url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
---|---|---|---|---|---|---|---|---|---|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
|
[109, 1]
|
[238, 15]
|
simp only [Holds]
|
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
V (hd :: tl) (def_ X xs) β
Holds D I V (hd :: tl) (def_ X xs)
|
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
β’ (if X = hd.name β§ xs.length = hd.args.length then
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
(Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
V tl (def_ X xs)) β
if X = hd.name β§ xs.length = hd.args.length then
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I V tl (def_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
V (hd :: tl) (def_ X xs) β
Holds D I V (hd :: tl) (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
|
[109, 1]
|
[238, 15]
|
split_ifs
|
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
β’ (if X = hd.name β§ xs.length = hd.args.length then
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
(Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
V tl (def_ X xs)) β
if X = hd.name β§ xs.length = hd.args.length then
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I V tl (def_ X xs)
|
case pos
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
hβ : X = hd.name β§ xs.length = hd.args.length
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
(Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
case neg
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
hβ : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
V tl (def_ X xs) β
Holds D I V tl (def_ X xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
β’ (if X = hd.name β§ xs.length = hd.args.length then
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
(Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
V tl (def_ X xs)) β
if X = hd.name β§ xs.length = hd.args.length then
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I V tl (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
|
[109, 1]
|
[238, 15]
|
apply Holds_coincide_PredVar
|
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
(Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ { nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }.pred_const_ =
I.pred_const_
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ β (P : PredName) (ds : List D),
predVarOccursIn P ds.length hd.q β
({ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }.pred_var_
P ds β
I.pred_var_ P ds)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
(Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
|
[109, 1]
|
[238, 15]
|
simp
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ { nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }.pred_const_ =
I.pred_const_
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ { nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }.pred_const_ =
I.pred_const_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
|
[109, 1]
|
[238, 15]
|
simp only [predVarOccursIn_iff_mem_predVarSet]
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ β (P : PredName) (ds : List D),
predVarOccursIn P ds.length hd.q β
({ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }.pred_var_
P ds β
I.pred_var_ P ds)
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ β (P : PredName) (ds : List D),
(P, ds.length) β hd.q.predVarSet β
((if ds.length = (Ο P ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο P ds.length).1 ds) (hd :: tl) (Ο P ds.length).2
else I.pred_var_ P ds) β
I.pred_var_ P ds)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ β (P : PredName) (ds : List D),
predVarOccursIn P ds.length hd.q β
({ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }.pred_var_
P ds β
I.pred_var_ P ds)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
|
[109, 1]
|
[238, 15]
|
simp only [hd.h2]
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ β (P : PredName) (ds : List D),
(P, ds.length) β hd.q.predVarSet β
((if ds.length = (Ο P ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο P ds.length).1 ds) (hd :: tl) (Ο P ds.length).2
else I.pred_var_ P ds) β
I.pred_var_ P ds)
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ β (P : PredName) (ds : List D),
(P, ds.length) β β
β
((if ds.length = (Ο P ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο P ds.length).1 ds) (hd :: tl) (Ο P ds.length).2
else I.pred_var_ P ds) β
I.pred_var_ P ds)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ β (P : PredName) (ds : List D),
(P, ds.length) β hd.q.predVarSet β
((if ds.length = (Ο P ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο P ds.length).1 ds) (hd :: tl) (Ο P ds.length).2
else I.pred_var_ P ds) β
I.pred_var_ P ds)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
|
[109, 1]
|
[238, 15]
|
simp
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ β (P : PredName) (ds : List D),
(P, ds.length) β β
β
((if ds.length = (Ο P ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο P ds.length).1 ds) (hd :: tl) (Ο P ds.length).2
else I.pred_var_ P ds) β
I.pred_var_ P ds)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ β (P : PredName) (ds : List D),
(P, ds.length) β β
β
((if ds.length = (Ο P ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο P ds.length).1 ds) (hd :: tl) (Ο P ds.length).2
else I.pred_var_ P ds) β
I.pred_var_ P ds)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
|
[109, 1]
|
[238, 15]
|
apply Holds_coincide_PredVar
|
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
V tl (def_ X xs) β
Holds D I V tl (def_ X xs)
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ { nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }.pred_const_ =
I.pred_const_
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ β (P : PredName) (ds : List D),
predVarOccursIn P ds.length (def_ X xs) β
({ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }.pred_var_
P ds β
I.pred_var_ P ds)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
V tl (def_ X xs) β
Holds D I V tl (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
|
[109, 1]
|
[238, 15]
|
simp
|
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ { nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }.pred_const_ =
I.pred_const_
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ { nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }.pred_const_ =
I.pred_const_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
|
[109, 1]
|
[238, 15]
|
simp only [predVarOccursIn]
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ β (P : PredName) (ds : List D),
predVarOccursIn P ds.length (def_ X xs) β
({ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }.pred_var_
P ds β
I.pred_var_ P ds)
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ β (P : PredName) (ds : List D),
False β
((if ds.length = (Ο P ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο P ds.length).1 ds) (hd :: tl) (Ο P ds.length).2
else I.pred_var_ P ds) β
I.pred_var_ P ds)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ β (P : PredName) (ds : List D),
predVarOccursIn P ds.length (def_ X xs) β
({ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }.pred_var_
P ds β
I.pred_var_ P ds)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
|
[109, 1]
|
[238, 15]
|
simp
|
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ β (P : PredName) (ds : List D),
False β
((if ds.length = (Ο P ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο P ds.length).1 ds) (hd :: tl) (Ο P ds.length).2
else I.pred_var_ P ds) β
I.pred_var_ P ds)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ β (P : PredName) (ds : List D),
False β
((if ds.length = (Ο P ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο P ds.length).1 ds) (hd :: tl) (Ο P ds.length).2
else I.pred_var_ P ds) β
I.pred_var_ P ds)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_theorem
|
[241, 1]
|
[266, 8]
|
apply substitution_theorem_aux D I V V E Ο β
F
|
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
F : Formula
h1 : admits Ο F
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
let zs := (Ο X ds.length).1;
let H := (Ο X ds.length).2;
if ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ X ds }
V E F β
Holds D I V E (replace Ο F)
|
case h1
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
F : Formula
h1 : admits Ο F
β’ admitsAux Ο β
F
case h2
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
F : Formula
h1 : admits Ο F
β’ β x β β
, V x = V x
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
F : Formula
h1 : admits Ο F
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
let zs := (Ο X ds.length).1;
let H := (Ο X ds.length).2;
if ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ X ds }
V E F β
Holds D I V E (replace Ο F)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_theorem
|
[241, 1]
|
[266, 8]
|
simp only [admits] at h1
|
case h1
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
F : Formula
h1 : admits Ο F
β’ admitsAux Ο β
F
|
case h1
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
F : Formula
h1 : admitsAux Ο β
F
β’ admitsAux Ο β
F
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
F : Formula
h1 : admits Ο F
β’ admitsAux Ο β
F
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_theorem
|
[241, 1]
|
[266, 8]
|
exact h1
|
case h1
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
F : Formula
h1 : admitsAux Ο β
F
β’ admitsAux Ο β
F
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
F : Formula
h1 : admitsAux Ο β
F
β’ admitsAux Ο β
F
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_theorem
|
[241, 1]
|
[266, 8]
|
intro X _
|
case h2
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
F : Formula
h1 : admits Ο F
β’ β x β β
, V x = V x
|
case h2
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
F : Formula
h1 : admits Ο F
X : VarName
aβ : X β β
β’ V X = V X
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
F : Formula
h1 : admits Ο F
β’ β x β β
, V x = V x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_theorem
|
[241, 1]
|
[266, 8]
|
rfl
|
case h2
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
F : Formula
h1 : admits Ο F
X : VarName
aβ : X β β
β’ V X = V X
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
F : Formula
h1 : admits Ο F
X : VarName
aβ : X β β
β’ V X = V X
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_is_valid
|
[269, 1]
|
[282, 11]
|
simp only [IsValid] at h2
|
F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : F.IsValid
β’ (replace Ο F).IsValid
|
F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
β’ (replace Ο F).IsValid
|
Please generate a tactic in lean4 to solve the state.
STATE:
F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : F.IsValid
β’ (replace Ο F).IsValid
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_is_valid
|
[269, 1]
|
[282, 11]
|
simp only [IsValid]
|
F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
β’ (replace Ο F).IsValid
|
F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
β’ β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (replace Ο F)
|
Please generate a tactic in lean4 to solve the state.
STATE:
F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
β’ (replace Ο F).IsValid
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_is_valid
|
[269, 1]
|
[282, 11]
|
intro D I V E
|
F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
β’ β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (replace Ο F)
|
F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
β’ Holds D I V E (replace Ο F)
|
Please generate a tactic in lean4 to solve the state.
STATE:
F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
β’ β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (replace Ο F)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_is_valid
|
[269, 1]
|
[282, 11]
|
obtain s1 := substitution_theorem D I V E Ο F h1
|
F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
β’ Holds D I V E (replace Ο F)
|
F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
s1 :
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
let zs := (Ο X ds.length).1;
let H := (Ο X ds.length).2;
if ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ X ds }
V E F β
Holds D I V E (replace Ο F)
β’ Holds D I V E (replace Ο F)
|
Please generate a tactic in lean4 to solve the state.
STATE:
F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
β’ Holds D I V E (replace Ο F)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_is_valid
|
[269, 1]
|
[282, 11]
|
simp only [β s1]
|
F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
s1 :
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
let zs := (Ο X ds.length).1;
let H := (Ο X ds.length).2;
if ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ X ds }
V E F β
Holds D I V E (replace Ο F)
β’ Holds D I V E (replace Ο F)
|
F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
s1 :
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
let zs := (Ο X ds.length).1;
let H := (Ο X ds.length).2;
if ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ X ds }
V E F β
Holds D I V E (replace Ο F)
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E F
|
Please generate a tactic in lean4 to solve the state.
STATE:
F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
s1 :
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
let zs := (Ο X ds.length).1;
let H := (Ο X ds.length).2;
if ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ X ds }
V E F β
Holds D I V E (replace Ο F)
β’ Holds D I V E (replace Ο F)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_is_valid
|
[269, 1]
|
[282, 11]
|
apply h2
|
F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
s1 :
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
let zs := (Ο X ds.length).1;
let H := (Ο X ds.length).2;
if ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ X ds }
V E F β
Holds D I V E (replace Ο F)
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E F
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
s1 :
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
let zs := (Ο X ds.length).1;
let H := (Ο X ds.length).2;
if ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ X ds }
V E F β
Holds D I V E (replace Ο F)
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E F
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.occursIn_iff_mem_varSet
|
[295, 1]
|
[321, 10]
|
induction F
|
v : VarName
F : Formula
β’ occursIn v F β v β F.varSet
|
case pred_const_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ occursIn v (pred_const_ aβΒΉ aβ) β v β (pred_const_ aβΒΉ aβ).varSet
case pred_var_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ occursIn v (pred_var_ aβΒΉ aβ) β v β (pred_var_ aβΒΉ aβ).varSet
case eq_
v aβΒΉ aβ : VarName
β’ occursIn v (eq_ aβΒΉ aβ) β v β (eq_ aβΒΉ aβ).varSet
case true_
v : VarName
β’ occursIn v true_ β v β true_.varSet
case false_
v : VarName
β’ occursIn v false_ β v β false_.varSet
case not_
v : VarName
aβ : Formula
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v aβ.not_ β v β aβ.not_.varSet
case imp_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : occursIn v aβΒΉ β v β aβΒΉ.varSet
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v (aβΒΉ.imp_ aβ) β v β (aβΒΉ.imp_ aβ).varSet
case and_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : occursIn v aβΒΉ β v β aβΒΉ.varSet
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v (aβΒΉ.and_ aβ) β v β (aβΒΉ.and_ aβ).varSet
case or_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : occursIn v aβΒΉ β v β aβΒΉ.varSet
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v (aβΒΉ.or_ aβ) β v β (aβΒΉ.or_ aβ).varSet
case iff_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : occursIn v aβΒΉ β v β aβΒΉ.varSet
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v (aβΒΉ.iff_ aβ) β v β (aβΒΉ.iff_ aβ).varSet
case forall_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v (forall_ aβΒΉ aβ) β v β (forall_ aβΒΉ aβ).varSet
case exists_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v (exists_ aβΒΉ aβ) β v β (exists_ aβΒΉ aβ).varSet
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ occursIn v (def_ aβΒΉ aβ) β v β (def_ aβΒΉ aβ).varSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
F : Formula
β’ occursIn v F β v β F.varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.occursIn_iff_mem_varSet
|
[295, 1]
|
[321, 10]
|
all_goals
simp only [occursIn]
simp only [Formula.varSet]
|
case pred_const_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ occursIn v (pred_const_ aβΒΉ aβ) β v β (pred_const_ aβΒΉ aβ).varSet
case pred_var_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ occursIn v (pred_var_ aβΒΉ aβ) β v β (pred_var_ aβΒΉ aβ).varSet
case eq_
v aβΒΉ aβ : VarName
β’ occursIn v (eq_ aβΒΉ aβ) β v β (eq_ aβΒΉ aβ).varSet
case true_
v : VarName
β’ occursIn v true_ β v β true_.varSet
case false_
v : VarName
β’ occursIn v false_ β v β false_.varSet
case not_
v : VarName
aβ : Formula
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v aβ.not_ β v β aβ.not_.varSet
case imp_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : occursIn v aβΒΉ β v β aβΒΉ.varSet
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v (aβΒΉ.imp_ aβ) β v β (aβΒΉ.imp_ aβ).varSet
case and_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : occursIn v aβΒΉ β v β aβΒΉ.varSet
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v (aβΒΉ.and_ aβ) β v β (aβΒΉ.and_ aβ).varSet
case or_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : occursIn v aβΒΉ β v β aβΒΉ.varSet
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v (aβΒΉ.or_ aβ) β v β (aβΒΉ.or_ aβ).varSet
case iff_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : occursIn v aβΒΉ β v β aβΒΉ.varSet
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v (aβΒΉ.iff_ aβ) β v β (aβΒΉ.iff_ aβ).varSet
case forall_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v (forall_ aβΒΉ aβ) β v β (forall_ aβΒΉ aβ).varSet
case exists_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v (exists_ aβΒΉ aβ) β v β (exists_ aβΒΉ aβ).varSet
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ occursIn v (def_ aβΒΉ aβ) β v β (def_ aβΒΉ aβ).varSet
|
case pred_const_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ v β aβ β v β aβ.toFinset
case pred_var_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ v β aβ β v β aβ.toFinset
case eq_
v aβΒΉ aβ : VarName
β’ v = aβΒΉ β¨ v = aβ β v β {aβΒΉ, aβ}
case true_
v : VarName
β’ False β v β β
case false_
v : VarName
β’ False β v β β
case not_
v : VarName
aβ : Formula
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v aβ β v β aβ.varSet
case imp_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : occursIn v aβΒΉ β v β aβΒΉ.varSet
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v aβΒΉ β¨ occursIn v aβ β v β aβΒΉ.varSet βͺ aβ.varSet
case and_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : occursIn v aβΒΉ β v β aβΒΉ.varSet
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v aβΒΉ β¨ occursIn v aβ β v β aβΒΉ.varSet βͺ aβ.varSet
case or_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : occursIn v aβΒΉ β v β aβΒΉ.varSet
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v aβΒΉ β¨ occursIn v aβ β v β aβΒΉ.varSet βͺ aβ.varSet
case iff_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : occursIn v aβΒΉ β v β aβΒΉ.varSet
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v aβΒΉ β¨ occursIn v aβ β v β aβΒΉ.varSet βͺ aβ.varSet
case forall_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ v = aβΒΉ β¨ occursIn v aβ β v β aβ.varSet βͺ {aβΒΉ}
case exists_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ v = aβΒΉ β¨ occursIn v aβ β v β aβ.varSet βͺ {aβΒΉ}
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ v β aβ β v β aβ.toFinset
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pred_const_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ occursIn v (pred_const_ aβΒΉ aβ) β v β (pred_const_ aβΒΉ aβ).varSet
case pred_var_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ occursIn v (pred_var_ aβΒΉ aβ) β v β (pred_var_ aβΒΉ aβ).varSet
case eq_
v aβΒΉ aβ : VarName
β’ occursIn v (eq_ aβΒΉ aβ) β v β (eq_ aβΒΉ aβ).varSet
case true_
v : VarName
β’ occursIn v true_ β v β true_.varSet
case false_
v : VarName
β’ occursIn v false_ β v β false_.varSet
case not_
v : VarName
aβ : Formula
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v aβ.not_ β v β aβ.not_.varSet
case imp_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : occursIn v aβΒΉ β v β aβΒΉ.varSet
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v (aβΒΉ.imp_ aβ) β v β (aβΒΉ.imp_ aβ).varSet
case and_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : occursIn v aβΒΉ β v β aβΒΉ.varSet
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v (aβΒΉ.and_ aβ) β v β (aβΒΉ.and_ aβ).varSet
case or_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : occursIn v aβΒΉ β v β aβΒΉ.varSet
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v (aβΒΉ.or_ aβ) β v β (aβΒΉ.or_ aβ).varSet
case iff_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : occursIn v aβΒΉ β v β aβΒΉ.varSet
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v (aβΒΉ.iff_ aβ) β v β (aβΒΉ.iff_ aβ).varSet
case forall_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v (forall_ aβΒΉ aβ) β v β (forall_ aβΒΉ aβ).varSet
case exists_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : occursIn v aβ β v β aβ.varSet
β’ occursIn v (exists_ aβΒΉ aβ) β v β (exists_ aβΒΉ aβ).varSet
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ occursIn v (def_ aβΒΉ aβ) β v β (def_ aβΒΉ aβ).varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.occursIn_iff_mem_varSet
|
[295, 1]
|
[321, 10]
|
case pred_const_ X xs | pred_var_ X xs | def_ X xs =>
simp
|
v : VarName
X : DefName
xs : List VarName
β’ v β xs β v β xs.toFinset
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
X : DefName
xs : List VarName
β’ v β xs β v β xs.toFinset
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.occursIn_iff_mem_varSet
|
[295, 1]
|
[321, 10]
|
case eq_ x y =>
simp
|
v x y : VarName
β’ v = x β¨ v = y β v β {x, y}
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v x y : VarName
β’ v = x β¨ v = y β v β {x, y}
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.occursIn_iff_mem_varSet
|
[295, 1]
|
[321, 10]
|
case true_ | false_ =>
tauto
|
v : VarName
β’ False β v β β
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
β’ False β v β β
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.occursIn_iff_mem_varSet
|
[295, 1]
|
[321, 10]
|
case not_ phi phi_ih =>
tauto
|
v : VarName
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v phi β v β phi.varSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v phi β v β phi.varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.occursIn_iff_mem_varSet
|
[295, 1]
|
[321, 10]
|
case
imp_ phi psi phi_ih psi_ih
| and_ phi psi phi_ih psi_ih
| or_ phi psi phi_ih psi_ih
| iff_ phi psi phi_ih psi_ih =>
simp
tauto
|
v : VarName
phi psi : Formula
phi_ih : occursIn v phi β v β phi.varSet
psi_ih : occursIn v psi β v β psi.varSet
β’ occursIn v phi β¨ occursIn v psi β v β phi.varSet βͺ psi.varSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi psi : Formula
phi_ih : occursIn v phi β v β phi.varSet
psi_ih : occursIn v psi β v β psi.varSet
β’ occursIn v phi β¨ occursIn v psi β v β phi.varSet βͺ psi.varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.occursIn_iff_mem_varSet
|
[295, 1]
|
[321, 10]
|
case forall_ x phi phi_ih | exists_ x phi phi_ih =>
simp
tauto
|
v x : VarName
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ v = x β¨ occursIn v phi β v β phi.varSet βͺ {x}
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v x : VarName
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ v = x β¨ occursIn v phi β v β phi.varSet βͺ {x}
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.occursIn_iff_mem_varSet
|
[295, 1]
|
[321, 10]
|
simp only [occursIn]
|
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ occursIn v (def_ aβΒΉ aβ) β v β (def_ aβΒΉ aβ).varSet
|
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ v β aβ β v β (def_ aβΒΉ aβ).varSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ occursIn v (def_ aβΒΉ aβ) β v β (def_ aβΒΉ aβ).varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.occursIn_iff_mem_varSet
|
[295, 1]
|
[321, 10]
|
simp only [Formula.varSet]
|
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ v β aβ β v β (def_ aβΒΉ aβ).varSet
|
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ v β aβ β v β aβ.toFinset
|
Please generate a tactic in lean4 to solve the state.
STATE:
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ v β aβ β v β (def_ aβΒΉ aβ).varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.occursIn_iff_mem_varSet
|
[295, 1]
|
[321, 10]
|
simp
|
v : VarName
X : DefName
xs : List VarName
β’ v β xs β v β xs.toFinset
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
X : DefName
xs : List VarName
β’ v β xs β v β xs.toFinset
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.occursIn_iff_mem_varSet
|
[295, 1]
|
[321, 10]
|
simp
|
v x y : VarName
β’ v = x β¨ v = y β v β {x, y}
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v x y : VarName
β’ v = x β¨ v = y β v β {x, y}
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.occursIn_iff_mem_varSet
|
[295, 1]
|
[321, 10]
|
tauto
|
v : VarName
β’ False β v β β
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
β’ False β v β β
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.occursIn_iff_mem_varSet
|
[295, 1]
|
[321, 10]
|
tauto
|
v : VarName
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v phi β v β phi.varSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ occursIn v phi β v β phi.varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.occursIn_iff_mem_varSet
|
[295, 1]
|
[321, 10]
|
simp
|
v : VarName
phi psi : Formula
phi_ih : occursIn v phi β v β phi.varSet
psi_ih : occursIn v psi β v β psi.varSet
β’ occursIn v phi β¨ occursIn v psi β v β phi.varSet βͺ psi.varSet
|
v : VarName
phi psi : Formula
phi_ih : occursIn v phi β v β phi.varSet
psi_ih : occursIn v psi β v β psi.varSet
β’ occursIn v phi β¨ occursIn v psi β v β phi.varSet β¨ v β psi.varSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi psi : Formula
phi_ih : occursIn v phi β v β phi.varSet
psi_ih : occursIn v psi β v β psi.varSet
β’ occursIn v phi β¨ occursIn v psi β v β phi.varSet βͺ psi.varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.occursIn_iff_mem_varSet
|
[295, 1]
|
[321, 10]
|
tauto
|
v : VarName
phi psi : Formula
phi_ih : occursIn v phi β v β phi.varSet
psi_ih : occursIn v psi β v β psi.varSet
β’ occursIn v phi β¨ occursIn v psi β v β phi.varSet β¨ v β psi.varSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi psi : Formula
phi_ih : occursIn v phi β v β phi.varSet
psi_ih : occursIn v psi β v β psi.varSet
β’ occursIn v phi β¨ occursIn v psi β v β phi.varSet β¨ v β psi.varSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.occursIn_iff_mem_varSet
|
[295, 1]
|
[321, 10]
|
simp
|
v x : VarName
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ v = x β¨ occursIn v phi β v β phi.varSet βͺ {x}
|
v x : VarName
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ v = x β¨ occursIn v phi β v β phi.varSet β¨ v = x
|
Please generate a tactic in lean4 to solve the state.
STATE:
v x : VarName
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ v = x β¨ occursIn v phi β v β phi.varSet βͺ {x}
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.occursIn_iff_mem_varSet
|
[295, 1]
|
[321, 10]
|
tauto
|
v x : VarName
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ v = x β¨ occursIn v phi β v β phi.varSet β¨ v = x
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v x : VarName
phi : Formula
phi_ih : occursIn v phi β v β phi.varSet
β’ v = x β¨ occursIn v phi β v β phi.varSet β¨ v = x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isBoundIn_iff_mem_boundVarSet
|
[324, 1]
|
[350, 10]
|
induction F
|
v : VarName
F : Formula
β’ isBoundIn v F β v β F.boundVarSet
|
case pred_const_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ isBoundIn v (pred_const_ aβΒΉ aβ) β v β (pred_const_ aβΒΉ aβ).boundVarSet
case pred_var_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ isBoundIn v (pred_var_ aβΒΉ aβ) β v β (pred_var_ aβΒΉ aβ).boundVarSet
case eq_
v aβΒΉ aβ : VarName
β’ isBoundIn v (eq_ aβΒΉ aβ) β v β (eq_ aβΒΉ aβ).boundVarSet
case true_
v : VarName
β’ isBoundIn v true_ β v β true_.boundVarSet
case false_
v : VarName
β’ isBoundIn v false_ β v β false_.boundVarSet
case not_
v : VarName
aβ : Formula
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v aβ.not_ β v β aβ.not_.boundVarSet
case imp_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isBoundIn v aβΒΉ β v β aβΒΉ.boundVarSet
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v (aβΒΉ.imp_ aβ) β v β (aβΒΉ.imp_ aβ).boundVarSet
case and_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isBoundIn v aβΒΉ β v β aβΒΉ.boundVarSet
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v (aβΒΉ.and_ aβ) β v β (aβΒΉ.and_ aβ).boundVarSet
case or_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isBoundIn v aβΒΉ β v β aβΒΉ.boundVarSet
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v (aβΒΉ.or_ aβ) β v β (aβΒΉ.or_ aβ).boundVarSet
case iff_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isBoundIn v aβΒΉ β v β aβΒΉ.boundVarSet
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v (aβΒΉ.iff_ aβ) β v β (aβΒΉ.iff_ aβ).boundVarSet
case forall_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v (forall_ aβΒΉ aβ) β v β (forall_ aβΒΉ aβ).boundVarSet
case exists_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v (exists_ aβΒΉ aβ) β v β (exists_ aβΒΉ aβ).boundVarSet
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ isBoundIn v (def_ aβΒΉ aβ) β v β (def_ aβΒΉ aβ).boundVarSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
F : Formula
β’ isBoundIn v F β v β F.boundVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isBoundIn_iff_mem_boundVarSet
|
[324, 1]
|
[350, 10]
|
all_goals
simp only [isBoundIn]
simp only [Formula.boundVarSet]
|
case pred_const_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ isBoundIn v (pred_const_ aβΒΉ aβ) β v β (pred_const_ aβΒΉ aβ).boundVarSet
case pred_var_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ isBoundIn v (pred_var_ aβΒΉ aβ) β v β (pred_var_ aβΒΉ aβ).boundVarSet
case eq_
v aβΒΉ aβ : VarName
β’ isBoundIn v (eq_ aβΒΉ aβ) β v β (eq_ aβΒΉ aβ).boundVarSet
case true_
v : VarName
β’ isBoundIn v true_ β v β true_.boundVarSet
case false_
v : VarName
β’ isBoundIn v false_ β v β false_.boundVarSet
case not_
v : VarName
aβ : Formula
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v aβ.not_ β v β aβ.not_.boundVarSet
case imp_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isBoundIn v aβΒΉ β v β aβΒΉ.boundVarSet
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v (aβΒΉ.imp_ aβ) β v β (aβΒΉ.imp_ aβ).boundVarSet
case and_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isBoundIn v aβΒΉ β v β aβΒΉ.boundVarSet
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v (aβΒΉ.and_ aβ) β v β (aβΒΉ.and_ aβ).boundVarSet
case or_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isBoundIn v aβΒΉ β v β aβΒΉ.boundVarSet
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v (aβΒΉ.or_ aβ) β v β (aβΒΉ.or_ aβ).boundVarSet
case iff_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isBoundIn v aβΒΉ β v β aβΒΉ.boundVarSet
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v (aβΒΉ.iff_ aβ) β v β (aβΒΉ.iff_ aβ).boundVarSet
case forall_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v (forall_ aβΒΉ aβ) β v β (forall_ aβΒΉ aβ).boundVarSet
case exists_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v (exists_ aβΒΉ aβ) β v β (exists_ aβΒΉ aβ).boundVarSet
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ isBoundIn v (def_ aβΒΉ aβ) β v β (def_ aβΒΉ aβ).boundVarSet
|
case pred_const_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ False β v β β
case pred_var_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ False β v β β
case eq_
v aβΒΉ aβ : VarName
β’ False β v β β
case true_
v : VarName
β’ False β v β β
case false_
v : VarName
β’ False β v β β
case not_
v : VarName
aβ : Formula
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v aβ β v β aβ.boundVarSet
case imp_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isBoundIn v aβΒΉ β v β aβΒΉ.boundVarSet
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v aβΒΉ β¨ isBoundIn v aβ β v β aβΒΉ.boundVarSet βͺ aβ.boundVarSet
case and_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isBoundIn v aβΒΉ β v β aβΒΉ.boundVarSet
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v aβΒΉ β¨ isBoundIn v aβ β v β aβΒΉ.boundVarSet βͺ aβ.boundVarSet
case or_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isBoundIn v aβΒΉ β v β aβΒΉ.boundVarSet
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v aβΒΉ β¨ isBoundIn v aβ β v β aβΒΉ.boundVarSet βͺ aβ.boundVarSet
case iff_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isBoundIn v aβΒΉ β v β aβΒΉ.boundVarSet
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v aβΒΉ β¨ isBoundIn v aβ β v β aβΒΉ.boundVarSet βͺ aβ.boundVarSet
case forall_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ v = aβΒΉ β¨ isBoundIn v aβ β v β aβ.boundVarSet βͺ {aβΒΉ}
case exists_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ v = aβΒΉ β¨ isBoundIn v aβ β v β aβ.boundVarSet βͺ {aβΒΉ}
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ False β v β β
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pred_const_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ isBoundIn v (pred_const_ aβΒΉ aβ) β v β (pred_const_ aβΒΉ aβ).boundVarSet
case pred_var_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ isBoundIn v (pred_var_ aβΒΉ aβ) β v β (pred_var_ aβΒΉ aβ).boundVarSet
case eq_
v aβΒΉ aβ : VarName
β’ isBoundIn v (eq_ aβΒΉ aβ) β v β (eq_ aβΒΉ aβ).boundVarSet
case true_
v : VarName
β’ isBoundIn v true_ β v β true_.boundVarSet
case false_
v : VarName
β’ isBoundIn v false_ β v β false_.boundVarSet
case not_
v : VarName
aβ : Formula
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v aβ.not_ β v β aβ.not_.boundVarSet
case imp_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isBoundIn v aβΒΉ β v β aβΒΉ.boundVarSet
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v (aβΒΉ.imp_ aβ) β v β (aβΒΉ.imp_ aβ).boundVarSet
case and_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isBoundIn v aβΒΉ β v β aβΒΉ.boundVarSet
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v (aβΒΉ.and_ aβ) β v β (aβΒΉ.and_ aβ).boundVarSet
case or_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isBoundIn v aβΒΉ β v β aβΒΉ.boundVarSet
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v (aβΒΉ.or_ aβ) β v β (aβΒΉ.or_ aβ).boundVarSet
case iff_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isBoundIn v aβΒΉ β v β aβΒΉ.boundVarSet
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v (aβΒΉ.iff_ aβ) β v β (aβΒΉ.iff_ aβ).boundVarSet
case forall_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v (forall_ aβΒΉ aβ) β v β (forall_ aβΒΉ aβ).boundVarSet
case exists_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isBoundIn v aβ β v β aβ.boundVarSet
β’ isBoundIn v (exists_ aβΒΉ aβ) β v β (exists_ aβΒΉ aβ).boundVarSet
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ isBoundIn v (def_ aβΒΉ aβ) β v β (def_ aβΒΉ aβ).boundVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isBoundIn_iff_mem_boundVarSet
|
[324, 1]
|
[350, 10]
|
case pred_const_ X xs | pred_var_ X xs | def_ X xs =>
simp
|
v : VarName
X : DefName
xs : List VarName
β’ False β v β β
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
X : DefName
xs : List VarName
β’ False β v β β
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isBoundIn_iff_mem_boundVarSet
|
[324, 1]
|
[350, 10]
|
case eq_ x y =>
simp
|
v x y : VarName
β’ False β v β β
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v x y : VarName
β’ False β v β β
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isBoundIn_iff_mem_boundVarSet
|
[324, 1]
|
[350, 10]
|
case true_ | false_ =>
tauto
|
v : VarName
β’ False β v β β
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
β’ False β v β β
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isBoundIn_iff_mem_boundVarSet
|
[324, 1]
|
[350, 10]
|
case not_ phi phi_ih =>
tauto
|
v : VarName
phi : Formula
phi_ih : isBoundIn v phi β v β phi.boundVarSet
β’ isBoundIn v phi β v β phi.boundVarSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi : Formula
phi_ih : isBoundIn v phi β v β phi.boundVarSet
β’ isBoundIn v phi β v β phi.boundVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isBoundIn_iff_mem_boundVarSet
|
[324, 1]
|
[350, 10]
|
case
imp_ phi psi phi_ih psi_ih
| and_ phi psi phi_ih psi_ih
| or_ phi psi phi_ih psi_ih
| iff_ phi psi phi_ih psi_ih =>
simp
tauto
|
v : VarName
phi psi : Formula
phi_ih : isBoundIn v phi β v β phi.boundVarSet
psi_ih : isBoundIn v psi β v β psi.boundVarSet
β’ isBoundIn v phi β¨ isBoundIn v psi β v β phi.boundVarSet βͺ psi.boundVarSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi psi : Formula
phi_ih : isBoundIn v phi β v β phi.boundVarSet
psi_ih : isBoundIn v psi β v β psi.boundVarSet
β’ isBoundIn v phi β¨ isBoundIn v psi β v β phi.boundVarSet βͺ psi.boundVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isBoundIn_iff_mem_boundVarSet
|
[324, 1]
|
[350, 10]
|
case forall_ x phi phi_ih | exists_ x phi phi_ih =>
simp
tauto
|
v x : VarName
phi : Formula
phi_ih : isBoundIn v phi β v β phi.boundVarSet
β’ v = x β¨ isBoundIn v phi β v β phi.boundVarSet βͺ {x}
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v x : VarName
phi : Formula
phi_ih : isBoundIn v phi β v β phi.boundVarSet
β’ v = x β¨ isBoundIn v phi β v β phi.boundVarSet βͺ {x}
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isBoundIn_iff_mem_boundVarSet
|
[324, 1]
|
[350, 10]
|
simp only [isBoundIn]
|
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ isBoundIn v (def_ aβΒΉ aβ) β v β (def_ aβΒΉ aβ).boundVarSet
|
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ False β v β (def_ aβΒΉ aβ).boundVarSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ isBoundIn v (def_ aβΒΉ aβ) β v β (def_ aβΒΉ aβ).boundVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isBoundIn_iff_mem_boundVarSet
|
[324, 1]
|
[350, 10]
|
simp only [Formula.boundVarSet]
|
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ False β v β (def_ aβΒΉ aβ).boundVarSet
|
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ False β v β β
|
Please generate a tactic in lean4 to solve the state.
STATE:
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ False β v β (def_ aβΒΉ aβ).boundVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isBoundIn_iff_mem_boundVarSet
|
[324, 1]
|
[350, 10]
|
simp
|
v : VarName
X : DefName
xs : List VarName
β’ False β v β β
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
X : DefName
xs : List VarName
β’ False β v β β
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isBoundIn_iff_mem_boundVarSet
|
[324, 1]
|
[350, 10]
|
simp
|
v x y : VarName
β’ False β v β β
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v x y : VarName
β’ False β v β β
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isBoundIn_iff_mem_boundVarSet
|
[324, 1]
|
[350, 10]
|
tauto
|
v : VarName
β’ False β v β β
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
β’ False β v β β
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isBoundIn_iff_mem_boundVarSet
|
[324, 1]
|
[350, 10]
|
tauto
|
v : VarName
phi : Formula
phi_ih : isBoundIn v phi β v β phi.boundVarSet
β’ isBoundIn v phi β v β phi.boundVarSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi : Formula
phi_ih : isBoundIn v phi β v β phi.boundVarSet
β’ isBoundIn v phi β v β phi.boundVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isBoundIn_iff_mem_boundVarSet
|
[324, 1]
|
[350, 10]
|
simp
|
v : VarName
phi psi : Formula
phi_ih : isBoundIn v phi β v β phi.boundVarSet
psi_ih : isBoundIn v psi β v β psi.boundVarSet
β’ isBoundIn v phi β¨ isBoundIn v psi β v β phi.boundVarSet βͺ psi.boundVarSet
|
v : VarName
phi psi : Formula
phi_ih : isBoundIn v phi β v β phi.boundVarSet
psi_ih : isBoundIn v psi β v β psi.boundVarSet
β’ isBoundIn v phi β¨ isBoundIn v psi β v β phi.boundVarSet β¨ v β psi.boundVarSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi psi : Formula
phi_ih : isBoundIn v phi β v β phi.boundVarSet
psi_ih : isBoundIn v psi β v β psi.boundVarSet
β’ isBoundIn v phi β¨ isBoundIn v psi β v β phi.boundVarSet βͺ psi.boundVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isBoundIn_iff_mem_boundVarSet
|
[324, 1]
|
[350, 10]
|
tauto
|
v : VarName
phi psi : Formula
phi_ih : isBoundIn v phi β v β phi.boundVarSet
psi_ih : isBoundIn v psi β v β psi.boundVarSet
β’ isBoundIn v phi β¨ isBoundIn v psi β v β phi.boundVarSet β¨ v β psi.boundVarSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi psi : Formula
phi_ih : isBoundIn v phi β v β phi.boundVarSet
psi_ih : isBoundIn v psi β v β psi.boundVarSet
β’ isBoundIn v phi β¨ isBoundIn v psi β v β phi.boundVarSet β¨ v β psi.boundVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isBoundIn_iff_mem_boundVarSet
|
[324, 1]
|
[350, 10]
|
simp
|
v x : VarName
phi : Formula
phi_ih : isBoundIn v phi β v β phi.boundVarSet
β’ v = x β¨ isBoundIn v phi β v β phi.boundVarSet βͺ {x}
|
v x : VarName
phi : Formula
phi_ih : isBoundIn v phi β v β phi.boundVarSet
β’ v = x β¨ isBoundIn v phi β v β phi.boundVarSet β¨ v = x
|
Please generate a tactic in lean4 to solve the state.
STATE:
v x : VarName
phi : Formula
phi_ih : isBoundIn v phi β v β phi.boundVarSet
β’ v = x β¨ isBoundIn v phi β v β phi.boundVarSet βͺ {x}
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isBoundIn_iff_mem_boundVarSet
|
[324, 1]
|
[350, 10]
|
tauto
|
v x : VarName
phi : Formula
phi_ih : isBoundIn v phi β v β phi.boundVarSet
β’ v = x β¨ isBoundIn v phi β v β phi.boundVarSet β¨ v = x
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v x : VarName
phi : Formula
phi_ih : isBoundIn v phi β v β phi.boundVarSet
β’ v = x β¨ isBoundIn v phi β v β phi.boundVarSet β¨ v = x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_iff_mem_freeVarSet
|
[353, 1]
|
[379, 10]
|
induction F
|
v : VarName
F : Formula
β’ isFreeIn v F β v β F.freeVarSet
|
case pred_const_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ isFreeIn v (pred_const_ aβΒΉ aβ) β v β (pred_const_ aβΒΉ aβ).freeVarSet
case pred_var_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ isFreeIn v (pred_var_ aβΒΉ aβ) β v β (pred_var_ aβΒΉ aβ).freeVarSet
case eq_
v aβΒΉ aβ : VarName
β’ isFreeIn v (eq_ aβΒΉ aβ) β v β (eq_ aβΒΉ aβ).freeVarSet
case true_
v : VarName
β’ isFreeIn v true_ β v β true_.freeVarSet
case false_
v : VarName
β’ isFreeIn v false_ β v β false_.freeVarSet
case not_
v : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v aβ.not_ β v β aβ.not_.freeVarSet
case imp_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β v β aβΒΉ.freeVarSet
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v (aβΒΉ.imp_ aβ) β v β (aβΒΉ.imp_ aβ).freeVarSet
case and_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β v β aβΒΉ.freeVarSet
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v (aβΒΉ.and_ aβ) β v β (aβΒΉ.and_ aβ).freeVarSet
case or_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β v β aβΒΉ.freeVarSet
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v (aβΒΉ.or_ aβ) β v β (aβΒΉ.or_ aβ).freeVarSet
case iff_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β v β aβΒΉ.freeVarSet
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v (aβΒΉ.iff_ aβ) β v β (aβΒΉ.iff_ aβ).freeVarSet
case forall_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v (forall_ aβΒΉ aβ) β v β (forall_ aβΒΉ aβ).freeVarSet
case exists_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v (exists_ aβΒΉ aβ) β v β (exists_ aβΒΉ aβ).freeVarSet
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ isFreeIn v (def_ aβΒΉ aβ) β v β (def_ aβΒΉ aβ).freeVarSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
F : Formula
β’ isFreeIn v F β v β F.freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_iff_mem_freeVarSet
|
[353, 1]
|
[379, 10]
|
all_goals
simp only [isFreeIn]
simp only [Formula.freeVarSet]
|
case pred_const_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ isFreeIn v (pred_const_ aβΒΉ aβ) β v β (pred_const_ aβΒΉ aβ).freeVarSet
case pred_var_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ isFreeIn v (pred_var_ aβΒΉ aβ) β v β (pred_var_ aβΒΉ aβ).freeVarSet
case eq_
v aβΒΉ aβ : VarName
β’ isFreeIn v (eq_ aβΒΉ aβ) β v β (eq_ aβΒΉ aβ).freeVarSet
case true_
v : VarName
β’ isFreeIn v true_ β v β true_.freeVarSet
case false_
v : VarName
β’ isFreeIn v false_ β v β false_.freeVarSet
case not_
v : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v aβ.not_ β v β aβ.not_.freeVarSet
case imp_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β v β aβΒΉ.freeVarSet
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v (aβΒΉ.imp_ aβ) β v β (aβΒΉ.imp_ aβ).freeVarSet
case and_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β v β aβΒΉ.freeVarSet
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v (aβΒΉ.and_ aβ) β v β (aβΒΉ.and_ aβ).freeVarSet
case or_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β v β aβΒΉ.freeVarSet
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v (aβΒΉ.or_ aβ) β v β (aβΒΉ.or_ aβ).freeVarSet
case iff_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β v β aβΒΉ.freeVarSet
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v (aβΒΉ.iff_ aβ) β v β (aβΒΉ.iff_ aβ).freeVarSet
case forall_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v (forall_ aβΒΉ aβ) β v β (forall_ aβΒΉ aβ).freeVarSet
case exists_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v (exists_ aβΒΉ aβ) β v β (exists_ aβΒΉ aβ).freeVarSet
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ isFreeIn v (def_ aβΒΉ aβ) β v β (def_ aβΒΉ aβ).freeVarSet
|
case pred_const_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ v β aβ β v β aβ.toFinset
case pred_var_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ v β aβ β v β aβ.toFinset
case eq_
v aβΒΉ aβ : VarName
β’ v = aβΒΉ β¨ v = aβ β v β {aβΒΉ, aβ}
case true_
v : VarName
β’ False β v β β
case false_
v : VarName
β’ False β v β β
case not_
v : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v aβ β v β aβ.freeVarSet
case imp_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β v β aβΒΉ.freeVarSet
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v aβΒΉ β¨ isFreeIn v aβ β v β aβΒΉ.freeVarSet βͺ aβ.freeVarSet
case and_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β v β aβΒΉ.freeVarSet
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v aβΒΉ β¨ isFreeIn v aβ β v β aβΒΉ.freeVarSet βͺ aβ.freeVarSet
case or_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β v β aβΒΉ.freeVarSet
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v aβΒΉ β¨ isFreeIn v aβ β v β aβΒΉ.freeVarSet βͺ aβ.freeVarSet
case iff_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β v β aβΒΉ.freeVarSet
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v aβΒΉ β¨ isFreeIn v aβ β v β aβΒΉ.freeVarSet βͺ aβ.freeVarSet
case forall_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ Β¬v = aβΒΉ β§ isFreeIn v aβ β v β aβ.freeVarSet \ {aβΒΉ}
case exists_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ Β¬v = aβΒΉ β§ isFreeIn v aβ β v β aβ.freeVarSet \ {aβΒΉ}
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ v β aβ β v β aβ.toFinset
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pred_const_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ isFreeIn v (pred_const_ aβΒΉ aβ) β v β (pred_const_ aβΒΉ aβ).freeVarSet
case pred_var_
v : VarName
aβΒΉ : PredName
aβ : List VarName
β’ isFreeIn v (pred_var_ aβΒΉ aβ) β v β (pred_var_ aβΒΉ aβ).freeVarSet
case eq_
v aβΒΉ aβ : VarName
β’ isFreeIn v (eq_ aβΒΉ aβ) β v β (eq_ aβΒΉ aβ).freeVarSet
case true_
v : VarName
β’ isFreeIn v true_ β v β true_.freeVarSet
case false_
v : VarName
β’ isFreeIn v false_ β v β false_.freeVarSet
case not_
v : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v aβ.not_ β v β aβ.not_.freeVarSet
case imp_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β v β aβΒΉ.freeVarSet
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v (aβΒΉ.imp_ aβ) β v β (aβΒΉ.imp_ aβ).freeVarSet
case and_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β v β aβΒΉ.freeVarSet
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v (aβΒΉ.and_ aβ) β v β (aβΒΉ.and_ aβ).freeVarSet
case or_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β v β aβΒΉ.freeVarSet
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v (aβΒΉ.or_ aβ) β v β (aβΒΉ.or_ aβ).freeVarSet
case iff_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β v β aβΒΉ.freeVarSet
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v (aβΒΉ.iff_ aβ) β v β (aβΒΉ.iff_ aβ).freeVarSet
case forall_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v (forall_ aβΒΉ aβ) β v β (forall_ aβΒΉ aβ).freeVarSet
case exists_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β v β aβ.freeVarSet
β’ isFreeIn v (exists_ aβΒΉ aβ) β v β (exists_ aβΒΉ aβ).freeVarSet
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ isFreeIn v (def_ aβΒΉ aβ) β v β (def_ aβΒΉ aβ).freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_iff_mem_freeVarSet
|
[353, 1]
|
[379, 10]
|
case pred_const_ X xs | pred_var_ X xs | def_ X xs =>
simp
|
v : VarName
X : DefName
xs : List VarName
β’ v β xs β v β xs.toFinset
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
X : DefName
xs : List VarName
β’ v β xs β v β xs.toFinset
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_iff_mem_freeVarSet
|
[353, 1]
|
[379, 10]
|
case eq_ x y =>
simp
|
v x y : VarName
β’ v = x β¨ v = y β v β {x, y}
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v x y : VarName
β’ v = x β¨ v = y β v β {x, y}
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_iff_mem_freeVarSet
|
[353, 1]
|
[379, 10]
|
case true_ | false_ =>
tauto
|
v : VarName
β’ False β v β β
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
β’ False β v β β
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_iff_mem_freeVarSet
|
[353, 1]
|
[379, 10]
|
case not_ phi phi_ih =>
tauto
|
v : VarName
phi : Formula
phi_ih : isFreeIn v phi β v β phi.freeVarSet
β’ isFreeIn v phi β v β phi.freeVarSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi : Formula
phi_ih : isFreeIn v phi β v β phi.freeVarSet
β’ isFreeIn v phi β v β phi.freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_iff_mem_freeVarSet
|
[353, 1]
|
[379, 10]
|
case
imp_ phi psi phi_ih psi_ih
| and_ phi psi phi_ih psi_ih
| or_ phi psi phi_ih psi_ih
| iff_ phi psi phi_ih psi_ih =>
simp
tauto
|
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β v β phi.freeVarSet
psi_ih : isFreeIn v psi β v β psi.freeVarSet
β’ isFreeIn v phi β¨ isFreeIn v psi β v β phi.freeVarSet βͺ psi.freeVarSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β v β phi.freeVarSet
psi_ih : isFreeIn v psi β v β psi.freeVarSet
β’ isFreeIn v phi β¨ isFreeIn v psi β v β phi.freeVarSet βͺ psi.freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_iff_mem_freeVarSet
|
[353, 1]
|
[379, 10]
|
case forall_ x phi phi_ih | exists_ x phi phi_ih =>
simp
tauto
|
v x : VarName
phi : Formula
phi_ih : isFreeIn v phi β v β phi.freeVarSet
β’ Β¬v = x β§ isFreeIn v phi β v β phi.freeVarSet \ {x}
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v x : VarName
phi : Formula
phi_ih : isFreeIn v phi β v β phi.freeVarSet
β’ Β¬v = x β§ isFreeIn v phi β v β phi.freeVarSet \ {x}
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_iff_mem_freeVarSet
|
[353, 1]
|
[379, 10]
|
simp only [isFreeIn]
|
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ isFreeIn v (def_ aβΒΉ aβ) β v β (def_ aβΒΉ aβ).freeVarSet
|
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ v β aβ β v β (def_ aβΒΉ aβ).freeVarSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ isFreeIn v (def_ aβΒΉ aβ) β v β (def_ aβΒΉ aβ).freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_iff_mem_freeVarSet
|
[353, 1]
|
[379, 10]
|
simp only [Formula.freeVarSet]
|
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ v β aβ β v β (def_ aβΒΉ aβ).freeVarSet
|
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ v β aβ β v β aβ.toFinset
|
Please generate a tactic in lean4 to solve the state.
STATE:
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
β’ v β aβ β v β (def_ aβΒΉ aβ).freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_iff_mem_freeVarSet
|
[353, 1]
|
[379, 10]
|
simp
|
v : VarName
X : DefName
xs : List VarName
β’ v β xs β v β xs.toFinset
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
X : DefName
xs : List VarName
β’ v β xs β v β xs.toFinset
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_iff_mem_freeVarSet
|
[353, 1]
|
[379, 10]
|
simp
|
v x y : VarName
β’ v = x β¨ v = y β v β {x, y}
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v x y : VarName
β’ v = x β¨ v = y β v β {x, y}
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_iff_mem_freeVarSet
|
[353, 1]
|
[379, 10]
|
tauto
|
v : VarName
β’ False β v β β
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
β’ False β v β β
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_iff_mem_freeVarSet
|
[353, 1]
|
[379, 10]
|
tauto
|
v : VarName
phi : Formula
phi_ih : isFreeIn v phi β v β phi.freeVarSet
β’ isFreeIn v phi β v β phi.freeVarSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi : Formula
phi_ih : isFreeIn v phi β v β phi.freeVarSet
β’ isFreeIn v phi β v β phi.freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_iff_mem_freeVarSet
|
[353, 1]
|
[379, 10]
|
simp
|
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β v β phi.freeVarSet
psi_ih : isFreeIn v psi β v β psi.freeVarSet
β’ isFreeIn v phi β¨ isFreeIn v psi β v β phi.freeVarSet βͺ psi.freeVarSet
|
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β v β phi.freeVarSet
psi_ih : isFreeIn v psi β v β psi.freeVarSet
β’ isFreeIn v phi β¨ isFreeIn v psi β v β phi.freeVarSet β¨ v β psi.freeVarSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β v β phi.freeVarSet
psi_ih : isFreeIn v psi β v β psi.freeVarSet
β’ isFreeIn v phi β¨ isFreeIn v psi β v β phi.freeVarSet βͺ psi.freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_iff_mem_freeVarSet
|
[353, 1]
|
[379, 10]
|
tauto
|
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β v β phi.freeVarSet
psi_ih : isFreeIn v psi β v β psi.freeVarSet
β’ isFreeIn v phi β¨ isFreeIn v psi β v β phi.freeVarSet β¨ v β psi.freeVarSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β v β phi.freeVarSet
psi_ih : isFreeIn v psi β v β psi.freeVarSet
β’ isFreeIn v phi β¨ isFreeIn v psi β v β phi.freeVarSet β¨ v β psi.freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_iff_mem_freeVarSet
|
[353, 1]
|
[379, 10]
|
simp
|
v x : VarName
phi : Formula
phi_ih : isFreeIn v phi β v β phi.freeVarSet
β’ Β¬v = x β§ isFreeIn v phi β v β phi.freeVarSet \ {x}
|
v x : VarName
phi : Formula
phi_ih : isFreeIn v phi β v β phi.freeVarSet
β’ Β¬v = x β§ isFreeIn v phi β v β phi.freeVarSet β§ Β¬v = x
|
Please generate a tactic in lean4 to solve the state.
STATE:
v x : VarName
phi : Formula
phi_ih : isFreeIn v phi β v β phi.freeVarSet
β’ Β¬v = x β§ isFreeIn v phi β v β phi.freeVarSet \ {x}
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_iff_mem_freeVarSet
|
[353, 1]
|
[379, 10]
|
tauto
|
v x : VarName
phi : Formula
phi_ih : isFreeIn v phi β v β phi.freeVarSet
β’ Β¬v = x β§ isFreeIn v phi β v β phi.freeVarSet β§ Β¬v = x
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v x : VarName
phi : Formula
phi_ih : isFreeIn v phi β v β phi.freeVarSet
β’ Β¬v = x β§ isFreeIn v phi β v β phi.freeVarSet β§ Β¬v = x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
induction F
|
v : VarName
F : Formula
h1 : isFreeIn v F
β’ isFreeInInd v F
|
case pred_const_
v : VarName
aβΒΉ : PredName
aβ : List VarName
h1 : isFreeIn v (pred_const_ aβΒΉ aβ)
β’ isFreeInInd v (pred_const_ aβΒΉ aβ)
case pred_var_
v : VarName
aβΒΉ : PredName
aβ : List VarName
h1 : isFreeIn v (pred_var_ aβΒΉ aβ)
β’ isFreeInInd v (pred_var_ aβΒΉ aβ)
case eq_
v aβΒΉ aβ : VarName
h1 : isFreeIn v (eq_ aβΒΉ aβ)
β’ isFreeInInd v (eq_ aβΒΉ aβ)
case true_
v : VarName
h1 : isFreeIn v true_
β’ isFreeInInd v true_
case false_
v : VarName
h1 : isFreeIn v false_
β’ isFreeInInd v false_
case not_
v : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v aβ.not_
β’ isFreeInInd v aβ.not_
case imp_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β isFreeInInd v aβΒΉ
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v (aβΒΉ.imp_ aβ)
β’ isFreeInInd v (aβΒΉ.imp_ aβ)
case and_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β isFreeInInd v aβΒΉ
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v (aβΒΉ.and_ aβ)
β’ isFreeInInd v (aβΒΉ.and_ aβ)
case or_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β isFreeInInd v aβΒΉ
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v (aβΒΉ.or_ aβ)
β’ isFreeInInd v (aβΒΉ.or_ aβ)
case iff_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β isFreeInInd v aβΒΉ
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v (aβΒΉ.iff_ aβ)
β’ isFreeInInd v (aβΒΉ.iff_ aβ)
case forall_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v (forall_ aβΒΉ aβ)
β’ isFreeInInd v (forall_ aβΒΉ aβ)
case exists_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v (exists_ aβΒΉ aβ)
β’ isFreeInInd v (exists_ aβΒΉ aβ)
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
h1 : isFreeIn v (def_ aβΒΉ aβ)
β’ isFreeInInd v (def_ aβΒΉ aβ)
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
F : Formula
h1 : isFreeIn v F
β’ isFreeInInd v F
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
any_goals
simp only [isFreeIn] at h1
|
case pred_const_
v : VarName
aβΒΉ : PredName
aβ : List VarName
h1 : isFreeIn v (pred_const_ aβΒΉ aβ)
β’ isFreeInInd v (pred_const_ aβΒΉ aβ)
case pred_var_
v : VarName
aβΒΉ : PredName
aβ : List VarName
h1 : isFreeIn v (pred_var_ aβΒΉ aβ)
β’ isFreeInInd v (pred_var_ aβΒΉ aβ)
case eq_
v aβΒΉ aβ : VarName
h1 : isFreeIn v (eq_ aβΒΉ aβ)
β’ isFreeInInd v (eq_ aβΒΉ aβ)
case true_
v : VarName
h1 : isFreeIn v true_
β’ isFreeInInd v true_
case false_
v : VarName
h1 : isFreeIn v false_
β’ isFreeInInd v false_
case not_
v : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v aβ.not_
β’ isFreeInInd v aβ.not_
case imp_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β isFreeInInd v aβΒΉ
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v (aβΒΉ.imp_ aβ)
β’ isFreeInInd v (aβΒΉ.imp_ aβ)
case and_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β isFreeInInd v aβΒΉ
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v (aβΒΉ.and_ aβ)
β’ isFreeInInd v (aβΒΉ.and_ aβ)
case or_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β isFreeInInd v aβΒΉ
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v (aβΒΉ.or_ aβ)
β’ isFreeInInd v (aβΒΉ.or_ aβ)
case iff_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β isFreeInInd v aβΒΉ
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v (aβΒΉ.iff_ aβ)
β’ isFreeInInd v (aβΒΉ.iff_ aβ)
case forall_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v (forall_ aβΒΉ aβ)
β’ isFreeInInd v (forall_ aβΒΉ aβ)
case exists_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v (exists_ aβΒΉ aβ)
β’ isFreeInInd v (exists_ aβΒΉ aβ)
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
h1 : isFreeIn v (def_ aβΒΉ aβ)
β’ isFreeInInd v (def_ aβΒΉ aβ)
|
case pred_const_
v : VarName
aβΒΉ : PredName
aβ : List VarName
h1 : v β aβ
β’ isFreeInInd v (pred_const_ aβΒΉ aβ)
case pred_var_
v : VarName
aβΒΉ : PredName
aβ : List VarName
h1 : v β aβ
β’ isFreeInInd v (pred_var_ aβΒΉ aβ)
case eq_
v aβΒΉ aβ : VarName
h1 : v = aβΒΉ β¨ v = aβ
β’ isFreeInInd v (eq_ aβΒΉ aβ)
case not_
v : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v aβ
β’ isFreeInInd v aβ.not_
case imp_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β isFreeInInd v aβΒΉ
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v aβΒΉ β¨ isFreeIn v aβ
β’ isFreeInInd v (aβΒΉ.imp_ aβ)
case and_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β isFreeInInd v aβΒΉ
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v aβΒΉ β¨ isFreeIn v aβ
β’ isFreeInInd v (aβΒΉ.and_ aβ)
case or_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β isFreeInInd v aβΒΉ
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v aβΒΉ β¨ isFreeIn v aβ
β’ isFreeInInd v (aβΒΉ.or_ aβ)
case iff_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β isFreeInInd v aβΒΉ
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v aβΒΉ β¨ isFreeIn v aβ
β’ isFreeInInd v (aβΒΉ.iff_ aβ)
case forall_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : Β¬v = aβΒΉ β§ isFreeIn v aβ
β’ isFreeInInd v (forall_ aβΒΉ aβ)
case exists_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : Β¬v = aβΒΉ β§ isFreeIn v aβ
β’ isFreeInInd v (exists_ aβΒΉ aβ)
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
h1 : v β aβ
β’ isFreeInInd v (def_ aβΒΉ aβ)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pred_const_
v : VarName
aβΒΉ : PredName
aβ : List VarName
h1 : isFreeIn v (pred_const_ aβΒΉ aβ)
β’ isFreeInInd v (pred_const_ aβΒΉ aβ)
case pred_var_
v : VarName
aβΒΉ : PredName
aβ : List VarName
h1 : isFreeIn v (pred_var_ aβΒΉ aβ)
β’ isFreeInInd v (pred_var_ aβΒΉ aβ)
case eq_
v aβΒΉ aβ : VarName
h1 : isFreeIn v (eq_ aβΒΉ aβ)
β’ isFreeInInd v (eq_ aβΒΉ aβ)
case true_
v : VarName
h1 : isFreeIn v true_
β’ isFreeInInd v true_
case false_
v : VarName
h1 : isFreeIn v false_
β’ isFreeInInd v false_
case not_
v : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v aβ.not_
β’ isFreeInInd v aβ.not_
case imp_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β isFreeInInd v aβΒΉ
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v (aβΒΉ.imp_ aβ)
β’ isFreeInInd v (aβΒΉ.imp_ aβ)
case and_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β isFreeInInd v aβΒΉ
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v (aβΒΉ.and_ aβ)
β’ isFreeInInd v (aβΒΉ.and_ aβ)
case or_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β isFreeInInd v aβΒΉ
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v (aβΒΉ.or_ aβ)
β’ isFreeInInd v (aβΒΉ.or_ aβ)
case iff_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : isFreeIn v aβΒΉ β isFreeInInd v aβΒΉ
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v (aβΒΉ.iff_ aβ)
β’ isFreeInInd v (aβΒΉ.iff_ aβ)
case forall_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v (forall_ aβΒΉ aβ)
β’ isFreeInInd v (forall_ aβΒΉ aβ)
case exists_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : isFreeIn v aβ β isFreeInInd v aβ
h1 : isFreeIn v (exists_ aβΒΉ aβ)
β’ isFreeInInd v (exists_ aβΒΉ aβ)
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
h1 : isFreeIn v (def_ aβΒΉ aβ)
β’ isFreeInInd v (def_ aβΒΉ aβ)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
case pred_const_ X xs | pred_var_ X xs | eq_ x y | def_ X xs =>
first | exact isFreeInInd.pred_const_ X xs h1 | exact isFreeInInd.pred_var_ X xs h1 | exact isFreeInInd.eq_ x y h1 | exact isFreeInInd.def_ X xs h1
|
v : VarName
X : DefName
xs : List VarName
h1 : v β xs
β’ isFreeInInd v (def_ X xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
X : DefName
xs : List VarName
h1 : v β xs
β’ isFreeInInd v (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
case not_ phi phi_ih =>
apply isFreeInInd.not_
exact phi_ih h1
|
v : VarName
phi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
h1 : isFreeIn v phi
β’ isFreeInInd v phi.not_
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
h1 : isFreeIn v phi
β’ isFreeInInd v phi.not_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
case
imp_ phi psi phi_ih psi_ih
| and_ phi psi phi_ih psi_ih
| or_ phi psi phi_ih psi_ih
| iff_ phi psi phi_ih psi_ih =>
cases h1
case inl c1 =>
first | apply isFreeInInd.imp_left_ | apply isFreeInInd.and_left_ | apply isFreeInInd.or_left_ | apply isFreeInInd.iff_left_
exact phi_ih c1
case inr c1 =>
first | apply isFreeInInd.imp_right_ | apply isFreeInInd.and_right_ | apply isFreeInInd.or_right_ | apply isFreeInInd.iff_right_
exact psi_ih c1
|
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
h1 : isFreeIn v phi β¨ isFreeIn v psi
β’ isFreeInInd v (phi.iff_ psi)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
h1 : isFreeIn v phi β¨ isFreeIn v psi
β’ isFreeInInd v (phi.iff_ psi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
simp only [isFreeIn] at h1
|
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
h1 : isFreeIn v (def_ aβΒΉ aβ)
β’ isFreeInInd v (def_ aβΒΉ aβ)
|
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
h1 : v β aβ
β’ isFreeInInd v (def_ aβΒΉ aβ)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
h1 : isFreeIn v (def_ aβΒΉ aβ)
β’ isFreeInInd v (def_ aβΒΉ aβ)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
first | exact isFreeInInd.pred_const_ X xs h1 | exact isFreeInInd.pred_var_ X xs h1 | exact isFreeInInd.eq_ x y h1 | exact isFreeInInd.def_ X xs h1
|
v : VarName
X : DefName
xs : List VarName
h1 : v β xs
β’ isFreeInInd v (def_ X xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
X : DefName
xs : List VarName
h1 : v β xs
β’ isFreeInInd v (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
exact isFreeInInd.pred_const_ X xs h1
|
v : VarName
X : PredName
xs : List VarName
h1 : v β xs
β’ isFreeInInd v (pred_const_ X xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
X : PredName
xs : List VarName
h1 : v β xs
β’ isFreeInInd v (pred_const_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
exact isFreeInInd.pred_var_ X xs h1
|
v : VarName
X : PredName
xs : List VarName
h1 : v β xs
β’ isFreeInInd v (pred_var_ X xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
X : PredName
xs : List VarName
h1 : v β xs
β’ isFreeInInd v (pred_var_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
exact isFreeInInd.eq_ x y h1
|
v x y : VarName
h1 : v = x β¨ v = y
β’ isFreeInInd v (eq_ x y)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v x y : VarName
h1 : v = x β¨ v = y
β’ isFreeInInd v (eq_ x y)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
exact isFreeInInd.def_ X xs h1
|
v : VarName
X : DefName
xs : List VarName
h1 : v β xs
β’ isFreeInInd v (def_ X xs)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
X : DefName
xs : List VarName
h1 : v β xs
β’ isFreeInInd v (def_ X xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
apply isFreeInInd.not_
|
v : VarName
phi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
h1 : isFreeIn v phi
β’ isFreeInInd v phi.not_
|
case a
v : VarName
phi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
h1 : isFreeIn v phi
β’ isFreeInInd v phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
h1 : isFreeIn v phi
β’ isFreeInInd v phi.not_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
exact phi_ih h1
|
case a
v : VarName
phi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
h1 : isFreeIn v phi
β’ isFreeInInd v phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
v : VarName
phi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
h1 : isFreeIn v phi
β’ isFreeInInd v phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
cases h1
|
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
h1 : isFreeIn v phi β¨ isFreeIn v psi
β’ isFreeInInd v (phi.iff_ psi)
|
case inl
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
hβ : isFreeIn v phi
β’ isFreeInInd v (phi.iff_ psi)
case inr
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
hβ : isFreeIn v psi
β’ isFreeInInd v (phi.iff_ psi)
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
h1 : isFreeIn v phi β¨ isFreeIn v psi
β’ isFreeInInd v (phi.iff_ psi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
case inl c1 =>
first | apply isFreeInInd.imp_left_ | apply isFreeInInd.and_left_ | apply isFreeInInd.or_left_ | apply isFreeInInd.iff_left_
exact phi_ih c1
|
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v phi
β’ isFreeInInd v (phi.iff_ psi)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v phi
β’ isFreeInInd v (phi.iff_ psi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
case inr c1 =>
first | apply isFreeInInd.imp_right_ | apply isFreeInInd.and_right_ | apply isFreeInInd.or_right_ | apply isFreeInInd.iff_right_
exact psi_ih c1
|
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v psi
β’ isFreeInInd v (phi.iff_ psi)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v psi
β’ isFreeInInd v (phi.iff_ psi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
first | apply isFreeInInd.imp_left_ | apply isFreeInInd.and_left_ | apply isFreeInInd.or_left_ | apply isFreeInInd.iff_left_
|
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v phi
β’ isFreeInInd v (phi.iff_ psi)
|
case a
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v phi
β’ isFreeInInd v phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v phi
β’ isFreeInInd v (phi.iff_ psi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
exact phi_ih c1
|
case a
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v phi
β’ isFreeInInd v phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v phi
β’ isFreeInInd v phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
apply isFreeInInd.imp_left_
|
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v phi
β’ isFreeInInd v (phi.imp_ psi)
|
case a
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v phi
β’ isFreeInInd v phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v phi
β’ isFreeInInd v (phi.imp_ psi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
apply isFreeInInd.and_left_
|
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v phi
β’ isFreeInInd v (phi.and_ psi)
|
case a
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v phi
β’ isFreeInInd v phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v phi
β’ isFreeInInd v (phi.and_ psi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
apply isFreeInInd.or_left_
|
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v phi
β’ isFreeInInd v (phi.or_ psi)
|
case a
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v phi
β’ isFreeInInd v phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v phi
β’ isFreeInInd v (phi.or_ psi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
apply isFreeInInd.iff_left_
|
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v phi
β’ isFreeInInd v (phi.iff_ psi)
|
case a
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v phi
β’ isFreeInInd v phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v phi
β’ isFreeInInd v (phi.iff_ psi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
first | apply isFreeInInd.imp_right_ | apply isFreeInInd.and_right_ | apply isFreeInInd.or_right_ | apply isFreeInInd.iff_right_
|
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v psi
β’ isFreeInInd v (phi.iff_ psi)
|
case a
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v psi
β’ isFreeInInd v psi
|
Please generate a tactic in lean4 to solve the state.
STATE:
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v psi
β’ isFreeInInd v (phi.iff_ psi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Binders.lean
|
FOL.NV.isFreeIn_imp_isFreeInInd
|
[382, 1]
|
[413, 30]
|
exact psi_ih c1
|
case a
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v psi
β’ isFreeInInd v psi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
v : VarName
phi psi : Formula
phi_ih : isFreeIn v phi β isFreeInInd v phi
psi_ih : isFreeIn v psi β isFreeInInd v psi
c1 : isFreeIn v psi
β’ isFreeInInd v psi
TACTIC:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.