ΅ ⊒ |a n - t| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet5.lean
tends_to_neg
[15, 1]
[29, 7]
rw [tends_to_def] at *
a : β„• β†’ ℝ t : ℝ ha : tends_to a t ⊒ tends_to (fun n => -a n) (-t)
a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ ⊒ βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |-a n - -t| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: a : β„• β†’ ℝ t : ℝ ha : tends_to a t ⊒ tends_to (fun n => -a n) (-t) TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet5.lean
tends_to_neg
[15, 1]
[29, 7]
intro Ξ΅ hΞ΅pos
a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ ⊒ βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |-a n - -t| < Ξ΅
a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |-a n - -t| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ ⊒ βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |-a n - -t| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet5.lean
tends_to_neg
[15, 1]
[29, 7]
obtain ⟨N, h⟩ := ha Ρ hΡpos
a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |-a n - -t| < Ξ΅
case intro a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |-a n - -t| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |-a n - -t| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet5.lean
tends_to_neg
[15, 1]
[29, 7]
use N
case intro a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |-a n - -t| < Ξ΅
case h a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ ⊒ βˆ€ (n : β„•), N ≀ n β†’ |-a n - -t| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: case intro a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |-a n - -t| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet5.lean
tends_to_neg
[15, 1]
[29, 7]
intro n hn
case h a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ ⊒ βˆ€ (n : β„•), N ≀ n β†’ |-a n - -t| < Ξ΅
case h a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : N ≀ n ⊒ |-a n - -t| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: case h a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ ⊒ βˆ€ (n : β„•), N ≀ n β†’ |-a n - -t| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet5.lean
tends_to_neg
[15, 1]
[29, 7]
simp
case h a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : N ≀ n ⊒ |-a n - -t| < Ξ΅
case h a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : N ≀ n ⊒ |-a n + t| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: case h a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : N ≀ n ⊒ |-a n - -t| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet5.lean
tends_to_neg
[15, 1]
[29, 7]
have h' := h n hn
case h a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : N ≀ n ⊒ |-a n + t| < Ξ΅
case h a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : N ≀ n h' : |a n - t| < Ξ΅ ⊒ |-a n + t| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: case h a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : N ≀ n ⊒ |-a n + t| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet5.lean
tends_to_neg
[15, 1]
[29, 7]
rw [← abs_neg] at h'
case h a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : N ≀ n h' : |a n - t| < Ξ΅ ⊒ |-a n + t| < Ξ΅
case h a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : N ≀ n h' : |(-(a n - t))| < Ξ΅ ⊒ |-a n + t| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: case h a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : N ≀ n h' : |a n - t| < Ξ΅ ⊒ |-a n + t| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet5.lean
tends_to_neg
[15, 1]
[29, 7]
simp at h'
case h a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : N ≀ n h' : |(-(a n - t))| < Ξ΅ ⊒ |-a n + t| < Ξ΅
case h a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : N ≀ n h' : |t - a n| < Ξ΅ ⊒ |-a n + t| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: case h a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : N ≀ n h' : |(-(a n - t))| < Ξ΅ ⊒ |-a n + t| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet5.lean
tends_to_neg
[15, 1]
[29, 7]
rw [add_comm]
case h a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : N ≀ n h' : |t - a n| < Ξ΅ ⊒ |-a n + t| < Ξ΅
case h a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : N ≀ n h' : |t - a n| < Ξ΅ ⊒ |t + -a n| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: case h a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : N ≀ n h' : |t - a n| < Ξ΅ ⊒ |-a n + t| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet5.lean
tends_to_neg
[15, 1]
[29, 7]
apply h'
case h a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : N ≀ n h' : |t - a n| < Ξ΅ ⊒ |t + -a n| < Ξ΅
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h a : β„• β†’ ℝ t : ℝ ha : βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ N : β„• h : βˆ€ (n : β„•), N ≀ n β†’ |a n - t| < Ξ΅ n : β„• hn : N ≀ n h' : |t - a n| < Ξ΅ ⊒ |t + -a n| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet5.lean
tends_to_add
[32, 1]
[80, 7]
rw [tends_to_def]
a b : β„• β†’ ℝ t u : ℝ ha : tends_to a t hb : tends_to b u ⊒ tends_to (fun n => a n + b n) (t + u)
a b : β„• β†’ ℝ t u : ℝ ha : tends_to a t hb : tends_to b u ⊒ βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: a b : β„• β†’ ℝ t u : ℝ ha : tends_to a t hb : tends_to b u ⊒ tends_to (fun n => a n + b n) (t + u) TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet5.lean
tends_to_add
[32, 1]
[80, 7]
intro Ξ΅ hΞ΅pos
a b : β„• β†’ ℝ t u : ℝ ha : tends_to a t hb : tends_to b u ⊒ βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅
a b : β„• β†’ ℝ t u : ℝ ha : tends_to a t hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: a b : β„• β†’ ℝ t u : ℝ ha : tends_to a t hb : tends_to b u ⊒ βˆ€ (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet5.lean
tends_to_add
[32, 1]
[80, 7]
rw [tends_to] at ha
a b : β„• β†’ ℝ t u : ℝ ha : tends_to a t hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅
a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: a b : β„• β†’ ℝ t u : ℝ ha : tends_to a t hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet5.lean
tends_to_add
[32, 1]
[80, 7]
have haΞ΅ : 0 < Ξ΅ / 2 := by linarith
a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅
a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ haΞ΅ : 0 < Ξ΅ / 2 ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet5.lean
tends_to_add
[32, 1]
[80, 7]
apply ha at haΞ΅
a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ haΞ΅ : 0 < Ξ΅ / 2 ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅
a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ haΞ΅ : βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ / 2 ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ haΞ΅ : 0 < Ξ΅ / 2 ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet5.lean
tends_to_add
[32, 1]
[80, 7]
obtain ⟨Na, ha'⟩ := haΡ
a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ haΞ΅ : βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ / 2 ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅
case intro a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ Na : β„• ha' : βˆ€ (n : β„•), Na ≀ n β†’ |a n - t| < Ξ΅ / 2 ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ haΞ΅ : βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ / 2 ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet5.lean
tends_to_add
[32, 1]
[80, 7]
have hbΞ΅ : 0 < Ξ΅ / 2 := by linarith
case intro a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ Na : β„• ha' : βˆ€ (n : β„•), Na ≀ n β†’ |a n - t| < Ξ΅ / 2 ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅
case intro a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ Na : β„• ha' : βˆ€ (n : β„•), Na ≀ n β†’ |a n - t| < Ξ΅ / 2 hbΞ΅ : 0 < Ξ΅ / 2 ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: case intro a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ Na : β„• ha' : βˆ€ (n : β„•), Na ≀ n β†’ |a n - t| < Ξ΅ / 2 ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet5.lean
tends_to_add
[32, 1]
[80, 7]
apply hb at hbΞ΅
case intro a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ Na : β„• ha' : βˆ€ (n : β„•), Na ≀ n β†’ |a n - t| < Ξ΅ / 2 hbΞ΅ : 0 < Ξ΅ / 2 ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅
case intro a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ Na : β„• ha' : βˆ€ (n : β„•), Na ≀ n β†’ |a n - t| < Ξ΅ / 2 hbΞ΅ : βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |b n - u| < Ξ΅ / 2 ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: case intro a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ Na : β„• ha' : βˆ€ (n : β„•), Na ≀ n β†’ |a n - t| < Ξ΅ / 2 hbΞ΅ : 0 < Ξ΅ / 2 ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet5.lean
tends_to_add
[32, 1]
[80, 7]
obtain ⟨Nb, hb'⟩ := hbΡ
case intro a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ Na : β„• ha' : βˆ€ (n : β„•), Na ≀ n β†’ |a n - t| < Ξ΅ / 2 hbΞ΅ : βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |b n - u| < Ξ΅ / 2 ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅
case intro.intro a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ Na : β„• ha' : βˆ€ (n : β„•), Na ≀ n β†’ |a n - t| < Ξ΅ / 2 Nb : β„• hb' : βˆ€ (n : β„•), Nb ≀ n β†’ |b n - u| < Ξ΅ / 2 ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: case intro a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ Na : β„• ha' : βˆ€ (n : β„•), Na ≀ n β†’ |a n - t| < Ξ΅ / 2 hbΞ΅ : βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |b n - u| < Ξ΅ / 2 ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet5.lean
tends_to_add
[32, 1]
[80, 7]
let Nab := max Na Nb
case intro.intro a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ Na : β„• ha' : βˆ€ (n : β„•), Na ≀ n β†’ |a n - t| < Ξ΅ / 2 Nb : β„• hb' : βˆ€ (n : β„•), Nb ≀ n β†’ |b n - u| < Ξ΅ / 2 ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅
case intro.intro a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ Na : β„• ha' : βˆ€ (n : β„•), Na ≀ n β†’ |a n - t| < Ξ΅ / 2 Nb : β„• hb' : βˆ€ (n : β„•), Nb ≀ n β†’ |b n - u| < Ξ΅ / 2 Nab : β„• := max Na Nb ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ Na : β„• ha' : βˆ€ (n : β„•), Na ≀ n β†’ |a n - t| < Ξ΅ / 2 Nb : β„• hb' : βˆ€ (n : β„•), Nb ≀ n β†’ |b n - u| < Ξ΅ / 2 ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet5.lean
tends_to_add
[32, 1]
[80, 7]
use Nab
case intro.intro a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ Na : β„• ha' : βˆ€ (n : β„•), Na ≀ n β†’ |a n - t| < Ξ΅ / 2 Nb : β„• hb' : βˆ€ (n : β„•), Nb ≀ n β†’ |b n - u| < Ξ΅ / 2 Nab : β„• := max Na Nb ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅
case h a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ Na : β„• ha' : βˆ€ (n : β„•), Na ≀ n β†’ |a n - t| < Ξ΅ / 2 Nb : β„• hb' : βˆ€ (n : β„•), Nb ≀ n β†’ |b n - u| < Ξ΅ / 2 Nab : β„• := max Na Nb ⊒ βˆ€ (n : β„•), Nab ≀ n β†’ |a n + b n - (t + u)| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ Na : β„• ha' : βˆ€ (n : β„•), Na ≀ n β†’ |a n - t| < Ξ΅ / 2 Nb : β„• hb' : βˆ€ (n : β„•), Nb ≀ n β†’ |b n - u| < Ξ΅ / 2 Nab : β„• := max Na Nb ⊒ βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n + b n - (t + u)| < Ξ΅ TACTIC:
https://github.com/rikitoro/FM2023_exercise.git
5f189bdf83b1e5fba19d25a36272bd87dfcdcc55
FM2023Exrcise/section02_reals/sheet5.lean
tends_to_add
[32, 1]
[80, 7]
intro n
case h a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ Na : β„• ha' : βˆ€ (n : β„•), Na ≀ n β†’ |a n - t| < Ξ΅ / 2 Nb : β„• hb' : βˆ€ (n : β„•), Nb ≀ n β†’ |b n - u| < Ξ΅ / 2 Nab : β„• := max Na Nb ⊒ βˆ€ (n : β„•), Nab ≀ n β†’ |a n + b n - (t + u)| < Ξ΅
case h a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ Na : β„• ha' : βˆ€ (n : β„•), Na ≀ n β†’ |a n - t| < Ξ΅ / 2 Nb : β„• hb' : βˆ€ (n : β„•), Nb ≀ n β†’ |b n - u| < Ξ΅ / 2 Nab : β„• := max Na Nb n : β„• ⊒ Nab ≀ n β†’ |a n + b n - (t + u)| < Ξ΅
Please generate a tactic in lean4 to solve the state. STATE: case h a b : β„• β†’ ℝ t u : ℝ ha : βˆ€ Ξ΅ > 0, βˆƒ B, βˆ€ (n : β„•), B ≀ n β†’ |a n - t| < Ξ΅ hb : tends_to b u Ξ΅ : ℝ hΞ΅pos : 0 < Ξ΅ Na : β„• ha' : βˆ€ (n : β„•), Na ≀ n β†’ |a n - t| < Ξ΅ / 2 Nb : β„• hb' : βˆ€ (n : β„•), Nb ≀ n β†’ |b n - u| < Ξ΅ / 2 Nab : β„• := max Na Nb ⊒ βˆ€ (n : β„•), Nab ≀ n β†’ |a n + b n - (t + u)| < Ξ΅ TACTIC: