url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq
[210, 1]
[231, 86]
have Hf : LSeriesSummable f x := by refine LSeriesSummable_of_abscissaOfAbsConv_lt_re <| (ofReal_re x).symm ▸ hyf₁.trans_le ?_ refine (le_max_left _ (yg : EReal)).trans <| (le_max_right (x₀ : EReal) _).trans ?_ simpa only [max_le_iff, EReal.coe_le_coe_iff] using hx
case intro.intro.intro.intro.intro.intro.intro f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) ⊢ LSeries (f - g) ↑x = 0 x
case intro.intro.intro.intro.intro.intro.intro f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) Hf : LSeriesSummable f ↑x ⊢ LSeries (f - g) ↑x = 0 x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.intro f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) ⊢ LSeries (f - g) ↑x = 0 x TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq
[210, 1]
[231, 86]
have Hg : LSeriesSummable g x := by refine LSeriesSummable_of_abscissaOfAbsConv_lt_re <| (ofReal_re x).symm ▸ hyg₁.trans_le ?_ refine (le_max_right (yf : EReal) _).trans <| (le_max_right (x₀ : EReal) _).trans ?_ simpa only [max_le_iff, EReal.coe_le_coe_iff] using hx
case intro.intro.intro.intro.intro.intro.intro f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) Hf : LSeriesSummable f ↑x ⊢ LSeries (f - g) ↑x = 0 x
case intro.intro.intro.intro.intro.intro.intro f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) Hf : LSeriesSummable f ↑x Hg : LSeriesSummable g ↑x ⊢ LSeries (f - g) ↑x = 0 x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.intro f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) Hf : LSeriesSummable f ↑x ⊢ LSeries (f - g) ↑x = 0 x TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq
[210, 1]
[231, 86]
rw [LSeries_sub Hf Hg, hx₀ x <| (le_max_left ..).trans hx, sub_self, Pi.zero_apply]
case intro.intro.intro.intro.intro.intro.intro f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) Hf : LSeriesSummable f ↑x Hg : LSeriesSummable g ↑x ⊢ LSeries (f - g) ↑x = 0 x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.intro f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) Hf : LSeriesSummable f ↑x Hg : LSeriesSummable g ↑x ⊢ LSeries (f - g) ↑x = 0 x TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq
[210, 1]
[231, 86]
refine LSeriesSummable_of_abscissaOfAbsConv_lt_re <| (ofReal_re x).symm ▸ hyf₁.trans_le ?_
f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) ⊢ LSeriesSummable f ↑x
f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) ⊢ ↑yf ≤ ↑x
Please generate a tactic in lean4 to solve the state. STATE: f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) ⊢ LSeriesSummable f ↑x TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq
[210, 1]
[231, 86]
refine (le_max_left _ (yg : EReal)).trans <| (le_max_right (x₀ : EReal) _).trans ?_
f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) ⊢ ↑yf ≤ ↑x
f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) ⊢ max (↑x₀) (max ↑yf ↑yg) ≤ ↑x
Please generate a tactic in lean4 to solve the state. STATE: f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) ⊢ ↑yf ≤ ↑x TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq
[210, 1]
[231, 86]
simpa only [max_le_iff, EReal.coe_le_coe_iff] using hx
f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) ⊢ max (↑x₀) (max ↑yf ↑yg) ≤ ↑x
no goals
Please generate a tactic in lean4 to solve the state. STATE: f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) ⊢ max (↑x₀) (max ↑yf ↑yg) ≤ ↑x TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq
[210, 1]
[231, 86]
refine LSeriesSummable_of_abscissaOfAbsConv_lt_re <| (ofReal_re x).symm ▸ hyg₁.trans_le ?_
f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) Hf : LSeriesSummable f ↑x ⊢ LSeriesSummable g ↑x
f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) Hf : LSeriesSummable f ↑x ⊢ ↑yg ≤ ↑x
Please generate a tactic in lean4 to solve the state. STATE: f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) Hf : LSeriesSummable f ↑x ⊢ LSeriesSummable g ↑x TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq
[210, 1]
[231, 86]
refine (le_max_right (yf : EReal) _).trans <| (le_max_right (x₀ : EReal) _).trans ?_
f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) Hf : LSeriesSummable f ↑x ⊢ ↑yg ≤ ↑x
f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) Hf : LSeriesSummable f ↑x ⊢ max (↑x₀) (max ↑yf ↑yg) ≤ ↑x
Please generate a tactic in lean4 to solve the state. STATE: f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) Hf : LSeriesSummable f ↑x ⊢ ↑yg ≤ ↑x TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq
[210, 1]
[231, 86]
simpa only [max_le_iff, EReal.coe_le_coe_iff] using hx
f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) Hf : LSeriesSummable f ↑x ⊢ max (↑x₀) (max ↑yf ↑yg) ≤ ↑x
no goals
Please generate a tactic in lean4 to solve the state. STATE: f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ x₀ : ℝ hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b yf : ℝ hyf₁ : abscissaOfAbsConv f < ↑yf hyf₂ : ↑yf < ⊤ yg : ℝ hyg₁ : abscissaOfAbsConv g < ↑yg hyg₂ : ↑yg < ⊤ x : ℝ hx : x ≥ max x₀ (max yf yg) Hf : LSeriesSummable f ↑x ⊢ max (↑x₀) (max ↑yf ↑yg) ≤ ↑x TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.eq_of_LSeries_eventually_eq
[234, 1]
[245, 74]
have hsub : (fun x : ℝ ↦ LSeries (f - g) x) =ᶠ[atTop] (0 : ℝ → ℂ) := LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq hf hg h
f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x n : ℕ hn : n ≠ 0 ⊢ f n = g n
f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x n : ℕ hn : n ≠ 0 hsub : (fun x => LSeries (f - g) ↑x) =ᶠ[atTop] 0 ⊢ f n = g n
Please generate a tactic in lean4 to solve the state. STATE: f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x n : ℕ hn : n ≠ 0 ⊢ f n = g n TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.eq_of_LSeries_eventually_eq
[234, 1]
[245, 74]
have ha : abscissaOfAbsConv (f - g) ≠ ⊤ := lt_top_iff_ne_top.mp <| (abscissaOfAbsConv_sub_le f g).trans_lt <| max_lt hf hg
f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x n : ℕ hn : n ≠ 0 hsub : (fun x => LSeries (f - g) ↑x) =ᶠ[atTop] 0 ⊢ f n = g n
f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x n : ℕ hn : n ≠ 0 hsub : (fun x => LSeries (f - g) ↑x) =ᶠ[atTop] 0 ha : abscissaOfAbsConv (f - g) ≠ ⊤ ⊢ f n = g n
Please generate a tactic in lean4 to solve the state. STATE: f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x n : ℕ hn : n ≠ 0 hsub : (fun x => LSeries (f - g) ↑x) =ᶠ[atTop] 0 ⊢ f n = g n TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries.eq_of_LSeries_eventually_eq
[234, 1]
[245, 74]
simpa only [Pi.sub_apply, sub_eq_zero] using (LSeries_eventually_eq_zero_iff'.mp hsub).resolve_right ha n hn
f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x n : ℕ hn : n ≠ 0 hsub : (fun x => LSeries (f - g) ↑x) =ᶠ[atTop] 0 ha : abscissaOfAbsConv (f - g) ≠ ⊤ ⊢ f n = g n
no goals
Please generate a tactic in lean4 to solve the state. STATE: f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x n : ℕ hn : n ≠ 0 hsub : (fun x => LSeries (f - g) ↑x) =ᶠ[atTop] 0 ha : abscissaOfAbsConv (f - g) ≠ ⊤ ⊢ f n = g n TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries_eq_iff_of_abscissaOfAbsConv_lt_top
[247, 1]
[254, 58]
refine eq_of_LSeries_eventually_eq hf hg ?_ hn
f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ H : LSeries f = LSeries g n : ℕ hn : n ≠ 0 ⊢ f n = g n
f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ H : LSeries f = LSeries g n : ℕ hn : n ≠ 0 ⊢ (fun x => LSeries f ↑x) =ᶠ[Filter.atTop] fun x => LSeries g ↑x
Please generate a tactic in lean4 to solve the state. STATE: f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ H : LSeries f = LSeries g n : ℕ hn : n ≠ 0 ⊢ f n = g n TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/LSeriesUnique.lean
LSeries_eq_iff_of_abscissaOfAbsConv_lt_top
[247, 1]
[254, 58]
exact Filter.eventually_of_forall fun x ↦ congr_fun H x
f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ H : LSeries f = LSeries g n : ℕ hn : n ≠ 0 ⊢ (fun x => LSeries f ↑x) =ᶠ[Filter.atTop] fun x => LSeries g ↑x
no goals
Please generate a tactic in lean4 to solve the state. STATE: f g : ℕ → ℂ hf : abscissaOfAbsConv f < ⊤ hg : abscissaOfAbsConv g < ⊤ H : LSeries f = LSeries g n : ℕ hn : n ≠ 0 ⊢ (fun x => LSeries f ↑x) =ᶠ[Filter.atTop] fun x => LSeries g ↑x TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/DirichletLSeries.lean
LSeriesSummable.mul_bounded
[30, 1]
[39, 61]
refine Summable.of_norm <| (hs.const_smul c).norm.of_nonneg_of_le (fun _ ↦ norm_nonneg _) fun n ↦ ?_
f g : ℕ → ℂ c : ℝ s : ℂ hs : LSeriesSummable f s hg : ∀ (n : ℕ), ‖g n‖ ≤ c ⊢ LSeriesSummable (f * g) s
f g : ℕ → ℂ c : ℝ s : ℂ hs : LSeriesSummable f s hg : ∀ (n : ℕ), ‖g n‖ ≤ c n : ℕ ⊢ ‖LSeries.term (f * g) s n‖ ≤ ‖c • LSeries.term f s n‖
Please generate a tactic in lean4 to solve the state. STATE: f g : ℕ → ℂ c : ℝ s : ℂ hs : LSeriesSummable f s hg : ∀ (n : ℕ), ‖g n‖ ≤ c ⊢ LSeriesSummable (f * g) s TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/DirichletLSeries.lean
LSeriesSummable.mul_bounded
[30, 1]
[39, 61]
rw [Complex.real_smul, ← LSeries.term_smul_apply, mul_comm]
f g : ℕ → ℂ c : ℝ s : ℂ hs : LSeriesSummable f s hg : ∀ (n : ℕ), ‖g n‖ ≤ c n : ℕ ⊢ ‖LSeries.term (f * g) s n‖ ≤ ‖c • LSeries.term f s n‖
f g : ℕ → ℂ c : ℝ s : ℂ hs : LSeriesSummable f s hg : ∀ (n : ℕ), ‖g n‖ ≤ c n : ℕ ⊢ ‖LSeries.term (g * f) s n‖ ≤ ‖LSeries.term (↑c • f) s n‖
Please generate a tactic in lean4 to solve the state. STATE: f g : ℕ → ℂ c : ℝ s : ℂ hs : LSeriesSummable f s hg : ∀ (n : ℕ), ‖g n‖ ≤ c n : ℕ ⊢ ‖LSeries.term (f * g) s n‖ ≤ ‖c • LSeries.term f s n‖ TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/DirichletLSeries.lean
LSeriesSummable.mul_bounded
[30, 1]
[39, 61]
refine LSeries.norm_term_le s ?_
f g : ℕ → ℂ c : ℝ s : ℂ hs : LSeriesSummable f s hg : ∀ (n : ℕ), ‖g n‖ ≤ c n : ℕ ⊢ ‖LSeries.term (g * f) s n‖ ≤ ‖LSeries.term (↑c • f) s n‖
f g : ℕ → ℂ c : ℝ s : ℂ hs : LSeriesSummable f s hg : ∀ (n : ℕ), ‖g n‖ ≤ c n : ℕ ⊢ ‖(g * f) n‖ ≤ ‖(↑c • f) n‖
Please generate a tactic in lean4 to solve the state. STATE: f g : ℕ → ℂ c : ℝ s : ℂ hs : LSeriesSummable f s hg : ∀ (n : ℕ), ‖g n‖ ≤ c n : ℕ ⊢ ‖LSeries.term (g * f) s n‖ ≤ ‖LSeries.term (↑c • f) s n‖ TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/DirichletLSeries.lean
LSeriesSummable.mul_bounded
[30, 1]
[39, 61]
have hc : ‖(c : ℂ)‖ = c := by simp only [Complex.norm_eq_abs, Complex.abs_ofReal, abs_eq_self, (norm_nonneg _).trans (hg 0)]
f g : ℕ → ℂ c : ℝ s : ℂ hs : LSeriesSummable f s hg : ∀ (n : ℕ), ‖g n‖ ≤ c n : ℕ ⊢ ‖(g * f) n‖ ≤ ‖(↑c • f) n‖
f g : ℕ → ℂ c : ℝ s : ℂ hs : LSeriesSummable f s hg : ∀ (n : ℕ), ‖g n‖ ≤ c n : ℕ hc : ‖↑c‖ = c ⊢ ‖(g * f) n‖ ≤ ‖(↑c • f) n‖
Please generate a tactic in lean4 to solve the state. STATE: f g : ℕ → ℂ c : ℝ s : ℂ hs : LSeriesSummable f s hg : ∀ (n : ℕ), ‖g n‖ ≤ c n : ℕ ⊢ ‖(g * f) n‖ ≤ ‖(↑c • f) n‖ TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/DirichletLSeries.lean
LSeriesSummable.mul_bounded
[30, 1]
[39, 61]
simpa only [Pi.mul_apply, norm_mul, Pi.smul_apply, smul_eq_mul, hc] using mul_le_mul_of_nonneg_right (hg n) <| norm_nonneg _
f g : ℕ → ℂ c : ℝ s : ℂ hs : LSeriesSummable f s hg : ∀ (n : ℕ), ‖g n‖ ≤ c n : ℕ hc : ‖↑c‖ = c ⊢ ‖(g * f) n‖ ≤ ‖(↑c • f) n‖
no goals
Please generate a tactic in lean4 to solve the state. STATE: f g : ℕ → ℂ c : ℝ s : ℂ hs : LSeriesSummable f s hg : ∀ (n : ℕ), ‖g n‖ ≤ c n : ℕ hc : ‖↑c‖ = c ⊢ ‖(g * f) n‖ ≤ ‖(↑c • f) n‖ TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/DirichletLSeries.lean
LSeriesSummable.mul_bounded
[30, 1]
[39, 61]
simp only [Complex.norm_eq_abs, Complex.abs_ofReal, abs_eq_self, (norm_nonneg _).trans (hg 0)]
f g : ℕ → ℂ c : ℝ s : ℂ hs : LSeriesSummable f s hg : ∀ (n : ℕ), ‖g n‖ ≤ c n : ℕ ⊢ ‖↑c‖ = c
no goals
Please generate a tactic in lean4 to solve the state. STATE: f g : ℕ → ℂ c : ℝ s : ℂ hs : LSeriesSummable f s hg : ∀ (n : ℕ), ‖g n‖ ≤ c n : ℕ ⊢ ‖↑c‖ = c TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/DirichletLSeries.lean
LSeriesSummable.mul_moebius
[42, 1]
[46, 36]
refine hf.mul_bounded (c := 1) fun n ↦ ?_
f : ℕ → ℂ s : ℂ hf : LSeriesSummable f s ⊢ LSeriesSummable (f * fun n => ↑(μ n)) s
f : ℕ → ℂ s : ℂ hf : LSeriesSummable f s n : ℕ ⊢ ‖↑(μ n)‖ ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℂ s : ℂ hf : LSeriesSummable f s ⊢ LSeriesSummable (f * fun n => ↑(μ n)) s TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/DirichletLSeries.lean
LSeriesSummable.mul_moebius
[42, 1]
[46, 36]
simp only [Complex.norm_int]
f : ℕ → ℂ s : ℂ hf : LSeriesSummable f s n : ℕ ⊢ ‖↑(μ n)‖ ≤ 1
f : ℕ → ℂ s : ℂ hf : LSeriesSummable f s n : ℕ ⊢ |↑(μ n)| ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℂ s : ℂ hf : LSeriesSummable f s n : ℕ ⊢ ‖↑(μ n)‖ ≤ 1 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/DirichletLSeries.lean
LSeriesSummable.mul_moebius
[42, 1]
[46, 36]
exact_mod_cast abs_moebius_le_one
f : ℕ → ℂ s : ℂ hf : LSeriesSummable f s n : ℕ ⊢ |↑(μ n)| ≤ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℂ s : ℂ hf : LSeriesSummable f s n : ℕ ⊢ |↑(μ n)| ≤ 1 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/DirichletLSeries.lean
LSeries.mul_convolution_distrib
[51, 1]
[59, 28]
ext n
R : Type u_1 inst✝ : CommSemiring R φ : ℕ → R hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n f g : ℕ → R ⊢ φ * (f ⍟ g) = φ * f ⍟ (φ * g)
case h R : Type u_1 inst✝ : CommSemiring R φ : ℕ → R hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n f g : ℕ → R n : ℕ ⊢ (φ * (f ⍟ g)) n = (φ * f ⍟ (φ * g)) n
Please generate a tactic in lean4 to solve the state. STATE: R : Type u_1 inst✝ : CommSemiring R φ : ℕ → R hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n f g : ℕ → R ⊢ φ * (f ⍟ g) = φ * f ⍟ (φ * g) TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/DirichletLSeries.lean
LSeries.mul_convolution_distrib
[51, 1]
[59, 28]
simp only [Pi.mul_apply, LSeries.convolution_def, Finset.mul_sum]
case h R : Type u_1 inst✝ : CommSemiring R φ : ℕ → R hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n f g : ℕ → R n : ℕ ⊢ (φ * (f ⍟ g)) n = (φ * f ⍟ (φ * g)) n
case h R : Type u_1 inst✝ : CommSemiring R φ : ℕ → R hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n f g : ℕ → R n : ℕ ⊢ ∑ i ∈ n.divisorsAntidiagonal, φ n * (f i.1 * g i.2) = ∑ x ∈ n.divisorsAntidiagonal, φ x.1 * f x.1 * (φ x.2 * g x.2)
Please generate a tactic in lean4 to solve the state. STATE: case h R : Type u_1 inst✝ : CommSemiring R φ : ℕ → R hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n f g : ℕ → R n : ℕ ⊢ (φ * (f ⍟ g)) n = (φ * f ⍟ (φ * g)) n TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/DirichletLSeries.lean
LSeries.mul_convolution_distrib
[51, 1]
[59, 28]
refine Finset.sum_congr rfl fun p hp ↦ ?_
case h R : Type u_1 inst✝ : CommSemiring R φ : ℕ → R hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n f g : ℕ → R n : ℕ ⊢ ∑ i ∈ n.divisorsAntidiagonal, φ n * (f i.1 * g i.2) = ∑ x ∈ n.divisorsAntidiagonal, φ x.1 * f x.1 * (φ x.2 * g x.2)
case h R : Type u_1 inst✝ : CommSemiring R φ : ℕ → R hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n f g : ℕ → R n : ℕ p : ℕ × ℕ hp : p ∈ n.divisorsAntidiagonal ⊢ φ n * (f p.1 * g p.2) = φ p.1 * f p.1 * (φ p.2 * g p.2)
Please generate a tactic in lean4 to solve the state. STATE: case h R : Type u_1 inst✝ : CommSemiring R φ : ℕ → R hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n f g : ℕ → R n : ℕ ⊢ ∑ i ∈ n.divisorsAntidiagonal, φ n * (f i.1 * g i.2) = ∑ x ∈ n.divisorsAntidiagonal, φ x.1 * f x.1 * (φ x.2 * g x.2) TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/DirichletLSeries.lean
LSeries.mul_convolution_distrib
[51, 1]
[59, 28]
rw [(Nat.mem_divisorsAntidiagonal.mp hp).1.symm, hφ]
case h R : Type u_1 inst✝ : CommSemiring R φ : ℕ → R hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n f g : ℕ → R n : ℕ p : ℕ × ℕ hp : p ∈ n.divisorsAntidiagonal ⊢ φ n * (f p.1 * g p.2) = φ p.1 * f p.1 * (φ p.2 * g p.2)
case h R : Type u_1 inst✝ : CommSemiring R φ : ℕ → R hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n f g : ℕ → R n : ℕ p : ℕ × ℕ hp : p ∈ n.divisorsAntidiagonal ⊢ φ p.1 * φ p.2 * (f p.1 * g p.2) = φ p.1 * f p.1 * (φ p.2 * g p.2)
Please generate a tactic in lean4 to solve the state. STATE: case h R : Type u_1 inst✝ : CommSemiring R φ : ℕ → R hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n f g : ℕ → R n : ℕ p : ℕ × ℕ hp : p ∈ n.divisorsAntidiagonal ⊢ φ n * (f p.1 * g p.2) = φ p.1 * f p.1 * (φ p.2 * g p.2) TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/DirichletLSeries.lean
LSeries.mul_convolution_distrib
[51, 1]
[59, 28]
exact mul_mul_mul_comm ..
case h R : Type u_1 inst✝ : CommSemiring R φ : ℕ → R hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n f g : ℕ → R n : ℕ p : ℕ × ℕ hp : p ∈ n.divisorsAntidiagonal ⊢ φ p.1 * φ p.2 * (f p.1 * g p.2) = φ p.1 * f p.1 * (φ p.2 * g p.2)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h R : Type u_1 inst✝ : CommSemiring R φ : ℕ → R hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n f g : ℕ → R n : ℕ p : ℕ × ℕ hp : p ∈ n.divisorsAntidiagonal ⊢ φ p.1 * φ p.2 * (f p.1 * g p.2) = φ p.1 * f p.1 * (φ p.2 * g p.2) TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/DirichletLSeries.lean
LSeries.convolution_mul_moebius
[62, 1]
[72, 68]
nth_rewrite 1 [← mul_one φ]
φ : ℕ → ℂ h₁ : φ 1 = 1 hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n this : (1 ⍟ fun x => ↑(μ x)) = δ ⊢ φ ⍟ (φ * fun n => ↑(μ n)) = δ
φ : ℕ → ℂ h₁ : φ 1 = 1 hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n this : (1 ⍟ fun x => ↑(μ x)) = δ ⊢ φ * 1 ⍟ (φ * fun n => ↑(μ n)) = δ
Please generate a tactic in lean4 to solve the state. STATE: φ : ℕ → ℂ h₁ : φ 1 = 1 hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n this : (1 ⍟ fun x => ↑(μ x)) = δ ⊢ φ ⍟ (φ * fun n => ↑(μ n)) = δ TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/DirichletLSeries.lean
LSeries.convolution_mul_moebius
[62, 1]
[72, 68]
simp only [← mul_convolution_distrib hφ 1 ↗μ, this, mul_delta h₁]
φ : ℕ → ℂ h₁ : φ 1 = 1 hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n this : (1 ⍟ fun x => ↑(μ x)) = δ ⊢ φ * 1 ⍟ (φ * fun n => ↑(μ n)) = δ
no goals
Please generate a tactic in lean4 to solve the state. STATE: φ : ℕ → ℂ h₁ : φ 1 = 1 hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n this : (1 ⍟ fun x => ↑(μ x)) = δ ⊢ φ * 1 ⍟ (φ * fun n => ↑(μ n)) = δ TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/DirichletLSeries.lean
LSeries.convolution_mul_moebius
[62, 1]
[72, 68]
rw [one_convolution_eq_zeta_convolution, ← one_eq_delta]
φ : ℕ → ℂ h₁ : φ 1 = 1 hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n ⊢ (1 ⍟ fun x => ↑(μ x)) = δ
φ : ℕ → ℂ h₁ : φ 1 = 1 hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n ⊢ ((fun x => ↑(ζ x)) ⍟ fun x => ↑(μ x)) = fun n => 1 n
Please generate a tactic in lean4 to solve the state. STATE: φ : ℕ → ℂ h₁ : φ 1 = 1 hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n ⊢ (1 ⍟ fun x => ↑(μ x)) = δ TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/DirichletLSeries.lean
LSeries.convolution_mul_moebius
[62, 1]
[72, 68]
change ⇑(ζ : ArithmeticFunction ℂ) ⍟ ⇑(μ : ArithmeticFunction ℂ) = ⇑(1 : ArithmeticFunction ℂ)
φ : ℕ → ℂ h₁ : φ 1 = 1 hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n ⊢ ((fun x => ↑(ζ x)) ⍟ fun x => ↑(μ x)) = fun n => 1 n
φ : ℕ → ℂ h₁ : φ 1 = 1 hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n ⊢ ⇑↑ζ ⍟ ⇑↑μ = ⇑1
Please generate a tactic in lean4 to solve the state. STATE: φ : ℕ → ℂ h₁ : φ 1 = 1 hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n ⊢ ((fun x => ↑(ζ x)) ⍟ fun x => ↑(μ x)) = fun n => 1 n TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/DirichletLSeries.lean
LSeries.convolution_mul_moebius
[62, 1]
[72, 68]
simp only [coe_mul, coe_zeta_mul_coe_moebius]
φ : ℕ → ℂ h₁ : φ 1 = 1 hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n ⊢ ⇑↑ζ ⍟ ⇑↑μ = ⇑1
no goals
Please generate a tactic in lean4 to solve the state. STATE: φ : ℕ → ℂ h₁ : φ 1 = 1 hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n ⊢ ⇑↑ζ ⍟ ⇑↑μ = ⇑1 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/DirichletLSeries.lean
LSeries.mul_mu_eq_one
[75, 1]
[80, 23]
rw [← LSeries_convolution' hs ?_, convolution_mul_moebius h₁ hφ, LSeries_delta, Pi.one_apply]
φ : ℕ → ℂ h₁ : φ 1 = 1 hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n s : ℂ hs : LSeriesSummable φ s ⊢ L φ s * L (φ * fun n => ↑(μ n)) s = 1
φ : ℕ → ℂ h₁ : φ 1 = 1 hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n s : ℂ hs : LSeriesSummable φ s ⊢ LSeriesSummable (φ * fun n => ↑(μ n)) s
Please generate a tactic in lean4 to solve the state. STATE: φ : ℕ → ℂ h₁ : φ 1 = 1 hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n s : ℂ hs : LSeriesSummable φ s ⊢ L φ s * L (φ * fun n => ↑(μ n)) s = 1 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/DirichletLSeries.lean
LSeries.mul_mu_eq_one
[75, 1]
[80, 23]
exact hs.mul_moebius
φ : ℕ → ℂ h₁ : φ 1 = 1 hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n s : ℂ hs : LSeriesSummable φ s ⊢ LSeriesSummable (φ * fun n => ↑(μ n)) s
no goals
Please generate a tactic in lean4 to solve the state. STATE: φ : ℕ → ℂ h₁ : φ 1 = 1 hφ : ∀ (m n : ℕ), φ (m * n) = φ m * φ n s : ℂ hs : LSeriesSummable φ s ⊢ LSeriesSummable (φ * fun n => ↑(μ n)) s TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/DirichletLSeries.lean
DirichletCharacter.toFun_on_nat_map_one
[92, 1]
[93, 32]
simp only [cast_one, map_one]
N : ℕ χ : DirichletCharacter ℂ N ⊢ (fun n => χ ↑n) 1 = 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: N : ℕ χ : DirichletCharacter ℂ N ⊢ (fun n => χ ↑n) 1 = 1 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/DirichletLSeries.lean
DirichletCharacter.toFun_on_nat_map_mul
[95, 1]
[97, 32]
simp only [cast_mul, map_mul]
N : ℕ χ : DirichletCharacter ℂ N m n : ℕ ⊢ (fun n => χ ↑n) (m * n) = (fun n => χ ↑n) m * (fun n => χ ↑n) n
no goals
Please generate a tactic in lean4 to solve the state. STATE: N : ℕ χ : DirichletCharacter ℂ N m n : ℕ ⊢ (fun n => χ ↑n) (m * n) = (fun n => χ ↑n) m * (fun n => χ ↑n) n TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
DirichletCharacter.LSeries_eulerProduct'
[42, 1]
[51, 61]
rw [LSeries]
N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re ⊢ cexp (∑' (p : Primes), -(1 - χ ↑↑p * ↑↑p ^ (-s)).log) = L (fun n => χ ↑n) s
N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re ⊢ cexp (∑' (p : Primes), -(1 - χ ↑↑p * ↑↑p ^ (-s)).log) = ∑' (n : ℕ), term (fun n => χ ↑n) s n
Please generate a tactic in lean4 to solve the state. STATE: N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re ⊢ cexp (∑' (p : Primes), -(1 - χ ↑↑p * ↑↑p ^ (-s)).log) = L (fun n => χ ↑n) s TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
DirichletCharacter.LSeries_eulerProduct'
[42, 1]
[51, 61]
convert exp_sum_primes_log_eq_tsum (f := dirichletSummandHom χ <| ne_zero_of_one_lt_re hs) <| summable_dirichletSummand χ hs
N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re ⊢ cexp (∑' (p : Primes), -(1 - χ ↑↑p * ↑↑p ^ (-s)).log) = ∑' (n : ℕ), term (fun n => χ ↑n) s n
case h.e'_3.h.e'_5.h.h.e N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re x✝ : ℕ ⊢ term (fun n => χ ↑n) s = ⇑(dirichletSummandHom χ ⋯)
Please generate a tactic in lean4 to solve the state. STATE: N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re ⊢ cexp (∑' (p : Primes), -(1 - χ ↑↑p * ↑↑p ^ (-s)).log) = ∑' (n : ℕ), term (fun n => χ ↑n) s n TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
DirichletCharacter.LSeries_eulerProduct'
[42, 1]
[51, 61]
ext n
case h.e'_3.h.e'_5.h.h.e N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re x✝ : ℕ ⊢ term (fun n => χ ↑n) s = ⇑(dirichletSummandHom χ ⋯)
case h.e'_3.h.e'_5.h.h.e.h N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re x✝ n : ℕ ⊢ term (fun n => χ ↑n) s n = (dirichletSummandHom χ ⋯) n
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3.h.e'_5.h.h.e N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re x✝ : ℕ ⊢ term (fun n => χ ↑n) s = ⇑(dirichletSummandHom χ ⋯) TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
DirichletCharacter.LSeries_eulerProduct'
[42, 1]
[51, 61]
rcases eq_or_ne n 0 with rfl | hn
case h.e'_3.h.e'_5.h.h.e.h N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re x✝ n : ℕ ⊢ term (fun n => χ ↑n) s n = (dirichletSummandHom χ ⋯) n
case h.e'_3.h.e'_5.h.h.e.h.inl N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re x✝ : ℕ ⊢ term (fun n => χ ↑n) s 0 = (dirichletSummandHom χ ⋯) 0 case h.e'_3.h.e'_5.h.h.e.h.inr N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re x✝ n : ℕ hn : n ≠ 0 ⊢ term (fun n => χ ↑n) s n = (dirichletSummandHom χ ⋯) n
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3.h.e'_5.h.h.e.h N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re x✝ n : ℕ ⊢ term (fun n => χ ↑n) s n = (dirichletSummandHom χ ⋯) n TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
DirichletCharacter.LSeries_eulerProduct'
[42, 1]
[51, 61]
simp only [term_zero, map_zero]
case h.e'_3.h.e'_5.h.h.e.h.inl N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re x✝ : ℕ ⊢ term (fun n => χ ↑n) s 0 = (dirichletSummandHom χ ⋯) 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3.h.e'_5.h.h.e.h.inl N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re x✝ : ℕ ⊢ term (fun n => χ ↑n) s 0 = (dirichletSummandHom χ ⋯) 0 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
DirichletCharacter.LSeries_eulerProduct'
[42, 1]
[51, 61]
simp [hn, dirichletSummandHom, div_eq_mul_inv, cpow_neg]
case h.e'_3.h.e'_5.h.h.e.h.inr N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re x✝ n : ℕ hn : n ≠ 0 ⊢ term (fun n => χ ↑n) s n = (dirichletSummandHom χ ⋯) n
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3.h.e'_5.h.h.e.h.inr N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re x✝ n : ℕ hn : n ≠ 0 ⊢ term (fun n => χ ↑n) s n = (dirichletSummandHom χ ⋯) n TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
ArithmeticFunction.LSeries_zeta_eulerProduct'
[56, 1]
[59, 62]
convert modOne_eq_one (R := ℂ) ▸ LSeries_eulerProduct' χ₁ hs using 7
s : ℂ hs : 1 < s.re ⊢ cexp (∑' (p : Primes), -(1 - ↑↑p ^ (-s)).log) = L 1 s
case h.e'_2.h.e'_1.h.e'_5.h.h.e'_3.h.e'_1.h.e'_6 s : ℂ hs : 1 < s.re x✝ : Primes ⊢ ↑↑x✝ ^ (-s) = 1 ↑↑x✝ * ↑↑x✝ ^ (-s)
Please generate a tactic in lean4 to solve the state. STATE: s : ℂ hs : 1 < s.re ⊢ cexp (∑' (p : Primes), -(1 - ↑↑p ^ (-s)).log) = L 1 s TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
ArithmeticFunction.LSeries_zeta_eulerProduct'
[56, 1]
[59, 62]
rw [MulChar.one_apply <| isUnit_of_subsingleton _, one_mul]
case h.e'_2.h.e'_1.h.e'_5.h.h.e'_3.h.e'_1.h.e'_6 s : ℂ hs : 1 < s.re x✝ : Primes ⊢ ↑↑x✝ ^ (-s) = 1 ↑↑x✝ * ↑↑x✝ ^ (-s)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2.h.e'_1.h.e'_5.h.h.e'_3.h.e'_1.h.e'_6 s : ℂ hs : 1 < s.re x✝ : Primes ⊢ ↑↑x✝ ^ (-s) = 1 ↑↑x✝ * ↑↑x✝ ^ (-s) TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
summable_neg_log_one_sub_char_mul_prime_cpow
[69, 1]
[79, 41]
have (p : Nat.Primes) : ‖χ p * (p : ℂ) ^ (-s)‖ ≤ (p : ℝ) ^ (-s).re := by rw [norm_mul, norm_natCast_cpow_of_re_ne_zero _ <| re_neg_ne_zero_of_one_lt_re hs] calc ‖χ p‖ * (p : ℝ) ^ (-s).re _ ≤ 1 * (p : ℝ) ^ (-s.re) := by gcongr; exact DirichletCharacter.norm_le_one χ _ _ = _ := one_mul _
N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re ⊢ Summable fun p => -(1 - χ ↑↑p * ↑↑p ^ (-s)).log
N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re this : ∀ (p : Nat.Primes), ‖χ ↑↑p * ↑↑p ^ (-s)‖ ≤ ↑↑p ^ (-s).re ⊢ Summable fun p => -(1 - χ ↑↑p * ↑↑p ^ (-s)).log
Please generate a tactic in lean4 to solve the state. STATE: N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re ⊢ Summable fun p => -(1 - χ ↑↑p * ↑↑p ^ (-s)).log TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
summable_neg_log_one_sub_char_mul_prime_cpow
[69, 1]
[79, 41]
refine (Nat.Primes.summable_rpow.mpr ?_).of_nonneg_of_le (fun _ ↦ norm_nonneg _) this |>.of_norm.neg_clog_one_sub
N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re this : ∀ (p : Nat.Primes), ‖χ ↑↑p * ↑↑p ^ (-s)‖ ≤ ↑↑p ^ (-s).re ⊢ Summable fun p => -(1 - χ ↑↑p * ↑↑p ^ (-s)).log
N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re this : ∀ (p : Nat.Primes), ‖χ ↑↑p * ↑↑p ^ (-s)‖ ≤ ↑↑p ^ (-s).re ⊢ (-s).re < -1
Please generate a tactic in lean4 to solve the state. STATE: N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re this : ∀ (p : Nat.Primes), ‖χ ↑↑p * ↑↑p ^ (-s)‖ ≤ ↑↑p ^ (-s).re ⊢ Summable fun p => -(1 - χ ↑↑p * ↑↑p ^ (-s)).log TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
summable_neg_log_one_sub_char_mul_prime_cpow
[69, 1]
[79, 41]
simp only [neg_re, neg_lt_neg_iff, hs]
N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re this : ∀ (p : Nat.Primes), ‖χ ↑↑p * ↑↑p ^ (-s)‖ ≤ ↑↑p ^ (-s).re ⊢ (-s).re < -1
no goals
Please generate a tactic in lean4 to solve the state. STATE: N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re this : ∀ (p : Nat.Primes), ‖χ ↑↑p * ↑↑p ^ (-s)‖ ≤ ↑↑p ^ (-s).re ⊢ (-s).re < -1 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
summable_neg_log_one_sub_char_mul_prime_cpow
[69, 1]
[79, 41]
rw [norm_mul, norm_natCast_cpow_of_re_ne_zero _ <| re_neg_ne_zero_of_one_lt_re hs]
N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re p : Nat.Primes ⊢ ‖χ ↑↑p * ↑↑p ^ (-s)‖ ≤ ↑↑p ^ (-s).re
N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re p : Nat.Primes ⊢ ‖χ ↑↑p‖ * ↑↑p ^ (-s).re ≤ ↑↑p ^ (-s).re
Please generate a tactic in lean4 to solve the state. STATE: N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re p : Nat.Primes ⊢ ‖χ ↑↑p * ↑↑p ^ (-s)‖ ≤ ↑↑p ^ (-s).re TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
summable_neg_log_one_sub_char_mul_prime_cpow
[69, 1]
[79, 41]
calc ‖χ p‖ * (p : ℝ) ^ (-s).re _ ≤ 1 * (p : ℝ) ^ (-s.re) := by gcongr; exact DirichletCharacter.norm_le_one χ _ _ = _ := one_mul _
N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re p : Nat.Primes ⊢ ‖χ ↑↑p‖ * ↑↑p ^ (-s).re ≤ ↑↑p ^ (-s).re
no goals
Please generate a tactic in lean4 to solve the state. STATE: N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re p : Nat.Primes ⊢ ‖χ ↑↑p‖ * ↑↑p ^ (-s).re ≤ ↑↑p ^ (-s).re TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
summable_neg_log_one_sub_char_mul_prime_cpow
[69, 1]
[79, 41]
gcongr
N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re p : Nat.Primes ⊢ ‖χ ↑↑p‖ * ↑↑p ^ (-s).re ≤ 1 * ↑↑p ^ (-s.re)
case h N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re p : Nat.Primes ⊢ ‖χ ↑↑p‖ ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re p : Nat.Primes ⊢ ‖χ ↑↑p‖ * ↑↑p ^ (-s).re ≤ 1 * ↑↑p ^ (-s.re) TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
summable_neg_log_one_sub_char_mul_prime_cpow
[69, 1]
[79, 41]
exact DirichletCharacter.norm_le_one χ _
case h N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re p : Nat.Primes ⊢ ‖χ ↑↑p‖ ≤ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h N : ℕ χ : DirichletCharacter ℂ N s : ℂ hs : 1 < s.re p : Nat.Primes ⊢ ‖χ ↑↑p‖ ≤ 1 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg'
[81, 1]
[104, 22]
have hac₀ : ‖(a : ℂ)‖ < 1 := by simp only [norm_eq_abs, abs_ofReal, _root_.abs_of_nonneg ha₀, ha₁]
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 ⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 ⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re
Please generate a tactic in lean4 to solve the state. STATE: a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 ⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg'
[81, 1]
[104, 22]
have hac₁ : ‖a * z‖ < 1 := by rwa [norm_mul, hz, mul_one]
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 ⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 ⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re
Please generate a tactic in lean4 to solve the state. STATE: a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 ⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg'
[81, 1]
[104, 22]
have hac₂ : ‖a * z ^ 2‖ < 1 := by rwa [norm_mul, norm_pow, hz, one_pow, mul_one]
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 ⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 ⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re
Please generate a tactic in lean4 to solve the state. STATE: a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 ⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg'
[81, 1]
[104, 22]
have H₀ := (hasSum_re <| hasSum_taylorSeries_neg_log hac₀).mul_left 3
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 ⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re) ⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re
Please generate a tactic in lean4 to solve the state. STATE: a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 ⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg'
[81, 1]
[104, 22]
have H₁ := (hasSum_re <| hasSum_taylorSeries_neg_log hac₁).mul_left 4
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re) ⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re) H₁ : HasSum (fun i => 4 * ((↑a * z) ^ i / ↑i).re) (4 * (-(1 - ↑a * z).log).re) ⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re
Please generate a tactic in lean4 to solve the state. STATE: a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re) ⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg'
[81, 1]
[104, 22]
have H₂ := hasSum_re <| hasSum_taylorSeries_neg_log hac₂
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re) H₁ : HasSum (fun i => 4 * ((↑a * z) ^ i / ↑i).re) (4 * (-(1 - ↑a * z).log).re) ⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re) H₁ : HasSum (fun i => 4 * ((↑a * z) ^ i / ↑i).re) (4 * (-(1 - ↑a * z).log).re) H₂ : HasSum (fun x => ((↑a * z ^ 2) ^ x / ↑x).re) (-(1 - ↑a * z ^ 2).log).re ⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re
Please generate a tactic in lean4 to solve the state. STATE: a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re) H₁ : HasSum (fun i => 4 * ((↑a * z) ^ i / ↑i).re) (4 * (-(1 - ↑a * z).log).re) ⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg'
[81, 1]
[104, 22]
rw [← ((H₀.add H₁).add H₂).tsum_eq]
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re) H₁ : HasSum (fun i => 4 * ((↑a * z) ^ i / ↑i).re) (4 * (-(1 - ↑a * z).log).re) H₂ : HasSum (fun x => ((↑a * z ^ 2) ^ x / ↑x).re) (-(1 - ↑a * z ^ 2).log).re ⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re) H₁ : HasSum (fun i => 4 * ((↑a * z) ^ i / ↑i).re) (4 * (-(1 - ↑a * z).log).re) H₂ : HasSum (fun x => ((↑a * z ^ 2) ^ x / ↑x).re) (-(1 - ↑a * z ^ 2).log).re ⊢ 0 ≤ ∑' (b : ℕ), (3 * (↑a ^ b / ↑b).re + 4 * ((↑a * z) ^ b / ↑b).re + ((↑a * z ^ 2) ^ b / ↑b).re)
Please generate a tactic in lean4 to solve the state. STATE: a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re) H₁ : HasSum (fun i => 4 * ((↑a * z) ^ i / ↑i).re) (4 * (-(1 - ↑a * z).log).re) H₂ : HasSum (fun x => ((↑a * z ^ 2) ^ x / ↑x).re) (-(1 - ↑a * z ^ 2).log).re ⊢ 0 ≤ 3 * (-(1 - ↑a).log).re + 4 * (-(1 - ↑a * z).log).re + (-(1 - ↑a * z ^ 2).log).re TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg'
[81, 1]
[104, 22]
clear H₀ H₁ H₂
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re) H₁ : HasSum (fun i => 4 * ((↑a * z) ^ i / ↑i).re) (4 * (-(1 - ↑a * z).log).re) H₂ : HasSum (fun x => ((↑a * z ^ 2) ^ x / ↑x).re) (-(1 - ↑a * z ^ 2).log).re ⊢ 0 ≤ ∑' (b : ℕ), (3 * (↑a ^ b / ↑b).re + 4 * ((↑a * z) ^ b / ↑b).re + ((↑a * z ^ 2) ^ b / ↑b).re)
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 ⊢ 0 ≤ ∑' (b : ℕ), (3 * (↑a ^ b / ↑b).re + 4 * ((↑a * z) ^ b / ↑b).re + ((↑a * z ^ 2) ^ b / ↑b).re)
Please generate a tactic in lean4 to solve the state. STATE: a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 H₀ : HasSum (fun i => 3 * (↑a ^ i / ↑i).re) (3 * (-(1 - ↑a).log).re) H₁ : HasSum (fun i => 4 * ((↑a * z) ^ i / ↑i).re) (4 * (-(1 - ↑a * z).log).re) H₂ : HasSum (fun x => ((↑a * z ^ 2) ^ x / ↑x).re) (-(1 - ↑a * z ^ 2).log).re ⊢ 0 ≤ ∑' (b : ℕ), (3 * (↑a ^ b / ↑b).re + 4 * ((↑a * z) ^ b / ↑b).re + ((↑a * z ^ 2) ^ b / ↑b).re) TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg'
[81, 1]
[104, 22]
refine tsum_nonneg fun n ↦ ?_
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 ⊢ 0 ≤ ∑' (b : ℕ), (3 * (↑a ^ b / ↑b).re + 4 * ((↑a * z) ^ b / ↑b).re + ((↑a * z ^ 2) ^ b / ↑b).re)
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 n : ℕ ⊢ 0 ≤ 3 * (↑a ^ n / ↑n).re + 4 * ((↑a * z) ^ n / ↑n).re + ((↑a * z ^ 2) ^ n / ↑n).re
Please generate a tactic in lean4 to solve the state. STATE: a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 ⊢ 0 ≤ ∑' (b : ℕ), (3 * (↑a ^ b / ↑b).re + 4 * ((↑a * z) ^ b / ↑b).re + ((↑a * z ^ 2) ^ b / ↑b).re) TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg'
[81, 1]
[104, 22]
simp only [mul_pow, ← ofReal_pow, div_natCast_re, ofReal_re, mul_re, ofReal_im, zero_mul, sub_zero]
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 n : ℕ ⊢ 0 ≤ 3 * (↑a ^ n / ↑n).re + 4 * ((↑a * z) ^ n / ↑n).re + ((↑a * z ^ 2) ^ n / ↑n).re
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 n : ℕ ⊢ 0 ≤ 3 * (a ^ n / ↑n) + 4 * (a ^ n * (z ^ n).re / ↑n) + a ^ n * ((z ^ 2) ^ n).re / ↑n
Please generate a tactic in lean4 to solve the state. STATE: a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 n : ℕ ⊢ 0 ≤ 3 * (↑a ^ n / ↑n).re + 4 * ((↑a * z) ^ n / ↑n).re + ((↑a * z ^ 2) ^ n / ↑n).re TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg'
[81, 1]
[104, 22]
rcases n.eq_zero_or_pos with rfl | hn
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 n : ℕ ⊢ 0 ≤ 3 * (a ^ n / ↑n) + 4 * (a ^ n * (z ^ n).re / ↑n) + a ^ n * ((z ^ 2) ^ n).re / ↑n
case inl a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 ⊢ 0 ≤ 3 * (a ^ 0 / ↑0) + 4 * (a ^ 0 * (z ^ 0).re / ↑0) + a ^ 0 * ((z ^ 2) ^ 0).re / ↑0 case inr a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 n : ℕ hn : n > 0 ⊢ 0 ≤ 3 * (a ^ n / ↑n) + 4 * (a ^ n * (z ^ n).re / ↑n) + a ^ n * ((z ^ 2) ^ n).re / ↑n
Please generate a tactic in lean4 to solve the state. STATE: a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 n : ℕ ⊢ 0 ≤ 3 * (a ^ n / ↑n) + 4 * (a ^ n * (z ^ n).re / ↑n) + a ^ n * ((z ^ 2) ^ n).re / ↑n TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg'
[81, 1]
[104, 22]
field_simp
case inr a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 n : ℕ hn : n > 0 ⊢ 0 ≤ 3 * (a ^ n / ↑n) + 4 * (a ^ n * (z ^ n).re / ↑n) + a ^ n * ((z ^ 2) ^ n).re / ↑n
case inr a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 n : ℕ hn : n > 0 ⊢ 0 ≤ (3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ 2) ^ n).re) / ↑n
Please generate a tactic in lean4 to solve the state. STATE: case inr a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 n : ℕ hn : n > 0 ⊢ 0 ≤ 3 * (a ^ n / ↑n) + 4 * (a ^ n * (z ^ n).re / ↑n) + a ^ n * ((z ^ 2) ^ n).re / ↑n TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg'
[81, 1]
[104, 22]
refine div_nonneg ?_ n.cast_nonneg
case inr a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 n : ℕ hn : n > 0 ⊢ 0 ≤ (3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ 2) ^ n).re) / ↑n
case inr a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 n : ℕ hn : n > 0 ⊢ 0 ≤ 3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ 2) ^ n).re
Please generate a tactic in lean4 to solve the state. STATE: case inr a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 n : ℕ hn : n > 0 ⊢ 0 ≤ (3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ 2) ^ n).re) / ↑n TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg'
[81, 1]
[104, 22]
rw [← pow_mul, pow_mul', sq, mul_re, ← sq, ← sq, ← sq_abs_sub_sq_re, ← norm_eq_abs, norm_pow, hz]
case inr a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 n : ℕ hn : n > 0 ⊢ 0 ≤ 3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ 2) ^ n).re
case inr a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 n : ℕ hn : n > 0 ⊢ 0 ≤ 3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ n).re ^ 2 - ((1 ^ n) ^ 2 - (z ^ n).re ^ 2))
Please generate a tactic in lean4 to solve the state. STATE: case inr a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 n : ℕ hn : n > 0 ⊢ 0 ≤ 3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ 2) ^ n).re TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg'
[81, 1]
[104, 22]
calc 0 ≤ 2 * a ^ n * ((z ^ n).re + 1) ^ 2 := by positivity _ = _ := by ring
case inr a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 n : ℕ hn : n > 0 ⊢ 0 ≤ 3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ n).re ^ 2 - ((1 ^ n) ^ 2 - (z ^ n).re ^ 2))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inr a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 n : ℕ hn : n > 0 ⊢ 0 ≤ 3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ n).re ^ 2 - ((1 ^ n) ^ 2 - (z ^ n).re ^ 2)) TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg'
[81, 1]
[104, 22]
simp only [norm_eq_abs, abs_ofReal, _root_.abs_of_nonneg ha₀, ha₁]
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 ⊢ ‖↑a‖ < 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 ⊢ ‖↑a‖ < 1 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg'
[81, 1]
[104, 22]
rwa [norm_mul, hz, mul_one]
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 ⊢ ‖↑a * z‖ < 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 ⊢ ‖↑a * z‖ < 1 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg'
[81, 1]
[104, 22]
rwa [norm_mul, norm_pow, hz, one_pow, mul_one]
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 ⊢ ‖↑a * z ^ 2‖ < 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 ⊢ ‖↑a * z ^ 2‖ < 1 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg'
[81, 1]
[104, 22]
simp
case inl a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 ⊢ 0 ≤ 3 * (a ^ 0 / ↑0) + 4 * (a ^ 0 * (z ^ 0).re / ↑0) + a ^ 0 * ((z ^ 2) ^ 0).re / ↑0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inl a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 ⊢ 0 ≤ 3 * (a ^ 0 / ↑0) + 4 * (a ^ 0 * (z ^ 0).re / ↑0) + a ^ 0 * ((z ^ 2) ^ 0).re / ↑0 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg'
[81, 1]
[104, 22]
positivity
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 n : ℕ hn : n > 0 ⊢ 0 ≤ 2 * a ^ n * ((z ^ n).re + 1) ^ 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 n : ℕ hn : n > 0 ⊢ 0 ≤ 2 * a ^ n * ((z ^ n).re + 1) ^ 2 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg'
[81, 1]
[104, 22]
ring
a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 n : ℕ hn : n > 0 ⊢ 2 * a ^ n * ((z ^ n).re + 1) ^ 2 = 3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ n).re ^ 2 - ((1 ^ n) ^ 2 - (z ^ n).re ^ 2))
no goals
Please generate a tactic in lean4 to solve the state. STATE: a : ℝ ha₀ : 0 ≤ a ha₁ : a < 1 z : ℂ hz : ‖z‖ = 1 hac₀ : ‖↑a‖ < 1 hac₁ : ‖↑a * z‖ < 1 hac₂ : ‖↑a * z ^ 2‖ < 1 n : ℕ hn : n > 0 ⊢ 2 * a ^ n * ((z ^ n).re + 1) ^ 2 = 3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ n).re ^ 2 - ((1 ^ n) ^ 2 - (z ^ n).re ^ 2)) TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg_dirichlet
[106, 1]
[135, 37]
by_cases hn' : IsUnit (n : ZMod N)
N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x ⊢ 0 ≤ 3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re + (-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re
case pos N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ⊢ 0 ≤ 3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re + (-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re case neg N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : ¬IsUnit ↑n ⊢ 0 ≤ 3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re + (-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re
Please generate a tactic in lean4 to solve the state. STATE: N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x ⊢ 0 ≤ 3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re + (-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg_dirichlet
[106, 1]
[135, 37]
have ha₀ : 0 ≤ (n : ℝ) ^ (-x) := Real.rpow_nonneg n.cast_nonneg _
case pos N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ⊢ 0 ≤ 3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re + (-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re
case pos N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ⊢ 0 ≤ 3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re + (-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re
Please generate a tactic in lean4 to solve the state. STATE: case pos N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ⊢ 0 ≤ 3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re + (-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg_dirichlet
[106, 1]
[135, 37]
have ha₁ : (n : ℝ) ^ (-x) < 1 := by simpa only [Real.rpow_lt_one_iff n.cast_nonneg, Nat.cast_eq_zero, Nat.one_lt_cast, Left.neg_neg_iff, Nat.cast_lt_one, Left.neg_pos_iff] using Or.inr <| Or.inl ⟨hn, zero_lt_one.trans hx⟩
case pos N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ⊢ 0 ≤ 3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re + (-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re
case pos N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 ⊢ 0 ≤ 3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re + (-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re
Please generate a tactic in lean4 to solve the state. STATE: case pos N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ⊢ 0 ≤ 3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re + (-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg_dirichlet
[106, 1]
[135, 37]
have hz : ‖χ n * (n : ℂ) ^ (-(I * y))‖ = 1 := by rw [norm_mul, ← hn'.unit_spec, DirichletCharacter.unit_norm_eq_one χ hn'.unit, one_mul, norm_eq_abs, abs_cpow_of_imp fun h ↦ False.elim <| by linarith [Nat.cast_eq_zero.mp h, hn]] simp
case pos N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 ⊢ 0 ≤ 3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re + (-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re
case pos N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ 0 ≤ 3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re + (-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re
Please generate a tactic in lean4 to solve the state. STATE: case pos N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 ⊢ 0 ≤ 3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re + (-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg_dirichlet
[106, 1]
[135, 37]
rw [MulChar.one_apply hn', one_mul]
case pos N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ 0 ≤ 3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re + (-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re
case pos N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ 0 ≤ 3 * (-(1 - ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re + (-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re
Please generate a tactic in lean4 to solve the state. STATE: case pos N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ 0 ≤ 3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re + (-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg_dirichlet
[106, 1]
[135, 37]
convert re_log_comb_nonneg' ha₀ ha₁ hz using 6
case pos N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ 0 ≤ 3 * (-(1 - ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re + (-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re
case h.e'_4.h.e'_5.h.e'_5.h.e'_6.h.e'_1.h.e'_3 N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ (1 - ↑n ^ (-↑x)).log = (1 - ↑(↑n ^ (-x))).log case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3 N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ (1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log = (1 - ↑(↑n ^ (-x)) * (χ ↑n * ↑n ^ (-(I * ↑y)))).log case h.e'_4.h.e'_6.h.e'_1.h.e'_3.h.e'_1.h.e'_6 N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y)) = ↑(↑n ^ (-x)) * (χ ↑n * ↑n ^ (-(I * ↑y))) ^ 2
Please generate a tactic in lean4 to solve the state. STATE: case pos N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ 0 ≤ 3 * (-(1 - ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re + (-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg_dirichlet
[106, 1]
[135, 37]
simpa only [Real.rpow_lt_one_iff n.cast_nonneg, Nat.cast_eq_zero, Nat.one_lt_cast, Left.neg_neg_iff, Nat.cast_lt_one, Left.neg_pos_iff] using Or.inr <| Or.inl ⟨hn, zero_lt_one.trans hx⟩
N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ⊢ ↑n ^ (-x) < 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ⊢ ↑n ^ (-x) < 1 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg_dirichlet
[106, 1]
[135, 37]
rw [norm_mul, ← hn'.unit_spec, DirichletCharacter.unit_norm_eq_one χ hn'.unit, one_mul, norm_eq_abs, abs_cpow_of_imp fun h ↦ False.elim <| by linarith [Nat.cast_eq_zero.mp h, hn]]
N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 ⊢ ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1
N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 ⊢ Complex.abs ↑n ^ (-(I * ↑y)).re / ((↑n).arg * (-(I * ↑y)).im).exp = 1
Please generate a tactic in lean4 to solve the state. STATE: N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 ⊢ ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg_dirichlet
[106, 1]
[135, 37]
simp
N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 ⊢ Complex.abs ↑n ^ (-(I * ↑y)).re / ((↑n).arg * (-(I * ↑y)).im).exp = 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 ⊢ Complex.abs ↑n ^ (-(I * ↑y)).re / ((↑n).arg * (-(I * ↑y)).im).exp = 1 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg_dirichlet
[106, 1]
[135, 37]
linarith [Nat.cast_eq_zero.mp h, hn]
N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 h : ↑n = 0 ⊢ False
no goals
Please generate a tactic in lean4 to solve the state. STATE: N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 h : ↑n = 0 ⊢ False TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg_dirichlet
[106, 1]
[135, 37]
congr 2
case h.e'_4.h.e'_5.h.e'_5.h.e'_6.h.e'_1.h.e'_3 N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ (1 - ↑n ^ (-↑x)).log = (1 - ↑(↑n ^ (-x))).log
case h.e'_4.h.e'_5.h.e'_5.h.e'_6.h.e'_1.h.e'_3.e_x.e_a N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ ↑n ^ (-↑x) = ↑(↑n ^ (-x))
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_4.h.e'_5.h.e'_5.h.e'_6.h.e'_1.h.e'_3 N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ (1 - ↑n ^ (-↑x)).log = (1 - ↑(↑n ^ (-x))).log TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg_dirichlet
[106, 1]
[135, 37]
exact_mod_cast (ofReal_cpow n.cast_nonneg (-x)).symm
case h.e'_4.h.e'_5.h.e'_5.h.e'_6.h.e'_1.h.e'_3.e_x.e_a N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ ↑n ^ (-↑x) = ↑(↑n ^ (-x))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_4.h.e'_5.h.e'_5.h.e'_6.h.e'_1.h.e'_3.e_x.e_a N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ ↑n ^ (-↑x) = ↑(↑n ^ (-x)) TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg_dirichlet
[106, 1]
[135, 37]
congr 2
case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3 N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ (1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log = (1 - ↑(↑n ^ (-x)) * (χ ↑n * ↑n ^ (-(I * ↑y)))).log
case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3.e_x.e_a N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ χ ↑n * ↑n ^ (-(↑x + I * ↑y)) = ↑(↑n ^ (-x)) * (χ ↑n * ↑n ^ (-(I * ↑y)))
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3 N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ (1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log = (1 - ↑(↑n ^ (-x)) * (χ ↑n * ↑n ^ (-(I * ↑y)))).log TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg_dirichlet
[106, 1]
[135, 37]
rw [neg_add, cpow_add _ _ <| by norm_cast; linarith, ← ofReal_neg, ofReal_cpow n.cast_nonneg (-x), ofReal_natCast]
case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3.e_x.e_a N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ χ ↑n * ↑n ^ (-(↑x + I * ↑y)) = ↑(↑n ^ (-x)) * (χ ↑n * ↑n ^ (-(I * ↑y)))
case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3.e_x.e_a N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ χ ↑n * (↑n ^ ↑(-x) * ↑n ^ (-(I * ↑y))) = ↑n ^ ↑(-x) * (χ ↑n * ↑n ^ (-(I * ↑y)))
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3.e_x.e_a N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ χ ↑n * ↑n ^ (-(↑x + I * ↑y)) = ↑(↑n ^ (-x)) * (χ ↑n * ↑n ^ (-(I * ↑y))) TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg_dirichlet
[106, 1]
[135, 37]
ring
case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3.e_x.e_a N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ χ ↑n * (↑n ^ ↑(-x) * ↑n ^ (-(I * ↑y))) = ↑n ^ ↑(-x) * (χ ↑n * ↑n ^ (-(I * ↑y)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3.e_x.e_a N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ χ ↑n * (↑n ^ ↑(-x) * ↑n ^ (-(I * ↑y))) = ↑n ^ ↑(-x) * (χ ↑n * ↑n ^ (-(I * ↑y))) TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg_dirichlet
[106, 1]
[135, 37]
norm_cast
N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ ↑n ≠ 0
N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ ¬n = 0
Please generate a tactic in lean4 to solve the state. STATE: N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ ↑n ≠ 0 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg_dirichlet
[106, 1]
[135, 37]
linarith
N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ ¬n = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ ¬n = 0 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg_dirichlet
[106, 1]
[135, 37]
rw [neg_add, cpow_add _ _ <| by norm_cast; linarith, ← ofReal_neg, ofReal_cpow n.cast_nonneg (-x), ofReal_natCast, show -(2 * I * y) = (2 : ℕ) * (-I * y) by ring, cpow_nat_mul]
case h.e'_4.h.e'_6.h.e'_1.h.e'_3.h.e'_1.h.e'_6 N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y)) = ↑(↑n ^ (-x)) * (χ ↑n * ↑n ^ (-(I * ↑y))) ^ 2
case h.e'_4.h.e'_6.h.e'_1.h.e'_3.h.e'_1.h.e'_6 N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ χ ↑n ^ 2 * (↑n ^ ↑(-x) * (↑n ^ (-I * ↑y)) ^ 2) = ↑n ^ ↑(-x) * (χ ↑n * ↑n ^ (-(I * ↑y))) ^ 2
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_4.h.e'_6.h.e'_1.h.e'_3.h.e'_1.h.e'_6 N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y)) = ↑(↑n ^ (-x)) * (χ ↑n * ↑n ^ (-(I * ↑y))) ^ 2 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg_dirichlet
[106, 1]
[135, 37]
ring_nf
case h.e'_4.h.e'_6.h.e'_1.h.e'_3.h.e'_1.h.e'_6 N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ χ ↑n ^ 2 * (↑n ^ ↑(-x) * (↑n ^ (-I * ↑y)) ^ 2) = ↑n ^ ↑(-x) * (χ ↑n * ↑n ^ (-(I * ↑y))) ^ 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_4.h.e'_6.h.e'_1.h.e'_3.h.e'_1.h.e'_6 N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ χ ↑n ^ 2 * (↑n ^ ↑(-x) * (↑n ^ (-I * ↑y)) ^ 2) = ↑n ^ ↑(-x) * (χ ↑n * ↑n ^ (-(I * ↑y))) ^ 2 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg_dirichlet
[106, 1]
[135, 37]
ring
N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ -(2 * I * ↑y) = ↑2 * (-I * ↑y)
no goals
Please generate a tactic in lean4 to solve the state. STATE: N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : IsUnit ↑n ha₀ : 0 ≤ ↑n ^ (-x) ha₁ : ↑n ^ (-x) < 1 hz : ‖χ ↑n * ↑n ^ (-(I * ↑y))‖ = 1 ⊢ -(2 * I * ↑y) = ↑2 * (-I * ↑y) TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
re_log_comb_nonneg_dirichlet
[106, 1]
[135, 37]
simp [MulChar.map_nonunit _ hn']
case neg N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : ¬IsUnit ↑n ⊢ 0 ≤ 3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re + (-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg N : ℕ χ : DirichletCharacter ℂ N n : ℕ hn : 2 ≤ n x y : ℝ hx : 1 < x hn' : ¬IsUnit ↑n ⊢ 0 ≤ 3 * (-(1 - 1 ↑n * ↑n ^ (-↑x)).log).re + 4 * (-(1 - χ ↑n * ↑n ^ (-(↑x + I * ↑y))).log).re + (-(1 - χ ↑n ^ 2 * ↑n ^ (-(↑x + 2 * I * ↑y))).log).re TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
one_lt_re_of_pos
[138, 1]
[141, 92]
simp only [add_re, one_re, ofReal_re, lt_add_iff_pos_right, hx, mul_re, I_re, zero_mul, I_im, ofReal_im, mul_zero, sub_self, add_zero, re_ofNat, im_ofNat, mul_one, mul_im, and_self]
x y : ℝ hx : 0 < x ⊢ 1 < (1 + ↑x).re ∧ 1 < (1 + ↑x + I * ↑y).re ∧ 1 < (1 + ↑x + 2 * I * ↑y).re
no goals
Please generate a tactic in lean4 to solve the state. STATE: x y : ℝ hx : 0 < x ⊢ 1 < (1 + ↑x).re ∧ 1 < (1 + ↑x + I * ↑y).re ∧ 1 < (1 + ↑x + 2 * I * ↑y).re TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
norm_dirichlet_product_ge_one
[147, 1]
[174, 33]
let χ₀ := (1 : DirichletCharacter ℂ N)
N : ℕ χ : DirichletCharacter ℂ N x : ℝ hx : 0 < x y : ℝ ⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 * L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥ 1
N : ℕ χ : DirichletCharacter ℂ N x : ℝ hx : 0 < x y : ℝ χ₀ : DirichletCharacter ℂ N := 1 ⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 * L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥ 1
Please generate a tactic in lean4 to solve the state. STATE: N : ℕ χ : DirichletCharacter ℂ N x : ℝ hx : 0 < x y : ℝ ⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 * L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥ 1 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
norm_dirichlet_product_ge_one
[147, 1]
[174, 33]
have ⟨h₀, h₁, h₂⟩ := one_lt_re_of_pos y hx
N : ℕ χ : DirichletCharacter ℂ N x : ℝ hx : 0 < x y : ℝ χ₀ : DirichletCharacter ℂ N := 1 ⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 * L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥ 1
N : ℕ χ : DirichletCharacter ℂ N x : ℝ hx : 0 < x y : ℝ χ₀ : DirichletCharacter ℂ N := 1 h₀ : 1 < (1 + ↑x).re h₁ : 1 < (1 + ↑x + I * ↑y).re h₂ : 1 < (1 + ↑x + 2 * I * ↑y).re ⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 * L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥ 1
Please generate a tactic in lean4 to solve the state. STATE: N : ℕ χ : DirichletCharacter ℂ N x : ℝ hx : 0 < x y : ℝ χ₀ : DirichletCharacter ℂ N := 1 ⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 * L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥ 1 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
norm_dirichlet_product_ge_one
[147, 1]
[174, 33]
have hx₁ : 1 + (x : ℂ) = (1 + x : ℂ).re := by simp only [add_re, one_re, ofReal_re, ofReal_add, ofReal_one]
N : ℕ χ : DirichletCharacter ℂ N x : ℝ hx : 0 < x y : ℝ χ₀ : DirichletCharacter ℂ N := 1 h₀ : 1 < (1 + ↑x).re h₁ : 1 < (1 + ↑x + I * ↑y).re h₂ : 1 < (1 + ↑x + 2 * I * ↑y).re ⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 * L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥ 1
N : ℕ χ : DirichletCharacter ℂ N x : ℝ hx : 0 < x y : ℝ χ₀ : DirichletCharacter ℂ N := 1 h₀ : 1 < (1 + ↑x).re h₁ : 1 < (1 + ↑x + I * ↑y).re h₂ : 1 < (1 + ↑x + 2 * I * ↑y).re hx₁ : 1 + ↑x = ↑(1 + ↑x).re ⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 * L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥ 1
Please generate a tactic in lean4 to solve the state. STATE: N : ℕ χ : DirichletCharacter ℂ N x : ℝ hx : 0 < x y : ℝ χ₀ : DirichletCharacter ℂ N := 1 h₀ : 1 < (1 + ↑x).re h₁ : 1 < (1 + ↑x + I * ↑y).re h₂ : 1 < (1 + ↑x + 2 * I * ↑y).re ⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 * L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥ 1 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
norm_dirichlet_product_ge_one
[147, 1]
[174, 33]
have hsum₀ := (hasSum_re (summable_neg_log_one_sub_char_mul_prime_cpow χ₀ h₀).hasSum).summable.mul_left 3
N : ℕ χ : DirichletCharacter ℂ N x : ℝ hx : 0 < x y : ℝ χ₀ : DirichletCharacter ℂ N := 1 h₀ : 1 < (1 + ↑x).re h₁ : 1 < (1 + ↑x + I * ↑y).re h₂ : 1 < (1 + ↑x + 2 * I * ↑y).re hx₁ : 1 + ↑x = ↑(1 + ↑x).re ⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 * L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥ 1
N : ℕ χ : DirichletCharacter ℂ N x : ℝ hx : 0 < x y : ℝ χ₀ : DirichletCharacter ℂ N := 1 h₀ : 1 < (1 + ↑x).re h₁ : 1 < (1 + ↑x + I * ↑y).re h₂ : 1 < (1 + ↑x + 2 * I * ↑y).re hx₁ : 1 + ↑x = ↑(1 + ↑x).re hsum₀ : Summable fun i => 3 * (-(1 - χ₀ ↑↑i * ↑↑i ^ (-(1 + ↑x))).log).re ⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 * L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥ 1
Please generate a tactic in lean4 to solve the state. STATE: N : ℕ χ : DirichletCharacter ℂ N x : ℝ hx : 0 < x y : ℝ χ₀ : DirichletCharacter ℂ N := 1 h₀ : 1 < (1 + ↑x).re h₁ : 1 < (1 + ↑x + I * ↑y).re h₂ : 1 < (1 + ↑x + 2 * I * ↑y).re hx₁ : 1 + ↑x = ↑(1 + ↑x).re ⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 * L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥ 1 TACTIC:
https://github.com/MichaelStollBayreuth/EulerProducts.git
21e07835d1a467b99b5c3c9390d61ae69404445d
EulerProducts/PNT.lean
norm_dirichlet_product_ge_one
[147, 1]
[174, 33]
have hsum₁ := (hasSum_re (summable_neg_log_one_sub_char_mul_prime_cpow χ h₁).hasSum).summable.mul_left 4
N : ℕ χ : DirichletCharacter ℂ N x : ℝ hx : 0 < x y : ℝ χ₀ : DirichletCharacter ℂ N := 1 h₀ : 1 < (1 + ↑x).re h₁ : 1 < (1 + ↑x + I * ↑y).re h₂ : 1 < (1 + ↑x + 2 * I * ↑y).re hx₁ : 1 + ↑x = ↑(1 + ↑x).re hsum₀ : Summable fun i => 3 * (-(1 - χ₀ ↑↑i * ↑↑i ^ (-(1 + ↑x))).log).re ⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 * L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥ 1
N : ℕ χ : DirichletCharacter ℂ N x : ℝ hx : 0 < x y : ℝ χ₀ : DirichletCharacter ℂ N := 1 h₀ : 1 < (1 + ↑x).re h₁ : 1 < (1 + ↑x + I * ↑y).re h₂ : 1 < (1 + ↑x + 2 * I * ↑y).re hx₁ : 1 + ↑x = ↑(1 + ↑x).re hsum₀ : Summable fun i => 3 * (-(1 - χ₀ ↑↑i * ↑↑i ^ (-(1 + ↑x))).log).re hsum₁ : Summable fun i => 4 * (-(1 - χ ↑↑i * ↑↑i ^ (-(1 + ↑x + I * ↑y))).log).re ⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 * L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥ 1
Please generate a tactic in lean4 to solve the state. STATE: N : ℕ χ : DirichletCharacter ℂ N x : ℝ hx : 0 < x y : ℝ χ₀ : DirichletCharacter ℂ N := 1 h₀ : 1 < (1 + ↑x).re h₁ : 1 < (1 + ↑x + I * ↑y).re h₂ : 1 < (1 + ↑x + 2 * I * ↑y).re hx₁ : 1 + ↑x = ↑(1 + ↑x).re hsum₀ : Summable fun i => 3 * (-(1 - χ₀ ↑↑i * ↑↑i ^ (-(1 + ↑x))).log).re ⊢ ‖L (fun n => 1 ↑n) (1 + ↑x) ^ 3 * L (fun n => χ ↑n) (1 + ↑x + I * ↑y) ^ 4 * L (fun n => (χ ^ 2) ↑n) (1 + ↑x + 2 * I * ↑y)‖ ≥ 1 TACTIC: