url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
---|---|---|---|---|---|---|---|---|---|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | have Hf : LSeriesSummable f x := by
refine LSeriesSummable_of_abscissaOfAbsConv_lt_re <| (ofReal_re x).symm ▸ hyf₁.trans_le ?_
refine (le_max_left _ (yg : EReal)).trans <| (le_max_right (x₀ : EReal) _).trans ?_
simpa only [max_le_iff, EReal.coe_le_coe_iff] using hx | case intro.intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
⊢ LSeries (f - g) ↑x = 0 x | case intro.intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
Hf : LSeriesSummable f ↑x
⊢ LSeries (f - g) ↑x = 0 x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
⊢ LSeries (f - g) ↑x = 0 x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | have Hg : LSeriesSummable g x := by
refine LSeriesSummable_of_abscissaOfAbsConv_lt_re <| (ofReal_re x).symm ▸ hyg₁.trans_le ?_
refine (le_max_right (yf : EReal) _).trans <| (le_max_right (x₀ : EReal) _).trans ?_
simpa only [max_le_iff, EReal.coe_le_coe_iff] using hx | case intro.intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
Hf : LSeriesSummable f ↑x
⊢ LSeries (f - g) ↑x = 0 x | case intro.intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
Hf : LSeriesSummable f ↑x
Hg : LSeriesSummable g ↑x
⊢ LSeries (f - g) ↑x = 0 x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
Hf : LSeriesSummable f ↑x
⊢ LSeries (f - g) ↑x = 0 x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | rw [LSeries_sub Hf Hg, hx₀ x <| (le_max_left ..).trans hx, sub_self, Pi.zero_apply] | case intro.intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
Hf : LSeriesSummable f ↑x
Hg : LSeriesSummable g ↑x
⊢ LSeries (f - g) ↑x = 0 x | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
Hf : LSeriesSummable f ↑x
Hg : LSeriesSummable g ↑x
⊢ LSeries (f - g) ↑x = 0 x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | refine LSeriesSummable_of_abscissaOfAbsConv_lt_re <| (ofReal_re x).symm ▸ hyf₁.trans_le ?_ | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
⊢ LSeriesSummable f ↑x | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
⊢ ↑yf ≤ ↑x | Please generate a tactic in lean4 to solve the state.
STATE:
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
⊢ LSeriesSummable f ↑x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | refine (le_max_left _ (yg : EReal)).trans <| (le_max_right (x₀ : EReal) _).trans ?_ | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
⊢ ↑yf ≤ ↑x | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
⊢ max (↑x₀) (max ↑yf ↑yg) ≤ ↑x | Please generate a tactic in lean4 to solve the state.
STATE:
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
⊢ ↑yf ≤ ↑x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | simpa only [max_le_iff, EReal.coe_le_coe_iff] using hx | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
⊢ max (↑x₀) (max ↑yf ↑yg) ≤ ↑x | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
⊢ max (↑x₀) (max ↑yf ↑yg) ≤ ↑x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | refine LSeriesSummable_of_abscissaOfAbsConv_lt_re <| (ofReal_re x).symm ▸ hyg₁.trans_le ?_ | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
Hf : LSeriesSummable f ↑x
⊢ LSeriesSummable g ↑x | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
Hf : LSeriesSummable f ↑x
⊢ ↑yg ≤ ↑x | Please generate a tactic in lean4 to solve the state.
STATE:
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
Hf : LSeriesSummable f ↑x
⊢ LSeriesSummable g ↑x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | refine (le_max_right (yf : EReal) _).trans <| (le_max_right (x₀ : EReal) _).trans ?_ | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
Hf : LSeriesSummable f ↑x
⊢ ↑yg ≤ ↑x | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
Hf : LSeriesSummable f ↑x
⊢ max (↑x₀) (max ↑yf ↑yg) ≤ ↑x | Please generate a tactic in lean4 to solve the state.
STATE:
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
Hf : LSeriesSummable f ↑x
⊢ ↑yg ≤ ↑x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | simpa only [max_le_iff, EReal.coe_le_coe_iff] using hx | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
Hf : LSeriesSummable f ↑x
⊢ max (↑x₀) (max ↑yf ↑yg) ≤ ↑x | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
Hf : LSeriesSummable f ↑x
⊢ max (↑x₀) (max ↑yf ↑yg) ≤ ↑x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.eq_of_LSeries_eventually_eq | [234, 1] | [245, 74] | have hsub : (fun x : ℝ ↦ LSeries (f - g) x) =ᶠ[atTop] (0 : ℝ → ℂ) :=
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq hf hg h | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x
n : ℕ
hn : n ≠ 0
⊢ f n = g n | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x
n : ℕ
hn : n ≠ 0
hsub : (fun x => LSeries (f - g) ↑x) =ᶠ[atTop] 0
⊢ f n = g n | Please generate a tactic in lean4 to solve the state.
STATE:
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x
n : ℕ
hn : n ≠ 0
⊢ f n = g n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.eq_of_LSeries_eventually_eq | [234, 1] | [245, 74] | have ha : abscissaOfAbsConv (f - g) ≠ ⊤ :=
lt_top_iff_ne_top.mp <| (abscissaOfAbsConv_sub_le f g).trans_lt <| max_lt hf hg | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x
n : ℕ
hn : n ≠ 0
hsub : (fun x => LSeries (f - g) ↑x) =ᶠ[atTop] 0
⊢ f n = g n | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x
n : ℕ
hn : n ≠ 0
hsub : (fun x => LSeries (f - g) ↑x) =ᶠ[atTop] 0
ha : abscissaOfAbsConv (f - g) ≠ ⊤
⊢ f n = g n | Please generate a tactic in lean4 to solve the state.
STATE:
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x
n : ℕ
hn : n ≠ 0
hsub : (fun x => LSeries (f - g) ↑x) =ᶠ[atTop] 0
⊢ f n = g n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.eq_of_LSeries_eventually_eq | [234, 1] | [245, 74] | simpa only [Pi.sub_apply, sub_eq_zero]
using (LSeries_eventually_eq_zero_iff'.mp hsub).resolve_right ha n hn | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x
n : ℕ
hn : n ≠ 0
hsub : (fun x => LSeries (f - g) ↑x) =ᶠ[atTop] 0
ha : abscissaOfAbsConv (f - g) ≠ ⊤
⊢ f n = g n | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x
n : ℕ
hn : n ≠ 0
hsub : (fun x => LSeries (f - g) ↑x) =ᶠ[atTop] 0
ha : abscissaOfAbsConv (f - g) ≠ ⊤
⊢ f n = g n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_iff_of_abscissaOfAbsConv_lt_top | [247, 1] | [254, 58] | refine eq_of_LSeries_eventually_eq hf hg ?_ hn | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
H : LSeries f = LSeries g
n : ℕ
hn : n ≠ 0
⊢ f n = g n | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
H : LSeries f = LSeries g
n : ℕ
hn : n ≠ 0
⊢ (fun x => LSeries f ↑x) =ᶠ[Filter.atTop] fun x => LSeries g ↑x | Please generate a tactic in lean4 to solve the state.
STATE:
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
H : LSeries f = LSeries g
n : ℕ
hn : n ≠ 0
⊢ f n = g n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_iff_of_abscissaOfAbsConv_lt_top | [247, 1] | [254, 58] | exact Filter.eventually_of_forall fun x ↦ congr_fun H x | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
H : LSeries f = LSeries g
n : ℕ
hn : n ≠ 0
⊢ (fun x => LSeries f ↑x) =ᶠ[Filter.atTop] fun x => LSeries g ↑x | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
H : LSeries f = LSeries g
n : ℕ
hn : n ≠ 0
⊢ (fun x => LSeries f ↑x) =ᶠ[Filter.atTop] fun x => LSeries g ↑x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/DirichletLSeries.lean | LSeriesSummable.mul_bounded | [30, 1] | [39, 61] | refine Summable.of_norm <| (hs.const_smul c).norm.of_nonneg_of_le (fun _ ↦ norm_nonneg _) fun n ↦ ?_ | f g : ℕ → ℂ
c : ℝ
s : ℂ
hs : LSeriesSummable f s
hg : ∀ (n : ℕ), ‖g n‖ ≤ c
⊢ LSeriesSummable (f * g) s | f g : ℕ → ℂ
c : ℝ
s : ℂ
hs : LSeriesSummable f s
hg : ∀ (n : ℕ), ‖g n‖ ≤ c
n : ℕ
⊢ ‖LSeries.term (f * g) s n‖ ≤ ‖c • LSeries.term f s n‖ | Please generate a tactic in lean4 to solve the state.
STATE:
f g : ℕ → ℂ
c : ℝ
s : ℂ
hs : LSeriesSummable f s
hg : ∀ (n : ℕ), ‖g n‖ ≤ c
⊢ LSeriesSummable (f * g) s
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/DirichletLSeries.lean | LSeriesSummable.mul_bounded | [30, 1] | [39, 61] | rw [Complex.real_smul, ← LSeries.term_smul_apply, mul_comm] | f g : ℕ → ℂ
c : ℝ
s : ℂ
hs : LSeriesSummable f s
hg : ∀ (n : ℕ), ‖g n‖ ≤ c
n : ℕ
⊢ ‖LSeries.term (f * g) s n‖ ≤ ‖c • LSeries.term f s n‖ | f g : ℕ → ℂ
c : ℝ
s : ℂ
hs : LSeriesSummable f s
hg : ∀ (n : ℕ), ‖g n‖ ≤ c
n : ℕ
⊢ ‖LSeries.term (g * f) s n‖ ≤ ‖LSeries.term (↑c • f) s n‖ | Please generate a tactic in lean4 to solve the state.
STATE:
f g : ℕ → ℂ
c : ℝ
s : ℂ
hs : LSeriesSummable f s
hg : ∀ (n : ℕ), ‖g n‖ ≤ c
n : ℕ
⊢ ‖LSeries.term (f * g) s n‖ ≤ ‖c • LSeries.term f s n‖
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/DirichletLSeries.lean | LSeriesSummable.mul_bounded | [30, 1] | [39, 61] | refine LSeries.norm_term_le s ?_ | f g : ℕ → ℂ
c : ℝ
s : ℂ
hs : LSeriesSummable f s
hg : ∀ (n : ℕ), ‖g n‖ ≤ c
n : ℕ
⊢ ‖LSeries.term (g * f) s n‖ ≤ ‖LSeries.term (↑c • f) s n‖ | f g : ℕ → ℂ
c : ℝ
s : ℂ
hs : LSeriesSummable f s
hg : ∀ (n : ℕ), ‖g n‖ ≤ c
n : ℕ
⊢ ‖(g * f) n‖ ≤ ‖(↑c • f) n‖ | Please generate a tactic in lean4 to solve the state.
STATE:
f g : ℕ → ℂ
c : ℝ
s : ℂ
hs : LSeriesSummable f s
hg : ∀ (n : ℕ), ‖g n‖ ≤ c
n : ℕ
⊢ ‖LSeries.term (g * f) s n‖ ≤ ‖LSeries.term (↑c • f) s n‖
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/DirichletLSeries.lean | LSeriesSummable.mul_bounded | [30, 1] | [39, 61] | have hc : ‖(c : ℂ)‖ = c := by
simp only [Complex.norm_eq_abs, Complex.abs_ofReal, abs_eq_self, (norm_nonneg _).trans (hg 0)] | f g : ℕ → ℂ
c : ℝ
s : ℂ
hs : LSeriesSummable f s
hg : ∀ (n : ℕ), ‖g n‖ ≤ c
n : ℕ
⊢ ‖(g * f) n‖ ≤ ‖(↑c • f) n‖ | f g : ℕ → ℂ
c : ℝ
s : ℂ
hs : LSeriesSummable f s
hg : ∀ (n : ℕ), ‖g n‖ ≤ c
n : ℕ
hc : ‖↑c‖ = c
⊢ ‖(g * f) n‖ ≤ ‖(↑c • f) n‖ | Please generate a tactic in lean4 to solve the state.
STATE:
f g : ℕ → ℂ
c : ℝ
s : ℂ
hs : LSeriesSummable f s
hg : ∀ (n : ℕ), ‖g n‖ ≤ c
n : ℕ
⊢ ‖(g * f) n‖ ≤ ‖(↑c • f) n‖
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/DirichletLSeries.lean | LSeriesSummable.mul_bounded | [30, 1] | [39, 61] | simpa only [Pi.mul_apply, norm_mul, Pi.smul_apply, smul_eq_mul, hc]
using mul_le_mul_of_nonneg_right (hg n) <| norm_nonneg _ | f g : ℕ → ℂ
c : ℝ
s : ℂ
hs : LSeriesSummable f s
hg : ∀ (n : ℕ), ‖g n‖ ≤ c
n : ℕ
hc : ‖↑c‖ = c
⊢ ‖(g * f) n‖ ≤ ‖(↑c • f) n‖ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f g : ℕ → ℂ
c : ℝ
s : ℂ
hs : LSeriesSummable f s
hg : ∀ (n : ℕ), ‖g n‖ ≤ c
n : ℕ
hc : ‖↑c‖ = c
⊢ ‖(g * f) n‖ ≤ ‖(↑c • f) n‖
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/DirichletLSeries.lean | LSeriesSummable.mul_bounded | [30, 1] | [39, 61] | simp only [Complex.norm_eq_abs, Complex.abs_ofReal, abs_eq_self, (norm_nonneg _).trans (hg 0)] | f g : ℕ → ℂ
c : ℝ
s : ℂ
hs : LSeriesSummable f s
hg : ∀ (n : ℕ), ‖g n‖ ≤ c
n : ℕ
⊢ ‖↑c‖ = c | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f g : ℕ → ℂ
c : ℝ
s : ℂ
hs : LSeriesSummable f s
hg : ∀ (n : ℕ), ‖g n‖ ≤ c
n : ℕ
⊢ ‖↑c‖ = c
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/DirichletLSeries.lean | LSeriesSummable.mul_moebius | [42, 1] | [46, 36] | refine hf.mul_bounded (c := 1) fun n ↦ ?_ | f : ℕ → ℂ
s : ℂ
hf : LSeriesSummable f s
⊢ LSeriesSummable (f * fun n => ↑(μ n)) s | f : ℕ → ℂ
s : ℂ
hf : LSeriesSummable f s
n : ℕ
⊢ ‖↑(μ n)‖ ≤ 1 | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
s : ℂ
hf : LSeriesSummable f s
⊢ LSeriesSummable (f * fun n => ↑(μ n)) s
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/DirichletLSeries.lean | LSeriesSummable.mul_moebius | [42, 1] | [46, 36] | simp only [Complex.norm_int] | f : ℕ → ℂ
s : ℂ
hf : LSeriesSummable f s
n : ℕ
⊢ ‖↑(μ n)‖ ≤ 1 | f : ℕ → ℂ
s : ℂ
hf : LSeriesSummable f s
n : ℕ
⊢ |↑(μ n)| ≤ 1 | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
s : ℂ
hf : LSeriesSummable f s
n : ℕ
⊢ ‖↑(μ n)‖ ≤ 1
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/DirichletLSeries.lean | LSeriesSummable.mul_moebius | [42, 1] | [46, 36] | exact_mod_cast abs_moebius_le_one | f : ℕ → ℂ
s : ℂ
hf : LSeriesSummable f s
n : ℕ
⊢ |↑(μ n)| ≤ 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
s : ℂ
hf : LSeriesSummable f s
n : ℕ
⊢ |↑(μ n)| ≤ 1
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/DirichletLSeries.lean | LSeries.mul_convolution_distrib | [51, 1] | [59, 28] | ext n | R : Type u_1
inst✝ : CommSemiring R
φ : ℕ → R
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
f g : ℕ → R
⊢ φ * (f ⍟ g) = φ * f ⍟ (φ * g) | case h
R : Type u_1
inst✝ : CommSemiring R
φ : ℕ → R
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
f g : ℕ → R
n : ℕ
⊢ (φ * (f ⍟ g)) n = (φ * f ⍟ (φ * g)) n | Please generate a tactic in lean4 to solve the state.
STATE:
R : Type u_1
inst✝ : CommSemiring R
φ : ℕ → R
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
f g : ℕ → R
⊢ φ * (f ⍟ g) = φ * f ⍟ (φ * g)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/DirichletLSeries.lean | LSeries.mul_convolution_distrib | [51, 1] | [59, 28] | simp only [Pi.mul_apply, LSeries.convolution_def, Finset.mul_sum] | case h
R : Type u_1
inst✝ : CommSemiring R
φ : ℕ → R
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
f g : ℕ → R
n : ℕ
⊢ (φ * (f ⍟ g)) n = (φ * f ⍟ (φ * g)) n | case h
R : Type u_1
inst✝ : CommSemiring R
φ : ℕ → R
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
f g : ℕ → R
n : ℕ
⊢ ∑ i ∈ n.divisorsAntidiagonal, φ n * (f i.1 * g i.2) = ∑ x ∈ n.divisorsAntidiagonal, φ x.1 * f x.1 * (φ x.2 * g x.2) | Please generate a tactic in lean4 to solve the state.
STATE:
case h
R : Type u_1
inst✝ : CommSemiring R
φ : ℕ → R
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
f g : ℕ → R
n : ℕ
⊢ (φ * (f ⍟ g)) n = (φ * f ⍟ (φ * g)) n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/DirichletLSeries.lean | LSeries.mul_convolution_distrib | [51, 1] | [59, 28] | refine Finset.sum_congr rfl fun p hp ↦ ?_ | case h
R : Type u_1
inst✝ : CommSemiring R
φ : ℕ → R
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
f g : ℕ → R
n : ℕ
⊢ ∑ i ∈ n.divisorsAntidiagonal, φ n * (f i.1 * g i.2) = ∑ x ∈ n.divisorsAntidiagonal, φ x.1 * f x.1 * (φ x.2 * g x.2) | case h
R : Type u_1
inst✝ : CommSemiring R
φ : ℕ → R
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
f g : ℕ → R
n : ℕ
p : ℕ × ℕ
hp : p ∈ n.divisorsAntidiagonal
⊢ φ n * (f p.1 * g p.2) = φ p.1 * f p.1 * (φ p.2 * g p.2) | Please generate a tactic in lean4 to solve the state.
STATE:
case h
R : Type u_1
inst✝ : CommSemiring R
φ : ℕ → R
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
f g : ℕ → R
n : ℕ
⊢ ∑ i ∈ n.divisorsAntidiagonal, φ n * (f i.1 * g i.2) = ∑ x ∈ n.divisorsAntidiagonal, φ x.1 * f x.1 * (φ x.2 * g x.2)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/DirichletLSeries.lean | LSeries.mul_convolution_distrib | [51, 1] | [59, 28] | rw [(Nat.mem_divisorsAntidiagonal.mp hp).1.symm, hφ] | case h
R : Type u_1
inst✝ : CommSemiring R
φ : ℕ → R
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
f g : ℕ → R
n : ℕ
p : ℕ × ℕ
hp : p ∈ n.divisorsAntidiagonal
⊢ φ n * (f p.1 * g p.2) = φ p.1 * f p.1 * (φ p.2 * g p.2) | case h
R : Type u_1
inst✝ : CommSemiring R
φ : ℕ → R
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
f g : ℕ → R
n : ℕ
p : ℕ × ℕ
hp : p ∈ n.divisorsAntidiagonal
⊢ φ p.1 * φ p.2 * (f p.1 * g p.2) = φ p.1 * f p.1 * (φ p.2 * g p.2) | Please generate a tactic in lean4 to solve the state.
STATE:
case h
R : Type u_1
inst✝ : CommSemiring R
φ : ℕ → R
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
f g : ℕ → R
n : ℕ
p : ℕ × ℕ
hp : p ∈ n.divisorsAntidiagonal
⊢ φ n * (f p.1 * g p.2) = φ p.1 * f p.1 * (φ p.2 * g p.2)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/DirichletLSeries.lean | LSeries.mul_convolution_distrib | [51, 1] | [59, 28] | exact mul_mul_mul_comm .. | case h
R : Type u_1
inst✝ : CommSemiring R
φ : ℕ → R
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
f g : ℕ → R
n : ℕ
p : ℕ × ℕ
hp : p ∈ n.divisorsAntidiagonal
⊢ φ p.1 * φ p.2 * (f p.1 * g p.2) = φ p.1 * f p.1 * (φ p.2 * g p.2) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h
R : Type u_1
inst✝ : CommSemiring R
φ : ℕ → R
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
f g : ℕ → R
n : ℕ
p : ℕ × ℕ
hp : p ∈ n.divisorsAntidiagonal
⊢ φ p.1 * φ p.2 * (f p.1 * g p.2) = φ p.1 * f p.1 * (φ p.2 * g p.2)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/DirichletLSeries.lean | LSeries.convolution_mul_moebius | [62, 1] | [72, 68] | nth_rewrite 1 [← mul_one φ] | φ : ℕ → ℂ
h₁ : φ 1 = 1
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
this : (1 ⍟ fun x => ↑(μ x)) = δ
⊢ φ ⍟ (φ * fun n => ↑(μ n)) = δ | φ : ℕ → ℂ
h₁ : φ 1 = 1
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
this : (1 ⍟ fun x => ↑(μ x)) = δ
⊢ φ * 1 ⍟ (φ * fun n => ↑(μ n)) = δ | Please generate a tactic in lean4 to solve the state.
STATE:
φ : ℕ → ℂ
h₁ : φ 1 = 1
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
this : (1 ⍟ fun x => ↑(μ x)) = δ
⊢ φ ⍟ (φ * fun n => ↑(μ n)) = δ
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/DirichletLSeries.lean | LSeries.convolution_mul_moebius | [62, 1] | [72, 68] | simp only [← mul_convolution_distrib hφ 1 ↗μ, this, mul_delta h₁] | φ : ℕ → ℂ
h₁ : φ 1 = 1
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
this : (1 ⍟ fun x => ↑(μ x)) = δ
⊢ φ * 1 ⍟ (φ * fun n => ↑(μ n)) = δ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
φ : ℕ → ℂ
h₁ : φ 1 = 1
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
this : (1 ⍟ fun x => ↑(μ x)) = δ
⊢ φ * 1 ⍟ (φ * fun n => ↑(μ n)) = δ
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/DirichletLSeries.lean | LSeries.convolution_mul_moebius | [62, 1] | [72, 68] | rw [one_convolution_eq_zeta_convolution, ← one_eq_delta] | φ : ℕ → ℂ
h₁ : φ 1 = 1
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
⊢ (1 ⍟ fun x => ↑(μ x)) = δ | φ : ℕ → ℂ
h₁ : φ 1 = 1
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
⊢ ((fun x => ↑(ζ x)) ⍟ fun x => ↑(μ x)) = fun n => 1 n | Please generate a tactic in lean4 to solve the state.
STATE:
φ : ℕ → ℂ
h₁ : φ 1 = 1
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
⊢ (1 ⍟ fun x => ↑(μ x)) = δ
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/DirichletLSeries.lean | LSeries.convolution_mul_moebius | [62, 1] | [72, 68] | change ⇑(ζ : ArithmeticFunction ℂ) ⍟ ⇑(μ : ArithmeticFunction ℂ) = ⇑(1 : ArithmeticFunction ℂ) | φ : ℕ → ℂ
h₁ : φ 1 = 1
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
⊢ ((fun x => ↑(ζ x)) ⍟ fun x => ↑(μ x)) = fun n => 1 n | φ : ℕ → ℂ
h₁ : φ 1 = 1
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
⊢ ⇑↑ζ ⍟ ⇑↑μ = ⇑1 | Please generate a tactic in lean4 to solve the state.
STATE:
φ : ℕ → ℂ
h₁ : φ 1 = 1
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
⊢ ((fun x => ↑(ζ x)) ⍟ fun x => ↑(μ x)) = fun n => 1 n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/DirichletLSeries.lean | LSeries.convolution_mul_moebius | [62, 1] | [72, 68] | simp only [coe_mul, coe_zeta_mul_coe_moebius] | φ : ℕ → ℂ
h₁ : φ 1 = 1
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
⊢ ⇑↑ζ ⍟ ⇑↑μ = ⇑1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
φ : ℕ → ℂ
h₁ : φ 1 = 1
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
⊢ ⇑↑ζ ⍟ ⇑↑μ = ⇑1
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/DirichletLSeries.lean | LSeries.mul_mu_eq_one | [75, 1] | [80, 23] | rw [← LSeries_convolution' hs ?_, convolution_mul_moebius h₁ hφ, LSeries_delta, Pi.one_apply] | φ : ℕ → ℂ
h₁ : φ 1 = 1
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
s : ℂ
hs : LSeriesSummable φ s
⊢ L φ s * L (φ * fun n => ↑(μ n)) s = 1 | φ : ℕ → ℂ
h₁ : φ 1 = 1
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
s : ℂ
hs : LSeriesSummable φ s
⊢ LSeriesSummable (φ * fun n => ↑(μ n)) s | Please generate a tactic in lean4 to solve the state.
STATE:
φ : ℕ → ℂ
h₁ : φ 1 = 1
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
s : ℂ
hs : LSeriesSummable φ s
⊢ L φ s * L (φ * fun n => ↑(μ n)) s = 1
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/DirichletLSeries.lean | LSeries.mul_mu_eq_one | [75, 1] | [80, 23] | exact hs.mul_moebius | φ : ℕ → ℂ
h₁ : φ 1 = 1
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
s : ℂ
hs : LSeriesSummable φ s
⊢ LSeriesSummable (φ * fun n => ↑(μ n)) s | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
φ : ℕ → ℂ
h₁ : φ 1 = 1
hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n
s : ℂ
hs : LSeriesSummable φ s
⊢ LSeriesSummable (φ * fun n => ↑(μ n)) s
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/DirichletLSeries.lean | DirichletCharacter.toFun_on_nat_map_one | [92, 1] | [93, 32] | simp only [cast_one, map_one] | N : ℕ
χ : DirichletCharacter ℂ N
⊢ (fun n => χ ↑n) 1 = 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
N : ℕ
χ : DirichletCharacter ℂ N
⊢ (fun n => χ ↑n) 1 = 1
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/DirichletLSeries.lean | DirichletCharacter.toFun_on_nat_map_mul | [95, 1] | [97, 32] | simp only [cast_mul, map_mul] | N : ℕ
χ : DirichletCharacter ℂ N
m n : ℕ
⊢ (fun n => χ ↑n) (m * n) = (fun n => χ ↑n) m * (fun n => χ ↑n) n | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
N : ℕ
χ : DirichletCharacter ℂ N
m n : ℕ
⊢ (fun n => χ ↑n) (m * n) = (fun n => χ ↑n) m * (fun n => χ ↑n) n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | DirichletCharacter.LSeries_eulerProduct' | [42, 1] | [51, 61] | rw [LSeries] | N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
⊢ cexp (∑' (p : Primes), -(1 - χ ↑↑p * ↑↑p ^ (-s)).log) = L (fun n => χ ↑n) s | N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
⊢ cexp (∑' (p : Primes), -(1 - χ ↑↑p * ↑↑p ^ (-s)).log) = ∑' (n : ℕ), term (fun n => χ ↑n) s n | Please generate a tactic in lean4 to solve the state.
STATE:
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
⊢ cexp (∑' (p : Primes), -(1 - χ ↑↑p * ↑↑p ^ (-s)).log) = L (fun n => χ ↑n) s
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | DirichletCharacter.LSeries_eulerProduct' | [42, 1] | [51, 61] | convert exp_sum_primes_log_eq_tsum (f := dirichletSummandHom χ <| ne_zero_of_one_lt_re hs) <|
summable_dirichletSummand χ hs | N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
⊢ cexp (∑' (p : Primes), -(1 - χ ↑↑p * ↑↑p ^ (-s)).log) = ∑' (n : ℕ), term (fun n => χ ↑n) s n | case h.e'_3.h.e'_5.h.h.e
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
x✝ : ℕ
⊢ term (fun n => χ ↑n) s = ⇑(dirichletSummandHom χ ⋯) | Please generate a tactic in lean4 to solve the state.
STATE:
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
⊢ cexp (∑' (p : Primes), -(1 - χ ↑↑p * ↑↑p ^ (-s)).log) = ∑' (n : ℕ), term (fun n => χ ↑n) s n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | DirichletCharacter.LSeries_eulerProduct' | [42, 1] | [51, 61] | ext n | case h.e'_3.h.e'_5.h.h.e
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
x✝ : ℕ
⊢ term (fun n => χ ↑n) s = ⇑(dirichletSummandHom χ ⋯) | case h.e'_3.h.e'_5.h.h.e.h
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
x✝ n : ℕ
⊢ term (fun n => χ ↑n) s n = (dirichletSummandHom χ ⋯) n | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_3.h.e'_5.h.h.e
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
x✝ : ℕ
⊢ term (fun n => χ ↑n) s = ⇑(dirichletSummandHom χ ⋯)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | DirichletCharacter.LSeries_eulerProduct' | [42, 1] | [51, 61] | rcases eq_or_ne n 0 with rfl | hn | case h.e'_3.h.e'_5.h.h.e.h
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
x✝ n : ℕ
⊢ term (fun n => χ ↑n) s n = (dirichletSummandHom χ ⋯) n | case h.e'_3.h.e'_5.h.h.e.h.inl
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
x✝ : ℕ
⊢ term (fun n => χ ↑n) s 0 = (dirichletSummandHom χ ⋯) 0
case h.e'_3.h.e'_5.h.h.e.h.inr
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
x✝ n : ℕ
hn : n ≠ 0
⊢ term (fun n => χ ↑n) s n = (dirichletSummandHom χ ⋯) n | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_3.h.e'_5.h.h.e.h
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
x✝ n : ℕ
⊢ term (fun n => χ ↑n) s n = (dirichletSummandHom χ ⋯) n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | DirichletCharacter.LSeries_eulerProduct' | [42, 1] | [51, 61] | simp only [term_zero, map_zero] | case h.e'_3.h.e'_5.h.h.e.h.inl
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
x✝ : ℕ
⊢ term (fun n => χ ↑n) s 0 = (dirichletSummandHom χ ⋯) 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_3.h.e'_5.h.h.e.h.inl
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
x✝ : ℕ
⊢ term (fun n => χ ↑n) s 0 = (dirichletSummandHom χ ⋯) 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | DirichletCharacter.LSeries_eulerProduct' | [42, 1] | [51, 61] | simp [hn, dirichletSummandHom, div_eq_mul_inv, cpow_neg] | case h.e'_3.h.e'_5.h.h.e.h.inr
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
x✝ n : ℕ
hn : n ≠ 0
⊢ term (fun n => χ ↑n) s n = (dirichletSummandHom χ ⋯) n | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_3.h.e'_5.h.h.e.h.inr
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
x✝ n : ℕ
hn : n ≠ 0
⊢ term (fun n => χ ↑n) s n = (dirichletSummandHom χ ⋯) n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | ArithmeticFunction.LSeries_zeta_eulerProduct' | [56, 1] | [59, 62] | convert modOne_eq_one (R := ℂ) ▸ LSeries_eulerProduct' χ₁ hs using 7 | s : ℂ
hs : 1 < s.re
⊢ cexp (∑' (p : Primes), -(1 - ↑↑p ^ (-s)).log) = L 1 s | case h.e'_2.h.e'_1.h.e'_5.h.h.e'_3.h.e'_1.h.e'_6
s : ℂ
hs : 1 < s.re
x✝ : Primes
⊢ ↑↑x✝ ^ (-s) = 1 ↑↑x✝ * ↑↑x✝ ^ (-s) | Please generate a tactic in lean4 to solve the state.
STATE:
s : ℂ
hs : 1 < s.re
⊢ cexp (∑' (p : Primes), -(1 - ↑↑p ^ (-s)).log) = L 1 s
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | ArithmeticFunction.LSeries_zeta_eulerProduct' | [56, 1] | [59, 62] | rw [MulChar.one_apply <| isUnit_of_subsingleton _, one_mul] | case h.e'_2.h.e'_1.h.e'_5.h.h.e'_3.h.e'_1.h.e'_6
s : ℂ
hs : 1 < s.re
x✝ : Primes
⊢ ↑↑x✝ ^ (-s) = 1 ↑↑x✝ * ↑↑x✝ ^ (-s) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_2.h.e'_1.h.e'_5.h.h.e'_3.h.e'_1.h.e'_6
s : ℂ
hs : 1 < s.re
x✝ : Primes
⊢ ↑↑x✝ ^ (-s) = 1 ↑↑x✝ * ↑↑x✝ ^ (-s)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | summable_neg_log_one_sub_char_mul_prime_cpow | [69, 1] | [79, 41] | have (p : Nat.Primes) : ‖χ p * (p : ℂ) ^ (-s)‖ ≤ (p : ℝ) ^ (-s).re := by
rw [norm_mul, norm_natCast_cpow_of_re_ne_zero _ <| re_neg_ne_zero_of_one_lt_re hs]
calc ‖χ p‖ * (p : ℝ) ^ (-s).re
_ ≤ 1 * (p : ℝ) ^ (-s.re) := by gcongr; exact DirichletCharacter.norm_le_one χ _
_ = _ := one_mul _ | N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
⊢ Summable fun p => -(1 - χ ↑↑p * ↑↑p ^ (-s)).log | N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
this : ∀ (p : Nat.Primes), ‖χ ↑↑p * ↑↑p ^ (-s)‖ ≤ ↑↑p ^ (-s).re
⊢ Summable fun p => -(1 - χ ↑↑p * ↑↑p ^ (-s)).log | Please generate a tactic in lean4 to solve the state.
STATE:
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
⊢ Summable fun p => -(1 - χ ↑↑p * ↑↑p ^ (-s)).log
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | summable_neg_log_one_sub_char_mul_prime_cpow | [69, 1] | [79, 41] | refine (Nat.Primes.summable_rpow.mpr ?_).of_nonneg_of_le (fun _ ↦ norm_nonneg _) this
|>.of_norm.neg_clog_one_sub | N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
this : ∀ (p : Nat.Primes), ‖χ ↑↑p * ↑↑p ^ (-s)‖ ≤ ↑↑p ^ (-s).re
⊢ Summable fun p => -(1 - χ ↑↑p * ↑↑p ^ (-s)).log | N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
this : ∀ (p : Nat.Primes), ‖χ ↑↑p * ↑↑p ^ (-s)‖ ≤ ↑↑p ^ (-s).re
⊢ (-s).re < -1 | Please generate a tactic in lean4 to solve the state.
STATE:
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
this : ∀ (p : Nat.Primes), ‖χ ↑↑p * ↑↑p ^ (-s)‖ ≤ ↑↑p ^ (-s).re
⊢ Summable fun p => -(1 - χ ↑↑p * ↑↑p ^ (-s)).log
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | summable_neg_log_one_sub_char_mul_prime_cpow | [69, 1] | [79, 41] | simp only [neg_re, neg_lt_neg_iff, hs] | N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
this : ∀ (p : Nat.Primes), ‖χ ↑↑p * ↑↑p ^ (-s)‖ ≤ ↑↑p ^ (-s).re
⊢ (-s).re < -1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
this : ∀ (p : Nat.Primes), ‖χ ↑↑p * ↑↑p ^ (-s)‖ ≤ ↑↑p ^ (-s).re
⊢ (-s).re < -1
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | summable_neg_log_one_sub_char_mul_prime_cpow | [69, 1] | [79, 41] | rw [norm_mul, norm_natCast_cpow_of_re_ne_zero _ <| re_neg_ne_zero_of_one_lt_re hs] | N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
p : Nat.Primes
⊢ ‖χ ↑↑p * ↑↑p ^ (-s)‖ ≤ ↑↑p ^ (-s).re | N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
p : Nat.Primes
⊢ ‖χ ↑↑p‖ * ↑↑p ^ (-s).re ≤ ↑↑p ^ (-s).re | Please generate a tactic in lean4 to solve the state.
STATE:
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
p : Nat.Primes
⊢ ‖χ ↑↑p * ↑↑p ^ (-s)‖ ≤ ↑↑p ^ (-s).re
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | summable_neg_log_one_sub_char_mul_prime_cpow | [69, 1] | [79, 41] | calc ‖χ p‖ * (p : ℝ) ^ (-s).re
_ ≤ 1 * (p : ℝ) ^ (-s.re) := by gcongr; exact DirichletCharacter.norm_le_one χ _
_ = _ := one_mul _ | N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
p : Nat.Primes
⊢ ‖χ ↑↑p‖ * ↑↑p ^ (-s).re ≤ ↑↑p ^ (-s).re | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
p : Nat.Primes
⊢ ‖χ ↑↑p‖ * ↑↑p ^ (-s).re ≤ ↑↑p ^ (-s).re
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | summable_neg_log_one_sub_char_mul_prime_cpow | [69, 1] | [79, 41] | gcongr | N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
p : Nat.Primes
⊢ ‖χ ↑↑p‖ * ↑↑p ^ (-s).re ≤ 1 * ↑↑p ^ (-s.re) | case h
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
p : Nat.Primes
⊢ ‖χ ↑↑p‖ ≤ 1 | Please generate a tactic in lean4 to solve the state.
STATE:
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
p : Nat.Primes
⊢ ‖χ ↑↑p‖ * ↑↑p ^ (-s).re ≤ 1 * ↑↑p ^ (-s.re)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | summable_neg_log_one_sub_char_mul_prime_cpow | [69, 1] | [79, 41] | exact DirichletCharacter.norm_le_one χ _ | case h
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
p : Nat.Primes
⊢ ‖χ ↑↑p‖ ≤ 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h
N : ℕ
χ : DirichletCharacter ℂ N
s : ℂ
hs : 1 < s.re
p : Nat.Primes
⊢ ‖χ ↑↑p‖ ≤ 1
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg' | [81, 1] | [104, 22] | have hac₀ : ‖(a : ℂ)‖ < 1 := by
simp only [norm_eq_abs, abs_ofReal, _root_.abs_of_nonneg ha₀, ha₁] | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re | Please generate a tactic in lean4 to solve the state.
STATE:
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg' | [81, 1] | [104, 22] | have hac₁ : ‖a * z‖ < 1 := by rwa [norm_mul, hz, mul_one] | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re | Please generate a tactic in lean4 to solve the state.
STATE:
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg' | [81, 1] | [104, 22] | have hac₂ : ‖a * z ^ 2‖ < 1 := by rwa [norm_mul, norm_pow, hz, one_pow, mul_one] | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re | Please generate a tactic in lean4 to solve the state.
STATE:
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg' | [81, 1] | [104, 22] | have H₀ := (hasSum_re <| hasSum_taylorSeries_neg_log hac₀).mul_left 3 | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re)
⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re | Please generate a tactic in lean4 to solve the state.
STATE:
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg' | [81, 1] | [104, 22] | have H₁ := (hasSum_re <| hasSum_taylorSeries_neg_log hac₁).mul_left 4 | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re)
⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re)
H₁ : HasSum (fun i => 4 * ((↑a * z) ^ i / ↑i).re) (4 * (-(1 - ↑a * z).log).re)
⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re | Please generate a tactic in lean4 to solve the state.
STATE:
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re)
⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg' | [81, 1] | [104, 22] | have H₂ := hasSum_re <| hasSum_taylorSeries_neg_log hac₂ | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re)
H₁ : HasSum (fun i => 4 * ((↑a * z) ^ i / ↑i).re) (4 * (-(1 - ↑a * z).log).re)
⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re)
H₁ : HasSum (fun i => 4 * ((↑a * z) ^ i / ↑i).re) (4 * (-(1 - ↑a * z).log).re)
H₂ : HasSum (fun x => ((↑a * z ^ 2) ^ x / ↑x).re) (-(1 - ↑a * z ^ 2).log).re
⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re | Please generate a tactic in lean4 to solve the state.
STATE:
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re)
H₁ : HasSum (fun i => 4 * ((↑a * z) ^ i / ↑i).re) (4 * (-(1 - ↑a * z).log).re)
⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg' | [81, 1] | [104, 22] | rw [← ((H₀.add H₁).add H₂).tsum_eq] | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re)
H₁ : HasSum (fun i => 4 * ((↑a * z) ^ i / ↑i).re) (4 * (-(1 - ↑a * z).log).re)
H₂ : HasSum (fun x => ((↑a * z ^ 2) ^ x / ↑x).re) (-(1 - ↑a * z ^ 2).log).re
⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re)
H₁ : HasSum (fun i => 4 * ((↑a * z) ^ i / ↑i).re) (4 * (-(1 - ↑a * z).log).re)
H₂ : HasSum (fun x => ((↑a * z ^ 2) ^ x / ↑x).re) (-(1 - ↑a * z ^ 2).log).re
⊢ 0 ≤ ∑' (b : ℕ), (3 * (↑a ^ b / ↑b).re + 4 * ((↑a * z) ^ b / ↑b).re + ((↑a * z ^ 2) ^ b / ↑b).re) | Please generate a tactic in lean4 to solve the state.
STATE:
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re)
H₁ : HasSum (fun i => 4 * ((↑a * z) ^ i / ↑i).re) (4 * (-(1 - ↑a * z).log).re)
H₂ : HasSum (fun x => ((↑a * z ^ 2) ^ x / ↑x).re) (-(1 - ↑a * z ^ 2).log).re
⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg' | [81, 1] | [104, 22] | clear H₀ H₁ H₂ | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re)
H₁ : HasSum (fun i => 4 * ((↑a * z) ^ i / ↑i).re) (4 * (-(1 - ↑a * z).log).re)
H₂ : HasSum (fun x => ((↑a * z ^ 2) ^ x / ↑x).re) (-(1 - ↑a * z ^ 2).log).re
⊢ 0 ≤ ∑' (b : ℕ), (3 * (↑a ^ b / ↑b).re + 4 * ((↑a * z) ^ b / ↑b).re + ((↑a * z ^ 2) ^ b / ↑b).re) | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
⊢ 0 ≤ ∑' (b : ℕ), (3 * (↑a ^ b / ↑b).re + 4 * ((↑a * z) ^ b / ↑b).re + ((↑a * z ^ 2) ^ b / ↑b).re) | Please generate a tactic in lean4 to solve the state.
STATE:
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re)
H₁ : HasSum (fun i => 4 * ((↑a * z) ^ i / ↑i).re) (4 * (-(1 - ↑a * z).log).re)
H₂ : HasSum (fun x => ((↑a * z ^ 2) ^ x / ↑x).re) (-(1 - ↑a * z ^ 2).log).re
⊢ 0 ≤ ∑' (b : ℕ), (3 * (↑a ^ b / ↑b).re + 4 * ((↑a * z) ^ b / ↑b).re + ((↑a * z ^ 2) ^ b / ↑b).re)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg' | [81, 1] | [104, 22] | refine tsum_nonneg fun n ↦ ?_ | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
⊢ 0 ≤ ∑' (b : ℕ), (3 * (↑a ^ b / ↑b).re + 4 * ((↑a * z) ^ b / ↑b).re + ((↑a * z ^ 2) ^ b / ↑b).re) | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
n : ℕ
⊢ 0 ≤ 3 * (↑a ^ n / ↑n).re + 4 * ((↑a * z) ^ n / ↑n).re + ((↑a * z ^ 2) ^ n / ↑n).re | Please generate a tactic in lean4 to solve the state.
STATE:
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
⊢ 0 ≤ ∑' (b : ℕ), (3 * (↑a ^ b / ↑b).re + 4 * ((↑a * z) ^ b / ↑b).re + ((↑a * z ^ 2) ^ b / ↑b).re)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg' | [81, 1] | [104, 22] | simp only [mul_pow, ← ofReal_pow, div_natCast_re, ofReal_re, mul_re, ofReal_im, zero_mul,
sub_zero] | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
n : ℕ
⊢ 0 ≤ 3 * (↑a ^ n / ↑n).re + 4 * ((↑a * z) ^ n / ↑n).re + ((↑a * z ^ 2) ^ n / ↑n).re | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
n : ℕ
⊢ 0 ≤ 3 * (a ^ n / ↑n) + 4 * (a ^ n * (z ^ n).re / ↑n) + a ^ n * ((z ^ 2) ^ n).re / ↑n | Please generate a tactic in lean4 to solve the state.
STATE:
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
n : ℕ
⊢ 0 ≤ 3 * (↑a ^ n / ↑n).re + 4 * ((↑a * z) ^ n / ↑n).re + ((↑a * z ^ 2) ^ n / ↑n).re
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg' | [81, 1] | [104, 22] | rcases n.eq_zero_or_pos with rfl | hn | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
n : ℕ
⊢ 0 ≤ 3 * (a ^ n / ↑n) + 4 * (a ^ n * (z ^ n).re / ↑n) + a ^ n * ((z ^ 2) ^ n).re / ↑n | case inl
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
⊢ 0 ≤ 3 * (a ^ 0 / ↑0) + 4 * (a ^ 0 * (z ^ 0).re / ↑0) + a ^ 0 * ((z ^ 2) ^ 0).re / ↑0
case inr
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
n : ℕ
hn : n > 0
⊢ 0 ≤ 3 * (a ^ n / ↑n) + 4 * (a ^ n * (z ^ n).re / ↑n) + a ^ n * ((z ^ 2) ^ n).re / ↑n | Please generate a tactic in lean4 to solve the state.
STATE:
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
n : ℕ
⊢ 0 ≤ 3 * (a ^ n / ↑n) + 4 * (a ^ n * (z ^ n).re / ↑n) + a ^ n * ((z ^ 2) ^ n).re / ↑n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg' | [81, 1] | [104, 22] | field_simp | case inr
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
n : ℕ
hn : n > 0
⊢ 0 ≤ 3 * (a ^ n / ↑n) + 4 * (a ^ n * (z ^ n).re / ↑n) + a ^ n * ((z ^ 2) ^ n).re / ↑n | case inr
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
n : ℕ
hn : n > 0
⊢ 0 ≤ (3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ 2) ^ n).re) / ↑n | Please generate a tactic in lean4 to solve the state.
STATE:
case inr
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
n : ℕ
hn : n > 0
⊢ 0 ≤ 3 * (a ^ n / ↑n) + 4 * (a ^ n * (z ^ n).re / ↑n) + a ^ n * ((z ^ 2) ^ n).re / ↑n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg' | [81, 1] | [104, 22] | refine div_nonneg ?_ n.cast_nonneg | case inr
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
n : ℕ
hn : n > 0
⊢ 0 ≤ (3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ 2) ^ n).re) / ↑n | case inr
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
n : ℕ
hn : n > 0
⊢ 0 ≤ 3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ 2) ^ n).re | Please generate a tactic in lean4 to solve the state.
STATE:
case inr
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
n : ℕ
hn : n > 0
⊢ 0 ≤ (3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ 2) ^ n).re) / ↑n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg' | [81, 1] | [104, 22] | rw [← pow_mul, pow_mul', sq, mul_re, ← sq, ← sq, ← sq_abs_sub_sq_re, ← norm_eq_abs, norm_pow, hz] | case inr
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
n : ℕ
hn : n > 0
⊢ 0 ≤ 3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ 2) ^ n).re | case inr
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
n : ℕ
hn : n > 0
⊢ 0 ≤ 3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ n).re ^ 2 - ((1 ^ n) ^ 2 - (z ^ n).re ^ 2)) | Please generate a tactic in lean4 to solve the state.
STATE:
case inr
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
n : ℕ
hn : n > 0
⊢ 0 ≤ 3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ 2) ^ n).re
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg' | [81, 1] | [104, 22] | calc
0 ≤ 2 * a ^ n * ((z ^ n).re + 1) ^ 2 := by positivity
_ = _ := by ring | case inr
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
n : ℕ
hn : n > 0
⊢ 0 ≤ 3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ n).re ^ 2 - ((1 ^ n) ^ 2 - (z ^ n).re ^ 2)) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case inr
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
n : ℕ
hn : n > 0
⊢ 0 ≤ 3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ n).re ^ 2 - ((1 ^ n) ^ 2 - (z ^ n).re ^ 2))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg' | [81, 1] | [104, 22] | simp only [norm_eq_abs, abs_ofReal, _root_.abs_of_nonneg ha₀, ha₁] | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
⊢ ‖↑a‖ < 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
⊢ ‖↑a‖ < 1
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg' | [81, 1] | [104, 22] | rwa [norm_mul, hz, mul_one] | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
⊢ ‖↑a * z‖ < 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
⊢ ‖↑a * z‖ < 1
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg' | [81, 1] | [104, 22] | rwa [norm_mul, norm_pow, hz, one_pow, mul_one] | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
⊢ ‖↑a * z ^ 2‖ < 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
⊢ ‖↑a * z ^ 2‖ < 1
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg' | [81, 1] | [104, 22] | simp | case inl
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
⊢ 0 ≤ 3 * (a ^ 0 / ↑0) + 4 * (a ^ 0 * (z ^ 0).re / ↑0) + a ^ 0 * ((z ^ 2) ^ 0).re / ↑0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case inl
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
⊢ 0 ≤ 3 * (a ^ 0 / ↑0) + 4 * (a ^ 0 * (z ^ 0).re / ↑0) + a ^ 0 * ((z ^ 2) ^ 0).re / ↑0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg' | [81, 1] | [104, 22] | positivity | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
n : ℕ
hn : n > 0
⊢ 0 ≤ 2 * a ^ n * ((z ^ n).re + 1) ^ 2 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
n : ℕ
hn : n > 0
⊢ 0 ≤ 2 * a ^ n * ((z ^ n).re + 1) ^ 2
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg' | [81, 1] | [104, 22] | ring | a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
n : ℕ
hn : n > 0
⊢ 2 * a ^ n * ((z ^ n).re + 1) ^ 2 =
3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ n).re ^ 2 - ((1 ^ n) ^ 2 - (z ^ n).re ^ 2)) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
a : ℝ
ha₀ : 0 ≤ a
ha₁ : a < 1
z : ℂ
hz : ‖z‖ = 1
hac₀ : ‖↑a‖ < 1
hac₁ : ‖↑a * z‖ < 1
hac₂ : ‖↑a * z ^ 2‖ < 1
n : ℕ
hn : n > 0
⊢ 2 * a ^ n * ((z ^ n).re + 1) ^ 2 =
3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ n).re ^ 2 - ((1 ^ n) ^ 2 - (z ^ n).re ^ 2))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg_dirichlet | [106, 1] | [135, 37] | by_cases hn' : IsUnit (n : ZMod N) | N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
⊢ 0 ≤
3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re +
(-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re | case pos
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
⊢ 0 ≤
3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re +
(-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re
case neg
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : ¬IsUnit ↑n
⊢ 0 ≤
3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re +
(-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re | Please generate a tactic in lean4 to solve the state.
STATE:
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
⊢ 0 ≤
3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re +
(-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg_dirichlet | [106, 1] | [135, 37] | have ha₀ : 0 ≤ (n : ℝ) ^ (-x) := Real.rpow_nonneg n.cast_nonneg _ | case pos
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
⊢ 0 ≤
3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re +
(-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re | case pos
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
⊢ 0 ≤
3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re +
(-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
⊢ 0 ≤
3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re +
(-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg_dirichlet | [106, 1] | [135, 37] | have ha₁ : (n : ℝ) ^ (-x) < 1 := by
simpa only [Real.rpow_lt_one_iff n.cast_nonneg, Nat.cast_eq_zero, Nat.one_lt_cast,
Left.neg_neg_iff, Nat.cast_lt_one, Left.neg_pos_iff]
using Or.inr <| Or.inl ⟨hn, zero_lt_one.trans hx⟩ | case pos
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
⊢ 0 ≤
3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re +
(-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re | case pos
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
⊢ 0 ≤
3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re +
(-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
⊢ 0 ≤
3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re +
(-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg_dirichlet | [106, 1] | [135, 37] | have hz : ‖χ n * (n : ℂ) ^ (-(I * y))‖ = 1 := by
rw [norm_mul, ← hn'.unit_spec, DirichletCharacter.unit_norm_eq_one χ hn'.unit, one_mul,
norm_eq_abs, abs_cpow_of_imp fun h ↦ False.elim <| by linarith [Nat.cast_eq_zero.mp h, hn]]
simp | case pos
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
⊢ 0 ≤
3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re +
(-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re | case pos
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ 0 ≤
3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re +
(-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
⊢ 0 ≤
3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re +
(-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg_dirichlet | [106, 1] | [135, 37] | rw [MulChar.one_apply hn', one_mul] | case pos
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ 0 ≤
3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re +
(-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re | case pos
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ 0 ≤
3 * (-(1 - ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re +
(-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ 0 ≤
3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re +
(-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg_dirichlet | [106, 1] | [135, 37] | convert re_log_comb_nonneg' ha₀ ha₁ hz using 6 | case pos
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ 0 ≤
3 * (-(1 - ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re +
(-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re | case h.e'_4.h.e'_5.h.e'_5.h.e'_6.h.e'_1.h.e'_3
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ (1 - ↑n ^ (-↑x)).log = (1 - ↑(↑n ^ (-x))).log
case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ (1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log = (1 - ↑(↑n ^ (-x)) * (χ ↑n * ↑n ^ (-(I * ↑y)))).log
case h.e'_4.h.e'_6.h.e'_1.h.e'_3.h.e'_1.h.e'_6
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y)) = ↑(↑n ^ (-x)) * (χ ↑n * ↑n ^ (-(I * ↑y))) ^ 2 | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ 0 ≤
3 * (-(1 - ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re +
(-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg_dirichlet | [106, 1] | [135, 37] | simpa only [Real.rpow_lt_one_iff n.cast_nonneg, Nat.cast_eq_zero, Nat.one_lt_cast,
Left.neg_neg_iff, Nat.cast_lt_one, Left.neg_pos_iff]
using Or.inr <| Or.inl ⟨hn, zero_lt_one.trans hx⟩ | N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
⊢ ↑n ^ (-x) < 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
⊢ ↑n ^ (-x) < 1
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg_dirichlet | [106, 1] | [135, 37] | rw [norm_mul, ← hn'.unit_spec, DirichletCharacter.unit_norm_eq_one χ hn'.unit, one_mul,
norm_eq_abs, abs_cpow_of_imp fun h ↦ False.elim <| by linarith [Nat.cast_eq_zero.mp h, hn]] | N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
⊢ ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 | N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
⊢ Complex.abs ↑n ^ (-(I * ↑y)).re / ((↑n).arg * (-(I * ↑y)).im).exp = 1 | Please generate a tactic in lean4 to solve the state.
STATE:
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
⊢ ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg_dirichlet | [106, 1] | [135, 37] | simp | N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
⊢ Complex.abs ↑n ^ (-(I * ↑y)).re / ((↑n).arg * (-(I * ↑y)).im).exp = 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
⊢ Complex.abs ↑n ^ (-(I * ↑y)).re / ((↑n).arg * (-(I * ↑y)).im).exp = 1
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg_dirichlet | [106, 1] | [135, 37] | linarith [Nat.cast_eq_zero.mp h, hn] | N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
h : ↑n = 0
⊢ False | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
h : ↑n = 0
⊢ False
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg_dirichlet | [106, 1] | [135, 37] | congr 2 | case h.e'_4.h.e'_5.h.e'_5.h.e'_6.h.e'_1.h.e'_3
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ (1 - ↑n ^ (-↑x)).log = (1 - ↑(↑n ^ (-x))).log | case h.e'_4.h.e'_5.h.e'_5.h.e'_6.h.e'_1.h.e'_3.e_x.e_a
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ ↑n ^ (-↑x) = ↑(↑n ^ (-x)) | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_4.h.e'_5.h.e'_5.h.e'_6.h.e'_1.h.e'_3
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ (1 - ↑n ^ (-↑x)).log = (1 - ↑(↑n ^ (-x))).log
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg_dirichlet | [106, 1] | [135, 37] | exact_mod_cast (ofReal_cpow n.cast_nonneg (-x)).symm | case h.e'_4.h.e'_5.h.e'_5.h.e'_6.h.e'_1.h.e'_3.e_x.e_a
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ ↑n ^ (-↑x) = ↑(↑n ^ (-x)) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_4.h.e'_5.h.e'_5.h.e'_6.h.e'_1.h.e'_3.e_x.e_a
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ ↑n ^ (-↑x) = ↑(↑n ^ (-x))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg_dirichlet | [106, 1] | [135, 37] | congr 2 | case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ (1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log = (1 - ↑(↑n ^ (-x)) * (χ ↑n * ↑n ^ (-(I * ↑y)))).log | case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3.e_x.e_a
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ χ ↑n * ↑n ^ (-(↑x + I * ↑y)) = ↑(↑n ^ (-x)) * (χ ↑n * ↑n ^ (-(I * ↑y))) | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ (1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log = (1 - ↑(↑n ^ (-x)) * (χ ↑n * ↑n ^ (-(I * ↑y)))).log
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg_dirichlet | [106, 1] | [135, 37] | rw [neg_add, cpow_add _ _ <| by norm_cast; linarith, ← ofReal_neg,
ofReal_cpow n.cast_nonneg (-x), ofReal_natCast] | case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3.e_x.e_a
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ χ ↑n * ↑n ^ (-(↑x + I * ↑y)) = ↑(↑n ^ (-x)) * (χ ↑n * ↑n ^ (-(I * ↑y))) | case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3.e_x.e_a
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ χ ↑n * (↑n ^ ↑(-x) * ↑n ^ (-(I * ↑y))) = ↑n ^ ↑(-x) * (χ ↑n * ↑n ^ (-(I * ↑y))) | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3.e_x.e_a
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ χ ↑n * ↑n ^ (-(↑x + I * ↑y)) = ↑(↑n ^ (-x)) * (χ ↑n * ↑n ^ (-(I * ↑y)))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg_dirichlet | [106, 1] | [135, 37] | ring | case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3.e_x.e_a
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ χ ↑n * (↑n ^ ↑(-x) * ↑n ^ (-(I * ↑y))) = ↑n ^ ↑(-x) * (χ ↑n * ↑n ^ (-(I * ↑y))) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3.e_x.e_a
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ χ ↑n * (↑n ^ ↑(-x) * ↑n ^ (-(I * ↑y))) = ↑n ^ ↑(-x) * (χ ↑n * ↑n ^ (-(I * ↑y)))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg_dirichlet | [106, 1] | [135, 37] | norm_cast | N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ ↑n ≠ 0 | N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ ¬n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ ↑n ≠ 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg_dirichlet | [106, 1] | [135, 37] | linarith | N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ ¬n = 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ ¬n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg_dirichlet | [106, 1] | [135, 37] | rw [neg_add, cpow_add _ _ <| by norm_cast; linarith, ← ofReal_neg,
ofReal_cpow n.cast_nonneg (-x), ofReal_natCast,
show -(2 * I * y) = (2 : ℕ) * (-I * y) by ring, cpow_nat_mul] | case h.e'_4.h.e'_6.h.e'_1.h.e'_3.h.e'_1.h.e'_6
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y)) = ↑(↑n ^ (-x)) * (χ ↑n * ↑n ^ (-(I * ↑y))) ^ 2 | case h.e'_4.h.e'_6.h.e'_1.h.e'_3.h.e'_1.h.e'_6
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ χ ↑n ^ 2 * (↑n ^ ↑(-x) * (↑n ^ (-I * ↑y)) ^ 2) = ↑n ^ ↑(-x) * (χ ↑n * ↑n ^ (-(I * ↑y))) ^ 2 | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_4.h.e'_6.h.e'_1.h.e'_3.h.e'_1.h.e'_6
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y)) = ↑(↑n ^ (-x)) * (χ ↑n * ↑n ^ (-(I * ↑y))) ^ 2
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg_dirichlet | [106, 1] | [135, 37] | ring_nf | case h.e'_4.h.e'_6.h.e'_1.h.e'_3.h.e'_1.h.e'_6
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ χ ↑n ^ 2 * (↑n ^ ↑(-x) * (↑n ^ (-I * ↑y)) ^ 2) = ↑n ^ ↑(-x) * (χ ↑n * ↑n ^ (-(I * ↑y))) ^ 2 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_4.h.e'_6.h.e'_1.h.e'_3.h.e'_1.h.e'_6
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ χ ↑n ^ 2 * (↑n ^ ↑(-x) * (↑n ^ (-I * ↑y)) ^ 2) = ↑n ^ ↑(-x) * (χ ↑n * ↑n ^ (-(I * ↑y))) ^ 2
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg_dirichlet | [106, 1] | [135, 37] | ring | N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ -(2 * I * ↑y) = ↑2 * (-I * ↑y) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : IsUnit ↑n
ha₀ : 0 ≤ ↑n ^ (-x)
ha₁ : ↑n ^ (-x) < 1
hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
⊢ -(2 * I * ↑y) = ↑2 * (-I * ↑y)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | re_log_comb_nonneg_dirichlet | [106, 1] | [135, 37] | simp [MulChar.map_nonunit _ hn'] | case neg
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : ¬IsUnit ↑n
⊢ 0 ≤
3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re +
(-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
N : ℕ
χ : DirichletCharacter ℂ N
n : ℕ
hn : 2 ≤ n
x y : ℝ
hx : 1 < x
hn' : ¬IsUnit ↑n
⊢ 0 ≤
3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re +
(-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | one_lt_re_of_pos | [138, 1] | [141, 92] | simp only [add_re, one_re, ofReal_re, lt_add_iff_pos_right, hx, mul_re, I_re, zero_mul, I_im,
ofReal_im, mul_zero, sub_self, add_zero, re_ofNat, im_ofNat, mul_one, mul_im, and_self] | x y : ℝ
hx : 0 < x
⊢ 1 < (1 + ↑x).re ∧ 1 < (1 + ↑x + I * ↑y).re ∧ 1 < (1 + ↑x + 2 * I * ↑y).re | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
x y : ℝ
hx : 0 < x
⊢ 1 < (1 + ↑x).re ∧ 1 < (1 + ↑x + I * ↑y).re ∧ 1 < (1 + ↑x + 2 * I * ↑y).re
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | norm_dirichlet_product_ge_one | [147, 1] | [174, 33] | let χ₀ := (1 : DirichletCharacter ℂ N) | N : ℕ
χ : DirichletCharacter ℂ N
x : ℝ
hx : 0 < x
y : ℝ
⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 *
L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥
1 | N : ℕ
χ : DirichletCharacter ℂ N
x : ℝ
hx : 0 < x
y : ℝ
χ₀ : DirichletCharacter ℂ N := 1
⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 *
L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥
1 | Please generate a tactic in lean4 to solve the state.
STATE:
N : ℕ
χ : DirichletCharacter ℂ N
x : ℝ
hx : 0 < x
y : ℝ
⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 *
L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥
1
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | norm_dirichlet_product_ge_one | [147, 1] | [174, 33] | have ⟨h₀, h₁, h₂⟩ := one_lt_re_of_pos y hx | N : ℕ
χ : DirichletCharacter ℂ N
x : ℝ
hx : 0 < x
y : ℝ
χ₀ : DirichletCharacter ℂ N := 1
⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 *
L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥
1 | N : ℕ
χ : DirichletCharacter ℂ N
x : ℝ
hx : 0 < x
y : ℝ
χ₀ : DirichletCharacter ℂ N := 1
h₀ : 1 < (1 + ↑x).re
h₁ : 1 < (1 + ↑x + I * ↑y).re
h₂ : 1 < (1 + ↑x + 2 * I * ↑y).re
⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 *
L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥
1 | Please generate a tactic in lean4 to solve the state.
STATE:
N : ℕ
χ : DirichletCharacter ℂ N
x : ℝ
hx : 0 < x
y : ℝ
χ₀ : DirichletCharacter ℂ N := 1
⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 *
L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥
1
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | norm_dirichlet_product_ge_one | [147, 1] | [174, 33] | have hx₁ : 1 + (x : ℂ) = (1 + x : ℂ).re := by simp only [add_re, one_re, ofReal_re, ofReal_add, ofReal_one] | N : ℕ
χ : DirichletCharacter ℂ N
x : ℝ
hx : 0 < x
y : ℝ
χ₀ : DirichletCharacter ℂ N := 1
h₀ : 1 < (1 + ↑x).re
h₁ : 1 < (1 + ↑x + I * ↑y).re
h₂ : 1 < (1 + ↑x + 2 * I * ↑y).re
⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 *
L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥
1 | N : ℕ
χ : DirichletCharacter ℂ N
x : ℝ
hx : 0 < x
y : ℝ
χ₀ : DirichletCharacter ℂ N := 1
h₀ : 1 < (1 + ↑x).re
h₁ : 1 < (1 + ↑x + I * ↑y).re
h₂ : 1 < (1 + ↑x + 2 * I * ↑y).re
hx₁ : 1 + ↑x = ↑(1 + ↑x).re
⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 *
L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥
1 | Please generate a tactic in lean4 to solve the state.
STATE:
N : ℕ
χ : DirichletCharacter ℂ N
x : ℝ
hx : 0 < x
y : ℝ
χ₀ : DirichletCharacter ℂ N := 1
h₀ : 1 < (1 + ↑x).re
h₁ : 1 < (1 + ↑x + I * ↑y).re
h₂ : 1 < (1 + ↑x + 2 * I * ↑y).re
⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 *
L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥
1
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | norm_dirichlet_product_ge_one | [147, 1] | [174, 33] | have hsum₀ :=
(hasSum_re (summable_neg_log_one_sub_char_mul_prime_cpow χ₀ h₀).hasSum).summable.mul_left 3 | N : ℕ
χ : DirichletCharacter ℂ N
x : ℝ
hx : 0 < x
y : ℝ
χ₀ : DirichletCharacter ℂ N := 1
h₀ : 1 < (1 + ↑x).re
h₁ : 1 < (1 + ↑x + I * ↑y).re
h₂ : 1 < (1 + ↑x + 2 * I * ↑y).re
hx₁ : 1 + ↑x = ↑(1 + ↑x).re
⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 *
L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥
1 | N : ℕ
χ : DirichletCharacter ℂ N
x : ℝ
hx : 0 < x
y : ℝ
χ₀ : DirichletCharacter ℂ N := 1
h₀ : 1 < (1 + ↑x).re
h₁ : 1 < (1 + ↑x + I * ↑y).re
h₂ : 1 < (1 + ↑x + 2 * I * ↑y).re
hx₁ : 1 + ↑x = ↑(1 + ↑x).re
hsum₀ : Summable fun i => 3 * (-(1 - χ₀ ↑↑i * ↑↑i ^ (-(1 + ↑x))).log).re
⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 *
L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥
1 | Please generate a tactic in lean4 to solve the state.
STATE:
N : ℕ
χ : DirichletCharacter ℂ N
x : ℝ
hx : 0 < x
y : ℝ
χ₀ : DirichletCharacter ℂ N := 1
h₀ : 1 < (1 + ↑x).re
h₁ : 1 < (1 + ↑x + I * ↑y).re
h₂ : 1 < (1 + ↑x + 2 * I * ↑y).re
hx₁ : 1 + ↑x = ↑(1 + ↑x).re
⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 *
L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥
1
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/PNT.lean | norm_dirichlet_product_ge_one | [147, 1] | [174, 33] | have hsum₁ :=
(hasSum_re (summable_neg_log_one_sub_char_mul_prime_cpow χ h₁).hasSum).summable.mul_left 4 | N : ℕ
χ : DirichletCharacter ℂ N
x : ℝ
hx : 0 < x
y : ℝ
χ₀ : DirichletCharacter ℂ N := 1
h₀ : 1 < (1 + ↑x).re
h₁ : 1 < (1 + ↑x + I * ↑y).re
h₂ : 1 < (1 + ↑x + 2 * I * ↑y).re
hx₁ : 1 + ↑x = ↑(1 + ↑x).re
hsum₀ : Summable fun i => 3 * (-(1 - χ₀ ↑↑i * ↑↑i ^ (-(1 + ↑x))).log).re
⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 *
L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥
1 | N : ℕ
χ : DirichletCharacter ℂ N
x : ℝ
hx : 0 < x
y : ℝ
χ₀ : DirichletCharacter ℂ N := 1
h₀ : 1 < (1 + ↑x).re
h₁ : 1 < (1 + ↑x + I * ↑y).re
h₂ : 1 < (1 + ↑x + 2 * I * ↑y).re
hx₁ : 1 + ↑x = ↑(1 + ↑x).re
hsum₀ : Summable fun i => 3 * (-(1 - χ₀ ↑↑i * ↑↑i ^ (-(1 + ↑x))).log).re
hsum₁ : Summable fun i => 4 * (-(1 - χ ↑↑i * ↑↑i ^ (-(1 + ↑x + I * ↑y))).log).re
⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 *
L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥
1 | Please generate a tactic in lean4 to solve the state.
STATE:
N : ℕ
χ : DirichletCharacter ℂ N
x : ℝ
hx : 0 < x
y : ℝ
χ₀ : DirichletCharacter ℂ N := 1
h₀ : 1 < (1 + ↑x).re
h₁ : 1 < (1 + ↑x + I * ↑y).re
h₂ : 1 < (1 + ↑x + 2 * I * ↑y).re
hx₁ : 1 + ↑x = ↑(1 + ↑x).re
hsum₀ : Summable fun i => 3 * (-(1 - χ₀ ↑↑i * ↑↑i ^ (-(1 + ↑x))).log).re
⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 *
L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥
1
TACTIC:
|
Subsets and Splits