url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.swap_conj_eq
[272, 1]
[286, 7]
rw [mul_support_eq, mul_support_eq]
case inr.hf α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α z : α hxz : x ≠ z hyz : y ≠ z hxy : x ≠ y ⊢ (swap x y * swap y z * swap x y).support ⊆ {x, y, z}
case inr.hf α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α z : α hxz : x ≠ z hyz : y ≠ z hxy : x ≠ y ⊢ filter (fun x_1 => (swap x y * swap y z) ((swap x y) x_1) ≠ x_1) (filter (fun x_1 => (swap x y) ((swap y z) x_1) ≠ x_1) ((swap x y).support ∪ (swap y z).support) ∪ (swap x y).support) ⊆ {x, y, z}
Please generate a tactic in lean4 to solve the state. STATE: case inr.hf α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α z : α hxz : x ≠ z hyz : y ≠ z hxy : x ≠ y ⊢ (swap x y * swap y z * swap x y).support ⊆ {x, y, z} TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.swap_conj_eq
[272, 1]
[286, 7]
simp only [mul_apply, ne_eq, swap_support, filter_congr_decidable, if_neg hxy, if_neg hyz]
case inr.hf α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α z : α hxz : x ≠ z hyz : y ≠ z hxy : x ≠ y ⊢ filter (fun x_1 => (swap x y * swap y z) ((swap x y) x_1) ≠ x_1) (filter (fun x_1 => (swap x y) ((swap y z) x_1) ≠ x_1) ((swap x y).support ∪ (swap y z).support) ∪ (swap x y).support) ⊆ {x, y, z}
case inr.hf α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α z : α hxz : x ≠ z hyz : y ≠ z hxy : x ≠ y ⊢ filter (fun x_1 => ¬(swap x y) ((swap y z) ((swap x y) x_1)) = x_1) (filter (fun x_1 => ¬(swap x y) ((swap y z) x_1) = x_1) ({x, y} ∪ {y, z}) ∪ {x, y}) ⊆ {x, y, z}
Please generate a tactic in lean4 to solve the state. STATE: case inr.hf α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α z : α hxz : x ≠ z hyz : y ≠ z hxy : x ≠ y ⊢ filter (fun x_1 => (swap x y * swap y z) ((swap x y) x_1) ≠ x_1) (filter (fun x_1 => (swap x y) ((swap y z) x_1) ≠ x_1) ((swap x y).support ∪ (swap y z).support) ∪ (swap x y).support) ⊆ {x, y, z} TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.swap_conj_eq
[272, 1]
[286, 7]
refine (filter_subset _ _).trans (union_subset ((filter_subset _ _).trans ?_) (by aesop))
case inr.hf α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α z : α hxz : x ≠ z hyz : y ≠ z hxy : x ≠ y ⊢ filter (fun x_1 => ¬(swap x y) ((swap y z) ((swap x y) x_1)) = x_1) (filter (fun x_1 => ¬(swap x y) ((swap y z) x_1) = x_1) ({x, y} ∪ {y, z}) ∪ {x, y}) ⊆ {x, y, z}
case inr.hf α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α z : α hxz : x ≠ z hyz : y ≠ z hxy : x ≠ y ⊢ {x, y} ∪ {y, z} ⊆ {x, y, z}
Please generate a tactic in lean4 to solve the state. STATE: case inr.hf α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α z : α hxz : x ≠ z hyz : y ≠ z hxy : x ≠ y ⊢ filter (fun x_1 => ¬(swap x y) ((swap y z) ((swap x y) x_1)) = x_1) (filter (fun x_1 => ¬(swap x y) ((swap y z) x_1) = x_1) ({x, y} ∪ {y, z}) ∪ {x, y}) ⊆ {x, y, z} TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.swap_conj_eq
[272, 1]
[286, 7]
apply union_subset <;> aesop
case inr.hf α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α z : α hxz : x ≠ z hyz : y ≠ z hxy : x ≠ y ⊢ {x, y} ∪ {y, z} ⊆ {x, y, z}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inr.hf α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α z : α hxz : x ≠ z hyz : y ≠ z hxy : x ≠ y ⊢ {x, y} ∪ {y, z} ⊆ {x, y, z} TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.swap_conj_eq
[272, 1]
[286, 7]
aesop
α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α z : α hxz : x ≠ z hyz : y ≠ z hxy : x ≠ y ⊢ {x, y} ⊆ {x, y, z}
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α z : α hxz : x ≠ z hyz : y ≠ z hxy : x ≠ y ⊢ {x, y} ⊆ {x, y, z} TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.swap_conj_eq
[272, 1]
[286, 7]
aesop
case inr.hg α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α z : α hxz : x ≠ z hyz : y ≠ z hxy : x ≠ y ⊢ (swap x z).support ⊆ {x, y, z}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inr.hg α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α z : α hxz : x ≠ z hyz : y ≠ z hxy : x ≠ y ⊢ (swap x z).support ⊆ {x, y, z} TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_mul_pair_subset
[288, 1]
[301, 15]
intro y hy
α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support ⊢ (f * swap x (f⁻¹ x)).support ⊆ erase f.support x
α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support y : α hy : y ∈ (f * swap x (f⁻¹ x)).support ⊢ y ∈ erase f.support x
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support ⊢ (f * swap x (f⁻¹ x)).support ⊆ erase f.support x TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_mul_pair_subset
[288, 1]
[301, 15]
simp only [mem_erase, ne_eq, mem_support_iff]
α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support y : α hy : y ∈ (f * swap x (f⁻¹ x)).support ⊢ y ∈ erase f.support x
α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support y : α hy : y ∈ (f * swap x (f⁻¹ x)).support ⊢ ¬y = x ∧ ¬f y = y
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support y : α hy : y ∈ (f * swap x (f⁻¹ x)).support ⊢ y ∈ erase f.support x TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_mul_pair_subset
[288, 1]
[301, 15]
obtain (rfl | hne) := eq_or_ne y x
α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support y : α hy : y ∈ (f * swap x (f⁻¹ x)).support ⊢ ¬y = x ∧ ¬f y = y
case inl α : Type u_1 y✝ : α f g : Finperm α inst✝ : DecidableEq α y : α hx : y ∈ f.support hy : y ∈ (f * swap y (f⁻¹ y)).support ⊢ ¬y = y ∧ ¬f y = y case inr α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support y : α hy : y ∈ (f * swap x (f⁻¹ x)).support hne : y ≠ x ⊢ ¬y = x ∧ ¬f y = y
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support y : α hy : y ∈ (f * swap x (f⁻¹ x)).support ⊢ ¬y = x ∧ ¬f y = y TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_mul_pair_subset
[288, 1]
[301, 15]
refine ⟨hne, fun hy' ↦ ?_⟩
case inr α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support y : α hy : y ∈ (f * swap x (f⁻¹ x)).support hne : y ≠ x ⊢ ¬y = x ∧ ¬f y = y
case inr α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support y : α hy : y ∈ (f * swap x (f⁻¹ x)).support hne : y ≠ x hy' : f y = y ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case inr α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support y : α hy : y ∈ (f * swap x (f⁻¹ x)).support hne : y ≠ x ⊢ ¬y = x ∧ ¬f y = y TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_mul_pair_subset
[288, 1]
[301, 15]
simp only [mem_support_iff, mul_apply, ne_eq] at hy
case inr α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support y : α hy : y ∈ (f * swap x (f⁻¹ x)).support hne : y ≠ x hy' : f y = y ⊢ False
case inr α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support y : α hne : y ≠ x hy' : f y = y hy : ¬f ((swap x (f⁻¹ x)) y) = y ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case inr α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support y : α hy : y ∈ (f * swap x (f⁻¹ x)).support hne : y ≠ x hy' : f y = y ⊢ False TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_mul_pair_subset
[288, 1]
[301, 15]
obtain (rfl | hne') := eq_or_ne y (f⁻¹ x)
case inr α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support y : α hne : y ≠ x hy' : f y = y hy : ¬f ((swap x (f⁻¹ x)) y) = y ⊢ False
case inr.inl α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support hne : f⁻¹ x ≠ x hy' : f (f⁻¹ x) = f⁻¹ x hy : ¬f ((swap x (f⁻¹ x)) (f⁻¹ x)) = f⁻¹ x ⊢ False case inr.inr α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support y : α hne : y ≠ x hy' : f y = y hy : ¬f ((swap x (f⁻¹ x)) y) = y hne' : y ≠ f⁻¹ x ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case inr α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support y : α hne : y ≠ x hy' : f y = y hy : ¬f ((swap x (f⁻¹ x)) y) = y ⊢ False TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_mul_pair_subset
[288, 1]
[301, 15]
rw [swap_apply_of_ne_of_ne hne hne'] at hy
case inr.inr α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support y : α hne : y ≠ x hy' : f y = y hy : ¬f ((swap x (f⁻¹ x)) y) = y hne' : y ≠ f⁻¹ x ⊢ False
case inr.inr α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support y : α hne : y ≠ x hy' : f y = y hy : ¬f y = y hne' : y ≠ f⁻¹ x ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case inr.inr α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support y : α hne : y ≠ x hy' : f y = y hy : ¬f ((swap x (f⁻¹ x)) y) = y hne' : y ≠ f⁻¹ x ⊢ False TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_mul_pair_subset
[288, 1]
[301, 15]
exact hy hy'
case inr.inr α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support y : α hne : y ≠ x hy' : f y = y hy : ¬f y = y hne' : y ≠ f⁻¹ x ⊢ False
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inr.inr α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support y : α hne : y ≠ x hy' : f y = y hy : ¬f y = y hne' : y ≠ f⁻¹ x ⊢ False TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_mul_pair_subset
[288, 1]
[301, 15]
simp at hy
case inl α : Type u_1 y✝ : α f g : Finperm α inst✝ : DecidableEq α y : α hx : y ∈ f.support hy : y ∈ (f * swap y (f⁻¹ y)).support ⊢ ¬y = y ∧ ¬f y = y
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inl α : Type u_1 y✝ : α f g : Finperm α inst✝ : DecidableEq α y : α hx : y ∈ f.support hy : y ∈ (f * swap y (f⁻¹ y)).support ⊢ ¬y = y ∧ ¬f y = y TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_mul_pair_subset
[288, 1]
[301, 15]
simp only [swap_apply_right, apply_inv_apply] at hy'
case inr.inl α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support hne : f⁻¹ x ≠ x hy' : f (f⁻¹ x) = f⁻¹ x hy : ¬f ((swap x (f⁻¹ x)) (f⁻¹ x)) = f⁻¹ x ⊢ False
case inr.inl α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support hne : f⁻¹ x ≠ x hy : ¬f ((swap x (f⁻¹ x)) (f⁻¹ x)) = f⁻¹ x hy' : x = f⁻¹ x ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case inr.inl α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support hne : f⁻¹ x ≠ x hy' : f (f⁻¹ x) = f⁻¹ x hy : ¬f ((swap x (f⁻¹ x)) (f⁻¹ x)) = f⁻¹ x ⊢ False TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_mul_pair_subset
[288, 1]
[301, 15]
rw [← hy'] at hne
case inr.inl α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support hne : f⁻¹ x ≠ x hy : ¬f ((swap x (f⁻¹ x)) (f⁻¹ x)) = f⁻¹ x hy' : x = f⁻¹ x ⊢ False
case inr.inl α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support hne : x ≠ x hy : ¬f ((swap x (f⁻¹ x)) (f⁻¹ x)) = f⁻¹ x hy' : x = f⁻¹ x ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case inr.inl α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support hne : f⁻¹ x ≠ x hy : ¬f ((swap x (f⁻¹ x)) (f⁻¹ x)) = f⁻¹ x hy' : x = f⁻¹ x ⊢ False TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_mul_pair_subset
[288, 1]
[301, 15]
exact hne rfl
case inr.inl α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support hne : x ≠ x hy : ¬f ((swap x (f⁻¹ x)) (f⁻¹ x)) = f⁻¹ x hy' : x = f⁻¹ x ⊢ False
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inr.inl α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α hx : x ∈ f.support hne : x ≠ x hy : ¬f ((swap x (f⁻¹ x)) (f⁻¹ x)) = f⁻¹ x hy' : x = f⁻¹ x ⊢ False TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.swapsOf_univ_eq
[310, 9]
[312, 24]
simp [swaps, swapsOf]
α✝ : Type u_1 x y : α✝ f g : Finperm α✝ inst✝¹ : DecidableEq α✝ α : Type u_2 inst✝ : DecidableEq α ⊢ swapsOf Set.univ = swaps α
no goals
Please generate a tactic in lean4 to solve the state. STATE: α✝ : Type u_1 x y : α✝ f g : Finperm α✝ inst✝¹ : DecidableEq α✝ α : Type u_2 inst✝ : DecidableEq α ⊢ swapsOf Set.univ = swaps α TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.swapsOf_support_subset
[314, 1]
[317, 48]
obtain ⟨i,j, hi, hj, hne, rfl⟩ := hf
α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α t : Set α hf : f ∈ swapsOf t ⊢ ↑f.support ⊆ t
case intro.intro.intro.intro.intro α : Type u_1 x y : α g : Finperm α inst✝ : DecidableEq α t : Set α i j : α hi : i ∈ t hj : j ∈ t hne : i ≠ j ⊢ ↑(swap i j).support ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f g : Finperm α inst✝ : DecidableEq α t : Set α hf : f ∈ swapsOf t ⊢ ↑f.support ⊆ t TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.swapsOf_support_subset
[314, 1]
[317, 48]
rwa [swap_support_of_ne hne, coe_insert, Set.insert_subset_iff, coe_singleton, Set.singleton_subset_iff, and_iff_right hi]
case intro.intro.intro.intro.intro α : Type u_1 x y : α g : Finperm α inst✝ : DecidableEq α t : Set α i j : α hi : i ∈ t hj : j ∈ t hne : i ≠ j ⊢ ↑(swap i j).support ⊆ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro α : Type u_1 x y : α g : Finperm α inst✝ : DecidableEq α t : Set α i j : α hi : i ∈ t hj : j ∈ t hne : i ≠ j ⊢ ↑(swap i j).support ⊆ t TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_closure_aux
[322, 1]
[346, 35]
obtain (h | h) := eq_or_ne f.support ∅
α : Type u_1 x y : α f✝ g : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t ⊢ f ∈ Subgroup.closure (swapsOf t)
case inl α : Type u_1 x y : α f✝ g : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t h : f.support = ∅ ⊢ f ∈ Subgroup.closure (swapsOf t) case inr α : Type u_1 x y : α f✝ g : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t h : f.support ≠ ∅ ⊢ f ∈ Subgroup.closure (swapsOf t)
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f✝ g : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t ⊢ f ∈ Subgroup.closure (swapsOf t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_closure_aux
[322, 1]
[346, 35]
simp only [ne_eq, eq_empty_iff_forall_not_mem, mem_support_iff, not_not, not_forall] at h
case inr α : Type u_1 x y : α f✝ g : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t h : f.support ≠ ∅ ⊢ f ∈ Subgroup.closure (swapsOf t)
case inr α : Type u_1 x y : α f✝ g : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t h : ∃ x, ¬f x = x ⊢ f ∈ Subgroup.closure (swapsOf t)
Please generate a tactic in lean4 to solve the state. STATE: case inr α : Type u_1 x y : α f✝ g : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t h : f.support ≠ ∅ ⊢ f ∈ Subgroup.closure (swapsOf t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_closure_aux
[322, 1]
[346, 35]
obtain ⟨x, hx⟩ := h
case inr α : Type u_1 x y : α f✝ g : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t h : ∃ x, ¬f x = x ⊢ f ∈ Subgroup.closure (swapsOf t)
case inr.intro α : Type u_1 x✝ y : α f✝ g : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x ⊢ f ∈ Subgroup.closure (swapsOf t)
Please generate a tactic in lean4 to solve the state. STATE: case inr α : Type u_1 x y : α f✝ g : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t h : ∃ x, ¬f x = x ⊢ f ∈ Subgroup.closure (swapsOf t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_closure_aux
[322, 1]
[346, 35]
have hx' : x ∈ f.support := by simpa
case inr.intro α : Type u_1 x✝ y : α f✝ g : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x ⊢ f ∈ Subgroup.closure (swapsOf t)
case inr.intro α : Type u_1 x✝ y : α f✝ g : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support ⊢ f ∈ Subgroup.closure (swapsOf t)
Please generate a tactic in lean4 to solve the state. STATE: case inr.intro α : Type u_1 x✝ y : α f✝ g : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x ⊢ f ∈ Subgroup.closure (swapsOf t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_closure_aux
[322, 1]
[346, 35]
set g := f * swap x (f⁻¹ x) with hg_def
case inr.intro α : Type u_1 x✝ y : α f✝ g : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support ⊢ f ∈ Subgroup.closure (swapsOf t)
case inr.intro α : Type u_1 x✝ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) ⊢ f ∈ Subgroup.closure (swapsOf t)
Please generate a tactic in lean4 to solve the state. STATE: case inr.intro α : Type u_1 x✝ y : α f✝ g : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support ⊢ f ∈ Subgroup.closure (swapsOf t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_closure_aux
[322, 1]
[346, 35]
have hsupp : g.support ⊆ _ := support_mul_pair_subset hx'
case inr.intro α : Type u_1 x✝ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) ⊢ f ∈ Subgroup.closure (swapsOf t)
case inr.intro α : Type u_1 x✝ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x ⊢ f ∈ Subgroup.closure (swapsOf t)
Please generate a tactic in lean4 to solve the state. STATE: case inr.intro α : Type u_1 x✝ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) ⊢ f ∈ Subgroup.closure (swapsOf t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_closure_aux
[322, 1]
[346, 35]
have _ : g.support.card < f.support.card := by exact card_lt_card <| (hsupp.trans_ssubset (erase_ssubset hx'))
case inr.intro α : Type u_1 x✝ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x ⊢ f ∈ Subgroup.closure (swapsOf t)
case inr.intro α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support ⊢ f ∈ Subgroup.closure (swapsOf t)
Please generate a tactic in lean4 to solve the state. STATE: case inr.intro α : Type u_1 x✝ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x ⊢ f ∈ Subgroup.closure (swapsOf t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_closure_aux
[322, 1]
[346, 35]
have hg_supp : (g.support : Set α) ⊆ t
case inr.intro α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support ⊢ f ∈ Subgroup.closure (swapsOf t)
case hg_supp α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support ⊢ ↑g.support ⊆ t case inr.intro α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t ⊢ f ∈ Subgroup.closure (swapsOf t)
Please generate a tactic in lean4 to solve the state. STATE: case inr.intro α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support ⊢ f ∈ Subgroup.closure (swapsOf t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_closure_aux
[322, 1]
[346, 35]
have hg := support_closure_aux hg_supp
case inr.intro α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t ⊢ f ∈ Subgroup.closure (swapsOf t)
case inr.intro α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) ⊢ f ∈ Subgroup.closure (swapsOf t)
Please generate a tactic in lean4 to solve the state. STATE: case inr.intro α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t ⊢ f ∈ Subgroup.closure (swapsOf t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_closure_aux
[322, 1]
[346, 35]
have hs : swap x (f⁻¹ x) ∈ Subgroup.closure (swapsOf t)
case inr.intro α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) ⊢ f ∈ Subgroup.closure (swapsOf t)
case hs α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) ⊢ swap x (f⁻¹ x) ∈ Subgroup.closure (swapsOf t) case inr.intro α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) hs : swap x (f⁻¹ x) ∈ Subgroup.closure (swapsOf t) ⊢ f ∈ Subgroup.closure (swapsOf t)
Please generate a tactic in lean4 to solve the state. STATE: case inr.intro α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) ⊢ f ∈ Subgroup.closure (swapsOf t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_closure_aux
[322, 1]
[346, 35]
have hf' : f = g * (swap x (f⁻¹ x))
case inr.intro α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) hs : swap x (f⁻¹ x) ∈ Subgroup.closure (swapsOf t) ⊢ f ∈ Subgroup.closure (swapsOf t)
case hf' α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) hs : swap x (f⁻¹ x) ∈ Subgroup.closure (swapsOf t) ⊢ f = g * swap x (f⁻¹ x) case inr.intro α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) hs : swap x (f⁻¹ x) ∈ Subgroup.closure (swapsOf t) hf' : f = g * swap x (f⁻¹ x) ⊢ f ∈ Subgroup.closure (swapsOf t)
Please generate a tactic in lean4 to solve the state. STATE: case inr.intro α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) hs : swap x (f⁻¹ x) ∈ Subgroup.closure (swapsOf t) ⊢ f ∈ Subgroup.closure (swapsOf t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_closure_aux
[322, 1]
[346, 35]
rw [hf']
case inr.intro α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) hs : swap x (f⁻¹ x) ∈ Subgroup.closure (swapsOf t) hf' : f = g * swap x (f⁻¹ x) ⊢ f ∈ Subgroup.closure (swapsOf t)
case inr.intro α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) hs : swap x (f⁻¹ x) ∈ Subgroup.closure (swapsOf t) hf' : f = g * swap x (f⁻¹ x) ⊢ g * swap x (f⁻¹ x) ∈ Subgroup.closure (swapsOf t)
Please generate a tactic in lean4 to solve the state. STATE: case inr.intro α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) hs : swap x (f⁻¹ x) ∈ Subgroup.closure (swapsOf t) hf' : f = g * swap x (f⁻¹ x) ⊢ f ∈ Subgroup.closure (swapsOf t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_closure_aux
[322, 1]
[346, 35]
exact Subgroup.mul_mem _ hg hs
case inr.intro α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) hs : swap x (f⁻¹ x) ∈ Subgroup.closure (swapsOf t) hf' : f = g * swap x (f⁻¹ x) ⊢ g * swap x (f⁻¹ x) ∈ Subgroup.closure (swapsOf t)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inr.intro α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) hs : swap x (f⁻¹ x) ∈ Subgroup.closure (swapsOf t) hf' : f = g * swap x (f⁻¹ x) ⊢ g * swap x (f⁻¹ x) ∈ Subgroup.closure (swapsOf t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_closure_aux
[322, 1]
[346, 35]
rw [show f = 1 from (support_eq_empty_iff _).1 h]
case inl α : Type u_1 x y : α f✝ g : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t h : f.support = ∅ ⊢ f ∈ Subgroup.closure (swapsOf t)
case inl α : Type u_1 x y : α f✝ g : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t h : f.support = ∅ ⊢ 1 ∈ Subgroup.closure (swapsOf t)
Please generate a tactic in lean4 to solve the state. STATE: case inl α : Type u_1 x y : α f✝ g : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t h : f.support = ∅ ⊢ f ∈ Subgroup.closure (swapsOf t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_closure_aux
[322, 1]
[346, 35]
exact Subgroup.one_mem _
case inl α : Type u_1 x y : α f✝ g : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t h : f.support = ∅ ⊢ 1 ∈ Subgroup.closure (swapsOf t)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inl α : Type u_1 x y : α f✝ g : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t h : f.support = ∅ ⊢ 1 ∈ Subgroup.closure (swapsOf t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_closure_aux
[322, 1]
[346, 35]
simpa
α : Type u_1 x✝ y : α f✝ g : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x ⊢ x ∈ f.support
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x✝ y : α f✝ g : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x ⊢ x ∈ f.support TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_closure_aux
[322, 1]
[346, 35]
exact card_lt_card <| (hsupp.trans_ssubset (erase_ssubset hx'))
α : Type u_1 x✝ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x ⊢ card g.support < card f.support
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x✝ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x ⊢ card g.support < card f.support TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_closure_aux
[322, 1]
[346, 35]
refine (Finset.coe_subset.2 hsupp).trans (subset_trans (Finset.coe_subset.2 ?_) hf)
case hg_supp α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support ⊢ ↑g.support ⊆ t
case hg_supp α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support ⊢ erase f.support x ⊆ f.support
Please generate a tactic in lean4 to solve the state. STATE: case hg_supp α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support ⊢ ↑g.support ⊆ t TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_closure_aux
[322, 1]
[346, 35]
exact erase_subset x f.support
case hg_supp α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support ⊢ erase f.support x ⊆ f.support
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hg_supp α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support ⊢ erase f.support x ⊆ f.support TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_closure_aux
[322, 1]
[346, 35]
refine Subgroup.subset_closure ⟨_, _, hf hx', hf ?_, ?_, rfl⟩
case hs α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) ⊢ swap x (f⁻¹ x) ∈ Subgroup.closure (swapsOf t)
case hs.refine_1 α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) ⊢ f⁻¹ x ∈ ↑f.support case hs.refine_2 α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) ⊢ x ≠ f⁻¹ x
Please generate a tactic in lean4 to solve the state. STATE: case hs α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) ⊢ swap x (f⁻¹ x) ∈ Subgroup.closure (swapsOf t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_closure_aux
[322, 1]
[346, 35]
rwa [ne_eq, eq_inv_iff_eq]
case hs.refine_2 α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) ⊢ x ≠ f⁻¹ x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hs.refine_2 α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) ⊢ x ≠ f⁻¹ x TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_closure_aux
[322, 1]
[346, 35]
rwa [mem_coe, mem_support_iff, apply_inv_apply, ne_eq, eq_inv_iff_eq]
case hs.refine_1 α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) ⊢ f⁻¹ x ∈ ↑f.support
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hs.refine_1 α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) ⊢ f⁻¹ x ∈ ↑f.support TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.support_closure_aux
[322, 1]
[346, 35]
rw [hg_def, mul_assoc, swap_mul_swap, mul_one]
case hf' α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) hs : swap x (f⁻¹ x) ∈ Subgroup.closure (swapsOf t) ⊢ f = g * swap x (f⁻¹ x)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hf' α : Type u_1 x✝¹ y : α f✝ g✝ : Finperm α inst✝ : DecidableEq α t : Set α f : Finperm α hf : ↑f.support ⊆ t x : α hx : ¬f x = x hx' : x ∈ f.support g : Finperm α := f * swap x (f⁻¹ x) hg_def : g = f * swap x (f⁻¹ x) hsupp : g.support ⊆ erase f.support x x✝ : card g.support < card f.support hg_supp : ↑g.support ⊆ t hg : g ∈ Subgroup.closure (swapsOf t) hs : swap x (f⁻¹ x) ∈ Subgroup.closure (swapsOf t) ⊢ f = g * swap x (f⁻¹ x) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.cl_swaps_eq_top
[351, 1]
[353, 24]
rw [← swapsOf_univ_eq, ← restrict_univ]
α✝ : Type u_1 x y : α✝ f g : Finperm α✝ inst✝¹ : DecidableEq α✝ α : Type u_2 inst✝ : DecidableEq α ⊢ Subgroup.closure (swaps α) = ⊤
α✝ : Type u_1 x y : α✝ f g : Finperm α✝ inst✝¹ : DecidableEq α✝ α : Type u_2 inst✝ : DecidableEq α ⊢ Subgroup.closure (swapsOf Set.univ) = restrict Set.univ
Please generate a tactic in lean4 to solve the state. STATE: α✝ : Type u_1 x y : α✝ f g : Finperm α✝ inst✝¹ : DecidableEq α✝ α : Type u_2 inst✝ : DecidableEq α ⊢ Subgroup.closure (swaps α) = ⊤ TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.cl_swaps_eq_top
[351, 1]
[353, 24]
exact cl_swapsOf_eq _
α✝ : Type u_1 x y : α✝ f g : Finperm α✝ inst✝¹ : DecidableEq α✝ α : Type u_2 inst✝ : DecidableEq α ⊢ Subgroup.closure (swapsOf Set.univ) = restrict Set.univ
no goals
Please generate a tactic in lean4 to solve the state. STATE: α✝ : Type u_1 x y : α✝ f g : Finperm α✝ inst✝¹ : DecidableEq α✝ α : Type u_2 inst✝ : DecidableEq α ⊢ Subgroup.closure (swapsOf Set.univ) = restrict Set.univ TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.swapsAt_subset_swapsOf
[358, 1]
[360, 59]
rintro s ⟨i, hi, rfl⟩
α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α ⊢ swapsAt x t ⊆ swapsOf (insert x t)
case intro.intro α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α i : α hi : i ∈ t \ {x} ⊢ (fun x_1 => swap x x_1) i ∈ swapsOf (insert x t)
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α ⊢ swapsAt x t ⊆ swapsOf (insert x t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.swapsAt_subset_swapsOf
[358, 1]
[360, 59]
exact ⟨x, _, Or.inl rfl, Or.inr hi.1, Ne.symm hi.2, rfl⟩
case intro.intro α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α i : α hi : i ∈ t \ {x} ⊢ (fun x_1 => swap x x_1) i ∈ swapsOf (insert x t)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α i : α hi : i ∈ t \ {x} ⊢ (fun x_1 => swap x x_1) i ∈ swapsOf (insert x t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.cl_swapsAt_eq
[362, 1]
[377, 53]
have aux : ∀ {y}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t)
α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α ⊢ Subgroup.closure (swapsAt x t) = restrict (insert x t)
case aux α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α ⊢ ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) ⊢ Subgroup.closure (swapsAt x t) = restrict (insert x t)
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α ⊢ Subgroup.closure (swapsAt x t) = restrict (insert x t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.cl_swapsAt_eq
[362, 1]
[377, 53]
rw [← cl_swapsOf_eq, le_antisymm_iff]
α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) ⊢ Subgroup.closure (swapsAt x t) = restrict (insert x t)
α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) ⊢ Subgroup.closure (swapsAt x t) ≤ Subgroup.closure (swapsOf (insert x t)) ∧ Subgroup.closure (swapsOf (insert x t)) ≤ Subgroup.closure (swapsAt x t)
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) ⊢ Subgroup.closure (swapsAt x t) = restrict (insert x t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.cl_swapsAt_eq
[362, 1]
[377, 53]
refine ⟨Subgroup.closure_mono (swapsAt_subset_swapsOf _ _), (Subgroup.closure_le _).2 ?_⟩
α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) ⊢ Subgroup.closure (swapsAt x t) ≤ Subgroup.closure (swapsOf (insert x t)) ∧ Subgroup.closure (swapsOf (insert x t)) ≤ Subgroup.closure (swapsAt x t)
α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) ⊢ swapsOf (insert x t) ⊆ ↑(Subgroup.closure (swapsAt x t))
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) ⊢ Subgroup.closure (swapsAt x t) ≤ Subgroup.closure (swapsOf (insert x t)) ∧ Subgroup.closure (swapsOf (insert x t)) ≤ Subgroup.closure (swapsAt x t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.cl_swapsAt_eq
[362, 1]
[377, 53]
rintro _ ⟨i, j, hi, hj, hne, rfl⟩
α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) ⊢ swapsOf (insert x t) ⊆ ↑(Subgroup.closure (swapsAt x t))
case intro.intro.intro.intro.intro α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) i j : α hi : i ∈ insert x t hj : j ∈ insert x t hne : i ≠ j ⊢ swap i j ∈ ↑(Subgroup.closure (swapsAt x t))
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) ⊢ swapsOf (insert x t) ⊆ ↑(Subgroup.closure (swapsAt x t)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.cl_swapsAt_eq
[362, 1]
[377, 53]
obtain (rfl | hjne) := eq_or_ne x j
case intro.intro.intro.intro.intro α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) i j : α hi : i ∈ insert x t hj : j ∈ insert x t hne : i ≠ j ⊢ swap i j ∈ ↑(Subgroup.closure (swapsAt x t))
case intro.intro.intro.intro.intro.inl α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) i : α hi : i ∈ insert x t hj : x ∈ insert x t hne : i ≠ x ⊢ swap i x ∈ ↑(Subgroup.closure (swapsAt x t)) case intro.intro.intro.intro.intro.inr α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) i j : α hi : i ∈ insert x t hj : j ∈ insert x t hne : i ≠ j hjne : x ≠ j ⊢ swap i j ∈ ↑(Subgroup.closure (swapsAt x t))
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) i j : α hi : i ∈ insert x t hj : j ∈ insert x t hne : i ≠ j ⊢ swap i j ∈ ↑(Subgroup.closure (swapsAt x t)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.cl_swapsAt_eq
[362, 1]
[377, 53]
rw [← swap_conj_eq hne hjne, swap_comm i]
case intro.intro.intro.intro.intro.inr α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) i j : α hi : i ∈ insert x t hj : j ∈ insert x t hne : i ≠ j hjne : x ≠ j ⊢ swap i j ∈ ↑(Subgroup.closure (swapsAt x t))
case intro.intro.intro.intro.intro.inr α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) i j : α hi : i ∈ insert x t hj : j ∈ insert x t hne : i ≠ j hjne : x ≠ j ⊢ swap x i * swap x j * swap x i ∈ ↑(Subgroup.closure (swapsAt x t))
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.inr α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) i j : α hi : i ∈ insert x t hj : j ∈ insert x t hne : i ≠ j hjne : x ≠ j ⊢ swap i j ∈ ↑(Subgroup.closure (swapsAt x t)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.cl_swapsAt_eq
[362, 1]
[377, 53]
exact mul_mem (mul_mem (aux hi) (aux hj)) (aux hi)
case intro.intro.intro.intro.intro.inr α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) i j : α hi : i ∈ insert x t hj : j ∈ insert x t hne : i ≠ j hjne : x ≠ j ⊢ swap x i * swap x j * swap x i ∈ ↑(Subgroup.closure (swapsAt x t))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.inr α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) i j : α hi : i ∈ insert x t hj : j ∈ insert x t hne : i ≠ j hjne : x ≠ j ⊢ swap x i * swap x j * swap x i ∈ ↑(Subgroup.closure (swapsAt x t)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.cl_swapsAt_eq
[362, 1]
[377, 53]
intro y hy
case aux α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α ⊢ ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t)
case aux α : Type u_1 x✝ y✝ : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α y : α hy : y ∈ insert x t ⊢ swap x y ∈ Subgroup.closure (swapsAt x t)
Please generate a tactic in lean4 to solve the state. STATE: case aux α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α ⊢ ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.cl_swapsAt_eq
[362, 1]
[377, 53]
rw [← Set.insert_diff_singleton] at hy
case aux α : Type u_1 x✝ y✝ : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α y : α hy : y ∈ insert x t ⊢ swap x y ∈ Subgroup.closure (swapsAt x t)
case aux α : Type u_1 x✝ y✝ : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α y : α hy : y ∈ insert x (t \ {x}) ⊢ swap x y ∈ Subgroup.closure (swapsAt x t)
Please generate a tactic in lean4 to solve the state. STATE: case aux α : Type u_1 x✝ y✝ : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α y : α hy : y ∈ insert x t ⊢ swap x y ∈ Subgroup.closure (swapsAt x t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.cl_swapsAt_eq
[362, 1]
[377, 53]
obtain (rfl | hy) := hy
case aux α : Type u_1 x✝ y✝ : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α y : α hy : y ∈ insert x (t \ {x}) ⊢ swap x y ∈ Subgroup.closure (swapsAt x t)
case aux.inl α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α t : Set α y : α ⊢ swap y y ∈ Subgroup.closure (swapsAt y t) case aux.inr α : Type u_1 x✝ y✝ : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α y : α hy : y ∈ t \ {x} ⊢ swap x y ∈ Subgroup.closure (swapsAt x t)
Please generate a tactic in lean4 to solve the state. STATE: case aux α : Type u_1 x✝ y✝ : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α y : α hy : y ∈ insert x (t \ {x}) ⊢ swap x y ∈ Subgroup.closure (swapsAt x t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.cl_swapsAt_eq
[362, 1]
[377, 53]
exact Subgroup.subset_closure ⟨y, hy, rfl⟩
case aux.inr α : Type u_1 x✝ y✝ : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α y : α hy : y ∈ t \ {x} ⊢ swap x y ∈ Subgroup.closure (swapsAt x t)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case aux.inr α : Type u_1 x✝ y✝ : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α y : α hy : y ∈ t \ {x} ⊢ swap x y ∈ Subgroup.closure (swapsAt x t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.cl_swapsAt_eq
[362, 1]
[377, 53]
rw [swap_self, ← one_def]
case aux.inl α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α t : Set α y : α ⊢ swap y y ∈ Subgroup.closure (swapsAt y t)
case aux.inl α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α t : Set α y : α ⊢ 1 ∈ Subgroup.closure (swapsAt y t)
Please generate a tactic in lean4 to solve the state. STATE: case aux.inl α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α t : Set α y : α ⊢ swap y y ∈ Subgroup.closure (swapsAt y t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.cl_swapsAt_eq
[362, 1]
[377, 53]
exact Subgroup.one_mem _
case aux.inl α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α t : Set α y : α ⊢ 1 ∈ Subgroup.closure (swapsAt y t)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case aux.inl α : Type u_1 x y✝ : α f g : Finperm α inst✝ : DecidableEq α t : Set α y : α ⊢ 1 ∈ Subgroup.closure (swapsAt y t) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.cl_swapsAt_eq
[362, 1]
[377, 53]
rw [swap_comm]
case intro.intro.intro.intro.intro.inl α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) i : α hi : i ∈ insert x t hj : x ∈ insert x t hne : i ≠ x ⊢ swap i x ∈ ↑(Subgroup.closure (swapsAt x t))
case intro.intro.intro.intro.intro.inl α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) i : α hi : i ∈ insert x t hj : x ∈ insert x t hne : i ≠ x ⊢ swap x i ∈ ↑(Subgroup.closure (swapsAt x t))
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.inl α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) i : α hi : i ∈ insert x t hj : x ∈ insert x t hne : i ≠ x ⊢ swap i x ∈ ↑(Subgroup.closure (swapsAt x t)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.cl_swapsAt_eq
[362, 1]
[377, 53]
exact aux hi
case intro.intro.intro.intro.intro.inl α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) i : α hi : i ∈ insert x t hj : x ∈ insert x t hne : i ≠ x ⊢ swap x i ∈ ↑(Subgroup.closure (swapsAt x t))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.inl α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α aux : ∀ {y : α}, y ∈ insert x t → swap x y ∈ Subgroup.closure (swapsAt x t) i : α hi : i ∈ insert x t hj : x ∈ insert x t hne : i ≠ x ⊢ swap x i ∈ ↑(Subgroup.closure (swapsAt x t)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.cl_swapsAt_eq'
[379, 1]
[381, 47]
rw [cl_swapsAt_eq, Set.insert_eq_of_mem hxt]
α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α hxt : x ∈ t ⊢ Subgroup.closure (swapsAt x t) = restrict t
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x✝ y : α f g : Finperm α inst✝ : DecidableEq α x : α t : Set α hxt : x ∈ t ⊢ Subgroup.closure (swapsAt x t) = restrict t TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.adjSwapsBelow_aux
[399, 1]
[410, 37]
induction' n with n IH
α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ ⊢ swap 0 n ∈ Subgroup.closure (adjSwapsBelow n)
case zero α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ ⊢ swap 0 Nat.zero ∈ Subgroup.closure (adjSwapsBelow Nat.zero) case succ α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ swap 0 (Nat.succ n) ∈ Subgroup.closure (adjSwapsBelow (Nat.succ n))
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ ⊢ swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.adjSwapsBelow_aux
[399, 1]
[410, 37]
simp [Nat.succ_eq_add_one]
case succ α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ swap 0 (Nat.succ n) ∈ Subgroup.closure (adjSwapsBelow (Nat.succ n))
case succ α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ swap 0 (n + 1) ∈ Subgroup.closure (adjSwapsBelow (n + 1))
Please generate a tactic in lean4 to solve the state. STATE: case succ α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ swap 0 (Nat.succ n) ∈ Subgroup.closure (adjSwapsBelow (Nat.succ n)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.adjSwapsBelow_aux
[399, 1]
[410, 37]
rw [← swap_conj_eq (x := 0) (y := n) (z := n+1)]
case succ α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ swap 0 (n + 1) ∈ Subgroup.closure (adjSwapsBelow (n + 1))
case succ α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ swap 0 n * swap n (n + 1) * swap 0 n ∈ Subgroup.closure (adjSwapsBelow (n + 1)) case succ.hxz α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ 0 ≠ n + 1 case succ.hyz α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ n ≠ n + 1
Please generate a tactic in lean4 to solve the state. STATE: case succ α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ swap 0 (n + 1) ∈ Subgroup.closure (adjSwapsBelow (n + 1)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.adjSwapsBelow_aux
[399, 1]
[410, 37]
exact Ne.symm (Nat.succ_ne_self n)
case succ.hyz α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ n ≠ n + 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ.hyz α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ n ≠ n + 1 TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.adjSwapsBelow_aux
[399, 1]
[410, 37]
simp only [Nat.zero_eq, swap_self, ← one_def]
case zero α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ ⊢ swap 0 Nat.zero ∈ Subgroup.closure (adjSwapsBelow Nat.zero)
case zero α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ ⊢ 1 ∈ Subgroup.closure (adjSwapsBelow 0)
Please generate a tactic in lean4 to solve the state. STATE: case zero α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ ⊢ swap 0 Nat.zero ∈ Subgroup.closure (adjSwapsBelow Nat.zero) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.adjSwapsBelow_aux
[399, 1]
[410, 37]
exact Subgroup.one_mem (Subgroup.closure (adjSwapsBelow 0))
case zero α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ ⊢ 1 ∈ Subgroup.closure (adjSwapsBelow 0)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case zero α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ ⊢ 1 ∈ Subgroup.closure (adjSwapsBelow 0) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.adjSwapsBelow_aux
[399, 1]
[410, 37]
refine Subgroup.mul_mem _ (Subgroup.mul_mem _ ?_ ?_) ?_
case succ α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ swap 0 n * swap n (n + 1) * swap 0 n ∈ Subgroup.closure (adjSwapsBelow (n + 1))
case succ.refine_1 α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ swap 0 n ∈ Subgroup.closure (adjSwapsBelow (n + 1)) case succ.refine_2 α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ swap n (n + 1) ∈ Subgroup.closure (adjSwapsBelow (n + 1)) case succ.refine_3 α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ swap 0 n ∈ Subgroup.closure (adjSwapsBelow (n + 1))
Please generate a tactic in lean4 to solve the state. STATE: case succ α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ swap 0 n * swap n (n + 1) * swap 0 n ∈ Subgroup.closure (adjSwapsBelow (n + 1)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.adjSwapsBelow_aux
[399, 1]
[410, 37]
exact Subgroup.closure_mono (adjSwapsBelow_mono (le_self_add : n ≤ n +1)) IH
case succ.refine_3 α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ swap 0 n ∈ Subgroup.closure (adjSwapsBelow (n + 1))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ.refine_3 α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ swap 0 n ∈ Subgroup.closure (adjSwapsBelow (n + 1)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.adjSwapsBelow_aux
[399, 1]
[410, 37]
exact Subgroup.closure_mono (adjSwapsBelow_mono (le_self_add : n ≤ n +1)) IH
case succ.refine_1 α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ swap 0 n ∈ Subgroup.closure (adjSwapsBelow (n + 1))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ.refine_1 α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ swap 0 n ∈ Subgroup.closure (adjSwapsBelow (n + 1)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.adjSwapsBelow_aux
[399, 1]
[410, 37]
exact Subgroup.subset_closure ⟨n, by simp, rfl⟩
case succ.refine_2 α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ swap n (n + 1) ∈ Subgroup.closure (adjSwapsBelow (n + 1))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ.refine_2 α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ swap n (n + 1) ∈ Subgroup.closure (adjSwapsBelow (n + 1)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.adjSwapsBelow_aux
[399, 1]
[410, 37]
simp
α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ n ∈ Set.Iio (n + 1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ n ∈ Set.Iio (n + 1) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.adjSwapsBelow_aux
[399, 1]
[410, 37]
exact Nat.ne_of_beq_eq_false rfl
case succ.hxz α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ 0 ≠ n + 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ.hxz α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ IH : swap 0 n ∈ Subgroup.closure (adjSwapsBelow n) ⊢ 0 ≠ n + 1 TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.closure_adjSwapsBelow_eq
[412, 1]
[424, 77]
refine le_antisymm ((Subgroup.closure_le _).2 ?_) ?_
α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ ⊢ Subgroup.closure (adjSwapsBelow n) = restrict (Set.Iic n)
case refine_1 α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ ⊢ adjSwapsBelow n ⊆ ↑(restrict (Set.Iic n)) case refine_2 α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ ⊢ restrict (Set.Iic n) ≤ Subgroup.closure (adjSwapsBelow n)
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ ⊢ Subgroup.closure (adjSwapsBelow n) = restrict (Set.Iic n) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.closure_adjSwapsBelow_eq
[412, 1]
[424, 77]
rw [← cl_swapsAt_eq' (x := 0) (by simp)]
case refine_2 α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ ⊢ restrict (Set.Iic n) ≤ Subgroup.closure (adjSwapsBelow n)
case refine_2 α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ ⊢ Subgroup.closure (swapsAt 0 (Set.Iic n)) ≤ Subgroup.closure (adjSwapsBelow n)
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ ⊢ restrict (Set.Iic n) ≤ Subgroup.closure (adjSwapsBelow n) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.closure_adjSwapsBelow_eq
[412, 1]
[424, 77]
apply (Subgroup.closure_le _).2
case refine_2 α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ ⊢ Subgroup.closure (swapsAt 0 (Set.Iic n)) ≤ Subgroup.closure (adjSwapsBelow n)
case refine_2 α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ ⊢ swapsAt 0 (Set.Iic n) ⊆ ↑(Subgroup.closure (adjSwapsBelow n))
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ ⊢ Subgroup.closure (swapsAt 0 (Set.Iic n)) ≤ Subgroup.closure (adjSwapsBelow n) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.closure_adjSwapsBelow_eq
[412, 1]
[424, 77]
rintro _ ⟨i, ⟨hi : i ≤ n, -⟩, rfl⟩
case refine_2 α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ ⊢ swapsAt 0 (Set.Iic n) ⊆ ↑(Subgroup.closure (adjSwapsBelow n))
case refine_2.intro.intro.intro α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n i : ℕ hi : i ≤ n ⊢ (fun x => swap 0 x) i ∈ ↑(Subgroup.closure (adjSwapsBelow n))
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ ⊢ swapsAt 0 (Set.Iic n) ⊆ ↑(Subgroup.closure (adjSwapsBelow n)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.closure_adjSwapsBelow_eq
[412, 1]
[424, 77]
simp only [SetLike.mem_coe]
case refine_2.intro.intro.intro α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n i : ℕ hi : i ≤ n ⊢ (fun x => swap 0 x) i ∈ ↑(Subgroup.closure (adjSwapsBelow n))
case refine_2.intro.intro.intro α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n i : ℕ hi : i ≤ n ⊢ swap 0 i ∈ Subgroup.closure (adjSwapsBelow n)
Please generate a tactic in lean4 to solve the state. STATE: case refine_2.intro.intro.intro α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n i : ℕ hi : i ≤ n ⊢ (fun x => swap 0 x) i ∈ ↑(Subgroup.closure (adjSwapsBelow n)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.closure_adjSwapsBelow_eq
[412, 1]
[424, 77]
exact Subgroup.closure_mono (adjSwapsBelow_mono hi) <| adjSwapsBelow_aux i
case refine_2.intro.intro.intro α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n i : ℕ hi : i ≤ n ⊢ swap 0 i ∈ Subgroup.closure (adjSwapsBelow n)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2.intro.intro.intro α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n i : ℕ hi : i ≤ n ⊢ swap 0 i ∈ Subgroup.closure (adjSwapsBelow n) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.closure_adjSwapsBelow_eq
[412, 1]
[424, 77]
rintro x ⟨i, hi, rfl⟩
case refine_1 α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ ⊢ adjSwapsBelow n ⊆ ↑(restrict (Set.Iic n))
case refine_1.intro.intro α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n i : ℕ hi : i ∈ Set.Iio n ⊢ (fun i => swap i (i + 1)) i ∈ ↑(restrict (Set.Iic n))
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ ⊢ adjSwapsBelow n ⊆ ↑(restrict (Set.Iic n)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.closure_adjSwapsBelow_eq
[412, 1]
[424, 77]
simp only [SetLike.mem_coe, mem_restrict_iff, swap_support, self_eq_add_right, ite_false, coe_insert, coe_singleton, Set.insert_subset_iff, Set.mem_Iic, Set.singleton_subset_iff]
case refine_1.intro.intro α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n i : ℕ hi : i ∈ Set.Iio n ⊢ (fun i => swap i (i + 1)) i ∈ ↑(restrict (Set.Iic n))
case refine_1.intro.intro α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n i : ℕ hi : i ∈ Set.Iio n ⊢ i ≤ n ∧ i + 1 ≤ n
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.intro.intro α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n i : ℕ hi : i ∈ Set.Iio n ⊢ (fun i => swap i (i + 1)) i ∈ ↑(restrict (Set.Iic n)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.closure_adjSwapsBelow_eq
[412, 1]
[424, 77]
rw [Set.mem_Iio, ← Nat.add_one_le_iff] at hi
case refine_1.intro.intro α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n i : ℕ hi : i ∈ Set.Iio n ⊢ i ≤ n ∧ i + 1 ≤ n
case refine_1.intro.intro α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n i : ℕ hi : i + 1 ≤ n ⊢ i ≤ n ∧ i + 1 ≤ n
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.intro.intro α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n i : ℕ hi : i ∈ Set.Iio n ⊢ i ≤ n ∧ i + 1 ≤ n TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.closure_adjSwapsBelow_eq
[412, 1]
[424, 77]
constructor <;> linarith
case refine_1.intro.intro α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n i : ℕ hi : i + 1 ≤ n ⊢ i ≤ n ∧ i + 1 ≤ n
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.intro.intro α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n i : ℕ hi : i + 1 ≤ n ⊢ i ≤ n ∧ i + 1 ≤ n TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.closure_adjSwapsBelow_eq
[412, 1]
[424, 77]
simp
α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ ⊢ 0 ∈ Set.Iic n
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ n : ℕ ⊢ 0 ∈ Set.Iic n TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.closure_adjSwaps_eq
[428, 1]
[437, 17]
ext f
α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ ⊢ Subgroup.closure adjSwaps = ⊤
case h α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ ⊢ f ∈ Subgroup.closure adjSwaps ↔ f ∈ ⊤
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f✝ g : Finperm α f : Finperm ℕ ⊢ Subgroup.closure adjSwaps = ⊤ TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.closure_adjSwaps_eq
[428, 1]
[437, 17]
simp only [Subgroup.mem_top, iff_true]
case h α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ ⊢ f ∈ Subgroup.closure adjSwaps ↔ f ∈ ⊤
case h α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ ⊢ f ∈ Subgroup.closure adjSwaps
Please generate a tactic in lean4 to solve the state. STATE: case h α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ ⊢ f ∈ Subgroup.closure adjSwaps ↔ f ∈ ⊤ TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.closure_adjSwaps_eq
[428, 1]
[437, 17]
have hss : (f.support : Set ℕ) ⊆ Set.Iic f.ub
case h α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ ⊢ f ∈ Subgroup.closure adjSwaps
case hss α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ ⊢ ↑f.support ⊆ Set.Iic (ub f) case h α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ hss : ↑f.support ⊆ Set.Iic (ub f) ⊢ f ∈ Subgroup.closure adjSwaps
Please generate a tactic in lean4 to solve the state. STATE: case h α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ ⊢ f ∈ Subgroup.closure adjSwaps TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.closure_adjSwaps_eq
[428, 1]
[437, 17]
have hf := restrict_mono hss <| mem_restrict_support f
case h α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ hss : ↑f.support ⊆ Set.Iic (ub f) ⊢ f ∈ Subgroup.closure adjSwaps
case h α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ hss : ↑f.support ⊆ Set.Iic (ub f) hf : f ∈ restrict (Set.Iic (ub f)) ⊢ f ∈ Subgroup.closure adjSwaps
Please generate a tactic in lean4 to solve the state. STATE: case h α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ hss : ↑f.support ⊆ Set.Iic (ub f) ⊢ f ∈ Subgroup.closure adjSwaps TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.closure_adjSwaps_eq
[428, 1]
[437, 17]
rw [← closure_adjSwapsBelow_eq] at hf
case h α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ hss : ↑f.support ⊆ Set.Iic (ub f) hf : f ∈ restrict (Set.Iic (ub f)) ⊢ f ∈ Subgroup.closure adjSwaps
case h α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ hss : ↑f.support ⊆ Set.Iic (ub f) hf : f ∈ Subgroup.closure (adjSwapsBelow (ub f)) ⊢ f ∈ Subgroup.closure adjSwaps
Please generate a tactic in lean4 to solve the state. STATE: case h α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ hss : ↑f.support ⊆ Set.Iic (ub f) hf : f ∈ restrict (Set.Iic (ub f)) ⊢ f ∈ Subgroup.closure adjSwaps TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.closure_adjSwaps_eq
[428, 1]
[437, 17]
refine (Subgroup.closure_mono ?_) hf
case h α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ hss : ↑f.support ⊆ Set.Iic (ub f) hf : f ∈ Subgroup.closure (adjSwapsBelow (ub f)) ⊢ f ∈ Subgroup.closure adjSwaps
case h α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ hss : ↑f.support ⊆ Set.Iic (ub f) hf : f ∈ Subgroup.closure (adjSwapsBelow (ub f)) ⊢ adjSwapsBelow (ub f) ⊆ adjSwaps
Please generate a tactic in lean4 to solve the state. STATE: case h α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ hss : ↑f.support ⊆ Set.Iic (ub f) hf : f ∈ Subgroup.closure (adjSwapsBelow (ub f)) ⊢ f ∈ Subgroup.closure adjSwaps TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.closure_adjSwaps_eq
[428, 1]
[437, 17]
rintro _ ⟨i, -, rfl⟩
case h α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ hss : ↑f.support ⊆ Set.Iic (ub f) hf : f ∈ Subgroup.closure (adjSwapsBelow (ub f)) ⊢ adjSwapsBelow (ub f) ⊆ adjSwaps
case h.intro.intro α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ hss : ↑f.support ⊆ Set.Iic (ub f) hf : f ∈ Subgroup.closure (adjSwapsBelow (ub f)) i : ℕ ⊢ (fun i => swap i (i + 1)) i ∈ adjSwaps
Please generate a tactic in lean4 to solve the state. STATE: case h α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ hss : ↑f.support ⊆ Set.Iic (ub f) hf : f ∈ Subgroup.closure (adjSwapsBelow (ub f)) ⊢ adjSwapsBelow (ub f) ⊆ adjSwaps TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.closure_adjSwaps_eq
[428, 1]
[437, 17]
exact ⟨i, rfl⟩
case h.intro.intro α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ hss : ↑f.support ⊆ Set.Iic (ub f) hf : f ∈ Subgroup.closure (adjSwapsBelow (ub f)) i : ℕ ⊢ (fun i => swap i (i + 1)) i ∈ adjSwaps
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.intro.intro α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ hss : ↑f.support ⊆ Set.Iic (ub f) hf : f ∈ Subgroup.closure (adjSwapsBelow (ub f)) i : ℕ ⊢ (fun i => swap i (i + 1)) i ∈ adjSwaps TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Finperm.lean
Finperm.closure_adjSwaps_eq
[428, 1]
[437, 17]
exact fun x hx ↦ (f.lt_ub hx).le
case hss α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ ⊢ ↑f.support ⊆ Set.Iic (ub f)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hss α : Type u_1 x y : α f✝¹ g : Finperm α f✝ f : Finperm ℕ ⊢ ↑f.support ⊆ Set.Iic (ub f) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.not_mem_support'
[25, 9]
[26, 18]
simp [support']
α : Type u_1 x y : α f✝ f : Perm α ⊢ x ∉ support' f ↔ f x = x
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f✝ f : Perm α ⊢ x ∉ support' f ↔ f x = x TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.mem_support'
[28, 9]
[29, 18]
simp [support']
α : Type u_1 x y : α f✝ f : Perm α ⊢ x ∈ support' f ↔ f x ≠ x
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f✝ f : Perm α ⊢ x ∈ support' f ↔ f x ≠ x TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.support'_one
[31, 9]
[32, 12]
ext
α✝ : Type u_1 x y : α✝ f : Perm α✝ α : Type u_2 ⊢ support' 1 = ∅
case h α✝ : Type u_1 x y : α✝ f : Perm α✝ α : Type u_2 x✝ : α ⊢ x✝ ∈ support' 1 ↔ x✝ ∈ ∅
Please generate a tactic in lean4 to solve the state. STATE: α✝ : Type u_1 x y : α✝ f : Perm α✝ α : Type u_2 ⊢ support' 1 = ∅ TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.support'_one
[31, 9]
[32, 12]
simp
case h α✝ : Type u_1 x y : α✝ f : Perm α✝ α : Type u_2 x✝ : α ⊢ x✝ ∈ support' 1 ↔ x✝ ∈ ∅
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h α✝ : Type u_1 x y : α✝ f : Perm α✝ α : Type u_2 x✝ : α ⊢ x✝ ∈ support' 1 ↔ x✝ ∈ ∅ TACTIC: