url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
---|---|---|---|---|---|---|---|---|---|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | LSeries.term_mul_aux | [21, 1] | [23, 90] | rw [mul_comm_div, div_div, β mul_div_assoc, mul_comm (m : β), natCast_mul_natCast_cpow] | a b : β
m n : β
s : β
β’ a / βm ^ s * (b / βn ^ s) = a * b / (βm * βn) ^ s | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
a b : β
m n : β
s : β
β’ a / βm ^ s * (b / βn ^ s) = a * b / (βm * βn) ^ s
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | LSeries.term_mul | [25, 1] | [30, 100] | rcases eq_or_ne (m * n) 0 with H | H | fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
β’ term f s (m * n) = term fβ s m * term fβ s n | case inl
fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
H : m * n = 0
β’ term f s (m * n) = term fβ s m * term fβ s n
case inr
fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
H : m * n β 0
β’ term f s (m * n) = term fβ s m * term fβ s n | Please generate a tactic in lean4 to solve the state.
STATE:
fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
β’ term f s (m * n) = term fβ s m * term fβ s n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | LSeries.term_mul | [25, 1] | [30, 100] | rcases mul_eq_zero.mp H with rfl | rfl <;> simp only [term_zero, mul_zero, zero_mul] | case inl
fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
H : m * n = 0
β’ term f s (m * n) = term fβ s m * term fβ s n | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case inl
fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
H : m * n = 0
β’ term f s (m * n) = term fβ s m * term fβ s n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | LSeries.term_mul | [25, 1] | [30, 100] | obtain β¨hm, hnβ© := mul_ne_zero_iff.mp H | case inr
fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
H : m * n β 0
β’ term f s (m * n) = term fβ s m * term fβ s n | case inr.intro
fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
H : m * n β 0
hm : m β 0
hn : n β 0
β’ term f s (m * n) = term fβ s m * term fβ s n | Please generate a tactic in lean4 to solve the state.
STATE:
case inr
fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
H : m * n β 0
β’ term f s (m * n) = term fβ s m * term fβ s n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | LSeries.term_mul | [25, 1] | [30, 100] | simp only [ne_eq, H, not_false_eq_true, term_of_ne_zero, Nat.cast_mul, hm, hn, h, term_mul_aux] | case inr.intro
fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
H : m * n β 0
hm : m β 0
hn : n β 0
β’ term f s (m * n) = term fβ s m * term fβ s n | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case inr.intro
fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
H : m * n β 0
hm : m β 0
hn : n β 0
β’ term f s (m * n) = term fβ s m * term fβ s n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | LSeries.term_at_one | [44, 1] | [45, 72] | rw [term_of_ne_zero one_ne_zero, hβ, Nat.cast_one, one_cpow, div_one] | f : β β β
hβ : f 1 = 1
s : β
β’ term f s 1 = 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
hβ : f 1 = 1
s : β
β’ term f s 1 = 1
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | DirichletCharacter.toFun_on_nat_map_one | [86, 1] | [87, 32] | simp only [cast_one, map_one] | N : β
Ο : DirichletCharacter β N
β’ (fun n => Ο βn) 1 = 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
N : β
Ο : DirichletCharacter β N
β’ (fun n => Ο βn) 1 = 1
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | DirichletCharacter.toFun_on_nat_map_mul | [89, 1] | [91, 32] | simp only [cast_mul, map_mul] | N : β
Ο : DirichletCharacter β N
m n : β
β’ (fun n => Ο βn) (m * n) = (fun n => Ο βn) m * (fun n => Ο βn) n | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
N : β
Ο : DirichletCharacter β N
m n : β
β’ (fun n => Ο βn) (m * n) = (fun n => Ο βn) m * (fun n => Ο βn) n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | DirichletCharacter.LSeries_eulerProduct | [94, 1] | [99, 87] | refine Tendsto.congr (fun n β¦ Finset.prod_congr rfl fun p hp β¦ ?_) <|
eulerProduct_of_completelyMultiplicative (toFun_on_nat_map_one Ο) (toFun_on_nat_map_mul Ο) <|
LSeriesSummable_of_one_lt_re Ο hs | N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
β’ Tendsto (fun n => β p β n.primesBelow, (1 - Ο βp * βp ^ (-s))β»ΒΉ) atTop (π (L (fun n => Ο βn) s)) | N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
n p : β
hp : p β n.primesBelow
β’ (1 - term (fun n => Ο βn) s p)β»ΒΉ = (1 - Ο βp * βp ^ (-s))β»ΒΉ | Please generate a tactic in lean4 to solve the state.
STATE:
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
β’ Tendsto (fun n => β p β n.primesBelow, (1 - Ο βp * βp ^ (-s))β»ΒΉ) atTop (π (L (fun n => Ο βn) s))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | DirichletCharacter.LSeries_eulerProduct | [94, 1] | [99, 87] | rw [term_of_ne_zero (prime_of_mem_primesBelow hp).ne_zero, cpow_neg, div_eq_mul_inv] | N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
n p : β
hp : p β n.primesBelow
β’ (1 - term (fun n => Ο βn) s p)β»ΒΉ = (1 - Ο βp * βp ^ (-s))β»ΒΉ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
n p : β
hp : p β n.primesBelow
β’ (1 - term (fun n => Ο βn) s p)β»ΒΉ = (1 - Ο βp * βp ^ (-s))β»ΒΉ
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | DirichletCharacter.LSeries_eulerProduct' | [102, 1] | [110, 61] | rw [LSeries] | N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
β’ cexp (β' (p : Primes), -(1 - Ο ββp * ββp ^ (-s)).log) = L (fun n => Ο βn) s | N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
β’ cexp (β' (p : Primes), -(1 - Ο ββp * ββp ^ (-s)).log) = β' (n : β), term (fun n => Ο βn) s n | Please generate a tactic in lean4 to solve the state.
STATE:
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
β’ cexp (β' (p : Primes), -(1 - Ο ββp * ββp ^ (-s)).log) = L (fun n => Ο βn) s
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | DirichletCharacter.LSeries_eulerProduct' | [102, 1] | [110, 61] | convert exp_sum_primes_log_eq_tsum (f := dirichletSummandHom Ο <| ne_zero_of_one_lt_re hs) <|
summable_dirichletSummand Ο hs | N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
β’ cexp (β' (p : Primes), -(1 - Ο ββp * ββp ^ (-s)).log) = β' (n : β), term (fun n => Ο βn) s n | case h.e'_3.h.e'_5.h.h.e
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ : β
β’ term (fun n => Ο βn) s = β(dirichletSummandHom Ο β―) | Please generate a tactic in lean4 to solve the state.
STATE:
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
β’ cexp (β' (p : Primes), -(1 - Ο ββp * ββp ^ (-s)).log) = β' (n : β), term (fun n => Ο βn) s n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | DirichletCharacter.LSeries_eulerProduct' | [102, 1] | [110, 61] | ext n | case h.e'_3.h.e'_5.h.h.e
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ : β
β’ term (fun n => Ο βn) s = β(dirichletSummandHom Ο β―) | case h.e'_3.h.e'_5.h.h.e.h
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ n : β
β’ term (fun n => Ο βn) s n = (dirichletSummandHom Ο β―) n | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_3.h.e'_5.h.h.e
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ : β
β’ term (fun n => Ο βn) s = β(dirichletSummandHom Ο β―)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | DirichletCharacter.LSeries_eulerProduct' | [102, 1] | [110, 61] | rcases eq_or_ne n 0 with rfl | hn | case h.e'_3.h.e'_5.h.h.e.h
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ n : β
β’ term (fun n => Ο βn) s n = (dirichletSummandHom Ο β―) n | case h.e'_3.h.e'_5.h.h.e.h.inl
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ : β
β’ term (fun n => Ο βn) s 0 = (dirichletSummandHom Ο β―) 0
case h.e'_3.h.e'_5.h.h.e.h.inr
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ n : β
hn : n β 0
β’ term (fun n => Ο βn) s n = (dirichletSummandHom Ο β―) n | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_3.h.e'_5.h.h.e.h
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ n : β
β’ term (fun n => Ο βn) s n = (dirichletSummandHom Ο β―) n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | DirichletCharacter.LSeries_eulerProduct' | [102, 1] | [110, 61] | simp only [term_zero, map_zero] | case h.e'_3.h.e'_5.h.h.e.h.inl
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ : β
β’ term (fun n => Ο βn) s 0 = (dirichletSummandHom Ο β―) 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_3.h.e'_5.h.h.e.h.inl
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ : β
β’ term (fun n => Ο βn) s 0 = (dirichletSummandHom Ο β―) 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | DirichletCharacter.LSeries_eulerProduct' | [102, 1] | [110, 61] | simp [hn, dirichletSummandHom, div_eq_mul_inv, cpow_neg] | case h.e'_3.h.e'_5.h.h.e.h.inr
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ n : β
hn : n β 0
β’ term (fun n => Ο βn) s n = (dirichletSummandHom Ο β―) n | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_3.h.e'_5.h.h.e.h.inr
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ n : β
hn : n β 0
β’ term (fun n => Ο βn) s n = (dirichletSummandHom Ο β―) n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | ArithmeticFunction.LSeries_zeta_eulerProduct' | [117, 1] | [120, 62] | convert modOne_eq_one (R := β) βΈ LSeries_eulerProduct' (1 : DirichletCharacter β 1) hs using 7 | s : β
hs : 1 < s.re
β’ cexp (β' (p : Primes), -(1 - ββp ^ (-s)).log) = L 1 s | case h.e'_2.h.e'_1.h.e'_5.h.h.e'_3.h.e'_1.h.e'_6
s : β
hs : 1 < s.re
xβ : Primes
β’ ββxβ ^ (-s) = 1 ββxβ * ββxβ ^ (-s) | Please generate a tactic in lean4 to solve the state.
STATE:
s : β
hs : 1 < s.re
β’ cexp (β' (p : Primes), -(1 - ββp ^ (-s)).log) = L 1 s
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | ArithmeticFunction.LSeries_zeta_eulerProduct' | [117, 1] | [120, 62] | rw [MulChar.one_apply <| isUnit_of_subsingleton _, one_mul] | case h.e'_2.h.e'_1.h.e'_5.h.h.e'_3.h.e'_1.h.e'_6
s : β
hs : 1 < s.re
xβ : Primes
β’ ββxβ ^ (-s) = 1 ββxβ * ββxβ ^ (-s) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_2.h.e'_1.h.e'_5.h.h.e'_3.h.e'_1.h.e'_6
s : β
hs : 1 < s.re
xβ : Primes
β’ ββxβ ^ (-s) = 1 ββxβ * ββxβ ^ (-s)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Asymptotics.isBigO_mul_iff_isBigO_div | [31, 1] | [39, 36] | rw [isBigO_iff', isBigO_iff'] | Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
β’ (fun x => f x * g x) =O[l] h β g =O[l] fun x => h x / f x | Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
β’ (β c > 0, βαΆ (x : Ξ±) in l, βf x * g xβ β€ c * βh xβ) β β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ | Please generate a tactic in lean4 to solve the state.
STATE:
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
β’ (fun x => f x * g x) =O[l] h β g =O[l] fun x => h x / f x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Asymptotics.isBigO_mul_iff_isBigO_div | [31, 1] | [39, 36] | refine β¨fun β¨c, hc, Hβ© β¦ β¨c, hc, ?_β©, fun β¨c, hc, Hβ© β¦ β¨c, hc, ?_β©β© <;>
{ refine H.congr <| Eventually.mp hf <| eventually_of_forall fun x hx β¦ ?_
rw [norm_mul, norm_div, β mul_div_assoc, mul_comm]
have hx' : βf xβ > 0 := norm_pos_iff.mpr hx
rw [le_div_iff hx', mul_comm] } | Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
β’ (β c > 0, βαΆ (x : Ξ±) in l, βf x * g xβ β€ c * βh xβ) β β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
β’ (β c > 0, βαΆ (x : Ξ±) in l, βf x * g xβ β€ c * βh xβ) β β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Asymptotics.isBigO_mul_iff_isBigO_div | [31, 1] | [39, 36] | refine H.congr <| Eventually.mp hf <| eventually_of_forall fun x hx β¦ ?_ | case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
β’ βαΆ (x : Ξ±) in l, βf x * g xβ β€ c * βh xβ | case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
β’ βg xβ β€ c * βh x / f xβ β βf x * g xβ β€ c * βh xβ | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
β’ βαΆ (x : Ξ±) in l, βf x * g xβ β€ c * βh xβ
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Asymptotics.isBigO_mul_iff_isBigO_div | [31, 1] | [39, 36] | rw [norm_mul, norm_div, β mul_div_assoc, mul_comm] | case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
β’ βg xβ β€ c * βh x / f xβ β βf x * g xβ β€ c * βh xβ | case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
β’ βg xβ β€ βh xβ * c / βf xβ β βf xβ * βg xβ β€ βh xβ * c | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
β’ βg xβ β€ c * βh x / f xβ β βf x * g xβ β€ c * βh xβ
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Asymptotics.isBigO_mul_iff_isBigO_div | [31, 1] | [39, 36] | have hx' : βf xβ > 0 := norm_pos_iff.mpr hx | case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
β’ βg xβ β€ βh xβ * c / βf xβ β βf xβ * βg xβ β€ βh xβ * c | case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
hx' : βf xβ > 0
β’ βg xβ β€ βh xβ * c / βf xβ β βf xβ * βg xβ β€ βh xβ * c | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
β’ βg xβ β€ βh xβ * c / βf xβ β βf xβ * βg xβ β€ βh xβ * c
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Asymptotics.isBigO_mul_iff_isBigO_div | [31, 1] | [39, 36] | rw [le_div_iff hx', mul_comm] | case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
hx' : βf xβ > 0
β’ βg xβ β€ βh xβ * c / βf xβ β βf xβ * βg xβ β€ βh xβ * c | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
hx' : βf xβ > 0
β’ βg xβ β€ βh xβ * c / βf xβ β βf xβ * βg xβ β€ βh xβ * c
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | DifferentiableAt.isBigO_of_eq_zero | [50, 1] | [54, 73] | rw [β zero_add z] at hf | f : β β β
z : β
hf : DifferentiableAt β f z
hz : f z = 0
β’ (fun w => f (w + z)) =O[π 0] id | f : β β β
z : β
hf : DifferentiableAt β f (0 + z)
hz : f z = 0
β’ (fun w => f (w + z)) =O[π 0] id | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
hf : DifferentiableAt β f z
hz : f z = 0
β’ (fun w => f (w + z)) =O[π 0] id
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | DifferentiableAt.isBigO_of_eq_zero | [50, 1] | [54, 73] | simpa only [zero_add, hz, sub_zero]
using (hf.hasDerivAt.comp_add_const 0 z).differentiableAt.isBigO_sub | f : β β β
z : β
hf : DifferentiableAt β f (0 + z)
hz : f z = 0
β’ (fun w => f (w + z)) =O[π 0] id | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
hf : DifferentiableAt β f (0 + z)
hz : f z = 0
β’ (fun w => f (w + z)) =O[π 0] id
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | ContinuousAt.isBigO | [56, 1] | [70, 46] | rw [isBigO_iff'] | f : β β β
z : β
hf : ContinuousAt f z
β’ (fun w => f (w + z)) =O[π 0] fun x => 1 | f : β β β
z : β
hf : ContinuousAt f z
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
hf : ContinuousAt f z
β’ (fun w => f (w + z)) =O[π 0] fun x => 1
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | ContinuousAt.isBigO | [56, 1] | [70, 46] | simp_rw [Metric.continuousAt_iff', dist_eq_norm_sub, zero_add] at hf | f : β β β
z : β
hf : ContinuousAt (fun w => f (w + z)) 0
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β | f : β β β
z : β
hf : β Ξ΅ > 0, βαΆ (x : β) in π 0, βf (x + z) - f zβ < Ξ΅
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
hf : ContinuousAt (fun w => f (w + z)) 0
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | ContinuousAt.isBigO | [56, 1] | [70, 46] | specialize hf 1 zero_lt_one | f : β β β
z : β
hf : β Ξ΅ > 0, βαΆ (x : β) in π 0, βf (x + z) - f zβ < Ξ΅
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β | f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
hf : β Ξ΅ > 0, βαΆ (x : β) in π 0, βf (x + z) - f zβ < Ξ΅
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | ContinuousAt.isBigO | [56, 1] | [70, 46] | refine β¨βf zβ + 1, by positivity, ?_β© | f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β | f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ βαΆ (x : β) in π 0, βf (x + z)β β€ (βf zβ + 1) * β1β | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | ContinuousAt.isBigO | [56, 1] | [70, 46] | refine Eventually.mp hf <| eventually_of_forall fun w hw β¦ le_of_lt ?_ | f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ βαΆ (x : β) in π 0, βf (x + z)β β€ (βf zβ + 1) * β1β | f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
w : β
hw : βf (w + z) - f zβ < 1
β’ βf (w + z)β < (βf zβ + 1) * β1β | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ βαΆ (x : β) in π 0, βf (x + z)β β€ (βf zβ + 1) * β1β
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | ContinuousAt.isBigO | [56, 1] | [70, 46] | calc βf (w + z)β
_ β€ βf zβ + βf (w + z) - f zβ := norm_le_insert' ..
_ < βf zβ + 1 := add_lt_add_left hw _
_ = _ := by simp only [norm_one, mul_one] | f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
w : β
hw : βf (w + z) - f zβ < 1
β’ βf (w + z)β < (βf zβ + 1) * β1β | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
w : β
hw : βf (w + z) - f zβ < 1
β’ βf (w + z)β < (βf zβ + 1) * β1β
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | ContinuousAt.isBigO | [56, 1] | [70, 46] | convert (Homeomorph.comp_continuousAt_iff' (Homeomorph.addLeft (-z)) _ z).mp ?_ | f : β β β
z : β
hf : ContinuousAt f z
β’ ContinuousAt (fun w => f (w + z)) 0 | case h.e'_1
f : β β β
z : β
hf : ContinuousAt f z
β’ 0 = (Homeomorph.addLeft (-z)) z
case convert_4
f : β β β
z : β
hf : ContinuousAt f z
β’ ContinuousAt ((fun w => f (w + z)) β β(Homeomorph.addLeft (-z))) z | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
hf : ContinuousAt f z
β’ ContinuousAt (fun w => f (w + z)) 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | ContinuousAt.isBigO | [56, 1] | [70, 46] | simp | case h.e'_1
f : β β β
z : β
hf : ContinuousAt f z
β’ 0 = (Homeomorph.addLeft (-z)) z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_1
f : β β β
z : β
hf : ContinuousAt f z
β’ 0 = (Homeomorph.addLeft (-z)) z
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | ContinuousAt.isBigO | [56, 1] | [70, 46] | simp [Function.comp_def, hf] | case convert_4
f : β β β
z : β
hf : ContinuousAt f z
β’ ContinuousAt ((fun w => f (w + z)) β β(Homeomorph.addLeft (-z))) z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case convert_4
f : β β β
z : β
hf : ContinuousAt f z
β’ ContinuousAt ((fun w => f (w + z)) β β(Homeomorph.addLeft (-z))) z
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | ContinuousAt.isBigO | [56, 1] | [70, 46] | positivity | f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ βf zβ + 1 > 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ βf zβ + 1 > 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | ContinuousAt.isBigO | [56, 1] | [70, 46] | simp only [norm_one, mul_one] | f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
w : β
hw : βf (w + z) - f zβ < 1
β’ βf zβ + 1 = (βf zβ + 1) * β1β | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
w : β
hw : βf (w + z) - f zβ < 1
β’ βf zβ + 1 = (βf zβ + 1) * β1β
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | HasDerivAt.of_hasDerivAt_ofReal_comp | [125, 1] | [134, 80] | lift u to β | z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
β’ β u', u = βu' β§ HasDerivAt f u' z | z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
β’ u.im = 0
case intro
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ β u', βu = βu' β§ HasDerivAt f u' z | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
β’ β u', u = βu' β§ HasDerivAt f u' z
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | HasDerivAt.of_hasDerivAt_ofReal_comp | [125, 1] | [134, 80] | refine β¨u, rfl, ?_β© | case intro
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ β u', βu = βu' β§ HasDerivAt f u' z | case intro
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ HasDerivAt f u z | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ β u', βu = βu' β§ HasDerivAt f u' z
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | HasDerivAt.of_hasDerivAt_ofReal_comp | [125, 1] | [134, 80] | convert (reCLM.hasFDerivAt.comp z hf.hasFDerivAt).hasDerivAt | case intro
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ HasDerivAt f u z | case h.e'_7
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ u = (reCLM.comp (smulRight 1 βu)) 1 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ HasDerivAt f u z
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | HasDerivAt.of_hasDerivAt_ofReal_comp | [125, 1] | [134, 80] | rw [comp_apply, smulRight_apply, one_apply, one_smul, reCLM_apply, ofReal_re] | case h.e'_7
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ u = (reCLM.comp (smulRight 1 βu)) 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_7
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ u = (reCLM.comp (smulRight 1 βu)) 1
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | HasDerivAt.of_hasDerivAt_ofReal_comp | [125, 1] | [134, 80] | have H := (imCLM.hasFDerivAt.comp z hf.hasFDerivAt).hasDerivAt.deriv | z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
β’ u.im = 0 | z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
H : _root_.deriv (βimCLM β fun y => β(f y)) z = (imCLM.comp (smulRight 1 u)) 1
β’ u.im = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
β’ u.im = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | HasDerivAt.of_hasDerivAt_ofReal_comp | [125, 1] | [134, 80] | simp only [Function.comp_def, imCLM_apply, ofReal_im, deriv_const] at H | z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
H : _root_.deriv (βimCLM β fun y => β(f y)) z = (imCLM.comp (smulRight 1 u)) 1
β’ u.im = 0 | z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
H : 0 = (imCLM.comp (smulRight 1 u)) 1
β’ u.im = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
H : _root_.deriv (βimCLM β fun y => β(f y)) z = (imCLM.comp (smulRight 1 u)) 1
β’ u.im = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | HasDerivAt.of_hasDerivAt_ofReal_comp | [125, 1] | [134, 80] | rwa [eq_comm, comp_apply, imCLM_apply, smulRight_apply, one_apply, one_smul] at H | z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
H : 0 = (imCLM.comp (smulRight 1 u)) 1
β’ u.im = 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
H : 0 = (imCLM.comp (smulRight 1 u)) 1
β’ u.im = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | DifferentiableAt.ofReal_comp_iff | [136, 1] | [140, 40] | refine β¨fun H β¦ ?_, ofReal_compβ© | z : β
f : β β β
β’ DifferentiableAt β (fun y => β(f y)) z β DifferentiableAt β f z | z : β
f : β β β
H : DifferentiableAt β (fun y => β(f y)) z
β’ DifferentiableAt β f z | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
f : β β β
β’ DifferentiableAt β (fun y => β(f y)) z β DifferentiableAt β f z
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | DifferentiableAt.ofReal_comp_iff | [136, 1] | [140, 40] | obtain β¨u, _, huββ© := H.hasDerivAt.of_hasDerivAt_ofReal_comp | z : β
f : β β β
H : DifferentiableAt β (fun y => β(f y)) z
β’ DifferentiableAt β f z | case intro.intro
z : β
f : β β β
H : DifferentiableAt β (fun y => β(f y)) z
u : β
leftβ : deriv (fun y => β(f y)) z = βu
huβ : HasDerivAt (fun y => f y) u z
β’ DifferentiableAt β f z | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
f : β β β
H : DifferentiableAt β (fun y => β(f y)) z
β’ DifferentiableAt β f z
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | DifferentiableAt.ofReal_comp_iff | [136, 1] | [140, 40] | exact HasDerivAt.differentiableAt huβ | case intro.intro
z : β
f : β β β
H : DifferentiableAt β (fun y => β(f y)) z
u : β
leftβ : deriv (fun y => β(f y)) z = βu
huβ : HasDerivAt (fun y => f y) u z
β’ DifferentiableAt β f z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
z : β
f : β β β
H : DifferentiableAt β (fun y => β(f y)) z
u : β
leftβ : deriv (fun y => β(f y)) z = βu
huβ : HasDerivAt (fun y => f y) u z
β’ DifferentiableAt β f z
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | deriv.ofReal_comp | [146, 1] | [152, 27] | by_cases hf : DifferentiableAt β f z | z : β
f : β β β
β’ deriv (fun y => β(f y)) z = β(deriv f z) | case pos
z : β
f : β β β
hf : DifferentiableAt β f z
β’ deriv (fun y => β(f y)) z = β(deriv f z)
case neg
z : β
f : β β β
hf : Β¬DifferentiableAt β f z
β’ deriv (fun y => β(f y)) z = β(deriv f z) | Please generate a tactic in lean4 to solve the state.
STATE:
z : β
f : β β β
β’ deriv (fun y => β(f y)) z = β(deriv f z)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | deriv.ofReal_comp | [146, 1] | [152, 27] | exact hf.hasDerivAt.ofReal_comp.deriv | case pos
z : β
f : β β β
hf : DifferentiableAt β f z
β’ deriv (fun y => β(f y)) z = β(deriv f z) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
z : β
f : β β β
hf : DifferentiableAt β f z
β’ deriv (fun y => β(f y)) z = β(deriv f z)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | deriv.ofReal_comp | [146, 1] | [152, 27] | have hf' := mt DifferentiableAt.ofReal_comp_iff.mp hf | case neg
z : β
f : β β β
hf : Β¬DifferentiableAt β f z
β’ deriv (fun y => β(f y)) z = β(deriv f z) | case neg
z : β
f : β β β
hf : Β¬DifferentiableAt β f z
hf' : Β¬DifferentiableAt β (fun y => β(f y)) z
β’ deriv (fun y => β(f y)) z = β(deriv f z) | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
z : β
f : β β β
hf : Β¬DifferentiableAt β f z
β’ deriv (fun y => β(f y)) z = β(deriv f z)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | deriv.ofReal_comp | [146, 1] | [152, 27] | rw [deriv_zero_of_not_differentiableAt hf, deriv_zero_of_not_differentiableAt hf',
Complex.ofReal_zero] | case neg
z : β
f : β β β
hf : Β¬DifferentiableAt β f z
hf' : Β¬DifferentiableAt β (fun y => β(f y)) z
β’ deriv (fun y => β(f y)) z = β(deriv f z) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
z : β
f : β β β
hf : Β¬DifferentiableAt β f z
hf' : Β¬DifferentiableAt β (fun y => β(f y)) z
β’ deriv (fun y => β(f y)) z = β(deriv f z)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | have Hz : β x β Set.Ioo (c - r) (c + r), (x : β) β Metric.ball (c : β) r := by
intro x hx
refine Metric.mem_ball.mpr ?_
rw [dist_eq, β ofReal_sub, abs_ofReal, abs_sub_lt_iff, sub_lt_iff_lt_add', sub_lt_comm]
exact and_comm.mpr hx | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r)) | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r)) | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | have H β¦z : ββ¦ (hz : z β Metric.ball (c : β) r) := taylorSeries_eq_on_ball' hz hf | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r)) | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r)) | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | refine β¨fun x β¦ β' (n : β), (βn !)β»ΒΉ * (D n) * (x - c) ^ n, fun x hx β¦ ?_, fun x hx β¦ ?_β© | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r)) | case refine_1
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ DifferentiableWithinAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x
case refine_2
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ (f β ofReal') x = (ofReal' β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | intro x hx | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
β’ β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ βx β Metric.ball (βc) r | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
β’ β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | refine Metric.mem_ball.mpr ?_ | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ βx β Metric.ball (βc) r | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ dist βx βc < r | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ βx β Metric.ball (βc) r
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | rw [dist_eq, β ofReal_sub, abs_ofReal, abs_sub_lt_iff, sub_lt_iff_lt_add', sub_lt_comm] | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ dist βx βc < r | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ x < c + r β§ c - r < x | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ dist βx βc < r
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | exact and_comm.mpr hx | f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ x < c + r β§ c - r < x | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ x < c + r β§ c - r < x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | have Hx := Hz _ hx | case refine_1
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ DifferentiableWithinAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x | case refine_1
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
β’ DifferentiableWithinAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ DifferentiableWithinAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | refine DifferentiableAt.differentiableWithinAt ?_ | case refine_1
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
β’ DifferentiableWithinAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x | case refine_1
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
β’ DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
β’ DifferentiableWithinAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | replace hf := ((hf x Hx).congr (fun _ hz β¦ H hz) (H Hx)).differentiableAt
(Metric.isOpen_ball.mem_nhds Hx) |>.comp_ofReal | case refine_1
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
β’ DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x | case refine_1
f : β β β
r c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
hf : DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (βx - βc) ^ n) x
β’ DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
β’ DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | simp_rw [hd, β ofReal_sub, β ofReal_natCast, β ofReal_inv, β ofReal_pow, β ofReal_mul,
β ofReal_tsum] at hf | case refine_1
f : β β β
r c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
hf : DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (βx - βc) ^ n) x
β’ DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x | case refine_1
f : β β β
r c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
hf : DifferentiableAt β (fun x => β(β' (a : β), (βa !)β»ΒΉ * D a * (x - c) ^ a)) x
β’ DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1
f : β β β
r c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
hf : DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (βx - βc) ^ n) x
β’ DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | exact DifferentiableAt.ofReal_comp_iff.mp hf | case refine_1
f : β β β
r c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
hf : DifferentiableAt β (fun x => β(β' (a : β), (βa !)β»ΒΉ * D a * (x - c) ^ a)) x
β’ DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1
f : β β β
r c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
hf : DifferentiableAt β (fun x => β(β' (a : β), (βa !)β»ΒΉ * D a * (x - c) ^ a)) x
β’ DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | simp only [Function.comp_apply, β H (Hz _ hx), hd, ofReal_tsum] | case refine_2
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ (f β ofReal') x = (ofReal' β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x | case refine_2
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ β' (n : β), (βn !)β»ΒΉ * β(D n) * (βx - βc) ^ n = β' (a : β), β((βa !)β»ΒΉ * D a * (x - c) ^ a) | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ (f β ofReal') x = (ofReal' β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | push_cast | case refine_2
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ β' (n : β), (βn !)β»ΒΉ * β(D n) * (βx - βc) ^ n = β' (a : β), β((βa !)β»ΒΉ * D a * (x - c) ^ a) | case refine_2
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a = β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ β' (n : β), (βn !)β»ΒΉ * β(D n) * (βx - βc) ^ n = β' (a : β), β((βa !)β»ΒΉ * D a * (x - c) ^ a)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | rfl | case refine_2
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a = β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a = β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real | [185, 1] | [201, 8] | have H (z : β) := taylorSeries_eq_of_entire' c z hf | f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
β’ β F, Differentiable β F β§ f β ofReal' = ofReal' β F | f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
β’ β F, Differentiable β F β§ f β ofReal' = ofReal' β F | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
β’ β F, Differentiable β F β§ f β ofReal' = ofReal' β F
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real | [185, 1] | [201, 8] | simp_rw [hd] at H | f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
β’ β F, Differentiable β F β§ f β ofReal' = ofReal' β F | f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
β’ β F, Differentiable β F β§ f β ofReal' = ofReal' β F | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
β’ β F, Differentiable β F β§ f β ofReal' = ofReal' β F
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real | [185, 1] | [201, 8] | refine β¨fun x β¦ β' (n : β), (βn !)β»ΒΉ * (D n) * (x - c) ^ n, ?_, ?_β© | f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
β’ β F, Differentiable β F β§ f β ofReal' = ofReal' β F | case refine_1
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
β’ Differentiable β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n
case refine_2
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
β’ f β ofReal' = ofReal' β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
β’ β F, Differentiable β F β§ f β ofReal' = ofReal' β F
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real | [185, 1] | [201, 8] | have := hf.comp_ofReal | case refine_1
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
β’ Differentiable β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n | case refine_1
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
this : Differentiable β fun x => f βx
β’ Differentiable β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
β’ Differentiable β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real | [185, 1] | [201, 8] | simp_rw [β H, β ofReal_sub, β ofReal_natCast, β ofReal_inv, β ofReal_pow, β ofReal_mul,
β ofReal_tsum] at this | case refine_1
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
this : Differentiable β fun x => f βx
β’ Differentiable β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n | case refine_1
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
this : Differentiable β fun x => β(β' (a : β), (βa !)β»ΒΉ * D a * (x - c) ^ a)
β’ Differentiable β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
this : Differentiable β fun x => f βx
β’ Differentiable β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real | [185, 1] | [201, 8] | exact Differentiable.ofReal_comp_iff.mp this | case refine_1
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
this : Differentiable β fun x => β(β' (a : β), (βa !)β»ΒΉ * D a * (x - c) ^ a)
β’ Differentiable β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
this : Differentiable β fun x => β(β' (a : β), (βa !)β»ΒΉ * D a * (x - c) ^ a)
β’ Differentiable β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real | [185, 1] | [201, 8] | ext x | case refine_2
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
β’ f β ofReal' = ofReal' β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n | case refine_2.h
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
x : β
β’ (f β ofReal') x = (ofReal' β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
β’ f β ofReal' = ofReal' β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real | [185, 1] | [201, 8] | simp only [Function.comp_apply, ofReal_eq_coe, β H, ofReal_tsum] | case refine_2.h
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
x : β
β’ (f β ofReal') x = (ofReal' β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x | case refine_2.h
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
x : β
β’ β' (n : β), (βn !)β»ΒΉ * β(D n) * (βx - βc) ^ n = β' (a : β), β((βa !)β»ΒΉ * D a * (x - c) ^ a) | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2.h
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
x : β
β’ (f β ofReal') x = (ofReal' β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real | [185, 1] | [201, 8] | push_cast | case refine_2.h
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
x : β
β’ β' (n : β), (βn !)β»ΒΉ * β(D n) * (βx - βc) ^ n = β' (a : β), β((βa !)β»ΒΉ * D a * (x - c) ^ a) | case refine_2.h
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
x : β
β’ β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a = β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2.h
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
x : β
β’ β' (n : β), (βn !)β»ΒΉ * β(D n) * (βx - βc) ^ n = β' (a : β), β((βa !)β»ΒΉ * D a * (x - c) ^ a)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real | [185, 1] | [201, 8] | rfl | case refine_2.h
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
x : β
β’ β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a = β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2.h
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
x : β
β’ β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a = β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | have H := taylorSeries_eq_of_entire' 0 z hf | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
β’ 0 β€ f z | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (z - 0) ^ n = f z
β’ 0 β€ f z | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
β’ 0 β€ f z
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | have hz' := eq_re_of_ofReal_le hz | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (z - 0) ^ n = f z
β’ 0 β€ f z | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (z - 0) ^ n = f z
hz' : z = βz.re
β’ 0 β€ f z | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (z - 0) ^ n = f z
β’ 0 β€ f z
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | rw [hz'] at hz H β’ | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (z - 0) ^ n = f z
hz' : z = βz.re
β’ 0 β€ f z | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
β’ 0 β€ f βz.re | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (z - 0) ^ n = f z
hz' : z = βz.re
β’ 0 β€ f z
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | obtain β¨D, hDβ© : β D : β β β, β n, 0 β€ D n β§ iteratedDeriv n f 0 = D n | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
β’ 0 β€ f βz.re | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
β’ β D, β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
β’ 0 β€ f βz.re | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
β’ 0 β€ f βz.re
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | simp_rw [β H, hD, β ofReal_natCast, sub_zero, β ofReal_pow, β ofReal_inv, β ofReal_mul,
β ofReal_tsum] | case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
β’ 0 β€ f βz.re | case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
β’ 0 β€ β(β' (a : β), (βa !)β»ΒΉ * D a * z.re ^ a) | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
β’ 0 β€ f βz.re
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | norm_cast | case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
β’ 0 β€ β(β' (a : β), (βa !)β»ΒΉ * D a * z.re ^ a) | case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
β’ 0 β€ β' (a : β), (βa !)β»ΒΉ * D a * z.re ^ a | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
β’ 0 β€ β(β' (a : β), (βa !)β»ΒΉ * D a * z.re ^ a)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | refine tsum_nonneg fun n β¦ ?_ | case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
β’ 0 β€ β' (a : β), (βa !)β»ΒΉ * D a * z.re ^ a | case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
n : β
β’ 0 β€ (βn !)β»ΒΉ * D n * z.re ^ n | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
β’ 0 β€ β' (a : β), (βa !)β»ΒΉ * D a * z.re ^ a
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | norm_cast at hz | case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
n : β
β’ 0 β€ (βn !)β»ΒΉ * D n * z.re ^ n | case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
n : β
hz : 0 β€ z.re
β’ 0 β€ (βn !)β»ΒΉ * D n * z.re ^ n | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
n : β
β’ 0 β€ (βn !)β»ΒΉ * D n * z.re ^ n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | have := (hD n).1 | case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
n : β
hz : 0 β€ z.re
β’ 0 β€ (βn !)β»ΒΉ * D n * z.re ^ n | case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
n : β
hz : 0 β€ z.re
this : 0 β€ D n
β’ 0 β€ (βn !)β»ΒΉ * D n * z.re ^ n | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
n : β
hz : 0 β€ z.re
β’ 0 β€ (βn !)β»ΒΉ * D n * z.re ^ n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | positivity | case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
n : β
hz : 0 β€ z.re
this : 0 β€ D n
β’ 0 β€ (βn !)β»ΒΉ * D n * z.re ^ n | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
n : β
hz : 0 β€ z.re
this : 0 β€ D n
β’ 0 β€ (βn !)β»ΒΉ * D n * z.re ^ n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | refine β¨fun n β¦ (iteratedDeriv n f 0).re, fun n β¦ β¨?_, ?_β©β© | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
β’ β D, β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n) | case refine_1
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
n : β
β’ 0 β€ (fun n => (iteratedDeriv n f 0).re) n
case refine_2
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
n : β
β’ iteratedDeriv n f 0 = β((fun n => (iteratedDeriv n f 0).re) n) | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
β’ β D, β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | have := eq_re_of_ofReal_le (h n) βΈ h n | case refine_1
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
n : β
β’ 0 β€ (fun n => (iteratedDeriv n f 0).re) n | case refine_1
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
n : β
this : 0 β€ β(iteratedDeriv n f 0).re
β’ 0 β€ (fun n => (iteratedDeriv n f 0).re) n | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
n : β
β’ 0 β€ (fun n => (iteratedDeriv n f 0).re) n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | norm_cast at this | case refine_1
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
n : β
this : 0 β€ β(iteratedDeriv n f 0).re
β’ 0 β€ (fun n => (iteratedDeriv n f 0).re) n | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
n : β
this : 0 β€ β(iteratedDeriv n f 0).re
β’ 0 β€ (fun n => (iteratedDeriv n f 0).re) n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | rw [eq_re_of_ofReal_le (h n)] | case refine_2
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
n : β
β’ iteratedDeriv n f 0 = β((fun n => (iteratedDeriv n f 0).re) n) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
n : β
β’ iteratedDeriv n f 0 = β((fun n => (iteratedDeriv n f 0).re) n)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | let D : β β β := fun n β¦ (iteratedDeriv n f 0).re | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
β’ MonotoneOn (f β ofReal') (Set.Ici 0) | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
β’ MonotoneOn (f β ofReal') (Set.Ici 0) | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
β’ MonotoneOn (f β ofReal') (Set.Ici 0)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | have hD (n : β) : iteratedDeriv n f 0 = D n := by
refine Complex.ext rfl ?_
simp only [ofReal_im]
exact (le_def.mp (h n)).2.symm | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
β’ MonotoneOn (f β ofReal') (Set.Ici 0) | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
β’ MonotoneOn (f β ofReal') (Set.Ici 0) | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
β’ MonotoneOn (f β ofReal') (Set.Ici 0)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | obtain β¨F, hFd, hFβ© := realValued_of_iteratedDeriv_real hf hD | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
β’ MonotoneOn (f β ofReal') (Set.Ici 0) | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
β’ MonotoneOn (f β ofReal') (Set.Ici 0) | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
β’ MonotoneOn (f β ofReal') (Set.Ici 0)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | rw [hF] | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
β’ MonotoneOn (f β ofReal') (Set.Ici 0) | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
β’ MonotoneOn (ofReal' β F) (Set.Ici 0) | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
β’ MonotoneOn (f β ofReal') (Set.Ici 0)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | refine monotone_ofReal.comp_monotoneOn <| monotoneOn_of_deriv_nonneg (convex_Ici 0)
hFd.continuous.continuousOn hFd.differentiableOn fun x hx β¦ ?_ | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
β’ MonotoneOn (ofReal' β F) (Set.Ici 0) | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
β’ 0 β€ deriv F x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
β’ MonotoneOn (ofReal' β F) (Set.Ici 0)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | have hD' (n : β) : 0 β€ iteratedDeriv n (deriv f) 0 := by
rw [β iteratedDeriv_succ']
exact h (n + 1) | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
β’ 0 β€ deriv F x | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
β’ 0 β€ deriv F x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
β’ 0 β€ deriv F x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | have hf' := (contDiff_succ_iff_deriv.mp <| hf.contDiff (n := 2)).2.differentiable rfl.le | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
β’ 0 β€ deriv F x | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
β’ 0 β€ deriv F x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
β’ 0 β€ deriv F x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | have hx : (0 : β) β€ x := by
norm_cast
simp only [Set.nonempty_Iio, interior_Ici', Set.mem_Ioi] at hx
exact hx.le | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
β’ 0 β€ deriv F x | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
β’ 0 β€ deriv F x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
β’ 0 β€ deriv F x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | have H := nonneg_of_iteratedDeriv_nonneg hf' hD' hx | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
β’ 0 β€ deriv F x | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
H : 0 β€ deriv f βx
β’ 0 β€ deriv F x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
β’ 0 β€ deriv F x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | rw [β deriv.comp_ofReal hf.differentiableAt] at H | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
H : 0 β€ deriv f βx
β’ 0 β€ deriv F x | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
H : 0 β€ deriv (fun x => f βx) x
β’ 0 β€ deriv F x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
H : 0 β€ deriv f βx
β’ 0 β€ deriv F x
TACTIC:
|
Subsets and Splits