url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.support'_eq_empty
[34, 9]
[38, 12]
refine ⟨fun h ↦ ?_, fun h ↦ h.symm ▸ support'_one α⟩
α : Type u_1 x y : α f✝ f : Perm α ⊢ support' f = ∅ ↔ f = 1
α : Type u_1 x y : α f✝ f : Perm α h : support' f = ∅ ⊢ f = 1
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f✝ f : Perm α ⊢ support' f = ∅ ↔ f = 1 TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.support'_eq_empty
[34, 9]
[38, 12]
ext x
α : Type u_1 x y : α f✝ f : Perm α h : support' f = ∅ ⊢ f = 1
case H α : Type u_1 x✝ y : α f✝ f : Perm α h : support' f = ∅ x : α ⊢ f x = 1 x
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f✝ f : Perm α h : support' f = ∅ ⊢ f = 1 TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.support'_eq_empty
[34, 9]
[38, 12]
simp only [support', ne_eq, eq_empty_iff_forall_not_mem, mem_setOf_eq, not_not] at h
case H α : Type u_1 x✝ y : α f✝ f : Perm α h : support' f = ∅ x : α ⊢ f x = 1 x
case H α : Type u_1 x✝ y : α f✝ f : Perm α x : α h : ∀ (x : α), f x = x ⊢ f x = 1 x
Please generate a tactic in lean4 to solve the state. STATE: case H α : Type u_1 x✝ y : α f✝ f : Perm α h : support' f = ∅ x : α ⊢ f x = 1 x TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.support'_eq_empty
[34, 9]
[38, 12]
exact h x
case H α : Type u_1 x✝ y : α f✝ f : Perm α x : α h : ∀ (x : α), f x = x ⊢ f x = 1 x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case H α : Type u_1 x✝ y : α f✝ f : Perm α x : α h : ∀ (x : α), f x = x ⊢ f x = 1 x TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.support'_ne_singleton
[40, 1]
[45, 50]
intro h
α : Type u_1 x y : α f✝ f : Perm α a : α ⊢ support' f ≠ {a}
α : Type u_1 x y : α f✝ f : Perm α a : α h : support' f = {a} ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f✝ f : Perm α a : α ⊢ support' f ≠ {a} TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.support'_ne_singleton
[40, 1]
[45, 50]
simp only [Set.ext_iff, mem_support', ne_eq, mem_singleton_iff] at h
α : Type u_1 x y : α f✝ f : Perm α a : α h : support' f = {a} ⊢ False
α : Type u_1 x y : α f✝ f : Perm α a : α h : ∀ (x : α), ¬f x = x ↔ x = a ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f✝ f : Perm α a : α h : support' f = {a} ⊢ False TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.support'_ne_singleton
[40, 1]
[45, 50]
specialize h (f.symm a)
α : Type u_1 x y : α f✝ f : Perm α a : α h : ∀ (x : α), ¬f x = x ↔ x = a ⊢ False
α : Type u_1 x y : α f✝ f : Perm α a : α h : ¬f (f.symm a) = f.symm a ↔ f.symm a = a ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f✝ f : Perm α a : α h : ∀ (x : α), ¬f x = x ↔ x = a ⊢ False TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.support'_ne_singleton
[40, 1]
[45, 50]
rw [eq_comm] at h
α : Type u_1 x y : α f✝ f : Perm α a : α h : ¬f (f.symm a) = f.symm a ↔ f.symm a = a ⊢ False
α : Type u_1 x y : α f✝ f : Perm α a : α h : ¬f.symm a = f (f.symm a) ↔ f.symm a = a ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f✝ f : Perm α a : α h : ¬f (f.symm a) = f.symm a ↔ f.symm a = a ⊢ False TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.support'_ne_singleton
[40, 1]
[45, 50]
simp only [apply_symm_apply, not_iff_self] at h
α : Type u_1 x y : α f✝ f : Perm α a : α h : ¬f.symm a = f (f.symm a) ↔ f.symm a = a ⊢ False
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f✝ f : Perm α a : α h : ¬f.symm a = f (f.symm a) ↔ f.symm a = a ⊢ False TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.exists_ne_of_mem_support'
[47, 1]
[53, 11]
refine by_contra <| fun h ↦ support'_ne_singleton f a ?_
α : Type u_1 x y : α f : Perm α a : α ha : a ∈ support' f ⊢ ∃ b ∈ support' f, b ≠ a
α : Type u_1 x y : α f : Perm α a : α ha : a ∈ support' f h : ¬∃ b ∈ support' f, b ≠ a ⊢ support' f = {a}
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f : Perm α a : α ha : a ∈ support' f ⊢ ∃ b ∈ support' f, b ≠ a TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.exists_ne_of_mem_support'
[47, 1]
[53, 11]
simp only [Set.ext_iff, mem_support', ne_eq, mem_singleton_iff]
α : Type u_1 x y : α f : Perm α a : α ha : a ∈ support' f h : ¬∃ b ∈ support' f, b ≠ a ⊢ support' f = {a}
α : Type u_1 x y : α f : Perm α a : α ha : a ∈ support' f h : ¬∃ b ∈ support' f, b ≠ a ⊢ ∀ (x : α), ¬f x = x ↔ x = a
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f : Perm α a : α ha : a ∈ support' f h : ¬∃ b ∈ support' f, b ≠ a ⊢ support' f = {a} TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.exists_ne_of_mem_support'
[47, 1]
[53, 11]
simp only [mem_support', ne_eq, not_exists, not_and, not_not] at h
α : Type u_1 x y : α f : Perm α a : α ha : a ∈ support' f h : ¬∃ b ∈ support' f, b ≠ a ⊢ ∀ (x : α), ¬f x = x ↔ x = a
α : Type u_1 x y : α f : Perm α a : α ha : a ∈ support' f h : ∀ (x : α), ¬f x = x → x = a ⊢ ∀ (x : α), ¬f x = x ↔ x = a
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f : Perm α a : α ha : a ∈ support' f h : ¬∃ b ∈ support' f, b ≠ a ⊢ ∀ (x : α), ¬f x = x ↔ x = a TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.exists_ne_of_mem_support'
[47, 1]
[53, 11]
refine fun x ↦ ⟨fun h' ↦ h _ h', ?_⟩
α : Type u_1 x y : α f : Perm α a : α ha : a ∈ support' f h : ∀ (x : α), ¬f x = x → x = a ⊢ ∀ (x : α), ¬f x = x ↔ x = a
α : Type u_1 x✝ y : α f : Perm α a : α ha : a ∈ support' f h : ∀ (x : α), ¬f x = x → x = a x : α ⊢ x = a → ¬f x = x
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f : Perm α a : α ha : a ∈ support' f h : ∀ (x : α), ¬f x = x → x = a ⊢ ∀ (x : α), ¬f x = x ↔ x = a TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.exists_ne_of_mem_support'
[47, 1]
[53, 11]
rintro rfl
α : Type u_1 x✝ y : α f : Perm α a : α ha : a ∈ support' f h : ∀ (x : α), ¬f x = x → x = a x : α ⊢ x = a → ¬f x = x
α : Type u_1 x✝ y : α f : Perm α x : α ha : x ∈ support' f h : ∀ (x_1 : α), ¬f x_1 = x_1 → x_1 = x ⊢ ¬f x = x
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x✝ y : α f : Perm α a : α ha : a ∈ support' f h : ∀ (x : α), ¬f x = x → x = a x : α ⊢ x = a → ¬f x = x TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.exists_ne_of_mem_support'
[47, 1]
[53, 11]
exact ha
α : Type u_1 x✝ y : α f : Perm α x : α ha : x ∈ support' f h : ∀ (x_1 : α), ¬f x_1 = x_1 → x_1 = x ⊢ ¬f x = x
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x✝ y : α f : Perm α x : α ha : x ∈ support' f h : ∀ (x_1 : α), ¬f x_1 = x_1 → x_1 = x ⊢ ¬f x = x TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.support'_inv
[55, 9]
[57, 65]
ext x
α : Type u_1 x y : α f✝ f : Perm α ⊢ support' f⁻¹ = support' f
case h α : Type u_1 x✝ y : α f✝ f : Perm α x : α ⊢ x ∈ support' f⁻¹ ↔ x ∈ support' f
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f✝ f : Perm α ⊢ support' f⁻¹ = support' f TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.support'_inv
[55, 9]
[57, 65]
rw [mem_support', ne_eq, mem_support', inv_eq_iff_eq, eq_comm]
case h α : Type u_1 x✝ y : α f✝ f : Perm α x : α ⊢ x ∈ support' f⁻¹ ↔ x ∈ support' f
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h α : Type u_1 x✝ y : α f✝ f : Perm α x : α ⊢ x ∈ support' f⁻¹ ↔ x ∈ support' f TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.support'_prod
[59, 1]
[63, 18]
refine fun x hx ↦ by_contra <| fun h ↦ hx ?_
α : Type u_1 x y : α f✝ f g : Perm α ⊢ support' (f * g) ⊆ support' f ∪ support' g
α : Type u_1 x✝ y : α f✝ f g : Perm α x : α hx : x ∈ support' (f * g) h : x ∉ support' f ∪ support' g ⊢ (f * g) x = x
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f✝ f g : Perm α ⊢ support' (f * g) ⊆ support' f ∪ support' g TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.support'_prod
[59, 1]
[63, 18]
simp only [mem_union, not_or, not_mem_support'] at h
α : Type u_1 x✝ y : α f✝ f g : Perm α x : α hx : x ∈ support' (f * g) h : x ∉ support' f ∪ support' g ⊢ (f * g) x = x
α : Type u_1 x✝ y : α f✝ f g : Perm α x : α hx : x ∈ support' (f * g) h : f x = x ∧ g x = x ⊢ (f * g) x = x
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x✝ y : α f✝ f g : Perm α x : α hx : x ∈ support' (f * g) h : x ∉ support' f ∪ support' g ⊢ (f * g) x = x TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.support'_prod
[59, 1]
[63, 18]
rw [coe_mul, Function.comp_apply]
α : Type u_1 x✝ y : α f✝ f g : Perm α x : α hx : x ∈ support' (f * g) h : f x = x ∧ g x = x ⊢ (f * g) x = x
α : Type u_1 x✝ y : α f✝ f g : Perm α x : α hx : x ∈ support' (f * g) h : f x = x ∧ g x = x ⊢ f (g x) = x
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x✝ y : α f✝ f g : Perm α x : α hx : x ∈ support' (f * g) h : f x = x ∧ g x = x ⊢ (f * g) x = x TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.support'_prod
[59, 1]
[63, 18]
simp [h.1, h.2]
α : Type u_1 x✝ y : α f✝ f g : Perm α x : α hx : x ∈ support' (f * g) h : f x = x ∧ g x = x ⊢ f (g x) = x
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x✝ y : α f✝ f g : Perm α x : α hx : x ∈ support' (f * g) h : f x = x ∧ g x = x ⊢ f (g x) = x TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.support'_swap
[69, 1]
[72, 65]
ext z
α : Type u_1 x y : α f : Perm α inst✝ : DecidableEq α hxy : x ≠ y ⊢ support' (swap x y) = {x, y}
case h α : Type u_1 x y : α f : Perm α inst✝ : DecidableEq α hxy : x ≠ y z : α ⊢ z ∈ support' (swap x y) ↔ z ∈ {x, y}
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f : Perm α inst✝ : DecidableEq α hxy : x ≠ y ⊢ support' (swap x y) = {x, y} TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.support'_swap
[69, 1]
[72, 65]
simp only [support', ne_eq, mem_setOf_eq, mem_insert_iff, mem_singleton_iff]
case h α : Type u_1 x y : α f : Perm α inst✝ : DecidableEq α hxy : x ≠ y z : α ⊢ z ∈ support' (swap x y) ↔ z ∈ {x, y}
case h α : Type u_1 x y : α f : Perm α inst✝ : DecidableEq α hxy : x ≠ y z : α ⊢ ¬(swap x y) z = z ↔ z = x ∨ z = y
Please generate a tactic in lean4 to solve the state. STATE: case h α : Type u_1 x y : α f : Perm α inst✝ : DecidableEq α hxy : x ≠ y z : α ⊢ z ∈ support' (swap x y) ↔ z ∈ {x, y} TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.support'_swap
[69, 1]
[72, 65]
rw [← Ne.def, Equiv.swap_apply_ne_self_iff, and_iff_right hxy]
case h α : Type u_1 x y : α f : Perm α inst✝ : DecidableEq α hxy : x ≠ y z : α ⊢ ¬(swap x y) z = z ↔ z = x ∨ z = y
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h α : Type u_1 x y : α f : Perm α inst✝ : DecidableEq α hxy : x ≠ y z : α ⊢ ¬(swap x y) z = z ↔ z = x ∨ z = y TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.exists_pair_of_isSwap
[102, 1]
[108, 29]
obtain ⟨x,y, hxy, rfl⟩ := hf
α : Type u_1 x y : α f : Perm α inst✝¹ : DecidableEq α inst✝ : LinearOrder α hf : IsSwap f ⊢ ∃ p, f = swap p.lo p.hi
case intro.intro.intro α : Type u_1 x✝ y✝ : α inst✝¹ : DecidableEq α inst✝ : LinearOrder α x y : α hxy : x ≠ y ⊢ ∃ p, swap x y = swap p.lo p.hi
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x y : α f : Perm α inst✝¹ : DecidableEq α inst✝ : LinearOrder α hf : IsSwap f ⊢ ∃ p, f = swap p.lo p.hi TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.exists_pair_of_isSwap
[102, 1]
[108, 29]
obtain (h | h) := hxy.lt_or_lt
case intro.intro.intro α : Type u_1 x✝ y✝ : α inst✝¹ : DecidableEq α inst✝ : LinearOrder α x y : α hxy : x ≠ y ⊢ ∃ p, swap x y = swap p.lo p.hi
case intro.intro.intro.inl α : Type u_1 x✝ y✝ : α inst✝¹ : DecidableEq α inst✝ : LinearOrder α x y : α hxy : x ≠ y h : x < y ⊢ ∃ p, swap x y = swap p.lo p.hi case intro.intro.intro.inr α : Type u_1 x✝ y✝ : α inst✝¹ : DecidableEq α inst✝ : LinearOrder α x y : α hxy : x ≠ y h : y < x ⊢ ∃ p, swap x y = swap p.lo p.hi
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro α : Type u_1 x✝ y✝ : α inst✝¹ : DecidableEq α inst✝ : LinearOrder α x y : α hxy : x ≠ y ⊢ ∃ p, swap x y = swap p.lo p.hi TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.exists_pair_of_isSwap
[102, 1]
[108, 29]
rw [Equiv.swap_comm]
case intro.intro.intro.inr α : Type u_1 x✝ y✝ : α inst✝¹ : DecidableEq α inst✝ : LinearOrder α x y : α hxy : x ≠ y h : y < x ⊢ ∃ p, swap x y = swap p.lo p.hi
case intro.intro.intro.inr α : Type u_1 x✝ y✝ : α inst✝¹ : DecidableEq α inst✝ : LinearOrder α x y : α hxy : x ≠ y h : y < x ⊢ ∃ p, swap y x = swap p.lo p.hi
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.inr α : Type u_1 x✝ y✝ : α inst✝¹ : DecidableEq α inst✝ : LinearOrder α x y : α hxy : x ≠ y h : y < x ⊢ ∃ p, swap x y = swap p.lo p.hi TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.exists_pair_of_isSwap
[102, 1]
[108, 29]
exact ⟨Pair.mk y x h, rfl⟩
case intro.intro.intro.inr α : Type u_1 x✝ y✝ : α inst✝¹ : DecidableEq α inst✝ : LinearOrder α x y : α hxy : x ≠ y h : y < x ⊢ ∃ p, swap y x = swap p.lo p.hi
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.inr α : Type u_1 x✝ y✝ : α inst✝¹ : DecidableEq α inst✝ : LinearOrder α x y : α hxy : x ≠ y h : y < x ⊢ ∃ p, swap y x = swap p.lo p.hi TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.exists_pair_of_isSwap
[102, 1]
[108, 29]
exact ⟨Pair.mk x y h, rfl⟩
case intro.intro.intro.inl α : Type u_1 x✝ y✝ : α inst✝¹ : DecidableEq α inst✝ : LinearOrder α x y : α hxy : x ≠ y h : x < y ⊢ ∃ p, swap x y = swap p.lo p.hi
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.inl α : Type u_1 x✝ y✝ : α inst✝¹ : DecidableEq α inst✝ : LinearOrder α x y : α hxy : x ≠ y h : x < y ⊢ ∃ p, swap x y = swap p.lo p.hi TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Perm.lean
Equiv.Perm.swap_eq_swap
[112, 1]
[114, 8]
sorry
α : Type u_1 x✝ y✝ : α f : Perm α inst✝¹ : DecidableEq α inst✝ : LinearOrder α x x' y y' : α ⊢ swap x y = swap x' y' ↔ x = x' ∧ y = y' ∨ x = y' ∧ y = x'
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 x✝ y✝ : α f : Perm α inst✝¹ : DecidableEq α inst✝ : LinearOrder α x x' y y' : α ⊢ swap x y = swap x' y' ↔ x = x' ∧ y = y' ∨ x = y' ∧ y = x' TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
WordForSwap_toPerm_succ
[21, 1]
[26, 6]
simp [WordForSwap, Word.toPerm]
i k : ℕ ⊢ Word.toPerm (WordForSwap i (k + 1)) = Equiv.swap (i + (k + 1)) (i + (k + 2)) * Word.toPerm (WordForSwap i k) * Equiv.swap (i + (k + 1)) (i + (k + 2))
i k : ℕ ⊢ Equiv.swap (i + k + 1) (i + k + 1 + 1) * (List.prod (List.map (fun i => Equiv.swap i (i + 1)) (WordForSwap i k)) * Equiv.swap (i + k + 1) (i + k + 1 + 1)) = Equiv.swap (i + (k + 1)) (i + (k + 2)) * List.prod (List.map (fun i => Equiv.swap i (i + 1)) (WordForSwap i k)) * Equiv.swap (i + (k + 1)) (i + (k + 2))
Please generate a tactic in lean4 to solve the state. STATE: i k : ℕ ⊢ Word.toPerm (WordForSwap i (k + 1)) = Equiv.swap (i + (k + 1)) (i + (k + 2)) * Word.toPerm (WordForSwap i k) * Equiv.swap (i + (k + 1)) (i + (k + 2)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
WordForSwap_toPerm_succ
[21, 1]
[26, 6]
rfl
i k : ℕ ⊢ Equiv.swap (i + k + 1) (i + k + 1 + 1) * (List.prod (List.map (fun i => Equiv.swap i (i + 1)) (WordForSwap i k)) * Equiv.swap (i + k + 1) (i + k + 1 + 1)) = Equiv.swap (i + (k + 1)) (i + (k + 2)) * List.prod (List.map (fun i => Equiv.swap i (i + 1)) (WordForSwap i k)) * Equiv.swap (i + (k + 1)) (i + (k + 2))
no goals
Please generate a tactic in lean4 to solve the state. STATE: i k : ℕ ⊢ Equiv.swap (i + k + 1) (i + k + 1 + 1) * (List.prod (List.map (fun i => Equiv.swap i (i + 1)) (WordForSwap i k)) * Equiv.swap (i + k + 1) (i + k + 1 + 1)) = Equiv.swap (i + (k + 1)) (i + (k + 2)) * List.prod (List.map (fun i => Equiv.swap i (i + 1)) (WordForSwap i k)) * Equiv.swap (i + (k + 1)) (i + (k + 2)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
wordForSwap_eq_swap
[28, 1]
[36, 58]
induction' k with k ih
i k : ℕ ⊢ Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1))
case zero i : ℕ ⊢ Word.toPerm (WordForSwap i Nat.zero) = Equiv.swap i (i + (Nat.zero + 1)) case succ i k : ℕ ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊢ Word.toPerm (WordForSwap i (Nat.succ k)) = Equiv.swap i (i + (Nat.succ k + 1))
Please generate a tactic in lean4 to solve the state. STATE: i k : ℕ ⊢ Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
wordForSwap_eq_swap
[28, 1]
[36, 58]
. simp only [Nat.zero_eq, add_zero, Equiv.swap_self] rfl
case zero i : ℕ ⊢ Word.toPerm (WordForSwap i Nat.zero) = Equiv.swap i (i + (Nat.zero + 1)) case succ i k : ℕ ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊢ Word.toPerm (WordForSwap i (Nat.succ k)) = Equiv.swap i (i + (Nat.succ k + 1))
case succ i k : ℕ ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊢ Word.toPerm (WordForSwap i (Nat.succ k)) = Equiv.swap i (i + (Nat.succ k + 1))
Please generate a tactic in lean4 to solve the state. STATE: case zero i : ℕ ⊢ Word.toPerm (WordForSwap i Nat.zero) = Equiv.swap i (i + (Nat.zero + 1)) case succ i k : ℕ ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊢ Word.toPerm (WordForSwap i (Nat.succ k)) = Equiv.swap i (i + (Nat.succ k + 1)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
wordForSwap_eq_swap
[28, 1]
[36, 58]
. rw [WordForSwap_toPerm_succ, ih] change _ * _ * (Equiv.swap _ _)⁻¹ = _ rw [← Equiv.swap_apply_apply, Equiv.swap_apply_left, Equiv.swap_apply_of_ne_of_ne (by simp) (by simp)]
case succ i k : ℕ ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊢ Word.toPerm (WordForSwap i (Nat.succ k)) = Equiv.swap i (i + (Nat.succ k + 1))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ i k : ℕ ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊢ Word.toPerm (WordForSwap i (Nat.succ k)) = Equiv.swap i (i + (Nat.succ k + 1)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
wordForSwap_eq_swap
[28, 1]
[36, 58]
simp only [Nat.zero_eq, add_zero, Equiv.swap_self]
case zero i : ℕ ⊢ Word.toPerm (WordForSwap i Nat.zero) = Equiv.swap i (i + (Nat.zero + 1))
case zero i : ℕ ⊢ Word.toPerm (WordForSwap i 0) = Equiv.swap i (i + (0 + 1))
Please generate a tactic in lean4 to solve the state. STATE: case zero i : ℕ ⊢ Word.toPerm (WordForSwap i Nat.zero) = Equiv.swap i (i + (Nat.zero + 1)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
wordForSwap_eq_swap
[28, 1]
[36, 58]
rfl
case zero i : ℕ ⊢ Word.toPerm (WordForSwap i 0) = Equiv.swap i (i + (0 + 1))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case zero i : ℕ ⊢ Word.toPerm (WordForSwap i 0) = Equiv.swap i (i + (0 + 1)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
wordForSwap_eq_swap
[28, 1]
[36, 58]
rw [WordForSwap_toPerm_succ, ih]
case succ i k : ℕ ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊢ Word.toPerm (WordForSwap i (Nat.succ k)) = Equiv.swap i (i + (Nat.succ k + 1))
case succ i k : ℕ ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊢ Equiv.swap (i + (k + 1)) (i + (k + 2)) * Equiv.swap i (i + (k + 1)) * Equiv.swap (i + (k + 1)) (i + (k + 2)) = Equiv.swap i (i + (Nat.succ k + 1))
Please generate a tactic in lean4 to solve the state. STATE: case succ i k : ℕ ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊢ Word.toPerm (WordForSwap i (Nat.succ k)) = Equiv.swap i (i + (Nat.succ k + 1)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
wordForSwap_eq_swap
[28, 1]
[36, 58]
change _ * _ * (Equiv.swap _ _)⁻¹ = _
case succ i k : ℕ ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊢ Equiv.swap (i + (k + 1)) (i + (k + 2)) * Equiv.swap i (i + (k + 1)) * Equiv.swap (i + (k + 1)) (i + (k + 2)) = Equiv.swap i (i + (Nat.succ k + 1))
case succ i k : ℕ ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊢ Equiv.swap (i + (k + 1)) (i + (k + 2)) * Equiv.swap i (i + (k + 1)) * (Equiv.swap (i + (k + 1)) (i + (k + 2)))⁻¹ = Equiv.swap i (i + (Nat.succ k + 1))
Please generate a tactic in lean4 to solve the state. STATE: case succ i k : ℕ ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊢ Equiv.swap (i + (k + 1)) (i + (k + 2)) * Equiv.swap i (i + (k + 1)) * Equiv.swap (i + (k + 1)) (i + (k + 2)) = Equiv.swap i (i + (Nat.succ k + 1)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
wordForSwap_eq_swap
[28, 1]
[36, 58]
rw [← Equiv.swap_apply_apply, Equiv.swap_apply_left, Equiv.swap_apply_of_ne_of_ne (by simp) (by simp)]
case succ i k : ℕ ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊢ Equiv.swap (i + (k + 1)) (i + (k + 2)) * Equiv.swap i (i + (k + 1)) * (Equiv.swap (i + (k + 1)) (i + (k + 2)))⁻¹ = Equiv.swap i (i + (Nat.succ k + 1))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ i k : ℕ ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊢ Equiv.swap (i + (k + 1)) (i + (k + 2)) * Equiv.swap i (i + (k + 1)) * (Equiv.swap (i + (k + 1)) (i + (k + 2)))⁻¹ = Equiv.swap i (i + (Nat.succ k + 1)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
wordForSwap_eq_swap
[28, 1]
[36, 58]
simp
i k : ℕ ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊢ i ≠ i + (k + 1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: i k : ℕ ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊢ i ≠ i + (k + 1) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
wordForSwap_eq_swap
[28, 1]
[36, 58]
simp
i k : ℕ ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊢ i ≠ i + (k + 2)
no goals
Please generate a tactic in lean4 to solve the state. STATE: i k : ℕ ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊢ i ≠ i + (k + 2) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
Word_mul
[38, 1]
[39, 85]
simp only [Word.toPerm, FreeMonoid.ofList_append, map_mul, FreeMonoid.lift_ofList]
w v : Word ⊢ Word.toPerm (w ++ v) = Word.toPerm w * Word.toPerm v
no goals
Please generate a tactic in lean4 to solve the state. STATE: w v : Word ⊢ Word.toPerm (w ++ v) = Word.toPerm w * Word.toPerm v TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
swapHasWord
[49, 1]
[60, 57]
cases' le_or_lt i j with h h
i j : ℕ ⊢ RepbleByWord (Equiv.swap i j)
case inl i j : ℕ h : i ≤ j ⊢ RepbleByWord (Equiv.swap i j) case inr i j : ℕ h : j < i ⊢ RepbleByWord (Equiv.swap i j)
Please generate a tactic in lean4 to solve the state. STATE: i j : ℕ ⊢ RepbleByWord (Equiv.swap i j) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
swapHasWord
[49, 1]
[60, 57]
cases' h.eq_or_lt with h h
case inl i j : ℕ h : i ≤ j ⊢ RepbleByWord (Equiv.swap i j) case inr i j : ℕ h : j < i ⊢ RepbleByWord (Equiv.swap i j)
case inl.inl i j : ℕ h✝ : i ≤ j h : i = j ⊢ RepbleByWord (Equiv.swap i j) case inl.inr i j : ℕ h✝ : i ≤ j h : i < j ⊢ RepbleByWord (Equiv.swap i j) case inr i j : ℕ h : j < i ⊢ RepbleByWord (Equiv.swap i j)
Please generate a tactic in lean4 to solve the state. STATE: case inl i j : ℕ h : i ≤ j ⊢ RepbleByWord (Equiv.swap i j) case inr i j : ℕ h : j < i ⊢ RepbleByWord (Equiv.swap i j) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
swapHasWord
[49, 1]
[60, 57]
. use [] rw [idHasWord, h, Equiv.swap_self] rfl
case inl.inl i j : ℕ h✝ : i ≤ j h : i = j ⊢ RepbleByWord (Equiv.swap i j) case inl.inr i j : ℕ h✝ : i ≤ j h : i < j ⊢ RepbleByWord (Equiv.swap i j) case inr i j : ℕ h : j < i ⊢ RepbleByWord (Equiv.swap i j)
case inl.inr i j : ℕ h✝ : i ≤ j h : i < j ⊢ RepbleByWord (Equiv.swap i j) case inr i j : ℕ h : j < i ⊢ RepbleByWord (Equiv.swap i j)
Please generate a tactic in lean4 to solve the state. STATE: case inl.inl i j : ℕ h✝ : i ≤ j h : i = j ⊢ RepbleByWord (Equiv.swap i j) case inl.inr i j : ℕ h✝ : i ≤ j h : i < j ⊢ RepbleByWord (Equiv.swap i j) case inr i j : ℕ h : j < i ⊢ RepbleByWord (Equiv.swap i j) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
swapHasWord
[49, 1]
[60, 57]
. obtain ⟨k, rfl⟩ := Nat.exists_eq_add_of_lt h use WordForSwap i k rw [wordForSwap_eq_swap, add_assoc]
case inl.inr i j : ℕ h✝ : i ≤ j h : i < j ⊢ RepbleByWord (Equiv.swap i j) case inr i j : ℕ h : j < i ⊢ RepbleByWord (Equiv.swap i j)
case inr i j : ℕ h : j < i ⊢ RepbleByWord (Equiv.swap i j)
Please generate a tactic in lean4 to solve the state. STATE: case inl.inr i j : ℕ h✝ : i ≤ j h : i < j ⊢ RepbleByWord (Equiv.swap i j) case inr i j : ℕ h : j < i ⊢ RepbleByWord (Equiv.swap i j) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
swapHasWord
[49, 1]
[60, 57]
. obtain ⟨k, rfl⟩ := Nat.exists_eq_add_of_lt h use WordForSwap j k rw [wordForSwap_eq_swap, add_assoc, Equiv.swap_comm]
case inr i j : ℕ h : j < i ⊢ RepbleByWord (Equiv.swap i j)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inr i j : ℕ h : j < i ⊢ RepbleByWord (Equiv.swap i j) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
swapHasWord
[49, 1]
[60, 57]
use []
case inl.inl i j : ℕ h✝ : i ≤ j h : i = j ⊢ RepbleByWord (Equiv.swap i j)
case h i j : ℕ h✝ : i ≤ j h : i = j ⊢ Word.toPerm [] = Equiv.swap i j
Please generate a tactic in lean4 to solve the state. STATE: case inl.inl i j : ℕ h✝ : i ≤ j h : i = j ⊢ RepbleByWord (Equiv.swap i j) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
swapHasWord
[49, 1]
[60, 57]
rw [idHasWord, h, Equiv.swap_self]
case h i j : ℕ h✝ : i ≤ j h : i = j ⊢ Word.toPerm [] = Equiv.swap i j
case h i j : ℕ h✝ : i ≤ j h : i = j ⊢ 1 = Equiv.refl ℕ
Please generate a tactic in lean4 to solve the state. STATE: case h i j : ℕ h✝ : i ≤ j h : i = j ⊢ Word.toPerm [] = Equiv.swap i j TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
swapHasWord
[49, 1]
[60, 57]
rfl
case h i j : ℕ h✝ : i ≤ j h : i = j ⊢ 1 = Equiv.refl ℕ
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h i j : ℕ h✝ : i ≤ j h : i = j ⊢ 1 = Equiv.refl ℕ TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
swapHasWord
[49, 1]
[60, 57]
obtain ⟨k, rfl⟩ := Nat.exists_eq_add_of_lt h
case inl.inr i j : ℕ h✝ : i ≤ j h : i < j ⊢ RepbleByWord (Equiv.swap i j)
case inl.inr.intro i k : ℕ h✝ : i ≤ i + k + 1 h : i < i + k + 1 ⊢ RepbleByWord (Equiv.swap i (i + k + 1))
Please generate a tactic in lean4 to solve the state. STATE: case inl.inr i j : ℕ h✝ : i ≤ j h : i < j ⊢ RepbleByWord (Equiv.swap i j) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
swapHasWord
[49, 1]
[60, 57]
use WordForSwap i k
case inl.inr.intro i k : ℕ h✝ : i ≤ i + k + 1 h : i < i + k + 1 ⊢ RepbleByWord (Equiv.swap i (i + k + 1))
case h i k : ℕ h✝ : i ≤ i + k + 1 h : i < i + k + 1 ⊢ Word.toPerm (WordForSwap i k) = Equiv.swap i (i + k + 1)
Please generate a tactic in lean4 to solve the state. STATE: case inl.inr.intro i k : ℕ h✝ : i ≤ i + k + 1 h : i < i + k + 1 ⊢ RepbleByWord (Equiv.swap i (i + k + 1)) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
swapHasWord
[49, 1]
[60, 57]
rw [wordForSwap_eq_swap, add_assoc]
case h i k : ℕ h✝ : i ≤ i + k + 1 h : i < i + k + 1 ⊢ Word.toPerm (WordForSwap i k) = Equiv.swap i (i + k + 1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h i k : ℕ h✝ : i ≤ i + k + 1 h : i < i + k + 1 ⊢ Word.toPerm (WordForSwap i k) = Equiv.swap i (i + k + 1) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
swapHasWord
[49, 1]
[60, 57]
obtain ⟨k, rfl⟩ := Nat.exists_eq_add_of_lt h
case inr i j : ℕ h : j < i ⊢ RepbleByWord (Equiv.swap i j)
case inr.intro j k : ℕ h : j < j + k + 1 ⊢ RepbleByWord (Equiv.swap (j + k + 1) j)
Please generate a tactic in lean4 to solve the state. STATE: case inr i j : ℕ h : j < i ⊢ RepbleByWord (Equiv.swap i j) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
swapHasWord
[49, 1]
[60, 57]
use WordForSwap j k
case inr.intro j k : ℕ h : j < j + k + 1 ⊢ RepbleByWord (Equiv.swap (j + k + 1) j)
case h j k : ℕ h : j < j + k + 1 ⊢ Word.toPerm (WordForSwap j k) = Equiv.swap (j + k + 1) j
Please generate a tactic in lean4 to solve the state. STATE: case inr.intro j k : ℕ h : j < j + k + 1 ⊢ RepbleByWord (Equiv.swap (j + k + 1) j) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
swapHasWord
[49, 1]
[60, 57]
rw [wordForSwap_eq_swap, add_assoc, Equiv.swap_comm]
case h j k : ℕ h : j < j + k + 1 ⊢ Word.toPerm (WordForSwap j k) = Equiv.swap (j + k + 1) j
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h j k : ℕ h : j < j + k + 1 ⊢ Word.toPerm (WordForSwap j k) = Equiv.swap (j + k + 1) j TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_inv
[68, 1]
[72, 43]
ext a
α : Type u_1 f : Equiv.Perm α ⊢ support f = support f⁻¹
case h α : Type u_1 f : Equiv.Perm α a : α ⊢ a ∈ support f ↔ a ∈ support f⁻¹
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 f : Equiv.Perm α ⊢ support f = support f⁻¹ TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_inv
[68, 1]
[72, 43]
simp [support, not_iff_not]
case h α : Type u_1 f : Equiv.Perm α a : α ⊢ a ∈ support f ↔ a ∈ support f⁻¹
case h α : Type u_1 f : Equiv.Perm α a : α ⊢ f a = a ↔ f⁻¹ a = a
Please generate a tactic in lean4 to solve the state. STATE: case h α : Type u_1 f : Equiv.Perm α a : α ⊢ a ∈ support f ↔ a ∈ support f⁻¹ TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_inv
[68, 1]
[72, 43]
rw [← Equiv.Perm.eq_inv_iff_eq, eq_comm]
case h α : Type u_1 f : Equiv.Perm α a : α ⊢ f a = a ↔ f⁻¹ a = a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h α : Type u_1 f : Equiv.Perm α a : α ⊢ f a = a ↔ f⁻¹ a = a TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_min_lt_inv_apply
[74, 1]
[81, 38]
set n := Nat.find hf with hn
f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n ⊢ Nat.find hf < f⁻¹ (Nat.find hf)
f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n n : ℕ := Nat.find hf hn : n = Nat.find hf ⊢ n < f⁻¹ n
Please generate a tactic in lean4 to solve the state. STATE: f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n ⊢ Nat.find hf < f⁻¹ (Nat.find hf) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_min_lt_inv_apply
[74, 1]
[81, 38]
obtain ⟨hn', hn''⟩ := (Nat.find_eq_iff hf).mp hn.symm
f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n n : ℕ := Nat.find hf hn : n = Nat.find hf ⊢ n < f⁻¹ n
case intro f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n n : ℕ := Nat.find hf hn : n = Nat.find hf hn' : f n ≠ n hn'' : ∀ n_1 < n, ¬f n_1 ≠ n_1 ⊢ n < f⁻¹ n
Please generate a tactic in lean4 to solve the state. STATE: f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n n : ℕ := Nat.find hf hn : n = Nat.find hf ⊢ n < f⁻¹ n TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_min_lt_inv_apply
[74, 1]
[81, 38]
specialize hn'' (f⁻¹ n)
case intro f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n n : ℕ := Nat.find hf hn : n = Nat.find hf hn' : f n ≠ n hn'' : ∀ n_1 < n, ¬f n_1 ≠ n_1 ⊢ n < f⁻¹ n
case intro f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n n : ℕ := Nat.find hf hn : n = Nat.find hf hn' : f n ≠ n hn'' : f⁻¹ n < n → ¬f (f⁻¹ n) ≠ f⁻¹ n ⊢ n < f⁻¹ n
Please generate a tactic in lean4 to solve the state. STATE: case intro f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n n : ℕ := Nat.find hf hn : n = Nat.find hf hn' : f n ≠ n hn'' : ∀ n_1 < n, ¬f n_1 ≠ n_1 ⊢ n < f⁻¹ n TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_min_lt_inv_apply
[74, 1]
[81, 38]
rw [imp_not_comm, not_lt, f.apply_inv_self] at hn''
case intro f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n n : ℕ := Nat.find hf hn : n = Nat.find hf hn' : f n ≠ n hn'' : f⁻¹ n < n → ¬f (f⁻¹ n) ≠ f⁻¹ n ⊢ n < f⁻¹ n
case intro f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n n : ℕ := Nat.find hf hn : n = Nat.find hf hn' : f n ≠ n hn'' : n ≠ f⁻¹ n → n ≤ f⁻¹ n ⊢ n < f⁻¹ n
Please generate a tactic in lean4 to solve the state. STATE: case intro f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n n : ℕ := Nat.find hf hn : n = Nat.find hf hn' : f n ≠ n hn'' : f⁻¹ n < n → ¬f (f⁻¹ n) ≠ f⁻¹ n ⊢ n < f⁻¹ n TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_min_lt_inv_apply
[74, 1]
[81, 38]
rw [ne_eq, ← Equiv.Perm.eq_inv_iff_eq] at hn'
case intro f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n n : ℕ := Nat.find hf hn : n = Nat.find hf hn' : f n ≠ n hn'' : n ≠ f⁻¹ n → n ≤ f⁻¹ n ⊢ n < f⁻¹ n
case intro f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n n : ℕ := Nat.find hf hn : n = Nat.find hf hn' : ¬n = f⁻¹ n hn'' : n ≠ f⁻¹ n → n ≤ f⁻¹ n ⊢ n < f⁻¹ n
Please generate a tactic in lean4 to solve the state. STATE: case intro f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n n : ℕ := Nat.find hf hn : n = Nat.find hf hn' : f n ≠ n hn'' : n ≠ f⁻¹ n → n ≤ f⁻¹ n ⊢ n < f⁻¹ n TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_min_lt_inv_apply
[74, 1]
[81, 38]
apply lt_of_le_of_ne (hn'' hn') hn'
case intro f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n n : ℕ := Nat.find hf hn : n = Nat.find hf hn' : ¬n = f⁻¹ n hn'' : n ≠ f⁻¹ n → n ≤ f⁻¹ n ⊢ n < f⁻¹ n
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n n : ℕ := Nat.find hf hn : n = Nat.find hf hn' : ¬n = f⁻¹ n hn'' : n ≠ f⁻¹ n → n ≤ f⁻¹ n ⊢ n < f⁻¹ n TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_min_lt_apply
[83, 1]
[96, 13]
have hg : ∃ n, f⁻¹ n ≠ n
f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n ⊢ Nat.find hf < f (Nat.find hf)
case hg f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n ⊢ ∃ n, f⁻¹ n ≠ n f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n ⊢ Nat.find hf < f (Nat.find hf)
Please generate a tactic in lean4 to solve the state. STATE: f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n ⊢ Nat.find hf < f (Nat.find hf) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_min_lt_apply
[83, 1]
[96, 13]
. simp_rw [ne_comm, ne_eq, Equiv.Perm.eq_inv_iff_eq] exact hf
case hg f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n ⊢ ∃ n, f⁻¹ n ≠ n f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n ⊢ Nat.find hf < f (Nat.find hf)
f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n ⊢ Nat.find hf < f (Nat.find hf)
Please generate a tactic in lean4 to solve the state. STATE: case hg f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n ⊢ ∃ n, f⁻¹ n ≠ n f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n ⊢ Nat.find hf < f (Nat.find hf) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_min_lt_apply
[83, 1]
[96, 13]
have hf_finv : ∀ n, f n ≠ n ↔ f⁻¹ n ≠ n
f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n ⊢ Nat.find hf < f (Nat.find hf)
case hf_finv f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n ⊢ ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n ⊢ Nat.find hf < f (Nat.find hf)
Please generate a tactic in lean4 to solve the state. STATE: f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n ⊢ Nat.find hf < f (Nat.find hf) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_min_lt_apply
[83, 1]
[96, 13]
. simp_rw [ne_comm, ne_eq, Equiv.Perm.eq_inv_iff_eq, eq_comm] exact fun n ↦ trivial
case hf_finv f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n ⊢ ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n ⊢ Nat.find hf < f (Nat.find hf)
f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n ⊢ Nat.find hf < f (Nat.find hf)
Please generate a tactic in lean4 to solve the state. STATE: case hf_finv f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n ⊢ ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n ⊢ Nat.find hf < f (Nat.find hf) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_min_lt_apply
[83, 1]
[96, 13]
have key : Nat.find hf = Nat.find hg
f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n ⊢ Nat.find hf < f (Nat.find hf)
case key f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n ⊢ Nat.find hf = Nat.find hg f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n key : Nat.find hf = Nat.find hg ⊢ Nat.find hf < f (Nat.find hf)
Please generate a tactic in lean4 to solve the state. STATE: f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n ⊢ Nat.find hf < f (Nat.find hf) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_min_lt_apply
[83, 1]
[96, 13]
. simp_rw [Nat.find_eq_iff, hf_finv, ← Nat.find_eq_iff hg]
case key f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n ⊢ Nat.find hf = Nat.find hg f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n key : Nat.find hf = Nat.find hg ⊢ Nat.find hf < f (Nat.find hf)
f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n key : Nat.find hf = Nat.find hg ⊢ Nat.find hf < f (Nat.find hf)
Please generate a tactic in lean4 to solve the state. STATE: case key f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n ⊢ Nat.find hf = Nat.find hg f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n key : Nat.find hf = Nat.find hg ⊢ Nat.find hf < f (Nat.find hf) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_min_lt_apply
[83, 1]
[96, 13]
rw [key]
f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n key : Nat.find hf = Nat.find hg ⊢ Nat.find hf < f (Nat.find hf)
f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n key : Nat.find hf = Nat.find hg ⊢ Nat.find hg < f (Nat.find hg)
Please generate a tactic in lean4 to solve the state. STATE: f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n key : Nat.find hf = Nat.find hg ⊢ Nat.find hf < f (Nat.find hf) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_min_lt_apply
[83, 1]
[96, 13]
have := support_min_lt_inv_apply f⁻¹ hg
f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n key : Nat.find hf = Nat.find hg ⊢ Nat.find hg < f (Nat.find hg)
f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n key : Nat.find hf = Nat.find hg this : Nat.find hg < f⁻¹⁻¹ (Nat.find hg) ⊢ Nat.find hg < f (Nat.find hg)
Please generate a tactic in lean4 to solve the state. STATE: f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n key : Nat.find hf = Nat.find hg ⊢ Nat.find hg < f (Nat.find hg) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_min_lt_apply
[83, 1]
[96, 13]
rw [inv_inv] at this
f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n key : Nat.find hf = Nat.find hg this : Nat.find hg < f⁻¹⁻¹ (Nat.find hg) ⊢ Nat.find hg < f (Nat.find hg)
f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n key : Nat.find hf = Nat.find hg this : Nat.find hg < f (Nat.find hg) ⊢ Nat.find hg < f (Nat.find hg)
Please generate a tactic in lean4 to solve the state. STATE: f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n key : Nat.find hf = Nat.find hg this : Nat.find hg < f⁻¹⁻¹ (Nat.find hg) ⊢ Nat.find hg < f (Nat.find hg) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_min_lt_apply
[83, 1]
[96, 13]
exact this
f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n key : Nat.find hf = Nat.find hg this : Nat.find hg < f (Nat.find hg) ⊢ Nat.find hg < f (Nat.find hg)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n key : Nat.find hf = Nat.find hg this : Nat.find hg < f (Nat.find hg) ⊢ Nat.find hg < f (Nat.find hg) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_min_lt_apply
[83, 1]
[96, 13]
simp_rw [ne_comm, ne_eq, Equiv.Perm.eq_inv_iff_eq]
case hg f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n ⊢ ∃ n, f⁻¹ n ≠ n
case hg f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n ⊢ ∃ n, ¬f n = n
Please generate a tactic in lean4 to solve the state. STATE: case hg f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n ⊢ ∃ n, f⁻¹ n ≠ n TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_min_lt_apply
[83, 1]
[96, 13]
exact hf
case hg f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n ⊢ ∃ n, ¬f n = n
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hg f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n ⊢ ∃ n, ¬f n = n TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_min_lt_apply
[83, 1]
[96, 13]
simp_rw [ne_comm, ne_eq, Equiv.Perm.eq_inv_iff_eq, eq_comm]
case hf_finv f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n ⊢ ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n
case hf_finv f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n ⊢ ℕ → True
Please generate a tactic in lean4 to solve the state. STATE: case hf_finv f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n ⊢ ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_min_lt_apply
[83, 1]
[96, 13]
exact fun n ↦ trivial
case hf_finv f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n ⊢ ℕ → True
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hf_finv f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n ⊢ ℕ → True TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_min_lt_apply
[83, 1]
[96, 13]
simp_rw [Nat.find_eq_iff, hf_finv, ← Nat.find_eq_iff hg]
case key f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n ⊢ Nat.find hf = Nat.find hg
no goals
Please generate a tactic in lean4 to solve the state. STATE: case key f : Equiv.Perm ℕ hf : ∃ n, f n ≠ n hg : ∃ n, f⁻¹ n ≠ n hf_finv : ∀ (n : ℕ), f n ≠ n ↔ f⁻¹ n ≠ n ⊢ Nat.find hf = Nat.find hg TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_empty_iff_id
[98, 1]
[102, 31]
simp only [Set.eq_empty_iff_forall_not_mem, support, ne_eq, Set.mem_setOf_eq, not_not]
α : Type u_1 f : Equiv.Perm α ⊢ support f = ∅ ↔ f = 1
α : Type u_1 f : Equiv.Perm α ⊢ (∀ (x : α), f x = x) ↔ f = 1
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 f : Equiv.Perm α ⊢ support f = ∅ ↔ f = 1 TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
support_empty_iff_id
[98, 1]
[102, 31]
exact Iff.symm Equiv.ext_iff
α : Type u_1 f : Equiv.Perm α ⊢ (∀ (x : α), f x = x) ↔ f = 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 f : Equiv.Perm α ⊢ (∀ (x : α), f x = x) ↔ f = 1 TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
unswap_support
[104, 1]
[106, 22]
simp [support] at *
α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a : α ⊢ a ∉ support (Equiv.swap a (f a) * f)
no goals
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a : α ⊢ a ∉ support (Equiv.swap a (f a) * f) TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
unswap_support'
[108, 1]
[122, 42]
simp [support] at *
α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a : α ⊢ support (Equiv.swap a (f a) * f) ⊆ support f
α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a : α ⊢ ∀ (a_1 : α), ¬(Equiv.swap a (f a)) (f a_1) = a_1 → ¬f a_1 = a_1
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a : α ⊢ support (Equiv.swap a (f a) * f) ⊆ support f TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
unswap_support'
[108, 1]
[122, 42]
intro b
α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a : α ⊢ ∀ (a_1 : α), ¬(Equiv.swap a (f a)) (f a_1) = a_1 → ¬f a_1 = a_1
α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α ⊢ ¬(Equiv.swap a (f a)) (f b) = b → ¬f b = b
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a : α ⊢ ∀ (a_1 : α), ¬(Equiv.swap a (f a)) (f a_1) = a_1 → ¬f a_1 = a_1 TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
unswap_support'
[108, 1]
[122, 42]
contrapose!
α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α ⊢ ¬(Equiv.swap a (f a)) (f b) = b → ¬f b = b
α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α ⊢ f b = b → (Equiv.swap a (f a)) (f b) = b
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α ⊢ ¬(Equiv.swap a (f a)) (f b) = b → ¬f b = b TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
unswap_support'
[108, 1]
[122, 42]
intro hbf
α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α ⊢ f b = b → (Equiv.swap a (f a)) (f b) = b
α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b ⊢ (Equiv.swap a (f a)) (f b) = b
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α ⊢ f b = b → (Equiv.swap a (f a)) (f b) = b TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
unswap_support'
[108, 1]
[122, 42]
rw [hbf]
α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b ⊢ (Equiv.swap a (f a)) (f b) = b
α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b ⊢ (Equiv.swap a (f a)) b = b
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b ⊢ (Equiv.swap a (f a)) (f b) = b TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
unswap_support'
[108, 1]
[122, 42]
by_cases h : b = a
α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b ⊢ (Equiv.swap a (f a)) b = b
case pos α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b h : b = a ⊢ (Equiv.swap a (f a)) b = b case neg α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b h : ¬b = a ⊢ (Equiv.swap a (f a)) b = b
Please generate a tactic in lean4 to solve the state. STATE: α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b ⊢ (Equiv.swap a (f a)) b = b TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
unswap_support'
[108, 1]
[122, 42]
. subst b simp [hbf]
case pos α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b h : b = a ⊢ (Equiv.swap a (f a)) b = b case neg α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b h : ¬b = a ⊢ (Equiv.swap a (f a)) b = b
case neg α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b h : ¬b = a ⊢ (Equiv.swap a (f a)) b = b
Please generate a tactic in lean4 to solve the state. STATE: case pos α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b h : b = a ⊢ (Equiv.swap a (f a)) b = b case neg α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b h : ¬b = a ⊢ (Equiv.swap a (f a)) b = b TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
unswap_support'
[108, 1]
[122, 42]
by_cases h' : b = f a
case neg α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b h : ¬b = a ⊢ (Equiv.swap a (f a)) b = b
case pos α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b h : ¬b = a h' : b = f a ⊢ (Equiv.swap a (f a)) b = b case neg α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b h : ¬b = a h' : ¬b = f a ⊢ (Equiv.swap a (f a)) b = b
Please generate a tactic in lean4 to solve the state. STATE: case neg α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b h : ¬b = a ⊢ (Equiv.swap a (f a)) b = b TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
unswap_support'
[108, 1]
[122, 42]
. subst b simp apply f.injective hbf.symm
case pos α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b h : ¬b = a h' : b = f a ⊢ (Equiv.swap a (f a)) b = b case neg α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b h : ¬b = a h' : ¬b = f a ⊢ (Equiv.swap a (f a)) b = b
case neg α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b h : ¬b = a h' : ¬b = f a ⊢ (Equiv.swap a (f a)) b = b
Please generate a tactic in lean4 to solve the state. STATE: case pos α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b h : ¬b = a h' : b = f a ⊢ (Equiv.swap a (f a)) b = b case neg α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b h : ¬b = a h' : ¬b = f a ⊢ (Equiv.swap a (f a)) b = b TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
unswap_support'
[108, 1]
[122, 42]
apply Equiv.swap_apply_of_ne_of_ne h h'
case neg α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b h : ¬b = a h' : ¬b = f a ⊢ (Equiv.swap a (f a)) b = b
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b h : ¬b = a h' : ¬b = f a ⊢ (Equiv.swap a (f a)) b = b TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
unswap_support'
[108, 1]
[122, 42]
subst b
case pos α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b h : b = a ⊢ (Equiv.swap a (f a)) b = b
case pos α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a : α hbf : f a = a ⊢ (Equiv.swap a (f a)) a = a
Please generate a tactic in lean4 to solve the state. STATE: case pos α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b h : b = a ⊢ (Equiv.swap a (f a)) b = b TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
unswap_support'
[108, 1]
[122, 42]
simp [hbf]
case pos α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a : α hbf : f a = a ⊢ (Equiv.swap a (f a)) a = a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a : α hbf : f a = a ⊢ (Equiv.swap a (f a)) a = a TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
unswap_support'
[108, 1]
[122, 42]
subst b
case pos α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b h : ¬b = a h' : b = f a ⊢ (Equiv.swap a (f a)) b = b
case pos α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a : α hbf : f (f a) = f a h : ¬f a = a ⊢ (Equiv.swap a (f a)) (f a) = f a
Please generate a tactic in lean4 to solve the state. STATE: case pos α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a b : α hbf : f b = b h : ¬b = a h' : b = f a ⊢ (Equiv.swap a (f a)) b = b TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
unswap_support'
[108, 1]
[122, 42]
simp
case pos α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a : α hbf : f (f a) = f a h : ¬f a = a ⊢ (Equiv.swap a (f a)) (f a) = f a
case pos α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a : α hbf : f (f a) = f a h : ¬f a = a ⊢ a = f a
Please generate a tactic in lean4 to solve the state. STATE: case pos α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a : α hbf : f (f a) = f a h : ¬f a = a ⊢ (Equiv.swap a (f a)) (f a) = f a TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
unswap_support'
[108, 1]
[122, 42]
apply f.injective hbf.symm
case pos α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a : α hbf : f (f a) = f a h : ¬f a = a ⊢ a = f a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos α : Type u_1 inst✝ : DecidableEq α f : Equiv.Perm α a : α hbf : f (f a) = f a h : ¬f a = a ⊢ a = f a TACTIC:
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
repbleByWord_aux
[130, 1]
[150, 7]
apply @Set.Finite.induction_on _ RepbleByWord_aux _ hs
s : Set ℕ hs : Set.Finite s ⊢ RepbleByWord_aux s
case H0 s : Set ℕ hs : Set.Finite s ⊢ RepbleByWord_aux ∅ case H1 s : Set ℕ hs : Set.Finite s ⊢ ∀ {a : ℕ} {s : Set ℕ}, a ∉ s → Set.Finite s → RepbleByWord_aux s → RepbleByWord_aux (insert a s)
Please generate a tactic in lean4 to solve the state. STATE: s : Set ℕ hs : Set.Finite s ⊢ RepbleByWord_aux s TACTIC: