url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Submodule.mem_orthogonal_Basis
[130, 1]
[146, 7]
rw [Submodule.mem_orthogonal]
𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E ⊢ v ∈ Kᗮ ↔ ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0
𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E ⊢ (∀ u ∈ K, ⟪u, v⟫_𝕜 = 0) ↔ ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E ⊢ v ∈ Kᗮ ↔ ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Submodule.mem_orthogonal_Basis
[130, 1]
[146, 7]
constructor
𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E ⊢ (∀ u ∈ K, ⟪u, v⟫_𝕜 = 0) ↔ ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0
case mp 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E ⊢ (∀ u ∈ K, ⟪u, v⟫_𝕜 = 0) → ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0 case mpr 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E ⊢ (∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0) → ∀ u ∈ K, ⟪u, v⟫_𝕜 = 0
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E ⊢ (∀ u ∈ K, ⟪u, v⟫_𝕜 = 0) ↔ ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Submodule.mem_orthogonal_Basis
[130, 1]
[146, 7]
intro h i
case mp 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E ⊢ (∀ u ∈ K, ⟪u, v⟫_𝕜 = 0) → ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0
case mp 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E h : ∀ u ∈ K, ⟪u, v⟫_𝕜 = 0 i : ι ⊢ ⟪↑(b i), v⟫_𝕜 = 0
Please generate a tactic in lean4 to solve the state. STATE: case mp 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E ⊢ (∀ u ∈ K, ⟪u, v⟫_𝕜 = 0) → ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Submodule.mem_orthogonal_Basis
[130, 1]
[146, 7]
exact h _ (Submodule.coe_mem (b i))
case mp 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E h : ∀ u ∈ K, ⟪u, v⟫_𝕜 = 0 i : ι ⊢ ⟪↑(b i), v⟫_𝕜 = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mp 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E h : ∀ u ∈ K, ⟪u, v⟫_𝕜 = 0 i : ι ⊢ ⟪↑(b i), v⟫_𝕜 = 0 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Submodule.mem_orthogonal_Basis
[130, 1]
[146, 7]
intro h x hx
case mpr 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E ⊢ (∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0) → ∀ u ∈ K, ⟪u, v⟫_𝕜 = 0
case mpr 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E h : ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0 x : E hx : x ∈ K ⊢ ⟪x, v⟫_𝕜 = 0
Please generate a tactic in lean4 to solve the state. STATE: case mpr 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E ⊢ (∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0) → ∀ u ∈ K, ⟪u, v⟫_𝕜 = 0 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Submodule.mem_orthogonal_Basis
[130, 1]
[146, 7]
rw [Basis.mem_submodule_iff b] at hx
case mpr 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E h : ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0 x : E hx : x ∈ K ⊢ ⟪x, v⟫_𝕜 = 0
case mpr 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E h : ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0 x : E hx : ∃ c, x = Finsupp.sum c fun i x => x • ↑(b i) ⊢ ⟪x, v⟫_𝕜 = 0
Please generate a tactic in lean4 to solve the state. STATE: case mpr 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E h : ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0 x : E hx : x ∈ K ⊢ ⟪x, v⟫_𝕜 = 0 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Submodule.mem_orthogonal_Basis
[130, 1]
[146, 7]
rcases hx with ⟨ a, rfl ⟩
case mpr 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E h : ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0 x : E hx : ∃ c, x = Finsupp.sum c fun i x => x • ↑(b i) ⊢ ⟪x, v⟫_𝕜 = 0
case mpr.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E h : ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0 a : ι →₀ 𝕜 ⊢ ⟪Finsupp.sum a fun i x => x • ↑(b i), v⟫_𝕜 = 0
Please generate a tactic in lean4 to solve the state. STATE: case mpr 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E h : ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0 x : E hx : ∃ c, x = Finsupp.sum c fun i x => x • ↑(b i) ⊢ ⟪x, v⟫_𝕜 = 0 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Submodule.mem_orthogonal_Basis
[130, 1]
[146, 7]
rw [Finsupp.sum_inner]
case mpr.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E h : ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0 a : ι →₀ 𝕜 ⊢ ⟪Finsupp.sum a fun i x => x • ↑(b i), v⟫_𝕜 = 0
case mpr.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E h : ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0 a : ι →₀ 𝕜 ⊢ (Finsupp.sum a fun i a => (starRingEnd 𝕜) a • ⟪↑(b i), v⟫_𝕜) = 0
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E h : ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0 a : ι →₀ 𝕜 ⊢ ⟪Finsupp.sum a fun i x => x • ↑(b i), v⟫_𝕜 = 0 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Submodule.mem_orthogonal_Basis
[130, 1]
[146, 7]
apply Finset.sum_eq_zero
case mpr.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E h : ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0 a : ι →₀ 𝕜 ⊢ (Finsupp.sum a fun i a => (starRingEnd 𝕜) a • ⟪↑(b i), v⟫_𝕜) = 0
case mpr.intro.h 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E h : ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0 a : ι →₀ 𝕜 ⊢ ∀ x ∈ a.support, (fun i a => (starRingEnd 𝕜) a • ⟪↑(b i), v⟫_𝕜) x (a x) = 0
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E h : ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0 a : ι →₀ 𝕜 ⊢ (Finsupp.sum a fun i a => (starRingEnd 𝕜) a • ⟪↑(b i), v⟫_𝕜) = 0 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Submodule.mem_orthogonal_Basis
[130, 1]
[146, 7]
intro i _
case mpr.intro.h 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E h : ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0 a : ι →₀ 𝕜 ⊢ ∀ x ∈ a.support, (fun i a => (starRingEnd 𝕜) a • ⟪↑(b i), v⟫_𝕜) x (a x) = 0
case mpr.intro.h 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E h : ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0 a : ι →₀ 𝕜 i : ι a✝ : i ∈ a.support ⊢ (fun i a => (starRingEnd 𝕜) a • ⟪↑(b i), v⟫_𝕜) i (a i) = 0
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.h 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E h : ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0 a : ι →₀ 𝕜 ⊢ ∀ x ∈ a.support, (fun i a => (starRingEnd 𝕜) a • ⟪↑(b i), v⟫_𝕜) x (a x) = 0 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Submodule.mem_orthogonal_Basis
[130, 1]
[146, 7]
simp only [h i, smul_eq_mul, mul_zero]
case mpr.intro.h 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E h : ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0 a : ι →₀ 𝕜 i : ι a✝ : i ∈ a.support ⊢ (fun i a => (starRingEnd 𝕜) a • ⟪↑(b i), v⟫_𝕜) i (a i) = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.h 𝕜 : Type u_1 E : Type u_2 ι : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E K : Submodule 𝕜 E b : Basis ι 𝕜 ↥K v : E h : ∀ (i : ι), ⟪↑(b i), v⟫_𝕜 = 0 a : ι →₀ 𝕜 i : ι a✝ : i ∈ a.support ⊢ (fun i a => (starRingEnd 𝕜) a • ⟪↑(b i), v⟫_𝕜) i (a i) = 0 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
AffineMap.preimage_convexHull
[148, 1]
[154, 7]
have h1 := Set.image_preimage_eq_of_subset hs
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set F f : E →ᵃ[𝕜] F hf : Function.Injective f.toFun hs : s ⊆ Set.range ⇑f ⊢ ⇑f ⁻¹' (convexHull 𝕜) s = (convexHull 𝕜) (⇑f ⁻¹' s)
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set F f : E →ᵃ[𝕜] F hf : Function.Injective f.toFun hs : s ⊆ Set.range ⇑f h1 : ⇑f '' (⇑f ⁻¹' s) = s ⊢ ⇑f ⁻¹' (convexHull 𝕜) s = (convexHull 𝕜) (⇑f ⁻¹' s)
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set F f : E →ᵃ[𝕜] F hf : Function.Injective f.toFun hs : s ⊆ Set.range ⇑f ⊢ ⇑f ⁻¹' (convexHull 𝕜) s = (convexHull 𝕜) (⇑f ⁻¹' s) TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
AffineMap.preimage_convexHull
[148, 1]
[154, 7]
ext x
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set F f : E →ᵃ[𝕜] F hf : Function.Injective f.toFun hs : s ⊆ Set.range ⇑f h1 : ⇑f '' (⇑f ⁻¹' s) = s ⊢ ⇑f ⁻¹' (convexHull 𝕜) s = (convexHull 𝕜) (⇑f ⁻¹' s)
case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set F f : E →ᵃ[𝕜] F hf : Function.Injective f.toFun hs : s ⊆ Set.range ⇑f h1 : ⇑f '' (⇑f ⁻¹' s) = s x : E ⊢ x ∈ ⇑f ⁻¹' (convexHull 𝕜) s ↔ x ∈ (convexHull 𝕜) (⇑f ⁻¹' s)
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set F f : E →ᵃ[𝕜] F hf : Function.Injective f.toFun hs : s ⊆ Set.range ⇑f h1 : ⇑f '' (⇑f ⁻¹' s) = s ⊢ ⇑f ⁻¹' (convexHull 𝕜) s = (convexHull 𝕜) (⇑f ⁻¹' s) TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
AffineMap.preimage_convexHull
[148, 1]
[154, 7]
rw [Set.mem_preimage, ← Function.Injective.mem_set_image hf, AffineMap.toFun_eq_coe, AffineMap.image_convexHull, h1]
case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set F f : E →ᵃ[𝕜] F hf : Function.Injective f.toFun hs : s ⊆ Set.range ⇑f h1 : ⇑f '' (⇑f ⁻¹' s) = s x : E ⊢ x ∈ ⇑f ⁻¹' (convexHull 𝕜) s ↔ x ∈ (convexHull 𝕜) (⇑f ⁻¹' s)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set F f : E →ᵃ[𝕜] F hf : Function.Injective f.toFun hs : s ⊆ Set.range ⇑f h1 : ⇑f '' (⇑f ⁻¹' s) = s x : E ⊢ x ∈ ⇑f ⁻¹' (convexHull 𝕜) s ↔ x ∈ (convexHull 𝕜) (⇑f ⁻¹' s) TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Fin.mem_fin_list_range
[189, 1]
[204, 7]
induction n with | zero => exact i.elim0 | succ n ih => match i with | 0 => exact List.mem_cons_self _ _ | (mk (Nat.succ m) h) => have : m < n := by omega let m' : Fin n := ⟨m, this⟩ unfold Nat.fin_list_range apply List.mem_cons_of_mem simp only [List.mem_map] use m' use ih m' rfl
n : ℕ i : Fin n ⊢ i ∈ Nat.fin_list_range n
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ i : Fin n ⊢ i ∈ Nat.fin_list_range n TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Fin.mem_fin_list_range
[189, 1]
[204, 7]
exact i.elim0
case zero i : Fin Nat.zero ⊢ i ∈ Nat.fin_list_range Nat.zero
no goals
Please generate a tactic in lean4 to solve the state. STATE: case zero i : Fin Nat.zero ⊢ i ∈ Nat.fin_list_range Nat.zero TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Fin.mem_fin_list_range
[189, 1]
[204, 7]
match i with | 0 => exact List.mem_cons_self _ _ | (mk (Nat.succ m) h) => have : m < n := by omega let m' : Fin n := ⟨m, this⟩ unfold Nat.fin_list_range apply List.mem_cons_of_mem simp only [List.mem_map] use m' use ih m' rfl
case succ n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) ⊢ i ∈ Nat.fin_list_range (Nat.succ n)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) ⊢ i ∈ Nat.fin_list_range (Nat.succ n) TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Fin.mem_fin_list_range
[189, 1]
[204, 7]
exact List.mem_cons_self _ _
n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) ⊢ 0 ∈ Nat.fin_list_range (Nat.succ n)
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) ⊢ 0 ∈ Nat.fin_list_range (Nat.succ n) TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Fin.mem_fin_list_range
[189, 1]
[204, 7]
have : m < n := by omega
n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n ⊢ { val := Nat.succ m, isLt := h } ∈ Nat.fin_list_range (Nat.succ n)
n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n this : m < n ⊢ { val := Nat.succ m, isLt := h } ∈ Nat.fin_list_range (Nat.succ n)
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n ⊢ { val := Nat.succ m, isLt := h } ∈ Nat.fin_list_range (Nat.succ n) TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Fin.mem_fin_list_range
[189, 1]
[204, 7]
let m' : Fin n := ⟨m, this⟩
n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n this : m < n ⊢ { val := Nat.succ m, isLt := h } ∈ Nat.fin_list_range (Nat.succ n)
n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n this : m < n m' : Fin n := { val := m, isLt := this } ⊢ { val := Nat.succ m, isLt := h } ∈ Nat.fin_list_range (Nat.succ n)
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n this : m < n ⊢ { val := Nat.succ m, isLt := h } ∈ Nat.fin_list_range (Nat.succ n) TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Fin.mem_fin_list_range
[189, 1]
[204, 7]
unfold Nat.fin_list_range
n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n this : m < n m' : Fin n := { val := m, isLt := this } ⊢ { val := Nat.succ m, isLt := h } ∈ Nat.fin_list_range (Nat.succ n)
n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n this : m < n m' : Fin n := { val := m, isLt := this } ⊢ { val := Nat.succ m, isLt := h } ∈ 0 :: List.map succ (Nat.fin_list_range n)
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n this : m < n m' : Fin n := { val := m, isLt := this } ⊢ { val := Nat.succ m, isLt := h } ∈ Nat.fin_list_range (Nat.succ n) TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Fin.mem_fin_list_range
[189, 1]
[204, 7]
apply List.mem_cons_of_mem
n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n this : m < n m' : Fin n := { val := m, isLt := this } ⊢ { val := Nat.succ m, isLt := h } ∈ 0 :: List.map succ (Nat.fin_list_range n)
case a n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n this : m < n m' : Fin n := { val := m, isLt := this } ⊢ { val := Nat.succ m, isLt := h } ∈ List.map succ (Nat.fin_list_range n)
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n this : m < n m' : Fin n := { val := m, isLt := this } ⊢ { val := Nat.succ m, isLt := h } ∈ 0 :: List.map succ (Nat.fin_list_range n) TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Fin.mem_fin_list_range
[189, 1]
[204, 7]
simp only [List.mem_map]
case a n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n this : m < n m' : Fin n := { val := m, isLt := this } ⊢ { val := Nat.succ m, isLt := h } ∈ List.map succ (Nat.fin_list_range n)
case a n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n this : m < n m' : Fin n := { val := m, isLt := this } ⊢ ∃ a ∈ Nat.fin_list_range n, succ a = { val := Nat.succ m, isLt := h }
Please generate a tactic in lean4 to solve the state. STATE: case a n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n this : m < n m' : Fin n := { val := m, isLt := this } ⊢ { val := Nat.succ m, isLt := h } ∈ List.map succ (Nat.fin_list_range n) TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Fin.mem_fin_list_range
[189, 1]
[204, 7]
use m'
case a n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n this : m < n m' : Fin n := { val := m, isLt := this } ⊢ ∃ a ∈ Nat.fin_list_range n, succ a = { val := Nat.succ m, isLt := h }
case h n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n this : m < n m' : Fin n := { val := m, isLt := this } ⊢ m' ∈ Nat.fin_list_range n ∧ succ m' = { val := Nat.succ m, isLt := h }
Please generate a tactic in lean4 to solve the state. STATE: case a n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n this : m < n m' : Fin n := { val := m, isLt := this } ⊢ ∃ a ∈ Nat.fin_list_range n, succ a = { val := Nat.succ m, isLt := h } TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Fin.mem_fin_list_range
[189, 1]
[204, 7]
use ih m'
case h n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n this : m < n m' : Fin n := { val := m, isLt := this } ⊢ m' ∈ Nat.fin_list_range n ∧ succ m' = { val := Nat.succ m, isLt := h }
case right n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n this : m < n m' : Fin n := { val := m, isLt := this } ⊢ succ m' = { val := Nat.succ m, isLt := h }
Please generate a tactic in lean4 to solve the state. STATE: case h n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n this : m < n m' : Fin n := { val := m, isLt := this } ⊢ m' ∈ Nat.fin_list_range n ∧ succ m' = { val := Nat.succ m, isLt := h } TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Fin.mem_fin_list_range
[189, 1]
[204, 7]
rfl
case right n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n this : m < n m' : Fin n := { val := m, isLt := this } ⊢ succ m' = { val := Nat.succ m, isLt := h }
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n this : m < n m' : Fin n := { val := m, isLt := this } ⊢ succ m' = { val := Nat.succ m, isLt := h } TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Fin.mem_fin_list_range
[189, 1]
[204, 7]
omega
n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n ⊢ m < n
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ ih : ∀ (i : Fin n), i ∈ Nat.fin_list_range n i : Fin (Nat.succ n) m : ℕ h : Nat.succ m < Nat.succ n ⊢ m < n TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
pointDual.α
[22, 1]
[23, 43]
rfl
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } ⊢ (pointDual p).α = ‖↑p‖⁻¹
no goals
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } ⊢ (pointDual p).α = ‖↑p‖⁻¹ TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
pointDual.h
[25, 1]
[26, 107]
rfl
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } ⊢ ↑(pointDual p) = ⇑((InnerProductSpace.toDual ℝ E) (‖↑p‖⁻¹ • ↑p)) ⁻¹' {x | x ≤ ‖↑p‖⁻¹}
no goals
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } ⊢ ↑(pointDual p) = ⇑((InnerProductSpace.toDual ℝ E) (‖↑p‖⁻¹ • ↑p)) ⁻¹' {x | x ≤ ‖↑p‖⁻¹} TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
pointDual_origin
[28, 1]
[36, 7]
rw [pointDual.h, map_smulₛₗ, map_inv₀, IsROrC.conj_to_real, Set.preimage_setOf_eq, Set.mem_setOf_eq, map_zero, ← one_div]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } ⊢ 0 ∈ ↑(pointDual p)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } ⊢ 0 ≤ 1 / ‖↑p‖
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } ⊢ 0 ∈ ↑(pointDual p) TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
pointDual_origin
[28, 1]
[36, 7]
apply le_of_lt
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } ⊢ 0 ≤ 1 / ‖↑p‖
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } ⊢ 0 < 1 / ‖↑p‖
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } ⊢ 0 ≤ 1 / ‖↑p‖ TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
pointDual_origin
[28, 1]
[36, 7]
rw [div_pos_iff]
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } ⊢ 0 < 1 / ‖↑p‖
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } ⊢ 0 < 1 ∧ 0 < ‖↑p‖ ∨ 1 < 0 ∧ ‖↑p‖ < 0
Please generate a tactic in lean4 to solve the state. STATE: case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } ⊢ 0 < 1 / ‖↑p‖ TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
pointDual_origin
[28, 1]
[36, 7]
left
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } ⊢ 0 < 1 ∧ 0 < ‖↑p‖ ∨ 1 < 0 ∧ ‖↑p‖ < 0
case a.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } ⊢ 0 < 1 ∧ 0 < ‖↑p‖
Please generate a tactic in lean4 to solve the state. STATE: case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } ⊢ 0 < 1 ∧ 0 < ‖↑p‖ ∨ 1 < 0 ∧ ‖↑p‖ < 0 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
pointDual_origin
[28, 1]
[36, 7]
exact ⟨ zero_lt_one, by rw [norm_pos_iff]; exact p.2 ⟩
case a.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } ⊢ 0 < 1 ∧ 0 < ‖↑p‖
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } ⊢ 0 < 1 ∧ 0 < ‖↑p‖ TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
pointDual_origin
[28, 1]
[36, 7]
rw [norm_pos_iff]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } ⊢ 0 < ‖↑p‖
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } ⊢ ↑p ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } ⊢ 0 < ‖↑p‖ TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
pointDual_origin
[28, 1]
[36, 7]
exact p.2
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } ⊢ ↑p ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } ⊢ ↑p ≠ 0 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_pointDual
[38, 1]
[43, 7]
rw [pointDual.h, Set.mem_preimage, InnerProductSpace.toDual_apply, Set.mem_setOf, inner_smul_left, IsROrC.conj_to_real, ← mul_le_mul_left (by rw [norm_pos_iff]; exact p.2 : 0 < norm p.1), ← mul_assoc, mul_inv_cancel (norm_ne_zero_iff.mpr p.2), one_mul]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } x : E ⊢ x ∈ ↑(pointDual p) ↔ ⟪↑p, x⟫_ℝ ≤ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } x : E ⊢ x ∈ ↑(pointDual p) ↔ ⟪↑p, x⟫_ℝ ≤ 1 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_pointDual
[38, 1]
[43, 7]
rw [norm_pos_iff]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } x : E ⊢ 0 < ‖↑p‖
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } x : E ⊢ ↑p ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } x : E ⊢ 0 < ‖↑p‖ TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_pointDual
[38, 1]
[43, 7]
exact p.2
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } x : E ⊢ ↑p ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p : { p // p ≠ 0 } x : E ⊢ ↑p ≠ 0 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
pointDual_comm
[45, 1]
[48, 7]
rw [mem_pointDual, mem_pointDual, real_inner_comm]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p q : { p // p ≠ 0 } ⊢ ↑p ∈ ↑(pointDual q) ↔ ↑q ∈ ↑(pointDual p)
no goals
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E p q : { p // p ≠ 0 } ⊢ ↑p ∈ ↑(pointDual q) ↔ ↑q ∈ ↑(pointDual p) TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_closed
[54, 1]
[59, 27]
apply isClosed_sInter
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E ⊢ IsClosed (polarDual X)
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E ⊢ ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), IsClosed t
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E ⊢ IsClosed (polarDual X) TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_closed
[54, 1]
[59, 27]
intro Hi_s h
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E ⊢ ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), IsClosed t
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Hi_s : Set E h : Hi_s ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)) ⊢ IsClosed Hi_s
Please generate a tactic in lean4 to solve the state. STATE: case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E ⊢ ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), IsClosed t TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_closed
[54, 1]
[59, 27]
rw [Set.mem_image] at h
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Hi_s : Set E h : Hi_s ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)) ⊢ IsClosed Hi_s
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Hi_s : Set E h : ∃ x ∈ pointDual '' (Subtype.val ⁻¹' X), ↑x = Hi_s ⊢ IsClosed Hi_s
Please generate a tactic in lean4 to solve the state. STATE: case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Hi_s : Set E h : Hi_s ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)) ⊢ IsClosed Hi_s TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_closed
[54, 1]
[59, 27]
rcases h with ⟨ Hi_, _, rfl ⟩
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Hi_s : Set E h : ∃ x ∈ pointDual '' (Subtype.val ⁻¹' X), ↑x = Hi_s ⊢ IsClosed Hi_s
case a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E Hi_ : Halfspace E left✝ : Hi_ ∈ pointDual '' (Subtype.val ⁻¹' X) ⊢ IsClosed ↑Hi_
Please generate a tactic in lean4 to solve the state. STATE: case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Hi_s : Set E h : ∃ x ∈ pointDual '' (Subtype.val ⁻¹' X), ↑x = Hi_s ⊢ IsClosed Hi_s TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_closed
[54, 1]
[59, 27]
exact Halfspace_closed _
case a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E Hi_ : Halfspace E left✝ : Hi_ ∈ pointDual '' (Subtype.val ⁻¹' X) ⊢ IsClosed ↑Hi_
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E Hi_ : Halfspace E left✝ : Hi_ ∈ pointDual '' (Subtype.val ⁻¹' X) ⊢ IsClosed ↑Hi_ TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_convex
[61, 1]
[66, 27]
apply convex_sInter
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E ⊢ Convex ℝ (polarDual X)
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E ⊢ ∀ s ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), Convex ℝ s
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E ⊢ Convex ℝ (polarDual X) TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_convex
[61, 1]
[66, 27]
intro Hi_s h
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E ⊢ ∀ s ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), Convex ℝ s
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Hi_s : Set E h : Hi_s ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)) ⊢ Convex ℝ Hi_s
Please generate a tactic in lean4 to solve the state. STATE: case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E ⊢ ∀ s ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), Convex ℝ s TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_convex
[61, 1]
[66, 27]
rw [Set.mem_image] at h
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Hi_s : Set E h : Hi_s ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)) ⊢ Convex ℝ Hi_s
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Hi_s : Set E h : ∃ x ∈ pointDual '' (Subtype.val ⁻¹' X), ↑x = Hi_s ⊢ Convex ℝ Hi_s
Please generate a tactic in lean4 to solve the state. STATE: case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Hi_s : Set E h : Hi_s ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)) ⊢ Convex ℝ Hi_s TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_convex
[61, 1]
[66, 27]
rcases h with ⟨ Hi_, _, rfl ⟩
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Hi_s : Set E h : ∃ x ∈ pointDual '' (Subtype.val ⁻¹' X), ↑x = Hi_s ⊢ Convex ℝ Hi_s
case h.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E Hi_ : Halfspace E left✝ : Hi_ ∈ pointDual '' (Subtype.val ⁻¹' X) ⊢ Convex ℝ ↑Hi_
Please generate a tactic in lean4 to solve the state. STATE: case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Hi_s : Set E h : ∃ x ∈ pointDual '' (Subtype.val ⁻¹' X), ↑x = Hi_s ⊢ Convex ℝ Hi_s TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_convex
[61, 1]
[66, 27]
exact Halfspace_convex _
case h.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E Hi_ : Halfspace E left✝ : Hi_ ∈ pointDual '' (Subtype.val ⁻¹' X) ⊢ Convex ℝ ↑Hi_
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E Hi_ : Halfspace E left✝ : Hi_ ∈ pointDual '' (Subtype.val ⁻¹' X) ⊢ Convex ℝ ↑Hi_ TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_origin
[68, 1]
[75, 27]
intro Hi_s h
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E ⊢ 0 ∈ polarDual X
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Hi_s : Set E h : Hi_s ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)) ⊢ 0 ∈ Hi_s
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E ⊢ 0 ∈ polarDual X TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_origin
[68, 1]
[75, 27]
rw [Set.mem_image] at h
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Hi_s : Set E h : Hi_s ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)) ⊢ 0 ∈ Hi_s
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Hi_s : Set E h : ∃ x ∈ pointDual '' (Subtype.val ⁻¹' X), ↑x = Hi_s ⊢ 0 ∈ Hi_s
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Hi_s : Set E h : Hi_s ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)) ⊢ 0 ∈ Hi_s TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_origin
[68, 1]
[75, 27]
rcases h with ⟨ Hi_, h, rfl ⟩
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Hi_s : Set E h : ∃ x ∈ pointDual '' (Subtype.val ⁻¹' X), ↑x = Hi_s ⊢ 0 ∈ Hi_s
case intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E Hi_ : Halfspace E h : Hi_ ∈ pointDual '' (Subtype.val ⁻¹' X) ⊢ 0 ∈ ↑Hi_
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Hi_s : Set E h : ∃ x ∈ pointDual '' (Subtype.val ⁻¹' X), ↑x = Hi_s ⊢ 0 ∈ Hi_s TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_origin
[68, 1]
[75, 27]
rw [Set.mem_image] at h
case intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E Hi_ : Halfspace E h : Hi_ ∈ pointDual '' (Subtype.val ⁻¹' X) ⊢ 0 ∈ ↑Hi_
case intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E Hi_ : Halfspace E h : ∃ x ∈ Subtype.val ⁻¹' X, pointDual x = Hi_ ⊢ 0 ∈ ↑Hi_
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E Hi_ : Halfspace E h : Hi_ ∈ pointDual '' (Subtype.val ⁻¹' X) ⊢ 0 ∈ ↑Hi_ TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_origin
[68, 1]
[75, 27]
rcases h with ⟨ p, _, rfl ⟩
case intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E Hi_ : Halfspace E h : ∃ x ∈ Subtype.val ⁻¹' X, pointDual x = Hi_ ⊢ 0 ∈ ↑Hi_
case intro.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E p : { p // p ≠ 0 } left✝ : p ∈ Subtype.val ⁻¹' X ⊢ 0 ∈ ↑(pointDual p)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E Hi_ : Halfspace E h : ∃ x ∈ Subtype.val ⁻¹' X, pointDual x = Hi_ ⊢ 0 ∈ ↑Hi_ TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_origin
[68, 1]
[75, 27]
exact pointDual_origin p
case intro.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E p : { p // p ≠ 0 } left✝ : p ∈ Subtype.val ⁻¹' X ⊢ 0 ∈ ↑(pointDual p)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E p : { p // p ≠ 0 } left✝ : p ∈ Subtype.val ⁻¹' X ⊢ 0 ∈ ↑(pointDual p) TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_polarDual
[77, 1]
[110, 7]
unfold polarDual
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E ⊢ v ∈ polarDual X ↔ ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E ⊢ v ∈ ⋂₀ (SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X))) ↔ ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E ⊢ v ∈ polarDual X ↔ ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_polarDual
[77, 1]
[110, 7]
rw [Set.mem_sInter]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E ⊢ v ∈ ⋂₀ (SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X))) ↔ ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E ⊢ (∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t) ↔ ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E ⊢ v ∈ ⋂₀ (SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X))) ↔ ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_polarDual
[77, 1]
[110, 7]
constructor
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E ⊢ (∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t) ↔ ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E ⊢ (∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t) → ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1 case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E ⊢ (∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1) → ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E ⊢ (∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t) ↔ ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_polarDual
[77, 1]
[110, 7]
intro h x hx
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E ⊢ (∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t) → ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X ⊢ ⟪x, v⟫_ℝ ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E ⊢ (∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t) → ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_polarDual
[77, 1]
[110, 7]
cases' (em (x = 0)) with hx0 hx0
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X ⊢ ⟪x, v⟫_ℝ ≤ 1
case mp.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X hx0 : x = 0 ⊢ ⟪x, v⟫_ℝ ≤ 1 case mp.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X hx0 : ¬x = 0 ⊢ ⟪x, v⟫_ℝ ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X ⊢ ⟪x, v⟫_ℝ ≤ 1 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_polarDual
[77, 1]
[110, 7]
specialize h (SetLike.coe <| pointDual ⟨ x, hx0 ⟩) ?_
case mp.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X hx0 : ¬x = 0 ⊢ ⟪x, v⟫_ℝ ≤ 1
case mp.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X hx0 : ¬x = 0 ⊢ ↑(pointDual { val := x, property := hx0 }) ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)) case mp.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v x : E hx : x ∈ X hx0 : ¬x = 0 h : v ∈ ↑(pointDual { val := x, property := hx0 }) ⊢ ⟪x, v⟫_ℝ ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: case mp.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X hx0 : ¬x = 0 ⊢ ⟪x, v⟫_ℝ ≤ 1 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_polarDual
[77, 1]
[110, 7]
rw [mem_pointDual] at h
case mp.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v x : E hx : x ∈ X hx0 : ¬x = 0 h : v ∈ ↑(pointDual { val := x, property := hx0 }) ⊢ ⟪x, v⟫_ℝ ≤ 1
case mp.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v x : E hx : x ∈ X hx0 : ¬x = 0 h : ⟪↑{ val := x, property := hx0 }, v⟫_ℝ ≤ 1 ⊢ ⟪x, v⟫_ℝ ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: case mp.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v x : E hx : x ∈ X hx0 : ¬x = 0 h : v ∈ ↑(pointDual { val := x, property := hx0 }) ⊢ ⟪x, v⟫_ℝ ≤ 1 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_polarDual
[77, 1]
[110, 7]
exact h
case mp.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v x : E hx : x ∈ X hx0 : ¬x = 0 h : ⟪↑{ val := x, property := hx0 }, v⟫_ℝ ≤ 1 ⊢ ⟪x, v⟫_ℝ ≤ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mp.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v x : E hx : x ∈ X hx0 : ¬x = 0 h : ⟪↑{ val := x, property := hx0 }, v⟫_ℝ ≤ 1 ⊢ ⟪x, v⟫_ℝ ≤ 1 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_polarDual
[77, 1]
[110, 7]
rw [hx0, inner_zero_left]
case mp.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X hx0 : x = 0 ⊢ ⟪x, v⟫_ℝ ≤ 1
case mp.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X hx0 : x = 0 ⊢ 0 ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: case mp.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X hx0 : x = 0 ⊢ ⟪x, v⟫_ℝ ≤ 1 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_polarDual
[77, 1]
[110, 7]
exact zero_le_one
case mp.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X hx0 : x = 0 ⊢ 0 ≤ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mp.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X hx0 : x = 0 ⊢ 0 ≤ 1 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_polarDual
[77, 1]
[110, 7]
apply Set.mem_image_of_mem
case mp.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X hx0 : ¬x = 0 ⊢ ↑(pointDual { val := x, property := hx0 }) ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X))
case mp.inr.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X hx0 : ¬x = 0 ⊢ pointDual { val := x, property := hx0 } ∈ pointDual '' (Subtype.val ⁻¹' X)
Please generate a tactic in lean4 to solve the state. STATE: case mp.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X hx0 : ¬x = 0 ⊢ ↑(pointDual { val := x, property := hx0 }) ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)) TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_polarDual
[77, 1]
[110, 7]
apply Set.mem_image_of_mem
case mp.inr.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X hx0 : ¬x = 0 ⊢ pointDual { val := x, property := hx0 } ∈ pointDual '' (Subtype.val ⁻¹' X)
case mp.inr.h.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X hx0 : ¬x = 0 ⊢ { val := x, property := hx0 } ∈ Subtype.val ⁻¹' X
Please generate a tactic in lean4 to solve the state. STATE: case mp.inr.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X hx0 : ¬x = 0 ⊢ pointDual { val := x, property := hx0 } ∈ pointDual '' (Subtype.val ⁻¹' X) TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_polarDual
[77, 1]
[110, 7]
rw [Set.mem_preimage]
case mp.inr.h.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X hx0 : ¬x = 0 ⊢ { val := x, property := hx0 } ∈ Subtype.val ⁻¹' X
case mp.inr.h.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X hx0 : ¬x = 0 ⊢ ↑{ val := x, property := hx0 } ∈ X
Please generate a tactic in lean4 to solve the state. STATE: case mp.inr.h.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X hx0 : ¬x = 0 ⊢ { val := x, property := hx0 } ∈ Subtype.val ⁻¹' X TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_polarDual
[77, 1]
[110, 7]
exact hx
case mp.inr.h.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X hx0 : ¬x = 0 ⊢ ↑{ val := x, property := hx0 } ∈ X
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mp.inr.h.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t x : E hx : x ∈ X hx0 : ¬x = 0 ⊢ ↑{ val := x, property := hx0 } ∈ X TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_polarDual
[77, 1]
[110, 7]
intro h Hi_s hHi_s
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E ⊢ (∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1) → ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1 Hi_s : Set E hHi_s : Hi_s ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)) ⊢ v ∈ Hi_s
Please generate a tactic in lean4 to solve the state. STATE: case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E ⊢ (∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1) → ∀ t ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)), v ∈ t TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_polarDual
[77, 1]
[110, 7]
rw [Set.mem_image] at hHi_s
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1 Hi_s : Set E hHi_s : Hi_s ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)) ⊢ v ∈ Hi_s
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1 Hi_s : Set E hHi_s : ∃ x ∈ pointDual '' (Subtype.val ⁻¹' X), ↑x = Hi_s ⊢ v ∈ Hi_s
Please generate a tactic in lean4 to solve the state. STATE: case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1 Hi_s : Set E hHi_s : Hi_s ∈ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' X)) ⊢ v ∈ Hi_s TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_polarDual
[77, 1]
[110, 7]
rcases hHi_s with ⟨ Hi_, hHi_, rfl ⟩
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1 Hi_s : Set E hHi_s : ∃ x ∈ pointDual '' (Subtype.val ⁻¹' X), ↑x = Hi_s ⊢ v ∈ Hi_s
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1 Hi_ : Halfspace E hHi_ : Hi_ ∈ pointDual '' (Subtype.val ⁻¹' X) ⊢ v ∈ ↑Hi_
Please generate a tactic in lean4 to solve the state. STATE: case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1 Hi_s : Set E hHi_s : ∃ x ∈ pointDual '' (Subtype.val ⁻¹' X), ↑x = Hi_s ⊢ v ∈ Hi_s TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_polarDual
[77, 1]
[110, 7]
rw [Set.mem_image] at hHi_
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1 Hi_ : Halfspace E hHi_ : Hi_ ∈ pointDual '' (Subtype.val ⁻¹' X) ⊢ v ∈ ↑Hi_
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1 Hi_ : Halfspace E hHi_ : ∃ x ∈ Subtype.val ⁻¹' X, pointDual x = Hi_ ⊢ v ∈ ↑Hi_
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1 Hi_ : Halfspace E hHi_ : Hi_ ∈ pointDual '' (Subtype.val ⁻¹' X) ⊢ v ∈ ↑Hi_ TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_polarDual
[77, 1]
[110, 7]
rcases hHi_ with ⟨ p, hp, rfl ⟩
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1 Hi_ : Halfspace E hHi_ : ∃ x ∈ Subtype.val ⁻¹' X, pointDual x = Hi_ ⊢ v ∈ ↑Hi_
case mpr.intro.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1 p : { p // p ≠ 0 } hp : p ∈ Subtype.val ⁻¹' X ⊢ v ∈ ↑(pointDual p)
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1 Hi_ : Halfspace E hHi_ : ∃ x ∈ Subtype.val ⁻¹' X, pointDual x = Hi_ ⊢ v ∈ ↑Hi_ TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_polarDual
[77, 1]
[110, 7]
specialize h p.1 hp
case mpr.intro.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1 p : { p // p ≠ 0 } hp : p ∈ Subtype.val ⁻¹' X ⊢ v ∈ ↑(pointDual p)
case mpr.intro.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E p : { p // p ≠ 0 } hp : p ∈ Subtype.val ⁻¹' X h : ⟪↑p, v⟫_ℝ ≤ 1 ⊢ v ∈ ↑(pointDual p)
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E h : ∀ x ∈ X, ⟪x, v⟫_ℝ ≤ 1 p : { p // p ≠ 0 } hp : p ∈ Subtype.val ⁻¹' X ⊢ v ∈ ↑(pointDual p) TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_polarDual
[77, 1]
[110, 7]
rw [mem_pointDual]
case mpr.intro.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E p : { p // p ≠ 0 } hp : p ∈ Subtype.val ⁻¹' X h : ⟪↑p, v⟫_ℝ ≤ 1 ⊢ v ∈ ↑(pointDual p)
case mpr.intro.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E p : { p // p ≠ 0 } hp : p ∈ Subtype.val ⁻¹' X h : ⟪↑p, v⟫_ℝ ≤ 1 ⊢ ⟪↑p, v⟫_ℝ ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E p : { p // p ≠ 0 } hp : p ∈ Subtype.val ⁻¹' X h : ⟪↑p, v⟫_ℝ ≤ 1 ⊢ v ∈ ↑(pointDual p) TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_polarDual
[77, 1]
[110, 7]
exact h
case mpr.intro.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E p : { p // p ≠ 0 } hp : p ∈ Subtype.val ⁻¹' X h : ⟪↑p, v⟫_ℝ ≤ 1 ⊢ ⟪↑p, v⟫_ℝ ≤ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E p : { p // p ≠ 0 } hp : p ∈ Subtype.val ⁻¹' X h : ⟪↑p, v⟫_ℝ ≤ 1 ⊢ ⟪↑p, v⟫_ℝ ≤ 1 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
mem_polarDual'
[112, 1]
[115, 7]
simp_rw [mem_polarDual, real_inner_comm]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E ⊢ v ∈ polarDual X ↔ ∀ x ∈ X, ⟪v, x⟫_ℝ ≤ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E v : E ⊢ v ∈ polarDual X ↔ ∀ x ∈ X, ⟪v, x⟫_ℝ ≤ 1 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_comm_half
[117, 1]
[128, 7]
rw [Set.subset_def, Set.subset_def]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E ⊢ X ⊆ polarDual Y → Y ⊆ polarDual X
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E ⊢ (∀ x ∈ X, x ∈ polarDual Y) → ∀ x ∈ Y, x ∈ polarDual X
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E ⊢ X ⊆ polarDual Y → Y ⊆ polarDual X TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_comm_half
[117, 1]
[128, 7]
intro h y hy
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E ⊢ (∀ x ∈ X, x ∈ polarDual Y) → ∀ x ∈ Y, x ∈ polarDual X
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E h : ∀ x ∈ X, x ∈ polarDual Y y : E hy : y ∈ Y ⊢ y ∈ polarDual X
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E ⊢ (∀ x ∈ X, x ∈ polarDual Y) → ∀ x ∈ Y, x ∈ polarDual X TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_comm_half
[117, 1]
[128, 7]
rw [mem_polarDual]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E h : ∀ x ∈ X, x ∈ polarDual Y y : E hy : y ∈ Y ⊢ y ∈ polarDual X
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E h : ∀ x ∈ X, x ∈ polarDual Y y : E hy : y ∈ Y ⊢ ∀ x ∈ X, ⟪x, y⟫_ℝ ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E h : ∀ x ∈ X, x ∈ polarDual Y y : E hy : y ∈ Y ⊢ y ∈ polarDual X TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_comm_half
[117, 1]
[128, 7]
intro x hx
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E h : ∀ x ∈ X, x ∈ polarDual Y y : E hy : y ∈ Y ⊢ ∀ x ∈ X, ⟪x, y⟫_ℝ ≤ 1
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E h : ∀ x ∈ X, x ∈ polarDual Y y : E hy : y ∈ Y x : E hx : x ∈ X ⊢ ⟪x, y⟫_ℝ ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E h : ∀ x ∈ X, x ∈ polarDual Y y : E hy : y ∈ Y ⊢ ∀ x ∈ X, ⟪x, y⟫_ℝ ≤ 1 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_comm_half
[117, 1]
[128, 7]
rw [real_inner_comm]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E h : ∀ x ∈ X, x ∈ polarDual Y y : E hy : y ∈ Y x : E hx : x ∈ X ⊢ ⟪x, y⟫_ℝ ≤ 1
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E h : ∀ x ∈ X, x ∈ polarDual Y y : E hy : y ∈ Y x : E hx : x ∈ X ⊢ ⟪y, x⟫_ℝ ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E h : ∀ x ∈ X, x ∈ polarDual Y y : E hy : y ∈ Y x : E hx : x ∈ X ⊢ ⟪x, y⟫_ℝ ≤ 1 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_comm_half
[117, 1]
[128, 7]
specialize h x hx
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E h : ∀ x ∈ X, x ∈ polarDual Y y : E hy : y ∈ Y x : E hx : x ∈ X ⊢ ⟪y, x⟫_ℝ ≤ 1
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E y : E hy : y ∈ Y x : E hx : x ∈ X h : x ∈ polarDual Y ⊢ ⟪y, x⟫_ℝ ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E h : ∀ x ∈ X, x ∈ polarDual Y y : E hy : y ∈ Y x : E hx : x ∈ X ⊢ ⟪y, x⟫_ℝ ≤ 1 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_comm_half
[117, 1]
[128, 7]
rw [mem_polarDual] at h
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E y : E hy : y ∈ Y x : E hx : x ∈ X h : x ∈ polarDual Y ⊢ ⟪y, x⟫_ℝ ≤ 1
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E y : E hy : y ∈ Y x : E hx : x ∈ X h : ∀ x_1 ∈ Y, ⟪x_1, x⟫_ℝ ≤ 1 ⊢ ⟪y, x⟫_ℝ ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E y : E hy : y ∈ Y x : E hx : x ∈ X h : x ∈ polarDual Y ⊢ ⟪y, x⟫_ℝ ≤ 1 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_comm_half
[117, 1]
[128, 7]
specialize h y hy
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E y : E hy : y ∈ Y x : E hx : x ∈ X h : ∀ x_1 ∈ Y, ⟪x_1, x⟫_ℝ ≤ 1 ⊢ ⟪y, x⟫_ℝ ≤ 1
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E y : E hy : y ∈ Y x : E hx : x ∈ X h : ⟪y, x⟫_ℝ ≤ 1 ⊢ ⟪y, x⟫_ℝ ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E y : E hy : y ∈ Y x : E hx : x ∈ X h : ∀ x_1 ∈ Y, ⟪x_1, x⟫_ℝ ≤ 1 ⊢ ⟪y, x⟫_ℝ ≤ 1 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_comm_half
[117, 1]
[128, 7]
exact h
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E y : E hy : y ∈ Y x : E hx : x ∈ X h : ⟪y, x⟫_ℝ ≤ 1 ⊢ ⟪y, x⟫_ℝ ≤ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E y : E hy : y ∈ Y x : E hx : x ∈ X h : ⟪y, x⟫_ℝ ≤ 1 ⊢ ⟪y, x⟫_ℝ ≤ 1 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_comm
[130, 1]
[133, 7]
constructor <;> exact fun h => polarDual_comm_half _ _ h
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E ⊢ X ⊆ polarDual Y ↔ Y ⊆ polarDual X
no goals
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X Y : Set E ⊢ X ⊆ polarDual Y ↔ Y ⊆ polarDual X TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
doublePolarDual_self
[135, 1]
[159, 7]
apply subset_antisymm
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X ⊢ polarDual (polarDual X) = X
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X ⊢ polarDual (polarDual X) ⊆ X case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X ⊢ X ⊆ polarDual (polarDual X)
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X ⊢ polarDual (polarDual X) = X TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
doublePolarDual_self
[135, 1]
[159, 7]
intro x hx
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X ⊢ polarDual (polarDual X) ⊆ X
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∈ polarDual (polarDual X) ⊢ x ∈ X
Please generate a tactic in lean4 to solve the state. STATE: case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X ⊢ polarDual (polarDual X) ⊆ X TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
doublePolarDual_self
[135, 1]
[159, 7]
contrapose! hx
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∈ polarDual (polarDual X) ⊢ x ∈ X
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X ⊢ x ∉ polarDual (polarDual X)
Please generate a tactic in lean4 to solve the state. STATE: case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∈ polarDual (polarDual X) ⊢ x ∈ X TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
doublePolarDual_self
[135, 1]
[159, 7]
rw [mem_polarDual]
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X ⊢ x ∉ polarDual (polarDual X)
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X ⊢ ¬∀ x_1 ∈ polarDual X, ⟪x_1, x⟫_ℝ ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X ⊢ x ∉ polarDual (polarDual X) TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
doublePolarDual_self
[135, 1]
[159, 7]
push_neg
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X ⊢ ¬∀ x_1 ∈ polarDual X, ⟪x_1, x⟫_ℝ ≤ 1
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X ⊢ ∃ x_1 ∈ polarDual X, 1 < ⟪x_1, x⟫_ℝ
Please generate a tactic in lean4 to solve the state. STATE: case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X ⊢ ¬∀ x_1 ∈ polarDual X, ⟪x_1, x⟫_ℝ ≤ 1 TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
doublePolarDual_self
[135, 1]
[159, 7]
rcases geometric_hahn_banach_point_closed hXcv hXcl hx with ⟨ f, α, h, hX ⟩
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X ⊢ ∃ x_1 ∈ polarDual X, 1 < ⟪x_1, x⟫_ℝ
case a.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b ⊢ ∃ x_1 ∈ polarDual X, 1 < ⟪x_1, x⟫_ℝ
Please generate a tactic in lean4 to solve the state. STATE: case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X ⊢ ∃ x_1 ∈ polarDual X, 1 < ⟪x_1, x⟫_ℝ TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
doublePolarDual_self
[135, 1]
[159, 7]
use (α⁻¹) • (InnerProductSpace.toDual ℝ E).symm f
case a.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b ⊢ ∃ x_1 ∈ polarDual X, 1 < ⟪x_1, x⟫_ℝ
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b ⊢ α⁻¹ • (LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) f ∈ polarDual X ∧ 1 < ⟪α⁻¹ • (LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) f, x⟫_ℝ
Please generate a tactic in lean4 to solve the state. STATE: case a.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b ⊢ ∃ x_1 ∈ polarDual X, 1 < ⟪x_1, x⟫_ℝ TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
doublePolarDual_self
[135, 1]
[159, 7]
rw [mem_polarDual']
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b ⊢ α⁻¹ • (LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) f ∈ polarDual X ∧ 1 < ⟪α⁻¹ • (LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) f, x⟫_ℝ
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b ⊢ (∀ x ∈ X, ⟪α⁻¹ • (LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) f, x⟫_ℝ ≤ 1) ∧ 1 < ⟪α⁻¹ • (LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) f, x⟫_ℝ
Please generate a tactic in lean4 to solve the state. STATE: case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b ⊢ α⁻¹ • (LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) f ∈ polarDual X ∧ 1 < ⟪α⁻¹ • (LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) f, x⟫_ℝ TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
doublePolarDual_self
[135, 1]
[159, 7]
have hαneg : 0 < -α := (neg_pos.mpr ((ContinuousLinearMap.map_zero f) ▸ (hX 0 hX0)))
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b ⊢ (∀ x ∈ X, ⟪α⁻¹ • (LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) f, x⟫_ℝ ≤ 1) ∧ 1 < ⟪α⁻¹ • (LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) f, x⟫_ℝ
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b hαneg : 0 < -α ⊢ (∀ x ∈ X, ⟪α⁻¹ • (LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) f, x⟫_ℝ ≤ 1) ∧ 1 < ⟪α⁻¹ • (LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) f, x⟫_ℝ
Please generate a tactic in lean4 to solve the state. STATE: case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b ⊢ (∀ x ∈ X, ⟪α⁻¹ • (LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) f, x⟫_ℝ ≤ 1) ∧ 1 < ⟪α⁻¹ • (LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) f, x⟫_ℝ TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
doublePolarDual_self
[135, 1]
[159, 7]
constructor <;> intros <;> (try apply le_of_lt) <;> rw [real_inner_smul_left, InnerProductSpace.toDual_symm_apply, ←neg_lt_neg_iff, ←neg_mul, mul_comm, neg_inv, ← division_def]
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b hαneg : 0 < -α ⊢ (∀ x ∈ X, ⟪α⁻¹ • (LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) f, x⟫_ℝ ≤ 1) ∧ 1 < ⟪α⁻¹ • (LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) f, x⟫_ℝ
case h.left.a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b hαneg : 0 < -α x✝ : E a✝ : x✝ ∈ X ⊢ -1 < f x✝ / -α case h.right E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b hαneg : 0 < -α ⊢ f x / -α < -1
Please generate a tactic in lean4 to solve the state. STATE: case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b hαneg : 0 < -α ⊢ (∀ x ∈ X, ⟪α⁻¹ • (LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) f, x⟫_ℝ ≤ 1) ∧ 1 < ⟪α⁻¹ • (LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) f, x⟫_ℝ TACTIC:
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
doublePolarDual_self
[135, 1]
[159, 7]
try apply le_of_lt
case h.left E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b hαneg : 0 < -α x✝ : E a✝ : x✝ ∈ X ⊢ ⟪α⁻¹ • (LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) f, x✝⟫_ℝ ≤ 1
case h.left.a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b hαneg : 0 < -α x✝ : E a✝ : x✝ ∈ X ⊢ ⟪α⁻¹ • (LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) f, x✝⟫_ℝ < 1
Please generate a tactic in lean4 to solve the state. STATE: case h.left E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b hαneg : 0 < -α x✝ : E a✝ : x✝ ∈ X ⊢ ⟪α⁻¹ • (LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) f, x✝⟫_ℝ ≤ 1 TACTIC: