url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
---|---|---|---|---|---|---|---|---|---|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | rcases lt_trichotomy m (n + 1) with H | rfl | H | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
x : ℝ
m : ℕ
hm : m ≠ n + 1
⊢ F x m = (↑n + 1) ^ ↑x * term f (↑x) m | case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
x : ℝ
m : ℕ
hm : m ≠ n + 1
H : m < n + 1
⊢ F x m = (↑n + 1) ^ ↑x * term f (↑x) m
case inr.inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
x : ℝ
hm : n + 1 ≠ n + 1
⊢ F x (n + 1) = (↑n + 1) ^ ↑x * term f (↑x) (n + 1)
case inr.inr
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
x : ℝ
m : ℕ
hm : m ≠ n + 1
H : n + 1 < m
⊢ F x m = (↑n + 1) ^ ↑x * term f (↑x) m | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
x : ℝ
m : ℕ
hm : m ≠ n + 1
⊢ F x m = (↑n + 1) ^ ↑x * term f (↑x) m
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [Set.mem_setOf_eq, Nat.not_lt_of_gt H, not_false_eq_true, Set.indicator_of_not_mem,
term, h m <| Nat.lt_succ_iff.mp H, zero_div, ite_self, mul_zero, F] | case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
x : ℝ
m : ℕ
hm : m ≠ n + 1
H : m < n + 1
⊢ F x m = (↑n + 1) ^ ↑x * term f (↑x) m | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
x : ℝ
m : ℕ
hm : m ≠ n + 1
H : m < n + 1
⊢ F x m = (↑n + 1) ^ ↑x * term f (↑x) m
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | exact (hm rfl).elim | case inr.inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
x : ℝ
hm : n + 1 ≠ n + 1
⊢ F x (n + 1) = (↑n + 1) ^ ↑x * term f (↑x) (n + 1) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case inr.inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
x : ℝ
hm : n + 1 ≠ n + 1
⊢ F x (n + 1) = (↑n + 1) ^ ↑x * term f (↑x) (n + 1)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [Set.mem_setOf_eq, H, Set.indicator_of_mem, term, (n.zero_lt_succ.trans H).ne',
↓reduceIte, foo, F] | case inr.inr
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
x : ℝ
m : ℕ
hm : m ≠ n + 1
H : n + 1 < m
⊢ F x m = (↑n + 1) ^ ↑x * term f (↑x) m | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case inr.inr
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
x : ℝ
m : ℕ
hm : m ≠ n + 1
H : n + 1 < m
⊢ F x m = (↑n + 1) ^ ↑x * term f (↑x) m
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | refine (summable_mul_left_iff <| cpow_natCast_add_one_ne_zero n _).mpr <|
LSeriesSummable_of_abscissaOfAbsConv_lt_re ?_ | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
⊢ Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
⊢ abscissaOfAbsConv f < ↑(↑x).re | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
⊢ Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simpa only [ofReal_re] using hay.trans_le <| EReal.coe_le_coe_iff.mpr hx | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
⊢ abscissaOfAbsConv f < ↑(↑x).re | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
⊢ abscissaOfAbsConv f < ↑(↑x).re
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | intro x hx | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
⊢ ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
⊢ (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
⊢ ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | rw [LSeries, ← tsum_mul_left, tsum_eq_add_tsum_ite (hs hx) (n + 1)] | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
⊢ (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
⊢ ((↑n + 1) ^ ↑x * term f (↑x) (n + 1) + ∑' (n_1 : ℕ), if n_1 = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) n_1) =
f (n + 1) + ∑' (m : ℕ), F x m | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
⊢ (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | congr | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
⊢ ((↑n + 1) ^ ↑x * term f (↑x) (n + 1) + ∑' (n_1 : ℕ), if n_1 = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) n_1) =
f (n + 1) + ∑' (m : ℕ), F x m | case e_a
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
⊢ (↑n + 1) ^ ↑x * term f (↑x) (n + 1) = f (n + 1)
case e_a.e_f
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
⊢ (fun n_1 => if n_1 = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) n_1) = fun m => F x m | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
⊢ ((↑n + 1) ^ ↑x * term f (↑x) (n + 1) + ∑' (n_1 : ℕ), if n_1 = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) n_1) =
f (n + 1) + ∑' (m : ℕ), F x m
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | exact pow_mul_term_eq f x n | case e_a
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
⊢ (↑n + 1) ^ ↑x * term f (↑x) (n + 1) = f (n + 1) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case e_a
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
⊢ (↑n + 1) ^ ↑x * term f (↑x) (n + 1) = f (n + 1)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | ext m | case e_a.e_f
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
⊢ (fun n_1 => if n_1 = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) n_1) = fun m => F x m | case e_a.e_f.h
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
m : ℕ
⊢ (if m = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) m) = F x m | Please generate a tactic in lean4 to solve the state.
STATE:
case e_a.e_f
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
⊢ (fun n_1 => if n_1 = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) n_1) = fun m => F x m
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | rcases eq_or_ne m (n + 1) with rfl | hm | case e_a.e_f.h
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
m : ℕ
⊢ (if m = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) m) = F x m | case e_a.e_f.h.inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
⊢ (if n + 1 = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) (n + 1)) = F x (n + 1)
case e_a.e_f.h.inr
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
m : ℕ
hm : m ≠ n + 1
⊢ (if m = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) m) = F x m | Please generate a tactic in lean4 to solve the state.
STATE:
case e_a.e_f.h
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
m : ℕ
⊢ (if m = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) m) = F x m
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [↓reduceIte, hF₀ x le_rfl] | case e_a.e_f.h.inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
⊢ (if n + 1 = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) (n + 1)) = F x (n + 1) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case e_a.e_f.h.inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
⊢ (if n + 1 = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) (n + 1)) = F x (n + 1)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [hm, ↓reduceIte, ne_eq, not_false_eq_true, hF] | case e_a.e_f.h.inr
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
m : ℕ
hm : m ≠ n + 1
⊢ (if m = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) m) = F x m | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case e_a.e_f.h.inr
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
x : ℝ
hx : x ≥ y
m : ℕ
hm : m ≠ n + 1
⊢ (if m = n + 1 then 0 else (↑n + 1) ^ ↑x * term f (↑x) m) = F x m
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | refine ((hs le_rfl).indicator {m | n + 1 < m}).congr fun m ↦ ?_ | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
⊢ Summable (F y) | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
m : ℕ
⊢ {m | n + 1 < m}.indicator (fun m => (↑n + 1) ^ ↑y * term f (↑y) m) m = F y m | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
⊢ Summable (F y)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | by_cases hm : n + 1 < m | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
m : ℕ
⊢ {m | n + 1 < m}.indicator (fun m => (↑n + 1) ^ ↑y * term f (↑y) m) m = F y m | case pos
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
m : ℕ
hm : n + 1 < m
⊢ {m | n + 1 < m}.indicator (fun m => (↑n + 1) ^ ↑y * term f (↑y) m) m = F y m
case neg
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
m : ℕ
hm : ¬n + 1 < m
⊢ {m | n + 1 < m}.indicator (fun m => (↑n + 1) ^ ↑y * term f (↑y) m) m = F y m | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
m : ℕ
⊢ {m | n + 1 < m}.indicator (fun m => (↑n + 1) ^ ↑y * term f (↑y) m) m = F y m
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [Set.mem_setOf_eq, hm, Set.indicator_of_mem, ne_eq, hm.ne', not_false_eq_true, hF] | case pos
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
m : ℕ
hm : n + 1 < m
⊢ {m | n + 1 < m}.indicator (fun m => (↑n + 1) ^ ↑y * term f (↑y) m) m = F y m | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
m : ℕ
hm : n + 1 < m
⊢ {m | n + 1 < m}.indicator (fun m => (↑n + 1) ^ ↑y * term f (↑y) m) m = F y m
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [Set.mem_setOf_eq, hm, not_false_eq_true, Set.indicator_of_not_mem,
hF₀ _ (le_of_not_lt hm)] | case neg
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
m : ℕ
hm : ¬n + 1 < m
⊢ {m | n + 1 < m}.indicator (fun m => (↑n + 1) ^ ↑y * term f (↑y) m) m = F y m | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
m : ℕ
hm : ¬n + 1 < m
⊢ {m | n + 1 < m}.indicator (fun m => (↑n + 1) ^ ↑y * term f (↑y) m) m = F y m
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | rcases lt_or_le (n + 1) k with H | H | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
⊢ Tendsto (fun x => F x k) atTop (nhds 0) | case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
⊢ Tendsto (fun x => F x k) atTop (nhds 0)
case inr
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : k ≤ n + 1
⊢ Tendsto (fun x => F x k) atTop (nhds 0) | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
⊢ Tendsto (fun x => F x k) atTop (nhds 0)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | have H₀ : (0 : ℝ) ≤ k / (n + 1) := by positivity | case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
⊢ Tendsto (fun x => F x k) atTop (nhds 0) | case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
⊢ Tendsto (fun x => F x k) atTop (nhds 0) | Please generate a tactic in lean4 to solve the state.
STATE:
case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
⊢ Tendsto (fun x => F x k) atTop (nhds 0)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | have H₀' : (0 : ℝ) ≤ (n + 1) / k := by positivity | case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
⊢ Tendsto (fun x => F x k) atTop (nhds 0) | case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
⊢ Tendsto (fun x => F x k) atTop (nhds 0) | Please generate a tactic in lean4 to solve the state.
STATE:
case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
⊢ Tendsto (fun x => F x k) atTop (nhds 0)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | have H₁ : (k / (n + 1) : ℂ) = (k / (n + 1) : ℝ) := by
simp only [ofReal_div, ofReal_natCast, ofReal_add, ofReal_one] | case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
⊢ Tendsto (fun x => F x k) atTop (nhds 0) | case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1))
⊢ Tendsto (fun x => F x k) atTop (nhds 0) | Please generate a tactic in lean4 to solve the state.
STATE:
case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
⊢ Tendsto (fun x => F x k) atTop (nhds 0)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | have H₂ : (n + 1) / k < (1 : ℝ) :=
(div_lt_one <| by exact_mod_cast n.succ_pos.trans H).mpr <| by exact_mod_cast H | case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1))
⊢ Tendsto (fun x => F x k) atTop (nhds 0) | case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1))
H₂ : (↑n + 1) / ↑k < 1
⊢ Tendsto (fun x => F x k) atTop (nhds 0) | Please generate a tactic in lean4 to solve the state.
STATE:
case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1))
⊢ Tendsto (fun x => F x k) atTop (nhds 0)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [Set.mem_setOf_eq, H, Set.indicator_of_mem, F] | case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1))
H₂ : (↑n + 1) / ↑k < 1
⊢ Tendsto (fun x => F x k) atTop (nhds 0) | case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1))
H₂ : (↑n + 1) / ↑k < 1
⊢ Tendsto (fun x => f k / (↑k / (↑n + 1)) ^ ↑x) atTop (nhds 0) | Please generate a tactic in lean4 to solve the state.
STATE:
case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1))
H₂ : (↑n + 1) / ↑k < 1
⊢ Tendsto (fun x => F x k) atTop (nhds 0)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | conv =>
enter [1, x]
rw [div_eq_mul_inv, H₁, ← ofReal_cpow H₀, ← ofReal_inv, ← Real.inv_rpow H₀, inv_div] | case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1))
H₂ : (↑n + 1) / ↑k < 1
⊢ Tendsto (fun x => f k / (↑k / (↑n + 1)) ^ ↑x) atTop (nhds 0) | case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1))
H₂ : (↑n + 1) / ↑k < 1
⊢ Tendsto (fun x => f k * ↑(((↑n + 1) / ↑k) ^ x)) atTop (nhds 0) | Please generate a tactic in lean4 to solve the state.
STATE:
case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1))
H₂ : (↑n + 1) / ↑k < 1
⊢ Tendsto (fun x => f k / (↑k / (↑n + 1)) ^ ↑x) atTop (nhds 0)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | conv => enter [3, 1]; rw [← mul_zero (f k)] | case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1))
H₂ : (↑n + 1) / ↑k < 1
⊢ Tendsto (fun x => f k * ↑(((↑n + 1) / ↑k) ^ x)) atTop (nhds 0) | case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1))
H₂ : (↑n + 1) / ↑k < 1
⊢ Tendsto (fun x => f k * ↑(((↑n + 1) / ↑k) ^ x)) atTop (nhds (f k * 0)) | Please generate a tactic in lean4 to solve the state.
STATE:
case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1))
H₂ : (↑n + 1) / ↑k < 1
⊢ Tendsto (fun x => f k * ↑(((↑n + 1) / ↑k) ^ x)) atTop (nhds 0)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | exact
(tendsto_rpow_atTop_of_base_lt_one _ (neg_one_lt_zero.trans_le H₀') H₂).ofReal.const_mul _ | case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1))
H₂ : (↑n + 1) / ↑k < 1
⊢ Tendsto (fun x => f k * ↑(((↑n + 1) / ↑k) ^ x)) atTop (nhds (f k * 0)) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1))
H₂ : (↑n + 1) / ↑k < 1
⊢ Tendsto (fun x => f k * ↑(((↑n + 1) / ↑k) ^ x)) atTop (nhds (f k * 0))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | positivity | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
⊢ 0 ≤ ↑k / (↑n + 1) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
⊢ 0 ≤ ↑k / (↑n + 1)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | positivity | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
⊢ 0 ≤ (↑n + 1) / ↑k | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
⊢ 0 ≤ (↑n + 1) / ↑k
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [ofReal_div, ofReal_natCast, ofReal_add, ofReal_one] | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
⊢ ↑k / (↑n + 1) = ↑(↑k / (↑n + 1)) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
⊢ ↑k / (↑n + 1) = ↑(↑k / (↑n + 1))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | exact_mod_cast n.succ_pos.trans H | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1))
⊢ 0 < ↑k | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1))
⊢ 0 < ↑k
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | exact_mod_cast H | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1))
⊢ ↑n + 1 < ↑k | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : n + 1 < k
H₀ : 0 ≤ ↑k / (↑n + 1)
H₀' : 0 ≤ (↑n + 1) / ↑k
H₁ : ↑k / (↑n + 1) = ↑(↑k / (↑n + 1))
⊢ ↑n + 1 < ↑k
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [hF₀ _ H, tendsto_const_nhds_iff] | case inr
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : k ≤ n + 1
⊢ Tendsto (fun x => F x k) atTop (nhds 0) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case inr
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
k : ℕ
H : k ≤ n + 1
⊢ Tendsto (fun x => F x k) atTop (nhds 0)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [Set.mem_setOf_eq, H, Set.indicator_of_mem, norm_div, Complex.norm_eq_abs,
abs_cpow_real, map_div₀, abs_natCast, F] | case h.inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
H : n + 1 < k
⊢ ‖F y' k‖ ≤ ‖F y k‖ | case h.inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
H : n + 1 < k
⊢ Complex.abs (f k) / (↑k / Complex.abs (↑n + 1)) ^ y' ≤ Complex.abs (f k) / (↑k / Complex.abs (↑n + 1)) ^ y | Please generate a tactic in lean4 to solve the state.
STATE:
case h.inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
H : n + 1 < k
⊢ ‖F y' k‖ ≤ ‖F y k‖
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | rw [← Nat.cast_one, ← Nat.cast_add, abs_natCast] | case h.inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
H : n + 1 < k
⊢ Complex.abs (f k) / (↑k / Complex.abs (↑n + 1)) ^ y' ≤ Complex.abs (f k) / (↑k / Complex.abs (↑n + 1)) ^ y | case h.inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
H : n + 1 < k
⊢ Complex.abs (f k) / (↑k / ↑(n + 1)) ^ y' ≤ Complex.abs (f k) / (↑k / ↑(n + 1)) ^ y | Please generate a tactic in lean4 to solve the state.
STATE:
case h.inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
H : n + 1 < k
⊢ Complex.abs (f k) / (↑k / Complex.abs (↑n + 1)) ^ y' ≤ Complex.abs (f k) / (↑k / Complex.abs (↑n + 1)) ^ y
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | have hkn : 1 ≤ (k / (n + 1 :) : ℝ) :=
(one_le_div (by positivity)).mpr <| by norm_cast; exact Nat.le_of_succ_le H | case h.inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
H : n + 1 < k
⊢ Complex.abs (f k) / (↑k / ↑(n + 1)) ^ y' ≤ Complex.abs (f k) / (↑k / ↑(n + 1)) ^ y | case h.inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
H : n + 1 < k
hkn : 1 ≤ ↑k / ↑(n + 1)
⊢ Complex.abs (f k) / (↑k / ↑(n + 1)) ^ y' ≤ Complex.abs (f k) / (↑k / ↑(n + 1)) ^ y | Please generate a tactic in lean4 to solve the state.
STATE:
case h.inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
H : n + 1 < k
⊢ Complex.abs (f k) / (↑k / ↑(n + 1)) ^ y' ≤ Complex.abs (f k) / (↑k / ↑(n + 1)) ^ y
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | exact div_le_div_of_nonneg_left (Complex.abs.nonneg _)
(rpow_pos_of_pos (zero_lt_one.trans_le hkn) _) <| rpow_le_rpow_of_exponent_le hkn hy' | case h.inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
H : n + 1 < k
hkn : 1 ≤ ↑k / ↑(n + 1)
⊢ Complex.abs (f k) / (↑k / ↑(n + 1)) ^ y' ≤ Complex.abs (f k) / (↑k / ↑(n + 1)) ^ y | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
H : n + 1 < k
hkn : 1 ≤ ↑k / ↑(n + 1)
⊢ Complex.abs (f k) / (↑k / ↑(n + 1)) ^ y' ≤ Complex.abs (f k) / (↑k / ↑(n + 1)) ^ y
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | positivity | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
H : n + 1 < k
⊢ 0 < ↑(n + 1) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
H : n + 1 < k
⊢ 0 < ↑(n + 1)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | norm_cast | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
H : n + 1 < k
⊢ ↑(n + 1) ≤ ↑k | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
H : n + 1 < k
⊢ n + 1 ≤ k | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
H : n + 1 < k
⊢ ↑(n + 1) ≤ ↑k
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | exact Nat.le_of_succ_le H | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
H : n + 1 < k
⊢ n + 1 ≤ k | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
H : n + 1 < k
⊢ n + 1 ≤ k
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [hF₀ _ H, norm_zero, le_refl] | case h.inr
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
H : k ≤ n + 1
⊢ ‖F y' k‖ ≤ ‖F y k‖ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.inr
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
H : k ≤ n + 1
⊢ ‖F y' k‖ ≤ ‖F y k‖
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | let F (n : ℕ) : ℂ := if n = 0 then 0 else f n | f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
⊢ Tendsto (fun x => LSeries f ↑x) atTop (nhds (f 1)) | f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
⊢ Tendsto (fun x => LSeries f ↑x) atTop (nhds (f 1)) | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
⊢ Tendsto (fun x => LSeries f ↑x) atTop (nhds (f 1))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | have hF₀ : F 0 = 0 := rfl | f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
⊢ Tendsto (fun x => LSeries f ↑x) atTop (nhds (f 1)) | f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
⊢ Tendsto (fun x => LSeries f ↑x) atTop (nhds (f 1)) | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
⊢ Tendsto (fun x => LSeries f ↑x) atTop (nhds (f 1))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | have hF {n : ℕ} (hn : n ≠ 0) : F n = f n := by simp only [hn, ↓reduceIte, F] | f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
⊢ Tendsto (fun x => LSeries f ↑x) atTop (nhds (f 1)) | f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
⊢ Tendsto (fun x => LSeries f ↑x) atTop (nhds (f 1)) | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
⊢ Tendsto (fun x => LSeries f ↑x) atTop (nhds (f 1))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | have ha' : abscissaOfAbsConv F < ⊤ := (abscissaOfAbsConv_congr hF).symm ▸ ha | f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
⊢ Tendsto (fun x => LSeries f ↑x) atTop (nhds (f 1)) | f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha' : abscissaOfAbsConv F < ⊤
⊢ Tendsto (fun x => LSeries f ↑x) atTop (nhds (f 1)) | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
⊢ Tendsto (fun x => LSeries f ↑x) atTop (nhds (f 1))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | simp_rw [← LSeries_congr _ hF] | f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha' : abscissaOfAbsConv F < ⊤
⊢ Tendsto (fun x => LSeries f ↑x) atTop (nhds (f 1)) | f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha' : abscissaOfAbsConv F < ⊤
⊢ Tendsto (fun x => LSeries (fun {n} => F n) ↑x) atTop (nhds (f 1)) | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha' : abscissaOfAbsConv F < ⊤
⊢ Tendsto (fun x => LSeries f ↑x) atTop (nhds (f 1))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | convert LSeries.tendsto_pow_mul_atTop (n := 0) (fun _ hm ↦ Nat.le_zero.mp hm ▸ hF₀) ha' using 1 | f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha' : abscissaOfAbsConv F < ⊤
⊢ Tendsto (fun x => LSeries (fun {n} => F n) ↑x) atTop (nhds (f 1)) | case h.e'_3
f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha' : abscissaOfAbsConv F < ⊤
⊢ (fun x => LSeries (fun {n} => F n) ↑x) = fun x => (↑0 + 1) ^ ↑x * LSeries F ↑x | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha' : abscissaOfAbsConv F < ⊤
⊢ Tendsto (fun x => LSeries (fun {n} => F n) ↑x) atTop (nhds (f 1))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | simp only [Nat.cast_zero, zero_add, one_cpow, one_mul] | case h.e'_3
f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha' : abscissaOfAbsConv F < ⊤
⊢ (fun x => LSeries (fun {n} => F n) ↑x) = fun x => (↑0 + 1) ^ ↑x * LSeries F ↑x | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_3
f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha' : abscissaOfAbsConv F < ⊤
⊢ (fun x => LSeries (fun {n} => F n) ↑x) = fun x => (↑0 + 1) ^ ↑x * LSeries F ↑x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | simp only [hn, ↓reduceIte, F] | f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
n : ℕ
hn : n ≠ 0
⊢ F n = f n | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
n : ℕ
hn : n ≠ 0
⊢ F n = f n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_of_abscissaOfAbsConv_eq_top | [147, 1] | [151, 57] | ext s | f : ℕ → ℂ
h : abscissaOfAbsConv f = ⊤
⊢ LSeries f = 0 | case h
f : ℕ → ℂ
h : abscissaOfAbsConv f = ⊤
s : ℂ
⊢ LSeries f s = 0 s | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
h : abscissaOfAbsConv f = ⊤
⊢ LSeries f = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_of_abscissaOfAbsConv_eq_top | [147, 1] | [151, 57] | exact LSeries.eq_zero_of_not_LSeriesSummable f s <| mt LSeriesSummable.abscissaOfAbsConv_le <|
h ▸ fun H ↦ (H.trans_lt <| EReal.coe_lt_top _).false | case h
f : ℕ → ℂ
h : abscissaOfAbsConv f = ⊤
s : ℂ
⊢ LSeries f s = 0 s | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h
f : ℕ → ℂ
h : abscissaOfAbsConv f = ⊤
s : ℂ
⊢ LSeries f s = 0 s
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | by_cases h : abscissaOfAbsConv f = ⊤ <;> simp only [h, or_true, or_false, iff_true] | f : ℕ → ℂ
⊢ (fun x => LSeries f ↑x) =ᶠ[atTop] 0 ↔ (∀ (n : ℕ), n ≠ 0 → f n = 0) ∨ abscissaOfAbsConv f = ⊤ | case pos
f : ℕ → ℂ
h : abscissaOfAbsConv f = ⊤
⊢ (fun x => LSeries f ↑x) =ᶠ[atTop] 0
case neg
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
⊢ (fun x => LSeries f ↑x) =ᶠ[atTop] 0 ↔ ∀ (n : ℕ), n ≠ 0 → f n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
⊢ (fun x => LSeries f ↑x) =ᶠ[atTop] 0 ↔ (∀ (n : ℕ), n ≠ 0 → f n = 0) ∨ abscissaOfAbsConv f = ⊤
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | refine eventually_of_forall ?_ | case pos
f : ℕ → ℂ
h : abscissaOfAbsConv f = ⊤
⊢ (fun x => LSeries f ↑x) =ᶠ[atTop] 0 | case pos
f : ℕ → ℂ
h : abscissaOfAbsConv f = ⊤
⊢ ∀ (x : ℝ), (fun x => LSeries f ↑x) x = 0 x | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
f : ℕ → ℂ
h : abscissaOfAbsConv f = ⊤
⊢ (fun x => LSeries f ↑x) =ᶠ[atTop] 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [LSeries_eq_zero_of_abscissaOfAbsConv_eq_top h, Pi.zero_apply, forall_const] | case pos
f : ℕ → ℂ
h : abscissaOfAbsConv f = ⊤
⊢ ∀ (x : ℝ), (fun x => LSeries f ↑x) x = 0 x | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
f : ℕ → ℂ
h : abscissaOfAbsConv f = ⊤
⊢ ∀ (x : ℝ), (fun x => LSeries f ↑x) x = 0 x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | refine ⟨fun H ↦ ?_, fun H ↦ eventually_of_forall fun x ↦ ?_⟩ | case neg
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
⊢ (fun x => LSeries f ↑x) =ᶠ[atTop] 0 ↔ ∀ (n : ℕ), n ≠ 0 → f n = 0 | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
⊢ ∀ (n : ℕ), n ≠ 0 → f n = 0
case neg.refine_2
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : ∀ (n : ℕ), n ≠ 0 → f n = 0
x : ℝ
⊢ (fun x => LSeries f ↑x) x = 0 x | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
⊢ (fun x => LSeries f ↑x) =ᶠ[atTop] 0 ↔ ∀ (n : ℕ), n ≠ 0 → f n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | let F (n : ℕ) : ℂ := if n = 0 then 0 else f n | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
⊢ ∀ (n : ℕ), n ≠ 0 → f n = 0 | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
⊢ ∀ (n : ℕ), n ≠ 0 → f n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
⊢ ∀ (n : ℕ), n ≠ 0 → f n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | have hF₀ : F 0 = 0 := rfl | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
⊢ ∀ (n : ℕ), n ≠ 0 → f n = 0 | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
⊢ ∀ (n : ℕ), n ≠ 0 → f n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
⊢ ∀ (n : ℕ), n ≠ 0 → f n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | have hF {n : ℕ} (hn : n ≠ 0) : F n = f n := by simp only [hn, ↓reduceIte, F] | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
⊢ ∀ (n : ℕ), n ≠ 0 → f n = 0 | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
⊢ ∀ (n : ℕ), n ≠ 0 → f n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
⊢ ∀ (n : ℕ), n ≠ 0 → f n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | suffices ∀ n, F n = 0 by
peel hF with n hn h
exact (this n ▸ h).symm | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
⊢ ∀ (n : ℕ), n ≠ 0 → f n = 0 | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
⊢ ∀ (n : ℕ), F n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
⊢ ∀ (n : ℕ), n ≠ 0 → f n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | have ha : ¬ abscissaOfAbsConv F = ⊤ := abscissaOfAbsConv_congr hF ▸ h | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
⊢ ∀ (n : ℕ), F n = 0 | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
⊢ ∀ (n : ℕ), F n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
⊢ ∀ (n : ℕ), F n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | have h' (x : ℝ) : LSeries F x = LSeries f x := LSeries_congr x hF | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
⊢ ∀ (n : ℕ), F n = 0 | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
⊢ ∀ (n : ℕ), F n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
⊢ ∀ (n : ℕ), F n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | have H' (n : ℕ) : (fun x : ℝ ↦ (n ^ (x : ℂ)) * LSeries F x) =ᶠ[atTop] (fun _ ↦ 0) := by
simp only [h']
rw [eventuallyEq_iff_exists_mem] at H ⊢
peel H with s hs
refine ⟨hs.1, fun x hx ↦ ?_⟩
simp only [hs.2 hx, Pi.zero_apply, mul_zero] | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
⊢ ∀ (n : ℕ), F n = 0 | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
⊢ ∀ (n : ℕ), F n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
⊢ ∀ (n : ℕ), F n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | intro n | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
⊢ ∀ (n : ℕ), F n = 0 | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
⊢ F n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
⊢ ∀ (n : ℕ), F n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | induction' n using Nat.strongInductionOn with n ih | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
⊢ F n = 0 | case neg.refine_1.ind
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n, F m = 0
⊢ F n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
⊢ F n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | suffices Tendsto (fun x : ℝ ↦ (n ^ (x : ℂ)) * LSeries F x) atTop (nhds (F n)) by
replace this := this.congr' <| H' n
simp only [tendsto_const_nhds_iff] at this
exact this.symm | case neg.refine_1.ind
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n, F m = 0
⊢ F n = 0 | case neg.refine_1.ind
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n, F m = 0
⊢ Tendsto (fun x => ↑n ^ ↑x * LSeries F ↑x) atTop (nhds (F n)) | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1.ind
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n, F m = 0
⊢ F n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | cases n with
| zero =>
refine Tendsto.congr' (H' 0).symm ?_
simp only [zero_eq, hF₀, tendsto_const_nhds_iff]
| succ n =>
simp only [succ_eq_add_one, cast_add, cast_one]
exact LSeries.tendsto_pow_mul_atTop (fun m hm ↦ ih m <| lt_succ_of_le hm) <| Ne.lt_top ha | case neg.refine_1.ind
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n, F m = 0
⊢ Tendsto (fun x => ↑n ^ ↑x * LSeries F ↑x) atTop (nhds (F n)) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1.ind
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n, F m = 0
⊢ Tendsto (fun x => ↑n ^ ↑x * LSeries F ↑x) atTop (nhds (F n))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [hn, ↓reduceIte, F] | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
n : ℕ
hn : n ≠ 0
⊢ F n = f n | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
n : ℕ
hn : n ≠ 0
⊢ F n = f n
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | peel hF with n hn h | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
this : ∀ (n : ℕ), F n = 0
⊢ ∀ (n : ℕ), n ≠ 0 → f n = 0 | case h.h
f : ℕ → ℂ
h✝ : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
this : ∀ (n : ℕ), F n = 0
n : ℕ
hn : n ≠ 0
h : F n = f n
⊢ f n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
this : ∀ (n : ℕ), F n = 0
⊢ ∀ (n : ℕ), n ≠ 0 → f n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | exact (this n ▸ h).symm | case h.h
f : ℕ → ℂ
h✝ : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
this : ∀ (n : ℕ), F n = 0
n : ℕ
hn : n ≠ 0
h : F n = f n
⊢ f n = 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h
f : ℕ → ℂ
h✝ : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
this : ∀ (n : ℕ), F n = 0
n : ℕ
hn : n ≠ 0
h : F n = f n
⊢ f n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [h'] | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
n : ℕ
⊢ (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0 | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
n : ℕ
⊢ (fun x => ↑n ^ ↑x * LSeries f ↑x) =ᶠ[atTop] fun x => 0 | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
n : ℕ
⊢ (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | rw [eventuallyEq_iff_exists_mem] at H ⊢ | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
n : ℕ
⊢ (fun x => ↑n ^ ↑x * LSeries f ↑x) =ᶠ[atTop] fun x => 0 | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : ∃ s ∈ atTop, Set.EqOn (fun x => LSeries f ↑x) 0 s
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
n : ℕ
⊢ ∃ s ∈ atTop, Set.EqOn (fun x => ↑n ^ ↑x * LSeries f ↑x) (fun x => 0) s | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
n : ℕ
⊢ (fun x => ↑n ^ ↑x * LSeries f ↑x) =ᶠ[atTop] fun x => 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | peel H with s hs | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : ∃ s ∈ atTop, Set.EqOn (fun x => LSeries f ↑x) 0 s
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
n : ℕ
⊢ ∃ s ∈ atTop, Set.EqOn (fun x => ↑n ^ ↑x * LSeries f ↑x) (fun x => 0) s | case h
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : ∃ s ∈ atTop, Set.EqOn (fun x => LSeries f ↑x) 0 s
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
n : ℕ
s : Set ℝ
hs : s ∈ atTop ∧ Set.EqOn (fun x => LSeries f ↑x) 0 s
⊢ s ∈ atTop ∧ Set.EqOn (fun x => ↑n ^ ↑x * LSeries f ↑x) (fun x => 0) s | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : ∃ s ∈ atTop, Set.EqOn (fun x => LSeries f ↑x) 0 s
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
n : ℕ
⊢ ∃ s ∈ atTop, Set.EqOn (fun x => ↑n ^ ↑x * LSeries f ↑x) (fun x => 0) s
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | refine ⟨hs.1, fun x hx ↦ ?_⟩ | case h
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : ∃ s ∈ atTop, Set.EqOn (fun x => LSeries f ↑x) 0 s
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
n : ℕ
s : Set ℝ
hs : s ∈ atTop ∧ Set.EqOn (fun x => LSeries f ↑x) 0 s
⊢ s ∈ atTop ∧ Set.EqOn (fun x => ↑n ^ ↑x * LSeries f ↑x) (fun x => 0) s | case h
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : ∃ s ∈ atTop, Set.EqOn (fun x => LSeries f ↑x) 0 s
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
n : ℕ
s : Set ℝ
hs : s ∈ atTop ∧ Set.EqOn (fun x => LSeries f ↑x) 0 s
x : ℝ
hx : x ∈ s
⊢ (fun x => ↑n ^ ↑x * LSeries f ↑x) x = (fun x => 0) x | Please generate a tactic in lean4 to solve the state.
STATE:
case h
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : ∃ s ∈ atTop, Set.EqOn (fun x => LSeries f ↑x) 0 s
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
n : ℕ
s : Set ℝ
hs : s ∈ atTop ∧ Set.EqOn (fun x => LSeries f ↑x) 0 s
⊢ s ∈ atTop ∧ Set.EqOn (fun x => ↑n ^ ↑x * LSeries f ↑x) (fun x => 0) s
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [hs.2 hx, Pi.zero_apply, mul_zero] | case h
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : ∃ s ∈ atTop, Set.EqOn (fun x => LSeries f ↑x) 0 s
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
n : ℕ
s : Set ℝ
hs : s ∈ atTop ∧ Set.EqOn (fun x => LSeries f ↑x) 0 s
x : ℝ
hx : x ∈ s
⊢ (fun x => ↑n ^ ↑x * LSeries f ↑x) x = (fun x => 0) x | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : ∃ s ∈ atTop, Set.EqOn (fun x => LSeries f ↑x) 0 s
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
n : ℕ
s : Set ℝ
hs : s ∈ atTop ∧ Set.EqOn (fun x => LSeries f ↑x) 0 s
x : ℝ
hx : x ∈ s
⊢ (fun x => ↑n ^ ↑x * LSeries f ↑x) x = (fun x => 0) x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | replace this := this.congr' <| H' n | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n, F m = 0
this : Tendsto (fun x => ↑n ^ ↑x * LSeries F ↑x) atTop (nhds (F n))
⊢ F n = 0 | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n, F m = 0
this : Tendsto (fun x => 0) atTop (nhds (F n))
⊢ F n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n, F m = 0
this : Tendsto (fun x => ↑n ^ ↑x * LSeries F ↑x) atTop (nhds (F n))
⊢ F n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [tendsto_const_nhds_iff] at this | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n, F m = 0
this : Tendsto (fun x => 0) atTop (nhds (F n))
⊢ F n = 0 | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n, F m = 0
this : 0 = F n
⊢ F n = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n, F m = 0
this : Tendsto (fun x => 0) atTop (nhds (F n))
⊢ F n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | exact this.symm | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n, F m = 0
this : 0 = F n
⊢ F n = 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n, F m = 0
this : 0 = F n
⊢ F n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | refine Tendsto.congr' (H' 0).symm ?_ | case neg.refine_1.ind.zero
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
ih : ∀ m < 0, F m = 0
⊢ Tendsto (fun x => ↑0 ^ ↑x * LSeries F ↑x) atTop (nhds (F 0)) | case neg.refine_1.ind.zero
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
ih : ∀ m < 0, F m = 0
⊢ Tendsto (fun x => 0) atTop (nhds (F 0)) | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1.ind.zero
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
ih : ∀ m < 0, F m = 0
⊢ Tendsto (fun x => ↑0 ^ ↑x * LSeries F ↑x) atTop (nhds (F 0))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [zero_eq, hF₀, tendsto_const_nhds_iff] | case neg.refine_1.ind.zero
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
ih : ∀ m < 0, F m = 0
⊢ Tendsto (fun x => 0) atTop (nhds (F 0)) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1.ind.zero
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
ih : ∀ m < 0, F m = 0
⊢ Tendsto (fun x => 0) atTop (nhds (F 0))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [succ_eq_add_one, cast_add, cast_one] | case neg.refine_1.ind.succ
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n + 1, F m = 0
⊢ Tendsto (fun x => ↑(n + 1) ^ ↑x * LSeries F ↑x) atTop (nhds (F (n + 1))) | case neg.refine_1.ind.succ
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n + 1, F m = 0
⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries F ↑x) atTop (nhds (F (n + 1))) | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1.ind.succ
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n + 1, F m = 0
⊢ Tendsto (fun x => ↑(n + 1) ^ ↑x * LSeries F ↑x) atTop (nhds (F (n + 1)))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | exact LSeries.tendsto_pow_mul_atTop (fun m hm ↦ ih m <| lt_succ_of_le hm) <| Ne.lt_top ha | case neg.refine_1.ind.succ
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n + 1, F m = 0
⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries F ↑x) atTop (nhds (F (n + 1))) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_1.ind.succ
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n + 1, F m = 0
⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries F ↑x) atTop (nhds (F (n + 1)))
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [LSeries_congr x fun {n} ↦ H n, show (fun _ : ℕ ↦ (0 : ℂ)) = 0 from rfl,
LSeries_zero, Pi.zero_apply] | case neg.refine_2
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : ∀ (n : ℕ), n ≠ 0 → f n = 0
x : ℝ
⊢ (fun x => LSeries f ↑x) x = 0 x | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.refine_2
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : ∀ (n : ℕ), n ≠ 0 → f n = 0
x : ℝ
⊢ (fun x => LSeries f ↑x) x = 0 x
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | by_cases h : abscissaOfAbsConv f = ⊤ <;> simp only [h, or_true, or_false, iff_true] | f : ℕ → ℂ
hf : f 0 = 0
⊢ LSeries f = 0 ↔ f = 0 ∨ abscissaOfAbsConv f = ⊤ | case pos
f : ℕ → ℂ
hf : f 0 = 0
h : abscissaOfAbsConv f = ⊤
⊢ LSeries f = 0
case neg
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
⊢ LSeries f = 0 ↔ f = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
hf : f 0 = 0
⊢ LSeries f = 0 ↔ f = 0 ∨ abscissaOfAbsConv f = ⊤
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | exact LSeries_eq_zero_of_abscissaOfAbsConv_eq_top h | case pos
f : ℕ → ℂ
hf : f 0 = 0
h : abscissaOfAbsConv f = ⊤
⊢ LSeries f = 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
f : ℕ → ℂ
hf : f 0 = 0
h : abscissaOfAbsConv f = ⊤
⊢ LSeries f = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | refine ⟨fun H ↦ ?_, fun H ↦ H ▸ LSeries_zero⟩ | case neg
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
⊢ LSeries f = 0 ↔ f = 0 | case neg
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
⊢ f = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
⊢ LSeries f = 0 ↔ f = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | convert (LSeries_eventually_eq_zero_iff'.mp ?_).resolve_right h | case neg
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
⊢ f = 0 | case a
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
⊢ f = 0 ↔ ∀ (n : ℕ), n ≠ 0 → f n = 0
case neg
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
⊢ (fun x => LSeries f ↑x) =ᶠ[Filter.atTop] 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
⊢ f = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | refine ⟨fun H' _ _ ↦ by rw [H', Pi.zero_apply], fun H' ↦ ?_⟩ | case a
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
⊢ f = 0 ↔ ∀ (n : ℕ), n ≠ 0 → f n = 0 | case a
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
H' : ∀ (n : ℕ), n ≠ 0 → f n = 0
⊢ f = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case a
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
⊢ f = 0 ↔ ∀ (n : ℕ), n ≠ 0 → f n = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | ext ⟨- | m⟩ | case a
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
H' : ∀ (n : ℕ), n ≠ 0 → f n = 0
⊢ f = 0 | case a.h.zero
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
H' : ∀ (n : ℕ), n ≠ 0 → f n = 0
⊢ f 0 = 0 0
case a.h.succ
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
H' : ∀ (n : ℕ), n ≠ 0 → f n = 0
n✝ : ℕ
⊢ f (n✝ + 1) = 0 (n✝ + 1) | Please generate a tactic in lean4 to solve the state.
STATE:
case a
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
H' : ∀ (n : ℕ), n ≠ 0 → f n = 0
⊢ f = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | rw [H', Pi.zero_apply] | f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
H' : f = 0
x✝¹ : ℕ
x✝ : x✝¹ ≠ 0
⊢ f x✝¹ = 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
H' : f = 0
x✝¹ : ℕ
x✝ : x✝¹ ≠ 0
⊢ f x✝¹ = 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | simp only [zero_eq, hf, Pi.zero_apply] | case a.h.zero
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
H' : ∀ (n : ℕ), n ≠ 0 → f n = 0
⊢ f 0 = 0 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.zero
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
H' : ∀ (n : ℕ), n ≠ 0 → f n = 0
⊢ f 0 = 0 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | simp only [ne_eq, succ_ne_zero, not_false_eq_true, H', Pi.zero_apply] | case a.h.succ
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
H' : ∀ (n : ℕ), n ≠ 0 → f n = 0
n✝ : ℕ
⊢ f (n✝ + 1) = 0 (n✝ + 1) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.succ
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
H' : ∀ (n : ℕ), n ≠ 0 → f n = 0
n✝ : ℕ
⊢ f (n✝ + 1) = 0 (n✝ + 1)
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | simp only [H, Pi.zero_apply] | case neg
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
⊢ (fun x => LSeries f ↑x) =ᶠ[Filter.atTop] 0 | case neg
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
⊢ (fun x => 0) =ᶠ[Filter.atTop] 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
⊢ (fun x => LSeries f ↑x) =ᶠ[Filter.atTop] 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | exact Filter.EventuallyEq.rfl | case neg
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
⊢ (fun x => 0) =ᶠ[Filter.atTop] 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
⊢ (fun x => 0) =ᶠ[Filter.atTop] 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | rw [EventuallyEq, eventually_atTop] at h ⊢ | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x
⊢ (fun x => LSeries (f - g) ↑x) =ᶠ[atTop] 0 | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
h : ∃ a, ∀ b ≥ a, LSeries f ↑b = LSeries g ↑b
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b | Please generate a tactic in lean4 to solve the state.
STATE:
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x
⊢ (fun x => LSeries (f - g) ↑x) =ᶠ[atTop] 0
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | obtain ⟨x₀, hx₀⟩ := h | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
h : ∃ a, ∀ b ≥ a, LSeries f ↑b = LSeries g ↑b
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b | case intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b | Please generate a tactic in lean4 to solve the state.
STATE:
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
h : ∃ a, ∀ b ≥ a, LSeries f ↑b = LSeries g ↑b
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | obtain ⟨yf, hyf₁, hyf₂⟩ := exists_between hf | case intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b | case intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : EReal
hyf₁ : abscissaOfAbsConv f < yf
hyf₂ : yf < ⊤
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b | Please generate a tactic in lean4 to solve the state.
STATE:
case intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | obtain ⟨yg, hyg₁, hyg₂⟩ := exists_between hg | case intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : EReal
hyf₁ : abscissaOfAbsConv f < yf
hyf₂ : yf < ⊤
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b | case intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : EReal
hyf₁ : abscissaOfAbsConv f < yf
hyf₂ : yf < ⊤
yg : EReal
hyg₁ : abscissaOfAbsConv g < yg
hyg₂ : yg < ⊤
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : EReal
hyf₁ : abscissaOfAbsConv f < yf
hyf₂ : yf < ⊤
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | lift yf to ℝ using ⟨hyf₂.ne, ((OrderBot.bot_le _).trans_lt hyf₁).ne'⟩ | case intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : EReal
hyf₁ : abscissaOfAbsConv f < yf
hyf₂ : yf < ⊤
yg : EReal
hyg₁ : abscissaOfAbsConv g < yg
hyg₂ : yg < ⊤
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b | case intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yg : EReal
hyg₁ : abscissaOfAbsConv g < yg
hyg₂ : yg < ⊤
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : EReal
hyf₁ : abscissaOfAbsConv f < yf
hyf₂ : yf < ⊤
yg : EReal
hyg₁ : abscissaOfAbsConv g < yg
hyg₂ : yg < ⊤
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | lift yg to ℝ using ⟨hyg₂.ne, ((OrderBot.bot_le _).trans_lt hyg₁).ne'⟩ | case intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yg : EReal
hyg₁ : abscissaOfAbsConv g < yg
hyg₂ : yg < ⊤
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b | case intro.intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yg : EReal
hyg₁ : abscissaOfAbsConv g < yg
hyg₂ : yg < ⊤
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b
TACTIC:
|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | refine ⟨max x₀ (max yf yg), fun x hx ↦ ?_⟩ | case intro.intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b | case intro.intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
⊢ LSeries (f - g) ↑x = 0 x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b
TACTIC:
|
Subsets and Splits