Datasets:
License:
#!/usr/bin/python3 | |
# -*- coding: utf-8 -*- | |
import numpy as np | |
from smart.python_speech_features.silence_detect import detect_silence | |
def calc_wave_features(signal, sample_rate): | |
assert signal.dtype == np.int16 | |
assert sample_rate == 8000 | |
signal = np.array(signal, dtype=np.float32) | |
# plt.plot(signal) | |
# plt.show() | |
l = len(signal) | |
# 均值 | |
mean = np.mean(signal) | |
# 方差 | |
var = np.var(signal) | |
# 百分位数 | |
per = np.percentile(signal, q=[1, 25, 50, 75, 99]) | |
per1, per25, per50, per75, per99 = per | |
# 静音段占比 | |
silences = detect_silence( | |
signal=signal, | |
samplerate=sample_rate, | |
min_energy=120, | |
min_cross_zero_rate=0.01 | |
) | |
silence_total = 0 | |
for silence in silences: | |
li = silence[1] - silence[0] | |
silence_total += li | |
silence_rate = silence_total / l | |
# 非静音段方差 | |
last_e = 0 | |
non_silences = list() | |
for silence in silences: | |
b, e = silence | |
if b > last_e: | |
non_silences.append([last_e, b]) | |
last_e = e | |
else: | |
if l > last_e: | |
non_silences.append([last_e, l]) | |
# 静音段的数量 | |
silence_count = len(non_silences) | |
if silence_count == 0: | |
mean_non_silence = 0 | |
var_non_silence = 0 | |
var_var_non_silence = 0 | |
var_non_silence_rate = 1 | |
else: | |
signal_non_silences = list() | |
for non_silence in non_silences: | |
b, e = non_silence | |
signal_non_silences.append(signal[b: e]) | |
# 非静音段, 各段方差的方差. | |
v = list() | |
for signal_non_silence in signal_non_silences: | |
v.append(np.var(signal_non_silence)) | |
var_var_non_silence = np.var(v) | |
signal_non_silences = np.concatenate(signal_non_silences) | |
# 非静音段整体均值 | |
mean_non_silence = np.mean(signal_non_silences) | |
# 非静音段整体方差 | |
var_non_silence = np.var(signal_non_silences) | |
# 非静音段整体方差 除以 整体方差 | |
var_non_silence_rate = var_non_silence / var | |
# 全段, 分段方差的方差 | |
sub_signal_list = np.split(signal, 20) | |
whole_var = list() | |
for sub_signal in sub_signal_list: | |
sub_var = np.var(sub_signal) | |
whole_var.append(sub_var) | |
var_var_whole = np.var(whole_var) | |
result = { | |
'mean': mean, | |
'var': var, | |
'per1': per1, | |
'per25': per25, | |
'per50': per50, | |
'per75': per75, | |
'per99': per99, | |
'silence_rate': silence_rate, | |
'mean_non_silence': mean_non_silence, | |
'silence_count': silence_count, | |
'var_var_non_silence': var_var_non_silence, | |
'var_non_silence': var_non_silence, | |
'var_non_silence_rate': var_non_silence_rate, | |
'var_var_whole': var_var_whole, | |
} | |
return result | |
if __name__ == '__main__': | |
pass | |