url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
---|---|---|---|---|---|---|---|---|---|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | simp_rw [β LSeries_congr _ hF] | f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha' : abscissaOfAbsConv F < β€
β’ Tendsto (fun x => LSeries f βx) atTop (nhds (f 1)) | f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha' : abscissaOfAbsConv F < β€
β’ Tendsto (fun x => LSeries (fun {n} => F n) βx) atTop (nhds (f 1)) | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha' : abscissaOfAbsConv F < β€
β’ Tendsto (fun x => LSeries f βx) atTop (nhds (f 1))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | convert LSeries.tendsto_pow_mul_atTop (n := 0) (fun _ hm β¦ Nat.le_zero.mp hm βΈ hFβ) ha' using 1 | f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha' : abscissaOfAbsConv F < β€
β’ Tendsto (fun x => LSeries (fun {n} => F n) βx) atTop (nhds (f 1)) | case h.e'_3
f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha' : abscissaOfAbsConv F < β€
β’ (fun x => LSeries (fun {n} => F n) βx) = fun x => (β0 + 1) ^ βx * LSeries F βx | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha' : abscissaOfAbsConv F < β€
β’ Tendsto (fun x => LSeries (fun {n} => F n) βx) atTop (nhds (f 1))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | simp only [Nat.cast_zero, zero_add, one_cpow, one_mul] | case h.e'_3
f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha' : abscissaOfAbsConv F < β€
β’ (fun x => LSeries (fun {n} => F n) βx) = fun x => (β0 + 1) ^ βx * LSeries F βx | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_3
f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha' : abscissaOfAbsConv F < β€
β’ (fun x => LSeries (fun {n} => F n) βx) = fun x => (β0 + 1) ^ βx * LSeries F βx
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | simp only [hn, βreduceIte, F] | f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
n : β
hn : n β 0
β’ F n = f n | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
n : β
hn : n β 0
β’ F n = f n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_of_abscissaOfAbsConv_eq_top | [147, 1] | [151, 57] | ext s | f : β β β
h : abscissaOfAbsConv f = β€
β’ LSeries f = 0 | case h
f : β β β
h : abscissaOfAbsConv f = β€
s : β
β’ LSeries f s = 0 s | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
h : abscissaOfAbsConv f = β€
β’ LSeries f = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_of_abscissaOfAbsConv_eq_top | [147, 1] | [151, 57] | exact LSeries.eq_zero_of_not_LSeriesSummable f s <| mt LSeriesSummable.abscissaOfAbsConv_le <|
h βΈ fun H β¦ (H.trans_lt <| EReal.coe_lt_top _).false | case h
f : β β β
h : abscissaOfAbsConv f = β€
s : β
β’ LSeries f s = 0 s | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h
f : β β β
h : abscissaOfAbsConv f = β€
s : β
β’ LSeries f s = 0 s
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | by_cases h : abscissaOfAbsConv f = β€ <;> simp only [h, or_true, or_false, iff_true] | f : β β β
β’ (fun x => LSeries f βx) =αΆ [atTop] 0 β (β (n : β), n β 0 β f n = 0) β¨ abscissaOfAbsConv f = β€ | case pos
f : β β β
h : abscissaOfAbsConv f = β€
β’ (fun x => LSeries f βx) =αΆ [atTop] 0
case neg
f : β β β
h : Β¬abscissaOfAbsConv f = β€
β’ (fun x => LSeries f βx) =αΆ [atTop] 0 β β (n : β), n β 0 β f n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
β’ (fun x => LSeries f βx) =αΆ [atTop] 0 β (β (n : β), n β 0 β f n = 0) β¨ abscissaOfAbsConv f = β€
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | refine eventually_of_forall ?_ | case pos
f : β β β
h : abscissaOfAbsConv f = β€
β’ (fun x => LSeries f βx) =αΆ [atTop] 0 | case pos
f : β β β
h : abscissaOfAbsConv f = β€
β’ β (x : β), (fun x => LSeries f βx) x = 0 x | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
f : β β β
h : abscissaOfAbsConv f = β€
β’ (fun x => LSeries f βx) =αΆ [atTop] 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [LSeries_eq_zero_of_abscissaOfAbsConv_eq_top h, Pi.zero_apply, forall_const] | case pos
f : β β β
h : abscissaOfAbsConv f = β€
β’ β (x : β), (fun x => LSeries f βx) x = 0 x | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
f : β β β
h : abscissaOfAbsConv f = β€
β’ β (x : β), (fun x => LSeries f βx) x = 0 x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | refine β¨fun H β¦ ?_, fun H β¦ eventually_of_forall fun x β¦ ?_β© | case neg
f : β β β
h : Β¬abscissaOfAbsConv f = β€
β’ (fun x => LSeries f βx) =αΆ [atTop] 0 β β (n : β), n β 0 β f n = 0 | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
β’ β (n : β), n β 0 β f n = 0
case neg.refine_2
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : β (n : β), n β 0 β f n = 0
x : β
β’ (fun x => LSeries f βx) x = 0 x | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
f : β β β
h : Β¬abscissaOfAbsConv f = β€
β’ (fun x => LSeries f βx) =αΆ [atTop] 0 β β (n : β), n β 0 β f n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | let F (n : β) : β := if n = 0 then 0 else f n | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
β’ β (n : β), n β 0 β f n = 0 | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
β’ β (n : β), n β 0 β f n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
β’ β (n : β), n β 0 β f n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | have hFβ : F 0 = 0 := rfl | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
β’ β (n : β), n β 0 β f n = 0 | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
β’ β (n : β), n β 0 β f n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
β’ β (n : β), n β 0 β f n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | have hF {n : β} (hn : n β 0) : F n = f n := by simp only [hn, βreduceIte, F] | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
β’ β (n : β), n β 0 β f n = 0 | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
β’ β (n : β), n β 0 β f n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
β’ β (n : β), n β 0 β f n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | suffices β n, F n = 0 by
peel hF with n hn h
exact (this n βΈ h).symm | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
β’ β (n : β), n β 0 β f n = 0 | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
β’ β (n : β), F n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
β’ β (n : β), n β 0 β f n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | have ha : Β¬ abscissaOfAbsConv F = β€ := abscissaOfAbsConv_congr hF βΈ h | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
β’ β (n : β), F n = 0 | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
β’ β (n : β), F n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
β’ β (n : β), F n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | have h' (x : β) : LSeries F x = LSeries f x := LSeries_congr x hF | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
β’ β (n : β), F n = 0 | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
β’ β (n : β), F n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
β’ β (n : β), F n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | have H' (n : β) : (fun x : β β¦ (n ^ (x : β)) * LSeries F x) =αΆ [atTop] (fun _ β¦ 0) := by
simp only [h']
rw [eventuallyEq_iff_exists_mem] at H β’
peel H with s hs
refine β¨hs.1, fun x hx β¦ ?_β©
simp only [hs.2 hx, Pi.zero_apply, mul_zero] | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
β’ β (n : β), F n = 0 | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
β’ β (n : β), F n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
β’ β (n : β), F n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | intro n | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
β’ β (n : β), F n = 0 | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
β’ F n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
β’ β (n : β), F n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | induction' n using Nat.strongInductionOn with n ih | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
β’ F n = 0 | case neg.refine_1.ind
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n, F m = 0
β’ F n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
β’ F n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | suffices Tendsto (fun x : β β¦ (n ^ (x : β)) * LSeries F x) atTop (nhds (F n)) by
replace this := this.congr' <| H' n
simp only [tendsto_const_nhds_iff] at this
exact this.symm | case neg.refine_1.ind
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n, F m = 0
β’ F n = 0 | case neg.refine_1.ind
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n, F m = 0
β’ Tendsto (fun x => βn ^ βx * LSeries F βx) atTop (nhds (F n)) | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1.ind
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n, F m = 0
β’ F n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | cases n with
| zero =>
refine Tendsto.congr' (H' 0).symm ?_
simp only [zero_eq, hFβ, tendsto_const_nhds_iff]
| succ n =>
simp only [succ_eq_add_one, cast_add, cast_one]
exact LSeries.tendsto_pow_mul_atTop (fun m hm β¦ ih m <| lt_succ_of_le hm) <| Ne.lt_top ha | case neg.refine_1.ind
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n, F m = 0
β’ Tendsto (fun x => βn ^ βx * LSeries F βx) atTop (nhds (F n)) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1.ind
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n, F m = 0
β’ Tendsto (fun x => βn ^ βx * LSeries F βx) atTop (nhds (F n))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [hn, βreduceIte, F] | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
n : β
hn : n β 0
β’ F n = f n | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
n : β
hn : n β 0
β’ F n = f n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | peel hF with n hn h | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
this : β (n : β), F n = 0
β’ β (n : β), n β 0 β f n = 0 | case h.h
f : β β β
hβ : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
this : β (n : β), F n = 0
n : β
hn : n β 0
h : F n = f n
β’ f n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
this : β (n : β), F n = 0
β’ β (n : β), n β 0 β f n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | exact (this n βΈ h).symm | case h.h
f : β β β
hβ : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
this : β (n : β), F n = 0
n : β
hn : n β 0
h : F n = f n
β’ f n = 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h
f : β β β
hβ : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
this : β (n : β), F n = 0
n : β
hn : n β 0
h : F n = f n
β’ f n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [h'] | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
n : β
β’ (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0 | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
n : β
β’ (fun x => βn ^ βx * LSeries f βx) =αΆ [atTop] fun x => 0 | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
n : β
β’ (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | rw [eventuallyEq_iff_exists_mem] at H β’ | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
n : β
β’ (fun x => βn ^ βx * LSeries f βx) =αΆ [atTop] fun x => 0 | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : β s β atTop, Set.EqOn (fun x => LSeries f βx) 0 s
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
n : β
β’ β s β atTop, Set.EqOn (fun x => βn ^ βx * LSeries f βx) (fun x => 0) s | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
n : β
β’ (fun x => βn ^ βx * LSeries f βx) =αΆ [atTop] fun x => 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | peel H with s hs | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : β s β atTop, Set.EqOn (fun x => LSeries f βx) 0 s
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
n : β
β’ β s β atTop, Set.EqOn (fun x => βn ^ βx * LSeries f βx) (fun x => 0) s | case h
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : β s β atTop, Set.EqOn (fun x => LSeries f βx) 0 s
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
n : β
s : Set β
hs : s β atTop β§ Set.EqOn (fun x => LSeries f βx) 0 s
β’ s β atTop β§ Set.EqOn (fun x => βn ^ βx * LSeries f βx) (fun x => 0) s | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : β s β atTop, Set.EqOn (fun x => LSeries f βx) 0 s
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
n : β
β’ β s β atTop, Set.EqOn (fun x => βn ^ βx * LSeries f βx) (fun x => 0) s
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | refine β¨hs.1, fun x hx β¦ ?_β© | case h
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : β s β atTop, Set.EqOn (fun x => LSeries f βx) 0 s
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
n : β
s : Set β
hs : s β atTop β§ Set.EqOn (fun x => LSeries f βx) 0 s
β’ s β atTop β§ Set.EqOn (fun x => βn ^ βx * LSeries f βx) (fun x => 0) s | case h
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : β s β atTop, Set.EqOn (fun x => LSeries f βx) 0 s
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
n : β
s : Set β
hs : s β atTop β§ Set.EqOn (fun x => LSeries f βx) 0 s
x : β
hx : x β s
β’ (fun x => βn ^ βx * LSeries f βx) x = (fun x => 0) x | Please generate a tactic in lean4 to solve the state.
STATE:
case h
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : β s β atTop, Set.EqOn (fun x => LSeries f βx) 0 s
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
n : β
s : Set β
hs : s β atTop β§ Set.EqOn (fun x => LSeries f βx) 0 s
β’ s β atTop β§ Set.EqOn (fun x => βn ^ βx * LSeries f βx) (fun x => 0) s
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [hs.2 hx, Pi.zero_apply, mul_zero] | case h
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : β s β atTop, Set.EqOn (fun x => LSeries f βx) 0 s
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
n : β
s : Set β
hs : s β atTop β§ Set.EqOn (fun x => LSeries f βx) 0 s
x : β
hx : x β s
β’ (fun x => βn ^ βx * LSeries f βx) x = (fun x => 0) x | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : β s β atTop, Set.EqOn (fun x => LSeries f βx) 0 s
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
n : β
s : Set β
hs : s β atTop β§ Set.EqOn (fun x => LSeries f βx) 0 s
x : β
hx : x β s
β’ (fun x => βn ^ βx * LSeries f βx) x = (fun x => 0) x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | replace this := this.congr' <| H' n | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n, F m = 0
this : Tendsto (fun x => βn ^ βx * LSeries F βx) atTop (nhds (F n))
β’ F n = 0 | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n, F m = 0
this : Tendsto (fun x => 0) atTop (nhds (F n))
β’ F n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n, F m = 0
this : Tendsto (fun x => βn ^ βx * LSeries F βx) atTop (nhds (F n))
β’ F n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [tendsto_const_nhds_iff] at this | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n, F m = 0
this : Tendsto (fun x => 0) atTop (nhds (F n))
β’ F n = 0 | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n, F m = 0
this : 0 = F n
β’ F n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n, F m = 0
this : Tendsto (fun x => 0) atTop (nhds (F n))
β’ F n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | exact this.symm | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n, F m = 0
this : 0 = F n
β’ F n = 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n, F m = 0
this : 0 = F n
β’ F n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | refine Tendsto.congr' (H' 0).symm ?_ | case neg.refine_1.ind.zero
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
ih : β m < 0, F m = 0
β’ Tendsto (fun x => β0 ^ βx * LSeries F βx) atTop (nhds (F 0)) | case neg.refine_1.ind.zero
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
ih : β m < 0, F m = 0
β’ Tendsto (fun x => 0) atTop (nhds (F 0)) | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1.ind.zero
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
ih : β m < 0, F m = 0
β’ Tendsto (fun x => β0 ^ βx * LSeries F βx) atTop (nhds (F 0))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [zero_eq, hFβ, tendsto_const_nhds_iff] | case neg.refine_1.ind.zero
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
ih : β m < 0, F m = 0
β’ Tendsto (fun x => 0) atTop (nhds (F 0)) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1.ind.zero
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
ih : β m < 0, F m = 0
β’ Tendsto (fun x => 0) atTop (nhds (F 0))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [succ_eq_add_one, cast_add, cast_one] | case neg.refine_1.ind.succ
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n + 1, F m = 0
β’ Tendsto (fun x => β(n + 1) ^ βx * LSeries F βx) atTop (nhds (F (n + 1))) | case neg.refine_1.ind.succ
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n + 1, F m = 0
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries F βx) atTop (nhds (F (n + 1))) | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1.ind.succ
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n + 1, F m = 0
β’ Tendsto (fun x => β(n + 1) ^ βx * LSeries F βx) atTop (nhds (F (n + 1)))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | exact LSeries.tendsto_pow_mul_atTop (fun m hm β¦ ih m <| lt_succ_of_le hm) <| Ne.lt_top ha | case neg.refine_1.ind.succ
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n + 1, F m = 0
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries F βx) atTop (nhds (F (n + 1))) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1.ind.succ
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n + 1, F m = 0
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries F βx) atTop (nhds (F (n + 1)))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [LSeries_congr x fun {n} β¦ H n, show (fun _ : β β¦ (0 : β)) = 0 from rfl,
LSeries_zero, Pi.zero_apply] | case neg.refine_2
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : β (n : β), n β 0 β f n = 0
x : β
β’ (fun x => LSeries f βx) x = 0 x | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_2
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : β (n : β), n β 0 β f n = 0
x : β
β’ (fun x => LSeries f βx) x = 0 x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | by_cases h : abscissaOfAbsConv f = β€ <;> simp only [h, or_true, or_false, iff_true] | f : β β β
hf : f 0 = 0
β’ LSeries f = 0 β f = 0 β¨ abscissaOfAbsConv f = β€ | case pos
f : β β β
hf : f 0 = 0
h : abscissaOfAbsConv f = β€
β’ LSeries f = 0
case neg
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
β’ LSeries f = 0 β f = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
hf : f 0 = 0
β’ LSeries f = 0 β f = 0 β¨ abscissaOfAbsConv f = β€
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | exact LSeries_eq_zero_of_abscissaOfAbsConv_eq_top h | case pos
f : β β β
hf : f 0 = 0
h : abscissaOfAbsConv f = β€
β’ LSeries f = 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
f : β β β
hf : f 0 = 0
h : abscissaOfAbsConv f = β€
β’ LSeries f = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | refine β¨fun H β¦ ?_, fun H β¦ H βΈ LSeries_zeroβ© | case neg
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
β’ LSeries f = 0 β f = 0 | case neg
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
β’ f = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
β’ LSeries f = 0 β f = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | convert (LSeries_eventually_eq_zero_iff'.mp ?_).resolve_right h | case neg
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
β’ f = 0 | case a
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
β’ f = 0 β β (n : β), n β 0 β f n = 0
case neg
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
β’ (fun x => LSeries f βx) =αΆ [Filter.atTop] 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
β’ f = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | refine β¨fun H' _ _ β¦ by rw [H', Pi.zero_apply], fun H' β¦ ?_β© | case a
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
β’ f = 0 β β (n : β), n β 0 β f n = 0 | case a
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
H' : β (n : β), n β 0 β f n = 0
β’ f = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case a
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
β’ f = 0 β β (n : β), n β 0 β f n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | ext β¨- | mβ© | case a
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
H' : β (n : β), n β 0 β f n = 0
β’ f = 0 | case a.h.zero
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
H' : β (n : β), n β 0 β f n = 0
β’ f 0 = 0 0
case a.h.succ
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
H' : β (n : β), n β 0 β f n = 0
nβ : β
β’ f (nβ + 1) = 0 (nβ + 1) | Please generate a tactic in lean4 to solve the state.
STATE:
case a
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
H' : β (n : β), n β 0 β f n = 0
β’ f = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | rw [H', Pi.zero_apply] | f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
H' : f = 0
xβΒΉ : β
xβ : xβΒΉ β 0
β’ f xβΒΉ = 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
H' : f = 0
xβΒΉ : β
xβ : xβΒΉ β 0
β’ f xβΒΉ = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | simp only [zero_eq, hf, Pi.zero_apply] | case a.h.zero
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
H' : β (n : β), n β 0 β f n = 0
β’ f 0 = 0 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.zero
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
H' : β (n : β), n β 0 β f n = 0
β’ f 0 = 0 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | simp only [ne_eq, succ_ne_zero, not_false_eq_true, H', Pi.zero_apply] | case a.h.succ
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
H' : β (n : β), n β 0 β f n = 0
nβ : β
β’ f (nβ + 1) = 0 (nβ + 1) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.succ
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
H' : β (n : β), n β 0 β f n = 0
nβ : β
β’ f (nβ + 1) = 0 (nβ + 1)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | simp only [H, Pi.zero_apply] | case neg
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
β’ (fun x => LSeries f βx) =αΆ [Filter.atTop] 0 | case neg
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
β’ (fun x => 0) =αΆ [Filter.atTop] 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
β’ (fun x => LSeries f βx) =αΆ [Filter.atTop] 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | exact Filter.EventuallyEq.rfl | case neg
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
β’ (fun x => 0) =αΆ [Filter.atTop] 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
β’ (fun x => 0) =αΆ [Filter.atTop] 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | rw [EventuallyEq, eventually_atTop] at h β’ | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
h : (fun x => LSeries f βx) =αΆ [atTop] fun x => LSeries g βx
β’ (fun x => LSeries (f - g) βx) =αΆ [atTop] 0 | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
h : β a, β b β₯ a, LSeries f βb = LSeries g βb
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b | Please generate a tactic in lean4 to solve the state.
STATE:
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
h : (fun x => LSeries f βx) =αΆ [atTop] fun x => LSeries g βx
β’ (fun x => LSeries (f - g) βx) =αΆ [atTop] 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | obtain β¨xβ, hxββ© := h | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
h : β a, β b β₯ a, LSeries f βb = LSeries g βb
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b | case intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b | Please generate a tactic in lean4 to solve the state.
STATE:
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
h : β a, β b β₯ a, LSeries f βb = LSeries g βb
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | obtain β¨yf, hyfβ, hyfββ© := exists_between hf | case intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b | case intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : EReal
hyfβ : abscissaOfAbsConv f < yf
hyfβ : yf < β€
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | obtain β¨yg, hygβ, hygββ© := exists_between hg | case intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : EReal
hyfβ : abscissaOfAbsConv f < yf
hyfβ : yf < β€
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b | case intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : EReal
hyfβ : abscissaOfAbsConv f < yf
hyfβ : yf < β€
yg : EReal
hygβ : abscissaOfAbsConv g < yg
hygβ : yg < β€
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : EReal
hyfβ : abscissaOfAbsConv f < yf
hyfβ : yf < β€
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | lift yf to β using β¨hyfβ.ne, ((OrderBot.bot_le _).trans_lt hyfβ).ne'β© | case intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : EReal
hyfβ : abscissaOfAbsConv f < yf
hyfβ : yf < β€
yg : EReal
hygβ : abscissaOfAbsConv g < yg
hygβ : yg < β€
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b | case intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yg : EReal
hygβ : abscissaOfAbsConv g < yg
hygβ : yg < β€
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : EReal
hyfβ : abscissaOfAbsConv f < yf
hyfβ : yf < β€
yg : EReal
hygβ : abscissaOfAbsConv g < yg
hygβ : yg < β€
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | lift yg to β using β¨hygβ.ne, ((OrderBot.bot_le _).trans_lt hygβ).ne'β© | case intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yg : EReal
hygβ : abscissaOfAbsConv g < yg
hygβ : yg < β€
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b | case intro.intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yg : EReal
hygβ : abscissaOfAbsConv g < yg
hygβ : yg < β€
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | refine β¨max xβ (max yf yg), fun x hx β¦ ?_β© | case intro.intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b | case intro.intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
β’ LSeries (f - g) βx = 0 x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | have Hf : LSeriesSummable f x := by
refine LSeriesSummable_of_abscissaOfAbsConv_lt_re <| (ofReal_re x).symm βΈ hyfβ.trans_le ?_
refine (le_max_left _ (yg : EReal)).trans <| (le_max_right (xβ : EReal) _).trans ?_
simpa only [max_le_iff, EReal.coe_le_coe_iff] using hx | case intro.intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
β’ LSeries (f - g) βx = 0 x | case intro.intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
Hf : LSeriesSummable f βx
β’ LSeries (f - g) βx = 0 x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
β’ LSeries (f - g) βx = 0 x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | have Hg : LSeriesSummable g x := by
refine LSeriesSummable_of_abscissaOfAbsConv_lt_re <| (ofReal_re x).symm βΈ hygβ.trans_le ?_
refine (le_max_right (yf : EReal) _).trans <| (le_max_right (xβ : EReal) _).trans ?_
simpa only [max_le_iff, EReal.coe_le_coe_iff] using hx | case intro.intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
Hf : LSeriesSummable f βx
β’ LSeries (f - g) βx = 0 x | case intro.intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
Hf : LSeriesSummable f βx
Hg : LSeriesSummable g βx
β’ LSeries (f - g) βx = 0 x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
Hf : LSeriesSummable f βx
β’ LSeries (f - g) βx = 0 x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | rw [LSeries_sub Hf Hg, hxβ x <| (le_max_left ..).trans hx, sub_self, Pi.zero_apply] | case intro.intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
Hf : LSeriesSummable f βx
Hg : LSeriesSummable g βx
β’ LSeries (f - g) βx = 0 x | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
Hf : LSeriesSummable f βx
Hg : LSeriesSummable g βx
β’ LSeries (f - g) βx = 0 x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | refine LSeriesSummable_of_abscissaOfAbsConv_lt_re <| (ofReal_re x).symm βΈ hyfβ.trans_le ?_ | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
β’ LSeriesSummable f βx | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
β’ βyf β€ βx | Please generate a tactic in lean4 to solve the state.
STATE:
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
β’ LSeriesSummable f βx
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | refine (le_max_left _ (yg : EReal)).trans <| (le_max_right (xβ : EReal) _).trans ?_ | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
β’ βyf β€ βx | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
β’ max (βxβ) (max βyf βyg) β€ βx | Please generate a tactic in lean4 to solve the state.
STATE:
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
β’ βyf β€ βx
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | simpa only [max_le_iff, EReal.coe_le_coe_iff] using hx | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
β’ max (βxβ) (max βyf βyg) β€ βx | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
β’ max (βxβ) (max βyf βyg) β€ βx
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | refine LSeriesSummable_of_abscissaOfAbsConv_lt_re <| (ofReal_re x).symm βΈ hygβ.trans_le ?_ | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
Hf : LSeriesSummable f βx
β’ LSeriesSummable g βx | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
Hf : LSeriesSummable f βx
β’ βyg β€ βx | Please generate a tactic in lean4 to solve the state.
STATE:
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
Hf : LSeriesSummable f βx
β’ LSeriesSummable g βx
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | refine (le_max_right (yf : EReal) _).trans <| (le_max_right (xβ : EReal) _).trans ?_ | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
Hf : LSeriesSummable f βx
β’ βyg β€ βx | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
Hf : LSeriesSummable f βx
β’ max (βxβ) (max βyf βyg) β€ βx | Please generate a tactic in lean4 to solve the state.
STATE:
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
Hf : LSeriesSummable f βx
β’ βyg β€ βx
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | simpa only [max_le_iff, EReal.coe_le_coe_iff] using hx | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
Hf : LSeriesSummable f βx
β’ max (βxβ) (max βyf βyg) β€ βx | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
Hf : LSeriesSummable f βx
β’ max (βxβ) (max βyf βyg) β€ βx
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.eq_of_LSeries_eventually_eq | [234, 1] | [245, 74] | have hsub : (fun x : β β¦ LSeries (f - g) x) =αΆ [atTop] (0 : β β β) :=
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq hf hg h | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
h : (fun x => LSeries f βx) =αΆ [atTop] fun x => LSeries g βx
n : β
hn : n β 0
β’ f n = g n | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
h : (fun x => LSeries f βx) =αΆ [atTop] fun x => LSeries g βx
n : β
hn : n β 0
hsub : (fun x => LSeries (f - g) βx) =αΆ [atTop] 0
β’ f n = g n | Please generate a tactic in lean4 to solve the state.
STATE:
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
h : (fun x => LSeries f βx) =αΆ [atTop] fun x => LSeries g βx
n : β
hn : n β 0
β’ f n = g n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.eq_of_LSeries_eventually_eq | [234, 1] | [245, 74] | have ha : abscissaOfAbsConv (f - g) β β€ :=
lt_top_iff_ne_top.mp <| (abscissaOfAbsConv_sub_le f g).trans_lt <| max_lt hf hg | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
h : (fun x => LSeries f βx) =αΆ [atTop] fun x => LSeries g βx
n : β
hn : n β 0
hsub : (fun x => LSeries (f - g) βx) =αΆ [atTop] 0
β’ f n = g n | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
h : (fun x => LSeries f βx) =αΆ [atTop] fun x => LSeries g βx
n : β
hn : n β 0
hsub : (fun x => LSeries (f - g) βx) =αΆ [atTop] 0
ha : abscissaOfAbsConv (f - g) β β€
β’ f n = g n | Please generate a tactic in lean4 to solve the state.
STATE:
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
h : (fun x => LSeries f βx) =αΆ [atTop] fun x => LSeries g βx
n : β
hn : n β 0
hsub : (fun x => LSeries (f - g) βx) =αΆ [atTop] 0
β’ f n = g n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.eq_of_LSeries_eventually_eq | [234, 1] | [245, 74] | simpa only [Pi.sub_apply, sub_eq_zero]
using (LSeries_eventually_eq_zero_iff'.mp hsub).resolve_right ha n hn | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
h : (fun x => LSeries f βx) =αΆ [atTop] fun x => LSeries g βx
n : β
hn : n β 0
hsub : (fun x => LSeries (f - g) βx) =αΆ [atTop] 0
ha : abscissaOfAbsConv (f - g) β β€
β’ f n = g n | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
h : (fun x => LSeries f βx) =αΆ [atTop] fun x => LSeries g βx
n : β
hn : n β 0
hsub : (fun x => LSeries (f - g) βx) =αΆ [atTop] 0
ha : abscissaOfAbsConv (f - g) β β€
β’ f n = g n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_iff_of_abscissaOfAbsConv_lt_top | [247, 1] | [254, 58] | refine eq_of_LSeries_eventually_eq hf hg ?_ hn | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
H : LSeries f = LSeries g
n : β
hn : n β 0
β’ f n = g n | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
H : LSeries f = LSeries g
n : β
hn : n β 0
β’ (fun x => LSeries f βx) =αΆ [Filter.atTop] fun x => LSeries g βx | Please generate a tactic in lean4 to solve the state.
STATE:
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
H : LSeries f = LSeries g
n : β
hn : n β 0
β’ f n = g n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_iff_of_abscissaOfAbsConv_lt_top | [247, 1] | [254, 58] | exact Filter.eventually_of_forall fun x β¦ congr_fun H x | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
H : LSeries f = LSeries g
n : β
hn : n β 0
β’ (fun x => LSeries f βx) =αΆ [Filter.atTop] fun x => LSeries g βx | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
H : LSeries f = LSeries g
n : β
hn : n β 0
β’ (fun x => LSeries f βx) =αΆ [Filter.atTop] fun x => LSeries g βx
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | Complex.cpow_natCast_add_one_ne_zero | [8, 1] | [9, 67] | norm_cast at H | n : β
z : β
H : βn + 1 = 0 β§ z β 0
β’ False | n : β
z : β
H : False β§ Β¬z = 0
β’ False | Please generate a tactic in lean4 to solve the state.
STATE:
n : β
z : β
H : βn + 1 = 0 β§ z β 0
β’ False
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | Complex.cpow_natCast_add_one_ne_zero | [8, 1] | [9, 67] | exact H.1 | n : β
z : β
H : False β§ Β¬z = 0
β’ False | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
n : β
z : β
H : False β§ Β¬z = 0
β’ False
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.abscissaOfAbsConv_binop_le | [13, 1] | [24, 59] | refine abscissaOfAbsConv_le_of_forall_lt_LSeriesSummable' fun x hx β¦ hF ?_ ?_ | F : (β β β) β (β β β) β β β β
hF : β {f g : β β β} {s : β}, LSeriesSummable f s β LSeriesSummable g s β LSeriesSummable (F f g) s
f g : β β β
β’ abscissaOfAbsConv (F f g) β€ max (abscissaOfAbsConv f) (abscissaOfAbsConv g) | case refine_1
F : (β β β) β (β β β) β β β β
hF : β {f g : β β β} {s : β}, LSeriesSummable f s β LSeriesSummable g s β LSeriesSummable (F f g) s
f g : β β β
x : β
hx : max (abscissaOfAbsConv f) (abscissaOfAbsConv g) < βx
β’ LSeriesSummable f βx
case refine_2
F : (β β β) β (β β β) β β β β
hF : β {f g : β β β} {s : β}, LSeriesSummable f s β LSeriesSummable g s β LSeriesSummable (F f g) s
f g : β β β
x : β
hx : max (abscissaOfAbsConv f) (abscissaOfAbsConv g) < βx
β’ LSeriesSummable g βx | Please generate a tactic in lean4 to solve the state.
STATE:
F : (β β β) β (β β β) β β β β
hF : β {f g : β β β} {s : β}, LSeriesSummable f s β LSeriesSummable g s β LSeriesSummable (F f g) s
f g : β β β
β’ abscissaOfAbsConv (F f g) β€ max (abscissaOfAbsConv f) (abscissaOfAbsConv g)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.abscissaOfAbsConv_binop_le | [13, 1] | [24, 59] | exact LSeriesSummable_of_abscissaOfAbsConv_lt_re <|
(ofReal_re x).symm βΈ (le_max_left ..).trans_lt hx | case refine_1
F : (β β β) β (β β β) β β β β
hF : β {f g : β β β} {s : β}, LSeriesSummable f s β LSeriesSummable g s β LSeriesSummable (F f g) s
f g : β β β
x : β
hx : max (abscissaOfAbsConv f) (abscissaOfAbsConv g) < βx
β’ LSeriesSummable f βx | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1
F : (β β β) β (β β β) β β β β
hF : β {f g : β β β} {s : β}, LSeriesSummable f s β LSeriesSummable g s β LSeriesSummable (F f g) s
f g : β β β
x : β
hx : max (abscissaOfAbsConv f) (abscissaOfAbsConv g) < βx
β’ LSeriesSummable f βx
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.abscissaOfAbsConv_binop_le | [13, 1] | [24, 59] | exact LSeriesSummable_of_abscissaOfAbsConv_lt_re <|
(ofReal_re x).symm βΈ (le_max_right ..).trans_lt hx | case refine_2
F : (β β β) β (β β β) β β β β
hF : β {f g : β β β} {s : β}, LSeriesSummable f s β LSeriesSummable g s β LSeriesSummable (F f g) s
f g : β β β
x : β
hx : max (abscissaOfAbsConv f) (abscissaOfAbsConv g) < βx
β’ LSeriesSummable g βx | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
F : (β β β) β (β β β) β β β β
hF : β {f g : β β β} {s : β}, LSeriesSummable f s β LSeriesSummable g s β LSeriesSummable (F f g) s
f g : β β β
x : β
hx : max (abscissaOfAbsConv f) (abscissaOfAbsConv g) < βx
β’ LSeriesSummable g βx
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | have Hm : (0 : β) β€ m := m.cast_nonneg | m n : β
z : β
x : β
β’ (βn + 1) ^ βx * (z / βm ^ βx) = z / (βm / (βn + 1)) ^ βx | m n : β
z : β
x : β
Hm : 0 β€ βm
β’ (βn + 1) ^ βx * (z / βm ^ βx) = z / (βm / (βn + 1)) ^ βx | Please generate a tactic in lean4 to solve the state.
STATE:
m n : β
z : β
x : β
β’ (βn + 1) ^ βx * (z / βm ^ βx) = z / (βm / (βn + 1)) ^ βx
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | have Hn : (0 : β) β€ (n + 1 : β)β»ΒΉ := by positivity | m n : β
z : β
x : β
Hm : 0 β€ βm
β’ (βn + 1) ^ βx * (z / βm ^ βx) = z / (βm / (βn + 1)) ^ βx | m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ (βn + 1) ^ βx * (z / βm ^ βx) = z / (βm / (βn + 1)) ^ βx | Please generate a tactic in lean4 to solve the state.
STATE:
m n : β
z : β
x : β
Hm : 0 β€ βm
β’ (βn + 1) ^ βx * (z / βm ^ βx) = z / (βm / (βn + 1)) ^ βx
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | rw [β mul_div_assoc, mul_comm, div_eq_mul_inv z, mul_div_assoc] | m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ (βn + 1) ^ βx * (z / βm ^ βx) = z / (βm / (βn + 1)) ^ βx | m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ z * ((βn + 1) ^ βx / βm ^ βx) = z * ((βm / (βn + 1)) ^ βx)β»ΒΉ | Please generate a tactic in lean4 to solve the state.
STATE:
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ (βn + 1) ^ βx * (z / βm ^ βx) = z / (βm / (βn + 1)) ^ βx
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | congr | m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ z * ((βn + 1) ^ βx / βm ^ βx) = z * ((βm / (βn + 1)) ^ βx)β»ΒΉ | case e_a
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ (βn + 1) ^ βx / βm ^ βx = ((βm / (βn + 1)) ^ βx)β»ΒΉ | Please generate a tactic in lean4 to solve the state.
STATE:
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ z * ((βn + 1) ^ βx / βm ^ βx) = z * ((βm / (βn + 1)) ^ βx)β»ΒΉ
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | simp_rw [div_eq_mul_inv] | case e_a
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ (βn + 1) ^ βx / βm ^ βx = ((βm / (βn + 1)) ^ βx)β»ΒΉ | case e_a
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ (βn + 1) ^ βx * (βm ^ βx)β»ΒΉ = ((βm * (βn + 1)β»ΒΉ) ^ βx)β»ΒΉ | Please generate a tactic in lean4 to solve the state.
STATE:
case e_a
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ (βn + 1) ^ βx / βm ^ βx = ((βm / (βn + 1)) ^ βx)β»ΒΉ
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | rw [show (n + 1 : β)β»ΒΉ = (n + 1 : β)β»ΒΉ by
simp only [ofReal_inv, ofReal_add, ofReal_natCast, ofReal_one],
show (n + 1 : β) = (n + 1 : β) by norm_cast, show (m : β) = (m : β) by norm_cast,
mul_cpow_ofReal_nonneg Hm Hn, mul_inv, mul_comm] | case e_a
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ (βn + 1) ^ βx * (βm ^ βx)β»ΒΉ = ((βm * (βn + 1)β»ΒΉ) ^ βx)β»ΒΉ | case e_a
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ (ββm ^ βx)β»ΒΉ * β(βn + 1) ^ βx = (ββm ^ βx)β»ΒΉ * (β(βn + 1)β»ΒΉ ^ βx)β»ΒΉ | Please generate a tactic in lean4 to solve the state.
STATE:
case e_a
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ (βn + 1) ^ βx * (βm ^ βx)β»ΒΉ = ((βm * (βn + 1)β»ΒΉ) ^ βx)β»ΒΉ
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | congr | case e_a
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ (ββm ^ βx)β»ΒΉ * β(βn + 1) ^ βx = (ββm ^ βx)β»ΒΉ * (β(βn + 1)β»ΒΉ ^ βx)β»ΒΉ | case e_a.e_a
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ β(βn + 1) ^ βx = (β(βn + 1)β»ΒΉ ^ βx)β»ΒΉ | Please generate a tactic in lean4 to solve the state.
STATE:
case e_a
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ (ββm ^ βx)β»ΒΉ * β(βn + 1) ^ βx = (ββm ^ βx)β»ΒΉ * (β(βn + 1)β»ΒΉ ^ βx)β»ΒΉ
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | rw [β cpow_neg, show (-x : β) = (-1 : β) * x by simp only [ofReal_neg, ofReal_one,
neg_mul, one_mul], cpow_mul_ofReal_nonneg Hn, Real.rpow_neg_one, inv_inv] | case e_a.e_a
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ β(βn + 1) ^ βx = (β(βn + 1)β»ΒΉ ^ βx)β»ΒΉ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case e_a.e_a
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ β(βn + 1) ^ βx = (β(βn + 1)β»ΒΉ ^ βx)β»ΒΉ
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | positivity | m n : β
z : β
x : β
Hm : 0 β€ βm
β’ 0 β€ (βn + 1)β»ΒΉ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
m n : β
z : β
x : β
Hm : 0 β€ βm
β’ 0 β€ (βn + 1)β»ΒΉ
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | simp only [ofReal_inv, ofReal_add, ofReal_natCast, ofReal_one] | m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ (βn + 1)β»ΒΉ = β(βn + 1)β»ΒΉ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ (βn + 1)β»ΒΉ = β(βn + 1)β»ΒΉ
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | norm_cast | m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ βn + 1 = β(βn + 1) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ βn + 1 = β(βn + 1)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | norm_cast | m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ βm = ββm | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ βm = ββm
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | simp only [ofReal_neg, ofReal_one,
neg_mul, one_mul] | m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ -βx = β(-1) * βx | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ -βx = β(-1) * βx
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.pow_mul_term_eq | [54, 1] | [58, 20] | simp only [term, add_eq_zero, one_ne_zero, and_false, βreduceIte, Nat.cast_add, Nat.cast_one,
mul_div_assoc', ne_eq, cpow_natCast_add_one_ne_zero n _, not_false_eq_true, div_eq_iff,
mul_comm (f _)] | f : β β β
s : β
n : β
β’ (βn + 1) ^ s * term f s (n + 1) = f (n + 1) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
s : β
n : β
β’ (βn + 1) ^ s * term f s (n + 1) = f (n + 1)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | obtain β¨y, hay, hytβ© := exists_between ha | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1))) | case intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : EReal
hay : abscissaOfAbsConv f < y
hyt : y < β€
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1))) | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1)))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | lift y to β using β¨hyt.ne, ((OrderBot.bot_le _).trans_lt hay).ne'β© | case intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : EReal
hay : abscissaOfAbsConv f < y
hyt : y < β€
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1))) | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1))) | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : EReal
hay : abscissaOfAbsConv f < y
hyt : y < β€
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1)))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | let F := fun (x : β) β¦ {m | n + 1 < m}.indicator (fun m β¦ f m / (m / (n + 1) : β) ^ (x : β)) | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1))) | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1))) | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1)))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | have hFβ (x : β) {m : β} (hm : m β€ n + 1) : F x m = 0 := by
simp only [Set.mem_setOf_eq, not_lt_of_le hm, not_false_eq_true, Set.indicator_of_not_mem, F] | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1))) | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1))) | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1)))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | have hs {x : β} (hx : x β₯ y) : Summable fun m β¦ (n + 1) ^ (x : β) * term f x m := by
refine (summable_mul_left_iff <| cpow_natCast_add_one_ne_zero n _).mpr <|
LSeriesSummable_of_abscissaOfAbsConv_lt_re ?_
simpa only [ofReal_re] using hay.trans_le <| EReal.coe_le_coe_iff.mpr hx | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1))) | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1))) | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1)))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | conv => enter [3, 1]; rw [β add_zero (f _)] | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1))) | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1) + 0)) | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1)))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | refine Tendsto.congr'
(eventuallyEq_of_mem (s := {x | y β€ x}) (mem_atTop y) key).symm <| tendsto_const_nhds.add ?_ | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1) + 0)) | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
β’ Tendsto (fun x => β' (m : β), F x m) atTop (nhds 0) | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1) + 0))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | rw [show (0 : β) = tsum (fun _ : β β¦ 0) from tsum_zero.symm] | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
β’ Tendsto (fun x => β' (m : β), F x m) atTop (nhds 0) | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
β’ Tendsto (fun x => β' (m : β), F x m) atTop (nhds (β' (x : β), 0)) | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
β’ Tendsto (fun x => β' (m : β), F x m) atTop (nhds 0)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | refine tendsto_tsum_of_dominated_convergence hys.norm hc <| eventually_iff.mpr ?_ | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
β’ Tendsto (fun x => β' (m : β), F x m) atTop (nhds (β' (x : β), 0)) | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
β’ {x | β (k : β), βF x kβ β€ βF y kβ} β atTop | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
β’ Tendsto (fun x => β' (m : β), F x m) atTop (nhds (β' (x : β), 0))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | filter_upwards [mem_atTop y] with y' hy' k | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
β’ {x | β (k : β), βF x kβ β€ βF y kβ} β atTop | case h
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
β’ βF y' kβ β€ βF y kβ | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
β’ {x | β (k : β), βF x kβ β€ βF y kβ} β atTop
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | rcases lt_or_le (n + 1) k with H | H | case h
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
β’ βF y' kβ β€ βF y kβ | case h.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
β’ βF y' kβ β€ βF y kβ
case h.inr
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : k β€ n + 1
β’ βF y' kβ β€ βF y kβ | Please generate a tactic in lean4 to solve the state.
STATE:
case h
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
β’ βF y' kβ β€ βF y kβ
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [Set.mem_setOf_eq, not_lt_of_le hm, not_false_eq_true, Set.indicator_of_not_mem, F] | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
x : β
m : β
hm : m β€ n + 1
β’ F x m = 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
x : β
m : β
hm : m β€ n + 1
β’ F x m = 0
TACTIC:
|
Subsets and Splits