exec_outcome
stringclasses 1
value | code_uid
stringlengths 32
32
| file_name
stringclasses 111
values | prob_desc_created_at
stringlengths 10
10
| prob_desc_description
stringlengths 63
3.8k
| prob_desc_memory_limit
stringclasses 18
values | source_code
stringlengths 117
65.5k
| lang_cluster
stringclasses 1
value | prob_desc_sample_inputs
stringlengths 2
802
| prob_desc_time_limit
stringclasses 27
values | prob_desc_sample_outputs
stringlengths 2
796
| prob_desc_notes
stringlengths 4
3k
⌀ | lang
stringclasses 5
values | prob_desc_input_from
stringclasses 3
values | tags
sequencelengths 0
11
| src_uid
stringlengths 32
32
| prob_desc_input_spec
stringlengths 28
2.37k
⌀ | difficulty
int64 -1
3.5k
⌀ | prob_desc_output_spec
stringlengths 17
1.47k
⌀ | prob_desc_output_to
stringclasses 3
values | hidden_unit_tests
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PASSED | 5b99523e5e50329eb9c99d658c0526dd | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes | import java.lang.reflect.Array;
import java.math.BigInteger;
import java.util.*;
import java.io.*;
public class taskB {
private static final int mx =1000000;
private static final long l=1000000000;
private static boolean primes[]=new boolean[mx+1];
private static void Eratos()
{
Arrays.fill(primes,true);
primes[0]=primes[1]=false;
for(int i=2;i*i<=mx;++i)
{
if(primes[i])
{
for(int j=i*i;j<=mx;j+=i)
primes[j]=false;
}
}
}
public void solve() {
int n=cin.nextInt();
int m=cin.nextInt();
int a[][]=new int [n][m];
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
a[i][j]=cin.nextInt();
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
if(!primes[a[i][j]])
{
int x=a[i][j];
while(!primes[a[i][j]])
{
++a[i][j];
}
a[i][j]-=x;
}
else
a[i][j]=0;
}
}
long res=l;
for(int i=0;i<n;i++)
{
long sum=0;
for(int j=0;j<m;j++)
sum+=a[i][j];
res=Math.min(sum,res);
}
for(int j=0;j<m;j++)
{
long sum=0;
for(int i=0;i<n;i++)
sum+=a[i][j];
res=Math.min(res,sum);
}
out.println(res);
}
public static void main(String[] args) throws IOException {
taskB solved = new taskB();
solved.Eratos();
solved.solve();
solved.out.close();
}
Scanner cin = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
} | Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 8 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | 0618de1c2fb168ae2ad2a0232a992677 | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes | import java.util.ArrayList;
import java.util.Arrays;
import java.util.Scanner;
import java.util.TreeSet;
public class Main {
public static void main(String[] args)
{
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
boolean init = false;
int x = 0;
int[][] matr = new int[n][m];
int[] ops = new int[n+m];
int f = 150000;
boolean[] arr = new boolean[f];
Arrays.fill(arr, true);
TreeSet<Integer> primes = new TreeSet<Integer>();
arr[0] = false;
arr[1] = false;
for(int i = 2; i < f; i++)
{
if(arr[i] == true)
{
primes.add(i);
for(int j = (2*i); j < f; j += i)
{
arr[j] = false;
}
}
}
for (int i = 0; i < n; i++)
{
for (int j = 0; j < m; j++)
{
matr[i][j] = sc.nextInt();
}
}
for (int i = 0; i < n; i++)
{
for (int j = 0; j < m; j++)
{
int num = matr[i][j];
ops[i] += primes.ceiling(num) - num;
}
}
for (int i = 0; i < m; i++)
{
for (int j = 0; j < n; j++)
{
int num = matr[j][i];
ops[i+n] += primes.ceiling(num) - num;
}
}
for (int i = (n+m)-1; i >= 0; i--)
{
if (init)
{
if (ops[i] < x)
x = ops[i];
}
else
{
init = true;
x = ops[i];
}
}
System.out.print(x);
}
} | Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 8 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | 8591294048bd0409a2ea2d9c35eed126 | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes | import java.util.*;import java.io.*;import java.math.*;
public class Main
{
public static void process()throws IOException
{
boolean[] sieve=new boolean[200001];
Arrays.fill(sieve,false);
TreeSet<Integer>set=new TreeSet<Integer>();
for(int i=2;i<sieve.length;i++)
{
if(sieve[i]==true)
continue;
set.add(i);
for(int j=2*i;j<sieve.length;j+=i)
sieve[j]=true;
}
int n=ni();
int m=ni();
int[][]A=new int[n][m];
long ans=Long.MAX_VALUE;;
for(int i=0;i<n;i++)
{
long sum=0;
for(int j=0;j<m;j++)
{
A[i][j]=ni();
if(set.ceiling(A[i][j])!=null)
sum+=set.ceiling(A[i][j])-A[i][j];
}
ans=Math.min(ans,sum);
}
for(int i=0;i<m;i++)
{
long sum=0;
for(int j=0;j<n;j++)
{
if(set.ceiling(A[j][i])!=null)
sum+=set.ceiling(A[j][i])-A[j][i];
}
ans=Math.min(ans,sum);
}
pn(ans);
}
static AnotherReader sc;
static PrintWriter out;
public static void main(String[]args)throws IOException
{
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
if(oj){sc=new AnotherReader();out=new PrintWriter(System.out);}
else{sc=new AnotherReader(100);out=new PrintWriter("output.txt");}
int t=1;
// t=ni();
while(t-->0) {process();}
out.flush();out.close();
}
static void pn(Object o){out.println(o);}
static void p(Object o){out.print(o);}
static void pni(Object o){out.println(o);out.flush();}
static int ni()throws IOException{return sc.nextInt();}
static long nl()throws IOException{return sc.nextLong();}
static double nd()throws IOException{return sc.nextDouble();}
static String nln()throws IOException{return sc.nextLine();}
static int[] nai(int N)throws IOException{int[]A=new int[N];for(int i=0;i!=N;i++){A[i]=ni();}return A;}
static long[] nal(int N)throws IOException{long[]A=new long[N];for(int i=0;i!=N;i++){A[i]=nl();}return A;}
static long gcd(long a, long b)throws IOException{return (b==0)?a:gcd(b,a%b);}
static int gcd(int a, int b)throws IOException{return (b==0)?a:gcd(b,a%b);}
static int bit(long n)throws IOException{return (n==0)?0:(1+bit(n&(n-1)));}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
static class AnotherReader{BufferedReader br; StringTokenizer st;
AnotherReader()throws FileNotFoundException{
br=new BufferedReader(new InputStreamReader(System.in));}
AnotherReader(int a)throws FileNotFoundException{
br = new BufferedReader(new FileReader("input.txt"));}
String next()throws IOException{
while (st == null || !st.hasMoreElements()) {try{
st = new StringTokenizer(br.readLine());}
catch (IOException e){ e.printStackTrace(); }}
return st.nextToken(); } int nextInt() throws IOException{
return Integer.parseInt(next());}
long nextLong() throws IOException
{return Long.parseLong(next());}
double nextDouble()throws IOException { return Double.parseDouble(next()); }
String nextLine() throws IOException{ String str = ""; try{
str = br.readLine();} catch (IOException e){
e.printStackTrace();} return str;}}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
} | Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 8 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | a0b67f41c3d045357174003e5891363e | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes | import javafx.util.*;
import java.io.*;
import java.io.InputStreamReader;
import java.util.Scanner;
import java.util.StringTokenizer;
import java.util.*;
import java.math.*;
public class Main
{
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
public static void main (String[] args) throws java.lang.Exception {
FastReader sc=new FastReader();
PrintWriter pw=new PrintWriter(System.out);
int prime[]=new int[200000];
List<Integer> l=new ArrayList<>();
Arrays.fill(prime,1);
prime[0] = 0;
prime[1] = 0;
for(int i = 2 ; i <= Math.sqrt(200000) ; i++)
{
if(prime[i] == 1)
{
for(int j = i*i ; j < 200000 ; j+=i)
prime[j] = 0;
}
}int k=0;
for(int i=2;i<200000;i++)
{
if(prime[i]==1) l.add(i);
}int b[]=new int[l.size()];
for(int i=0;i<l.size();i++) b[i]=l.get(i);
int t=1;//sc.nextInt();
while(t-->0){
int n=sc.nextInt(),m=sc.nextInt();
int a[][]=new int[n][m],min=Integer.MAX_VALUE;
for(int i=0;i<n;i++)
{
int sum=0;
for(int j=0;j<m;j++)
{
a[i][j]=sc.nextInt();
int index=Arrays.binarySearch(b,a[i][j]);
if(index>=0) a[i][j]=0;
else a[i][j]=b[Math.abs(index)-1]-a[i][j];
sum+=a[i][j];
}
min=Math.min(min,sum);
}
for(int i=0;i<m;i++)
{
int sum=0;
for(int j=0;j<n;j++) sum+=a[j][i];
min=Math.min(min,sum);
}
pw.println(min);
}
pw.close();
}
}
| Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 8 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | 8fdc7de576a5f61fe4cd8bcb9aa556ac | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes | import javafx.util.*;
import java.io.*;
import java.io.InputStreamReader;
import java.util.Scanner;
import java.util.StringTokenizer;
import java.util.*;
import java.math.*;
public class Main
{
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
public static void main (String[] args) throws java.lang.Exception {
FastReader sc=new FastReader();
PrintWriter pw=new PrintWriter(System.out);
int prime[]=new int[200000];
List<Integer> l=new ArrayList<>();
Arrays.fill(prime,1);
prime[0] = 0;
prime[1] = 0;
for(int i = 2 ; i <= Math.sqrt(200000) ; i++)
{
if(prime[i] == 1)
{
for(int j = i*i ; j < 200000 ; j+=i)
prime[j] = 0;
}
}int k=0;
for(int i=2;i<200000;i++)
{
if(prime[i]==1) l.add(i);
}Integer b[]=new Integer[l.size()];
l.toArray(b);
int t=1;//sc.nextInt();
while(t-->0){
int n=sc.nextInt(),m=sc.nextInt();
int a[][]=new int[n][m],min=Integer.MAX_VALUE;
for(int i=0;i<n;i++)
{
int sum=0;
for(int j=0;j<m;j++)
{
a[i][j]=sc.nextInt();
int index=Arrays.binarySearch(b,a[i][j]);
if(index>=0) a[i][j]=0;
else a[i][j]=b[Math.abs(index)-1]-a[i][j];
sum+=a[i][j];
}
min=Math.min(min,sum);
}
for(int i=0;i<m;i++)
{
int sum=0;
for(int j=0;j<n;j++) sum+=a[j][i];
min=Math.min(min,sum);
}
pw.println(min);
}
pw.close();
}
}
| Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 8 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | 0f1d14ef19841e36580af00ff85455f2 | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
public class PrimeMatrix {
static BufferedReader br;
static StringTokenizer st;
static int n, m, pn;
static int[][] a;
static int[] p = new int[222222];
static boolean[] prime;
static final int maxn = 150000;
static String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
static int nextInt() throws IOException {
return Integer.parseInt(next());
}
public static void main(String[] args) throws Exception {
br = new BufferedReader(new InputStreamReader(System.in));
n = nextInt();
m = nextInt();
a = new int[n][m];
prime = new boolean[maxn + 1];
Arrays.fill(prime, true);
for (int i = 2; i <= maxn; ++i) if (prime[i]) {
p[pn++] = i;
for (int j = i + i; j <= maxn; j += i)
prime[j] = false;
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
int x = nextInt();
int l = -1, r = pn;
while (r - l > 1) {
int mid = (l + r) / 2;
if (p[mid] >= x)
r = mid;
else
l = mid;
}
a[i][j] = p[r] - x;
//System.out.print(a[i][j] + " ");
}
//System.out.println();
}
int res = 1000 * 1000 * 1000;
for (int i = 0; i < n; ++i) {
int sum = 0;
for (int j = 0; j < m; ++j) {
sum += a[i][j];
}
res = Math.min(res, sum);
}
for (int j = 0; j < m; ++j) {
int sum = 0;
for (int i = 0; i < n; ++i) {
sum += a[i][j];
}
res = Math.min(res, sum);
}
System.out.println(res);
}
} | Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 8 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | b08c59221343f7641d0385ccb2e109d5 | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes | import javax.naming.PartialResultException;
import java.util.*;
import java.io.*;
public class PrimeMatrix {
InputStream is;
PrintWriter out;
String INPUT = "";
ArrayList<Integer> primes;
void solve() throws IOException {
int n= ni(), m= ni();
int[][] arr= new int[n][m];
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
arr[i][j]= ni();
}
sieve();
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
arr[i][j]= binarySearch(arr[i][j], 0, primes.size()-1)- arr[i][j];
}
int ans= Integer.MAX_VALUE;
for(int i=0;i<n;i++)
{
int sum=0;
for(int j=0;j<m;j++)
{
if(sum> ans)
break;
else
sum+= arr[i][j];
}
ans= Math.min(ans, sum);
}
for(int i=0;i<m;i++)
{
int sum=0;
for(int j=0;j<n;j++)
{
if(sum> ans)
break;
else
sum+= arr[j][i];
}
ans= Math.min(ans, sum);
}
out.println(ans);
}
private int binarySearch(int find, int start, int last)
{
while(start<= last)
{
int mid= start+ (last- start)/2;
if(primes.get(mid)== find)
return find;
else if(primes.get(mid)> find)
last= mid-1;
else
start= mid+1;
}
return primes.get(start);
}
private void sieve()
{
boolean[] composite= new boolean[100000];
for(int i=2;i*i<= composite.length;i++)
{
if(composite[i]) continue;
for(int j=i*i;j< composite.length;j+=i)
composite[j]= true;
}
primes= new ArrayList<>();
for(int i=2;i<composite.length;i++)
if(!composite[i]) primes.add(i);
primes.add(100003);
}
void run() throws Exception {
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
solve();
out.flush();
}
public static void main(String[] args) throws Exception {
new PrimeMatrix().run();
}
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte() {
if (lenbuf == -1) throw new InputMismatchException();
if (ptrbuf >= lenbuf) {
ptrbuf = 0;
try {
lenbuf = is.read(inbuf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0) return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private int skip() {
int b;
while ((b = readByte()) != -1 && isSpaceChar(b)) ;
return b;
}
private double nd() {
return Double.parseDouble(ns());
}
private char nc() {
return (char) skip();
}
private String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n) {
char[] buf = new char[n];
int b = skip(), p = 0;
while (p < n && !(isSpaceChar(b))) {
buf[p++] = (char) b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m) {
char[][] map = new char[n][];
for (int i = 0; i < n; i++) map[i] = ns(m);
return map;
}
private int[] na(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = ni();
return a;
}
private int ni() {
int num = 0, b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
private long nl() {
long num = 0;
int b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
private void tr(Object... o) {
if (INPUT.length() > 0) System.out.println(Arrays.deepToString(o));
}
}
| Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 8 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | 4711701db816bf438c23d5f9c65969bd | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes | import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.*;
import java.io.*;
public class Contest1 {
static Scanner sc=new Scanner(System.in);
static PrintWriter out=new PrintWriter(System.out);
public static void main(String[] args) throws IOException {
int n=sc.nextInt();
int m=sc.nextInt();
int cost=0;
int a[][]=new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
a[i][j]=sc.nextInt();
}
}
primes(1000000);
int min=Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
cost=0;
for (int j = 0; j < m; j++) {
cost+=set.ceiling(a[i][j])-a[i][j];
}
min=Math.min(cost, min);
}
for (int i = 0; i < m; i++) {
cost=0;
for (int j = 0; j < n; j++) {
cost+=set.ceiling(a[j][i])-a[j][i];
}
min=Math.min(cost, min);
}
System.out.println(min);
}
static TreeSet<Integer> set=new TreeSet<Integer>();
public static void primes(int n) {
boolean[] primes = new boolean[n + 1];
for (int i = 2; i < primes.length; i++) {
primes[i] = true;
}
int num = 2;
while (true) {
for (int i = 2;; i++) {
int multiple = num * i;
if (multiple > n) {
break;
} else {
primes[multiple] = false;
}
}
boolean nextNumFound = false;
for (int i = num + 1; i < n + 1; i++) {
if (primes[i]) {
num = i;
nextNumFound = true;
break;
}
}
if (!nextNumFound) {
break;
}
}
for (int i = 0; i < primes.length; i++) {
if (primes[i]) {
set.add(i);
}
}
}
}
class Scanner{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream system){
br=new BufferedReader(new InputStreamReader(system));
}
public Scanner (String file) throws IOException{
br=new BufferedReader(new FileReader(file));
}
public String next() throws IOException{
while (st==null || !st.hasMoreTokens())
st=new StringTokenizer(br.readLine());
return st.nextToken();
}
public String nextLine() throws IOException{
return br.readLine();
}
public int nextInt() throws IOException{
return Integer.parseInt(next());
}
public long nextLong() throws IOException{
return Long.parseLong(next());
}
public Double nextDouble() throws IOException{
return Double.parseDouble(next());
}
}
| Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 8 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | 78389d1982e06e146eff423373e2d324 | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes | import java.io.*;
import java.util.*;
public class PrimeMatrix {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader inp = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Solver solver = new Solver();
solver.solve(inp, out);
out.close();
}
static class Solver {
private static boolean[] primes;
private static LinkedList<Integer> prime;
private static int[] nextPrime = new int[100001];
private static void setPrime(int n) {
primes = new boolean[n+1];
prime = new LinkedList<>();
for (int i = 2; i <= n; i++) primes[i] = true;
for (int i = 2; i <= Math.sqrt(n); i++) {
if(primes[i]) {
for (int j = i + i; j <= n; j += i) primes[j] = false;
}
}
for (int i = 2; i <= n; i++) if (primes[i]) prime.addLast(i);
}
private static void setNextPrime() {
int i = 0;
int highestPrime = prime.get(i);
for (int j = 0; j <= 100000; j++) {
if (!(j <= highestPrime)) highestPrime = prime.get(++i);
nextPrime[j] = highestPrime;
}
}
private void solve(InputReader inp, PrintWriter out) {
setPrime(101000);
setNextPrime();
int n = inp.nextInt();
int m = inp.nextInt();
int[][] matrix = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
matrix[i][j] = inp.nextInt();
}
}
int min = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
int sum = 0;
for (int j = 0; j < m; j++) {
sum += nextPrime[matrix[i][j]] - matrix[i][j];
}
min = Math.min(min, sum);
}
for (int j = 0; j < m; j++) {
int sum = 0;
for (int i = 0; i < n; i++) {
sum += nextPrime[matrix[i][j]] - matrix[i][j];
}
min = Math.min(min, sum);
}
out.print(min);
}
}
static class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
} | Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 8 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | 04df0887fb1338f995c4713fd7fa93fa | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes |
import java.io.*;
import java.math.*;
import java.util.*;
// author @mdazmat9
public class codeforces{
static ArrayList<Integer> primes=new ArrayList<>();
static HashSet set=new HashSet();
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int test = 1;
for (int ind = 0; ind < test; ind++) {
int n=sc.nextInt();
int m=sc.nextInt();
sieveOfEratosthenes(1000000);
int a[][]=new int[n][m];
int check[][]=new int[n][m];
int min=Integer.MAX_VALUE;
for(int i=0;i<n;i++){
int diff=0;
for(int j=0;j<m;j++){
a[i][j]=sc.nextInt();
if(set.contains(a[i][j])){
check[i][j]=a[i][j];
}
else{
int index=leastgreater(0,primes.size()-1,a[i][j]);
check[i][j]=primes.get(index);
diff+=(check[i][j]-a[i][j]);
}
}
if(diff<min)
min=diff;
}
for(int i=0;i<m;i++){
int diff=0;
for(int j=0;j<n;j++){
int num=check[j][i];
diff+=(num-a[j][i]);
}
if(diff<min)
min=diff;
}
out.println(min);
}
out.flush();
}
static int leastgreater(int low, int high, int key)
{
int ans = -1;
while (low <= high) {
int mid = low + (high - low + 1) / 2;
int midVal = primes.get(mid);
if (midVal < key) {
// if mid is less than key, all elements
// in range [low, mid - 1] are <= key
// then we search in right side of mid
// so we now search in [mid + 1, high]
low = mid + 1;
}
else if (midVal > key) {
// if mid is greater than key, all elements
// in range [mid + 1, high] are >= key
// we note down the last found index, then
// we search in left side of mid
// so we now search in [low, mid - 1]
ans = mid;
high = mid - 1;
}
else if (midVal == key) {
// if mid is equal to key, all elements in
// range [low, mid] are <= key
// so we now search in [mid + 1, high]
low = mid + 1;
}
}
return ans;
}
static void sieveOfEratosthenes(int n)
{
// Create a boolean array "prime[0..n]" and initialize
// all entries it as true. A value in prime[i] will
// finally be false if i is Not a prime, else true.
boolean prime[] = new boolean[n+1];
for(int i=0;i<n;i++)
prime[i] = true;
for(int p = 2; p*p <=n; p++)
{
// If prime[p] is not changed, then it is a prime
if(prime[p] == true)
{
// Update all multiples of p
for(int i = p*p; i <= n; i += p)
prime[i] = false;
}
}
// Print all prime numbers
for(int i = 2; i <= n; i++)
{
if(prime[i] == true) {
primes.add(i);
set.add(i);
}
}
}
static void shuffle(int[] a) {
int n = a.length;
for(int i = 0; i < n; i++) {
int r = i + (int) (Math.random() * (n - i));
int tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
}
static long gcd(long a , long b)
{
if(b == 0)
return a;
return gcd(b , a % b);
}
}
class Scanner {
public BufferedReader reader;
public StringTokenizer st;
public Scanner(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
st = null;
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
String line = reader.readLine();
if (line == null) return null;
st = new StringTokenizer(line);
} catch (Exception e) {
throw (new RuntimeException());
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
class OutputWriter {
BufferedWriter writer;
public OutputWriter(OutputStream stream) {
writer = new BufferedWriter(new OutputStreamWriter(stream));
}
public void print(int i) throws IOException {
writer.write(i);
}
public void print(String s) throws IOException {
writer.write(s);
}
public void print(char[] c) throws IOException {
writer.write(c);
}
public void close() throws IOException {
writer.close();
}
} | Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 8 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | 49703f184b2abef240a6a853c351b9ab | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.StringTokenizer;
import java.util.*;
public class CF271B {
public static void main(String[] args) {
FastReader input = new FastReader();
PrintWriter pw = new PrintWriter(System.out);
boolean[] prime = new boolean[1000000+1];
Arrays.fill(prime,true);
prime[0] = false;
prime[1] = false;
for(int i = 2;i * i <= 1000000;i++){
if(prime[i]){
for(int j = i * i;j <= 1000000; j+=i){
prime[j] = false;
}
}
}
ArrayList<Integer> primes = new ArrayList<>();
for(int i = 0;i < prime.length;i++){
if(prime[i])
primes.add(i);
}
int n = input.nextInt();
int m = input.nextInt();
int[][] matrix = new int[n+1][m+1];
for(int i = 1;i <= n;i++){
for(int j = 1;j <= m;j++){
matrix[i][j] = input.nextInt();
}
}
int rowMin = Integer.MAX_VALUE;
for(int i = 1;i <= n;i++){
int sum = 0;
for(int j = 1;j <= m;j++){
int val = matrix[i][j];
if(prime[val]){
}
else{
int up = -1;
int low = 0;
int high = primes.size()-1;
int ans1 = -1;
while (low <= high){
int mid = (low + high) / 2;
if(primes.get(mid) >= val){
ans1 = primes.get(mid);
high = mid - 1;
}
else{
low = mid + 1;
}
}
up = ans1 - val;
sum += up;
}
}
rowMin = Math.min(rowMin,sum);
}
// pw.println(rowMin);
int colMin = Integer.MAX_VALUE;
for(int col = 1;col <= m;col++){
int sum = 0;
for(int row = 1;row <= n;row++){
int val = matrix[row][col];
if(prime[val]){
}
else{
int up = -1;
int low = 0;
int high = primes.size()-1;
int ans1 = -1;
while (low <= high){
int mid = (low + high) / 2;
if(primes.get(mid) >= val){
ans1 = primes.get(mid);
high = mid - 1;
}
else{
low = mid + 1;
}
}
up = ans1 - val;
sum += up;
}
}
colMin = Math.min(colMin,sum);
}
// pw.println(rowMin + " " + colMin);
pw.println(Math.min(rowMin,colMin));
// ****If sorting is required, use ArrayList
pw.flush();
pw.close();
}
static void sort(int[] arr){
ArrayList<Integer> list = new ArrayList<Integer>();
for(int i : arr)
list.add(i);
Collections.sort(list);
for(int i = 0;i < list.size();i++){
arr[i] = list.get(i);
}
return;
}
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
}
| Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 8 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | b16ac7c8aab2f1c96de844cf9db0e424 | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes | import java.io.*;
import java.util.*;
public class Solution {
public static void main(String[] args) {
/* Enter your code here. Read input from STDIN. Print output to STDOUT. Your class should be named Solution. */
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int m=sc.nextInt();
int a[][]=new int[n][m];
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
a[i][j]=sc.nextInt();
int pr[]=new int[1000005];
pr[1]=1;
pr[0]=1;
for(int i=2;i*i<=1000000;i++)
if(pr[i]==0)
for(int j=2*i;j<=1000000;j+=i)
pr[j]=1;
int next[]=new int[10000005];
int prime=-1;
for(int i=1000000;i>=1;i--)
{
next[i]=prime;
if(pr[i]==0)
prime=i;
}
int min=Integer.MAX_VALUE;
for(int i=0;i<n;i++)
{
int ans=0;
for(int j=0;j<m;j++)
{
if(pr[a[i][j]]==0)
continue;
ans+=(next[a[i][j]]-a[i][j]);
}
if(min>ans)
min=ans;
}
for(int i=0;i<m;i++)
{
int ans=0;
for(int j=0;j<n;j++)
{
if(pr[a[j][i]]==0)
continue;
ans+=(next[a[j][i]]-a[j][i]);
}
if(min>ans)
min=ans;
}
System.out.print(min);
}
} | Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 8 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | 2fc5e5ab05cbada7ac0665ea70112bda | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes | import java.util.Scanner;
import java.util.TreeSet;
import java.util.stream.IntStream;
public class primematrix {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner input = new Scanner(System.in);
TreeSet<Integer> primes= new TreeSet<Integer>();
for(int i=2; i<200000;i++){
if(isPrime(i))primes.add(i);
}
int n = input.nextInt();
int m = input.nextInt();
int[]rows = new int[n];
int[] col = new int[m];
for(int i=0; i<n;i++){
for(int j=0; j<m;j++){
int x = input.nextInt();
int diff = primes.ceiling(x)-x;
rows[i]+=diff;
col[j]+=diff;
}
}
System.out.println(IntStream.concat(IntStream.of(rows),IntStream.of(col)).min().getAsInt());
}
private static boolean isPrime(int x){
for(int i=2; i*i<=x;i++){
if(x%i==0)return false;
}
return true;
}
}
| Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 8 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | 2cf90c921f637c575acab5ef6419e380 | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes | import java.util.*;
public class Main {
// n levels and 4 vertex
public static void main(String[] args){
Scanner sc= new Scanner(System.in);
ArrayList<Integer> p= new ArrayList<>();
for (int i = 2; i <= 100000+10; i++) {
boolean prime=true;
for (int j= 2; j <= Math.sqrt(i); j++) {
if(i%j==0){prime=false;break;}
}
if(prime)p.add(i);
}
int n=sc.nextInt();
int m=sc.nextInt();
int [][] sumx=new int[n+1][m+1];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
int temp= sc.nextInt();
int idx= Collections.binarySearch(p, temp);
int hp = idx<0?-(idx+1):idx;
sumx[i][j]=p.get(hp)-temp;
sumx[n][j]+=sumx[i][j];
sumx[i][m]+=sumx[i][j];
}
}
int min=Integer.MAX_VALUE;
for (int i = 0; i < n; i++) min=sumx[i][m]<min?sumx[i][m]:min;
for (int i = 0; i < m; i++) min=sumx[n][i]<min?sumx[n][i]:min;
System.out.println( min );
}
} | Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 8 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | 835b2689e1716a0f25bd9651b31957b3 | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes | import java.io.*;
import java.util.*;
import java.nio.charset.StandardCharsets;
// import java.math.BigInteger;
public class B {
static Writer wr;
public static void main(String[] args) throws Exception {
// long startTime = System.nanoTime();
// String testString = "";
// InputStream stream = new ByteArrayInputStream(testString.getBytes(StandardCharsets.UTF_8));
// Reader in = new Reader(stream);
Reader in = new Reader();
BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out));
wr = new Writer();
/* Precomputation */
int max = 200000;
boolean[] is_not_prime = new boolean[max+1];
for(int i=2;i*i<=max;i+=2) {
if(!is_not_prime[i]) {
for(int j=2;j*i<=max;j++) {
is_not_prime[j*i] = true;
}
}
if(i==2) i--;
}
int idx=0;
int[] primes = new int[17984];
for(int i=2;i<=max;i++) {
if(!is_not_prime[i]) {
primes[idx++] = i;
}
}
// wr.writeRedLn(Arrays.toString(Arrays.copyOfRange(primes, 9585, primes.length)));
// wr.writeRedLn(idx);
// long elapsedTime = System.nanoTime() - startTime;
// double seconds = (double)elapsedTime / 1000000000.0;
// wr.writeRedLn(seconds);
/* Input */
int N = in.nextInt();
int M = in.nextInt();
int[][] a = new int[N][M];
for(int i=0;i<N;i++) {
for(int j=0;j<M;j++) {
a[i][j] = in.nextInt();
}
}
ArrayList<Integer> count = new ArrayList<>();
for(int i=0;i<N;i++) {
int cc=0;
for(int j=0;j<M;j++) {
int check = Arrays.binarySearch(primes, a[i][j]);
if(check<0) {
check = -check-1;
int best = 1000000;
for(int k=check; k<=check+2;k++) {
if((k>=0) && (k<primes.length)) {
best = Math.min(best, Math.abs(a[i][j]-primes[k]));
// wr.writeRedLn(a[i][j] + " " + best +" "+primes[k]);
}
}
cc += best;
// wr.writeRedLn(a[i][j] + " " + best +" "+check);
}
}
// wr.writeGreenLn(cc+"");
count.add(cc);
}
for(int j=0;j<M;j++) {
int cc=0;
for(int i=0;i<N;i++) {
int check = Arrays.binarySearch(primes, a[i][j]);
if(check<0) {
check = -check-1;
int best = 1000000;
for(int k=check; k<=check+2;k++) {
if((k>=0) && (k<primes.length)) {
best = Math.min(best, Math.abs(a[i][j]-primes[k]));
// wr.writeRedLn(a[i][j] + " " + best +" "+primes[k]);
}
}
cc += best;
// wr.writeRedLn(a[i][j] + " " + best +" "+check);
}
}
// wr.writeGreenLn(cc+"");
count.add(cc);
}
Collections.sort(count);
out.write(count.get(0) + "\n");
out.flush();
}
}
class Writer {
public void writeRedLn(Object x) { writeRedLn(x+""); }
public void writeBlueLn(Object x) { writeBlueLn(x+""); }
public void writeGreenLn(Object x) { writeGreenLn(x+""); }
public void writePinkLn(Object x) { writePinkLn(x+""); }
public void writeRedLn(String x) { System.out.println((char)27 + "[31m" + (char)27 + "[40m" + x + (char)27 + "[0m"); }
public void writeBlueLn(String x) { System.out.println((char)27 + "[34m" + (char)27 + "[3m" + x + (char)27 + "[0m"); }
public void writeGreenLn(String x) { System.out.println((char)27 + "[32m" + (char)27 + "[3m" + x + (char)27 + "[0m"); }
public void writePinkLn(String x) { System.out.println((char)27 + "[30m" + (char)27 + "[45m" + x + (char)27 + "[0m"); }
public void writeRed(String x) { System.out.print((char)27 + "[31m" + (char)27 + "[40m" + x + (char)27 + "[0m"); }
public void writeBlue(String x) { System.out.print((char)27 + "[34m" + (char)27 + "[3m" + x + (char)27 + "[0m"); }
public void writeGreen(String x) { System.out.print((char)27 + "[32m" + (char)27 + "[3m" + x + (char)27 + "[0m"); }
public void writePink(String x) { System.out.print((char)27 + "[30m" + (char)27 + "[45m" + x + (char)27 + "[0m"); }
}
class Reader {
final private int BUFFER_SIZE = 1 << 16;private DataInputStream din;private byte[] buffer;private int bufferPointer, bytesRead;
public Reader(){din=new DataInputStream(System.in);buffer=new byte[BUFFER_SIZE];bufferPointer=bytesRead=0;}
public Reader(InputStream stream){din=new DataInputStream(stream);buffer=new byte[BUFFER_SIZE];bufferPointer=bytesRead=0;}
public String readLine()throws IOException{byte[] buf=new byte[1024];int cnt=0,c;
while((c=read())!=-1){if(c=='\n')break;buf[cnt++]=(byte)c;}return new String(buf,0,cnt);}
public char nextChar()throws IOException{byte c=read();while(c<=' ')c=read();return (char)c;}
public int nextInt()throws IOException{int ret=0;byte c=read();while(c<=' ')c=read();boolean neg=(c=='-');
if(neg)c=read();do{ret=ret*10+c-'0';}while((c=read())>='0'&&c<='9');if(neg)return -ret;return ret;}
public long nextLong()throws IOException{long ret=0;byte c=read();while(c<=' ')c=read();boolean neg=(c=='-');
if(neg)c=read();do{ret=ret*10+c-'0';}while((c=read())>='0'&&c<='9');if(neg)return -ret;return ret;}
public double nextDouble()throws IOException{double ret=0,div=1;byte c=read();while(c<=' ')c=read();boolean neg=(c=='-');if(neg)c = read();do {ret=ret*10+c-'0';}while((c=read())>='0'&&c<='9');
if(c=='.')while((c=read())>='0'&&c<='9')ret+=(c-'0')/(div*=10);if(neg)return -ret;return ret;}
private void fillBuffer()throws IOException{bytesRead=din.read(buffer,bufferPointer=0,BUFFER_SIZE);if(bytesRead==-1)buffer[0]=-1;}
private byte read()throws IOException{if(bufferPointer==bytesRead)fillBuffer();return buffer[bufferPointer++];}
public void close()throws IOException{if(din==null) return;din.close();}
}
| Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 8 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | 07e7fd8ce2bc9fc6478b01d8c897c52f | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes | import java.util.*;
import java.io.*;
public class PA {
/*
Tyger! Tyger! burning bright
In the forests of the night,
What immortal hand or eye
Could frame thy fearful symmetry?
In what distant deeps or skies
Burnt the fire of thine eyes?
On what wings dare he aspire?
What the hand, dare sieze the fire?
And what shoulder, & what art,
Could twist the sinews of thy heart?
And when thy heart began to beat,
What dread hand? & what dread feet?
What the hammer? what the chain?
In what furnace was thy brain?
What the anvil? what dread grasp
Dare its deadly terrors clasp?
When the stars threw down their spears,
And water’d heaven with their tears,
Did he smile his work to see?
Did he who made the Lamb make thee?
Tyger! Tyger! burning bright
In the forests of the night,
What immortal hand or eye
Dare frame thy fearful symmetry?
*/
public static boolean isPrime(int x)
{
for(int i = 2 ; i * i <= x ; i++)
{
if(x % i == 0)
return false;
}
return true;
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
// StringTokenizer st1 = new StringTokenizer(br.readLine());
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
TreeSet<Integer> primes = new TreeSet<>();
for(int i = 2 ; i <= 1000000 ; i++)
{
if(isPrime(i))
primes.add(i);
}
int arr[][] = new int [n][m];
for(int i = 0 ; i < n ; i++)
{
for(int j = 0 ; j < m ; j++)
{
arr[i][j] = sc.nextInt();
}
}
int min = Integer.MAX_VALUE;
for(int i = 0 ; i < n ; i++)
{
int sum = 0;
for(int j = 0 ; j < m ; j++)
{
sum += primes.ceiling(arr[i][j])-arr[i][j];
}
min = Math.min(min , sum);
}
for(int i = 0 ; i < m ; i++)
{
int sum = 0;
for(int j = 0 ; j < n ; j++)
{
sum += primes.ceiling(arr[j][i])-arr[j][i];
}
min = Math.min(min , sum);
}
out.println(min);
out.flush();
out.close();
}
} | Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 8 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | 55c2b17a160089d536f16af3c4be60b7 | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes | import java.util.*;
import java.io.*;
public class PA {
/*
Tyger! Tyger! burning bright
In the forests of the night,
What immortal hand or eye
Could frame thy fearful symmetry?
In what distant deeps or skies
Burnt the fire of thine eyes?
On what wings dare he aspire?
What the hand, dare sieze the fire?
And what shoulder, & what art,
Could twist the sinews of thy heart?
And when thy heart began to beat,
What dread hand? & what dread feet?
What the hammer? what the chain?
In what furnace was thy brain?
What the anvil? what dread grasp
Dare its deadly terrors clasp?
When the stars threw down their spears,
And water’d heaven with their tears,
Did he smile his work to see?
Did he who made the Lamb make thee?
Tyger! Tyger! burning bright
In the forests of the night,
What immortal hand or eye
Dare frame thy fearful symmetry?
*/
public static boolean isPrime(int x)
{
for(int i = 2 ; i * i <= x ; i++)
{
if(x % i == 0)
return false;
}
return true;
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
// StringTokenizer st1 = new StringTokenizer(br.readLine());
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
TreeSet<Integer> primes = new TreeSet<>();
for(int i = 2 ; i <= 1000000 ; i++)
{
if(isPrime(i))
primes.add(i);
}
int arr[][] = new int [n][m];
for(int i = 0 ; i < n ; i++)
{
for(int j = 0 ; j < m ; j++)
{
arr[i][j] = sc.nextInt();
}
}
int min = Integer.MAX_VALUE;
for(int i = 0 ; i < n ; i++)
{
int sum = 0;
for(int j = 0 ; j < m ; j++)
{
sum += primes.ceiling(arr[i][j])-arr[i][j];
}
min = Math.min(min , sum);
}
for(int i = 0 ; i < m ; i++)
{
int sum = 0;
for(int j = 0 ; j < n ; j++)
{
sum += primes.ceiling(arr[j][i])-arr[j][i];
}
min = Math.min(min , sum);
}
out.println(min);
out.flush();
out.close();
}
} | Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 8 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | fa4921907eabb2d22bbd142fa9211c78 | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes | import java.util.*;
import java.io.*;
public class PA {
/*
Tyger! Tyger! burning bright
In the forests of the night,
What immortal hand or eye
Could frame thy fearful symmetry?
In what distant deeps or skies
Burnt the fire of thine eyes?
On what wings dare he aspire?
What the hand, dare sieze the fire?
And what shoulder, & what art,
Could twist the sinews of thy heart?
And when thy heart began to beat,
What dread hand? & what dread feet?
What the hammer? what the chain?
In what furnace was thy brain?
What the anvil? what dread grasp
Dare its deadly terrors clasp?
When the stars threw down their spears,
And water’d heaven with their tears,
Did he smile his work to see?
Did he who made the Lamb make thee?
Tyger! Tyger! burning bright
In the forests of the night,
What immortal hand or eye
Dare frame thy fearful symmetry?
*/
public static boolean isPrime(int x)
{
for(int i = 2 ; i * i <= x ; i++)
{
if(x % i == 0)
return false;
}
return true;
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
// StringTokenizer st1 = new StringTokenizer(br.readLine());
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
TreeSet<Integer> primes = new TreeSet<>();
for(int i = 2 ; i <= 1000000 ; i++)
{
if(isPrime(i))
primes.add(i);
}
int arr[][] = new int [n][m];
for(int i = 0 ; i < n ; i++)
{
for(int j = 0 ; j < m ; j++)
{
arr[i][j] = sc.nextInt();
}
}
int min = Integer.MAX_VALUE;
for(int i = 0 ; i < n ; i++)
{
int sum = 0;
for(int j = 0 ; j < m ; j++)
{
sum += primes.ceiling(arr[i][j])-arr[i][j];
}
min = Math.min(min , sum);
}
for(int i = 0 ; i < m ; i++)
{
int sum = 0;
for(int j = 0 ; j < n ; j++)
{
sum += primes.ceiling(arr[j][i])-arr[j][i];
}
min = Math.min(min , sum);
}
out.println(min);
out.flush();
out.close();
}
} | Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 8 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | e4d142db49af12b92d4958ec99a4eb05 | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes | import java.io.*;
import java.util.*;
import java.math.*;
public class Main{
static class Solver{
Vector<Integer> primes;
void sieve(int n){
primes = new Vector<Integer>((int)(n / (Math.log(n) - 1)));
BitSet isp = new BitSet(n);
isp.set(2, n);
for(int i = 2; i < n; ++i){
if(isp.get(i)){
primes.add(i);
for(int j = 2 * i; j < n; j += i){
isp.clear(j);
}
}
}
}
int getPrime(int x){
int i = 0, j = primes.size() - 1;
while(i < j){
int m = (i + j) / 2;
if(primes.get(m).compareTo(x) < 0){
i = m + 1;
}
else{
j = m;
}
}
return primes.get(i);
}
void main(){
// freopen("in");
sieve(100010);
int n = nextInt();
int m = nextInt();
// int n = 500;
// int m = 500;
int[] cr = new int[n];
int[] cc = new int[m];
for(int i = 0; i < n; ++i){
for(int j = 0; j < m; ++j){
int x = nextInt();
// int x = rand() % 100000 + 1;
int c = getPrime(x) - x;
cr[i] += c;
cc[j] += c;
}
}
int ans = inf;
for(int x : cr){
ans = min(ans, x);
}
for(int x : cc){
ans = min(ans, x);
}
printf("%d\n", ans);
}
final int maxn = 100010;
final int inf = 0x3f3f3f3f;
Random rnd = new Random();
int rand(){ return rnd.nextInt(); }
<T extends Comparable<T>> T max(T x, T y){ return (x.compareTo(y) > 0 ? x : y); }
<T extends Comparable<T>> T min(T x, T y){ return (x.compareTo(y) < 0 ? x : y); }
/** io **/
PrintWriter out;
BufferedReader reader;
StringTokenizer tokens;
Solver(){
tokens = new StringTokenizer("");
reader = new BufferedReader(new InputStreamReader(System.in), 1 << 15);
out = new PrintWriter(System.out);
main(); // solução
out.close(); // flush output
}
void freopen(String s){
try{
reader = new BufferedReader(new InputStreamReader(new FileInputStream(s)), 1 << 15);
}
catch(FileNotFoundException e){
throw new RuntimeException(e);
}
}
/** input -- supõe que não chegou no EOF **/
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble() { return Double.parseDouble(next()); }
String next(){
readTokens();
return tokens.nextToken();
}
String nextLine(){
readTokens();
return tokens.nextToken("\n");
}
boolean readTokens(){
while(!tokens.hasMoreTokens()){ // lê os dados, ignorando linhas vazias
try{
String line = reader.readLine();
if(line == null) return false; // EOF
tokens = new StringTokenizer(line);
}
catch(IOException e){
throw new RuntimeException(e);
}
}
return true;
}
/** output **/
void printf(String s, Object... o) { out.printf(s, o); }
void debug(String s, Object... o) { System.err.printf((char)27 + "[91m" + s + (char)27 + "[0m", o); }
}
public static void main(String[] args){
new Solver();
}
}
| Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 8 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | 25072eac095a7ea59f34441379770f21 | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes | import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
public class Main {
static int Max = 1000000;
static boolean [] arr = new boolean[Max];
public static void main(String[] args) throws IOException {
// write your code here
steive();
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int row = Integer.parseInt(st.nextToken());
int col = Integer.parseInt(st.nextToken());
int [][] differenceInPrime = new int[row][col];
//int [][] matrix = new int[row][col];
for (int i=0;i<row;i++){
st = new StringTokenizer(br.readLine());
for (int j=0;j<col;j++){
int n = Integer.parseInt(st.nextToken());
differenceInPrime[i][j]
= nesrestDiffereencePrime(n);
}
}
//this method find the min difference I need to achieve a col or row ful of prime
int globalMin = Integer.MAX_VALUE;
//try all the row to chekc if t have row full of prime
for (int i=0;i<row;i++){
int sum =0;
for (int j=0;j<col;j++){
sum+=differenceInPrime[i][j];
}
globalMin = Math.min(globalMin,sum);
}
//try all downward col
for (int i=0;i<col;i++){
int sum =0;
for (int j=0;j<row;j++){
sum+=differenceInPrime[j][i];
}
globalMin = Math.min(globalMin,sum);
}
System.out.println(globalMin);
}
static public void steive(){
Arrays.fill(arr,true);
arr[0] = false;
arr[1] = false;
for (long i=2;i<Max;i++)
if(arr[(int)i])
for (long j=i*i;j<Max;j+=i)
arr[(int)j] = false;
}
//this will get an int and return the difference to the nearest prime
static public int nesrestDiffereencePrime(int n){
int i=n;
if(arr[n])
return 0;
else
while (i<Max&&!arr[i])
{
i++;
}
return i-n;
}
} | Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 8 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | 4bdc315f622f388a8e6047d0d34b7661 | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes |
import java.io.*;
import java.util.StringTokenizer;
public class PrimeMatrix {
static boolean esPrimo[] = new boolean[100000 + 100];
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
criba(100090);
StringTokenizer st = new StringTokenizer(br.readLine());
int n1 = Integer.parseInt(st.nextToken());
int n2 = Integer.parseInt(st.nextToken());
//int mat[][] = new int[n1][n2];
int columns[] = new int[n2];
int menor = Integer.MAX_VALUE;
for (int i = 0; i < n1; i++) {
st = new StringTokenizer(br.readLine());
int mov = 0;
for (int j = 0; j < n2; j++) {
int n = Integer.parseInt(st.nextToken());
if (!esPrimo[n]) {
int aux = primCercano(n);
mov += aux;
columns[j] += aux;
}
}
if (mov < menor) {
menor = mov;
}
}
for (int i = 0; i < columns.length; i++) {
if (columns[i] < menor) {
menor = columns[i];
}
}
System.out.println(menor);
}
static int primCercano(int n) {
int cont = 0;
for (int i = n; i < esPrimo.length; i++) {
if (esPrimo[i]) {
break;
}
cont++;
}
return cont;
}
static void criba(int tam) {
for (int i = 2; i <= tam; ++i) {
esPrimo[i] = true;
}
esPrimo[0] = false;
esPrimo[1] = false;
for (int i = 2; i * i <= tam; ++i) {
if (esPrimo[i]) {
for (int h = 2; i * h <= tam; ++h) {
esPrimo[i * h] = false;
}
}
}
}
}
| Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 8 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | f12511d818a5777347d69825f7fae76f | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
int[] primes ;
boolean[] numbers;
int index ;
public static void main(String[] args) {
new Main().start();
}
void start(){
primes = new int[10000];
index = 0 ;
numbers = new boolean[100004];
loadPrimes();
numbers[100003] = true ;
Scanner reader = new Scanner(System.in);
int n ,m ;
int[][] arr , counter;
int[] row , column ;
while(reader.hasNext()){
n = reader.nextInt();
m = reader.nextInt();
arr = new int[n][m] ;
counter = new int[n][m] ;
row = new int[n];
column = new int[m];
for(int i=0 ; i<n ; i++){
for(int j=0 ;j<m ; j++){
arr[i][j] = reader.nextInt();
while( numbers[arr[i][j]]==false ){
arr[i][j]++;
counter[i][j]++;
}
}
}
for(int i=0 ; i<n ; i++){
for(int j=0 ;j<m ; j++){
row[i] += counter[i][j];
}
}
for(int i=0 ; i<m ; i++){
for(int j=0 ;j<n ; j++){
column[i] += counter[j][i];
}
}
Arrays.sort(row);
Arrays.sort(column);
if(row[0]<=column[0])
System.out.println(row[0]);
else
System.out.println(column[0]);
}
}
void loadPrimes(){
primes[0] = 2 ;
primes[1] = 3 ;
primes[2] = 5 ;
primes[3] = 7 ;
numbers[2] = true ;
numbers[3] = true ;
numbers[5] = true ;
numbers[7] = true ;
index = 4 ;
for(int i=11 ; i<=100000 ; i++){
if(isPrime(i)){
primes[index] = i ;
index++;
numbers[i] = true ;
}
}
}
private boolean isPrime(int num) {
for(int i=0 ; i<index ; i++){
if(num%primes[i]==0)
return false;
}
return true;
}
}
| Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 8 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | 5a2ec6554f677c616d2a3d1154a91bd1 | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes | /*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import java.text.*;
public class cf271b {
static BufferedReader br;
static Scanner sc;
static PrintWriter out;
public static void initA() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
//br = new BufferedReader(new FileReader("input.txt"));
sc = new Scanner(System.in);
//out = new PrintWriter("output.txt");
out = new PrintWriter(System.out);
} catch (Exception e) {
}
}
public static void initB() {
try {
br = new BufferedReader(new FileReader("input.txt"));
sc = new Scanner(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
} catch (Exception e) {
}
}
public static String getString() {
try {
return br.readLine();
} catch (Exception e) {
}
return "";
}
public static Integer getInt() {
try {
return Integer.parseInt(br.readLine());
} catch (Exception e) {
}
return 0;
}
public static Integer[] getIntArr() {
try {
StringTokenizer temp = new StringTokenizer(br.readLine());
int n = temp.countTokens();
Integer temp2[] = new Integer[n];
for (int i = 0; i < n; i++) {
temp2[i] = Integer.parseInt(temp.nextToken());
}
return temp2;
} catch (Exception e) {
}
return null;
}
public static Long[] getLongArr() {
try {
StringTokenizer temp = new StringTokenizer(br.readLine());
int n = temp.countTokens();
Long temp2[] = new Long[n];
for (int i = 0; i < n; i++) {
temp2[i] = Long.parseLong(temp.nextToken());
}
return temp2;
} catch (Exception e) {
}
return null;
}
public static String[] getStringArr() {
try {
StringTokenizer temp = new StringTokenizer(br.readLine());
int n = temp.countTokens();
String temp2[] = new String[n];
for (int i = 0; i < n; i++) {
temp2[i] = (temp.nextToken());
}
return temp2;
} catch (Exception e) {
}
return null;
}
public static int getMax(Integer[] ar) {
int t = ar[0];
for (int i = 0; i < ar.length; i++) {
if (ar[i] > t) {
t = ar[i];
}
}
return t;
}
public static void print(Object a) {
out.println(a);
}
public static int nextInt() {
return sc.nextInt();
}
public static double nextDouble() {
return sc.nextDouble();
}
public static void main(String[] ar) {
initA();
solve();
out.flush();
}
public static void solve() {
int max = 110000;
boolean notprime[] = new boolean[110000];
for (int i = 2; i < max; i++) {
for (int j = 2; j * i < max; j++) {
notprime[i * j] = true;
}
}
ArrayList<Integer> prime = new ArrayList<Integer>(110000);
for (int i = 2; i < max; i++) {
if (!notprime[i]) {
prime.add(i);
}
}
final int last = prime.size();
int dp[] = new int[110000];
//Arrays.fill(dp, -1);
for (int i = 0; i < 110000; i++) {
int s = 0;
int num = i;
while (!isPrime(num)) {
num++;
s++;
}
dp[i] = s;
}
Integer x[] = getIntArr();
int n = x[0], m = x[1];
int min[][] = new int[n][m];
for (int i = 0; i < n; i++) {
Integer temp[] = getIntArr();
for (int ii = 0; ii < m; ii++) {
int num = temp[ii];
min[i][ii] = dp[num];
/*
int l =0, r= last-1;
while(l!=r){
int mid = (l+r)/2;
int te = prime.get(mid);
if(te >= num){
r=mid;
}else{
l=mid+1;
}
}
min[i][ii] = prime.get(l)-num;
*/
}
}
int out = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
int sum = 0;
for (int ii = 0; ii < m; ii++) {
sum += min[i][ii];
}
out = Math.min(sum, out);
}
for (int i = 0; i < m; i++) {
int sum = 0;
for (int ii = 0; ii < n; ii++) {
sum += min[ii][i];
}
out = Math.min(sum, out);
}
print(out);
}
static boolean isPrime(int n) {
if (n == 2 || n == 3) {
return true;
}
if (n < 2 || n % 2 == 0) {
return false;
}
for (int i = 3; i <= Math.sqrt(n) + 1; i += 2) {
if (n % i == 0) {
return false;
}
}
return true;
}
}
| Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 6 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | 4d7086fb734497f811e8c83157975568 | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes | /*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import java.text.*;
public class cf271b {
static BufferedReader br;
static Scanner sc;
static PrintWriter out;
public static void initA() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
//br = new BufferedReader(new FileReader("input.txt"));
sc = new Scanner(System.in);
//out = new PrintWriter("output.txt");
out = new PrintWriter(System.out);
} catch (Exception e) {
}
}
public static void initB() {
try {
br = new BufferedReader(new FileReader("input.txt"));
sc = new Scanner(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
} catch (Exception e) {
}
}
public static String getString() {
try {
return br.readLine();
} catch (Exception e) {
}
return "";
}
public static Integer getInt() {
try {
return Integer.parseInt(br.readLine());
} catch (Exception e) {
}
return 0;
}
public static Integer[] getIntArr() {
try {
StringTokenizer temp = new StringTokenizer(br.readLine());
int n = temp.countTokens();
Integer temp2[] = new Integer[n];
for (int i = 0; i < n; i++) {
temp2[i] = Integer.parseInt(temp.nextToken());
}
return temp2;
} catch (Exception e) {
}
return null;
}
public static Long[] getLongArr() {
try {
StringTokenizer temp = new StringTokenizer(br.readLine());
int n = temp.countTokens();
Long temp2[] = new Long[n];
for (int i = 0; i < n; i++) {
temp2[i] = Long.parseLong(temp.nextToken());
}
return temp2;
} catch (Exception e) {
}
return null;
}
public static String[] getStringArr() {
try {
StringTokenizer temp = new StringTokenizer(br.readLine());
int n = temp.countTokens();
String temp2[] = new String[n];
for (int i = 0; i < n; i++) {
temp2[i] = (temp.nextToken());
}
return temp2;
} catch (Exception e) {
}
return null;
}
public static int getMax(Integer[] ar) {
int t = ar[0];
for (int i = 0; i < ar.length; i++) {
if (ar[i] > t) {
t = ar[i];
}
}
return t;
}
public static void print(Object a) {
out.println(a);
}
public static int nextInt() {
return sc.nextInt();
}
public static double nextDouble() {
return sc.nextDouble();
}
public static void main(String[] ar) {
initA();
solve();
out.flush();
}
public static void solve() {
int max = 110000;
boolean notprime[] = new boolean[110000];
for (int i = 2; i < max; i++) {
for (int j = 2; j * i < max; j++) {
notprime[i * j] = true;
}
}
ArrayList<Integer> prime = new ArrayList<Integer>(110000);
for (int i = 2; i < max; i++) {
if (!notprime[i]) {
prime.add(i);
}
}
final int last = prime.size();
Integer x[] = getIntArr();
int n = x[0], m = x[1];
int min[][] = new int[n][m];
for (int i = 0; i < n; i++) {
Integer temp[] = getIntArr();
for (int ii = 0; ii < m; ii++) {
int num = temp[ii];
int l =0, r= last-1;
while(l!=r){
int mid = (l+r)/2;
int te = prime.get(mid);
if(te >= num){
r=mid;
}else{
l=mid+1;
}
}
min[i][ii] = prime.get(l)-num;
}
}
int out = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
int sum = 0;
for (int ii = 0; ii < m; ii++) {
sum += min[i][ii];
}
out = Math.min(sum, out);
}
for (int i = 0; i < m; i++) {
int sum = 0;
for (int ii = 0; ii < n; ii++) {
sum += min[ii][i];
}
out = Math.min(sum, out);
}
print(out);
}
static boolean isPrime(int n) {
if (n == 2 || n == 3) {
return true;
}
if (n < 2 || n % 2 == 0) {
return false;
}
for (int i = 3; i <= Math.sqrt(n) + 1; i += 2) {
if (n % i == 0) {
return false;
}
}
return true;
}
}
| Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 6 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | 525e956845a20cc62b6932d1a655a1e6 | train_000.jsonl | 1360596600 | You've got an n × m matrix. The matrix consists of integers. In one move, you can apply a single transformation to the matrix: choose an arbitrary element of the matrix and increase it by 1. Each element can be increased an arbitrary number of times.You are really curious about prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors: itself and number one. For example, numbers 2, 3, 5 are prime and numbers 1, 4, 6 are not. A matrix is prime if at least one of the two following conditions fulfills: the matrix has a row with prime numbers only; the matrix has a column with prime numbers only; Your task is to count the minimum number of moves needed to get a prime matrix from the one you've got. | 256 megabytes | /*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import java.text.*;
public class cf271b {
static BufferedReader br;
static Scanner sc;
static PrintWriter out;
public static void initA() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
//br = new BufferedReader(new FileReader("input.txt"));
sc = new Scanner(System.in);
//out = new PrintWriter("output.txt");
out = new PrintWriter(System.out);
} catch (Exception e) {
}
}
public static void initB() {
try {
br = new BufferedReader(new FileReader("input.txt"));
sc = new Scanner(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
} catch (Exception e) {
}
}
public static String getString() {
try {
return br.readLine();
} catch (Exception e) {
}
return "";
}
public static Integer getInt() {
try {
return Integer.parseInt(br.readLine());
} catch (Exception e) {
}
return 0;
}
public static Integer[] getIntArr() {
try {
StringTokenizer temp = new StringTokenizer(br.readLine());
int n = temp.countTokens();
Integer temp2[] = new Integer[n];
for (int i = 0; i < n; i++) {
temp2[i] = Integer.parseInt(temp.nextToken());
}
return temp2;
} catch (Exception e) {
}
return null;
}
public static Long[] getLongArr() {
try {
StringTokenizer temp = new StringTokenizer(br.readLine());
int n = temp.countTokens();
Long temp2[] = new Long[n];
for (int i = 0; i < n; i++) {
temp2[i] = Long.parseLong(temp.nextToken());
}
return temp2;
} catch (Exception e) {
}
return null;
}
public static String[] getStringArr() {
try {
StringTokenizer temp = new StringTokenizer(br.readLine());
int n = temp.countTokens();
String temp2[] = new String[n];
for (int i = 0; i < n; i++) {
temp2[i] = (temp.nextToken());
}
return temp2;
} catch (Exception e) {
}
return null;
}
public static int getMax(Integer[] ar) {
int t = ar[0];
for (int i = 0; i < ar.length; i++) {
if (ar[i] > t) {
t = ar[i];
}
}
return t;
}
public static void print(Object a) {
out.println(a);
}
public static int nextInt() {
return sc.nextInt();
}
public static double nextDouble() {
return sc.nextDouble();
}
public static void main(String[] ar) {
initA();
solve();
out.flush();
}
public static void solve() {
int max = 110000;
boolean notprime[] = new boolean[110000];
for (int i = 2; i < max; i++) {
for (int j = 2; j * i < max; j++) {
notprime[i * j] = true;
}
}
ArrayList<Integer> prime = new ArrayList<Integer>(110000);
for (int i = 2; i < max; i++) {
if (!notprime[i]) {
prime.add(i);
}
}
final int last = prime.size();
int dp[] = new int[110000];
Arrays.fill(dp, -1);
/*
for (int i = 0; i < 110000; i++) {
int s = 0;
int num = i;
while (!isPrime(num)) {
num++;
s++;
}
dp[i] = s;
}
*
*/
Integer x[] = getIntArr();
int n = x[0], m = x[1];
int min[][] = new int[n][m];
for (int i = 0; i < n; i++) {
Integer temp[] = getIntArr();
for (int ii = 0; ii < m; ii++) {
int num = temp[ii];
if (dp[num] == -1) {
int l = 0, r = last - 1;
while (l != r) {
int mid = (l + r) / 2;
int te = prime.get(mid);
if (te >= num) {
r = mid;
} else {
l = mid + 1;
}
}
min[i][ii] = prime.get(l) - num;
dp[num]=prime.get(l) - num;
}else{
min[i][ii]=dp[num];
}
}
}
int out = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
int sum = 0;
for (int ii = 0; ii < m; ii++) {
sum += min[i][ii];
}
out = Math.min(sum, out);
}
for (int i = 0; i < m; i++) {
int sum = 0;
for (int ii = 0; ii < n; ii++) {
sum += min[ii][i];
}
out = Math.min(sum, out);
}
print(out);
}
static boolean isPrime(int n) {
if (n == 2 || n == 3) {
return true;
}
if (n < 2 || n % 2 == 0) {
return false;
}
for (int i = 3; i <= Math.sqrt(n) + 1; i += 2) {
if (n % i == 0) {
return false;
}
}
return true;
}
}
| Java | ["3 3\n1 2 3\n5 6 1\n4 4 1", "2 3\n4 8 8\n9 2 9", "2 2\n1 3\n4 2"] | 2 seconds | ["1", "3", "0"] | NoteIn the first sample you need to increase number 1 in cell (1, 1). Thus, the first row will consist of prime numbers: 2, 2, 3.In the second sample you need to increase number 8 in cell (1, 2) three times. Thus, the second column will consist of prime numbers: 11, 2.In the third sample you don't have to do anything as the second column already consists of prime numbers: 3, 2. | Java 6 | standard input | [
"binary search",
"number theory",
"brute force",
"math"
] | d549f70d028a884f0313743c09c685f1 | The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the number of rows and columns in the matrix, correspondingly. Each of the following n lines contains m integers — the initial matrix. All matrix elements are positive integers. All numbers in the initial matrix do not exceed 105. The numbers in the lines are separated by single spaces. | 1,300 | Print a single integer — the minimum number of moves needed to get a prime matrix from the one you've got. If you've got a prime matrix, print 0. | standard output | |
PASSED | 830f04b3d13cec886dd0ad78057f4674 | train_000.jsonl | 1549546500 | You are given an integer $$$n$$$ ($$$n \ge 0$$$) represented with $$$k$$$ digits in base (radix) $$$b$$$. So,$$$$$$n = a_1 \cdot b^{k-1} + a_2 \cdot b^{k-2} + \ldots a_{k-1} \cdot b + a_k.$$$$$$For example, if $$$b=17, k=3$$$ and $$$a=[11, 15, 7]$$$ then $$$n=11\cdot17^2+15\cdot17+7=3179+255+7=3441$$$.Determine whether $$$n$$$ is even or odd. | 256 megabytes | /* package codechef; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Codechef
{
public static void main (String[] args) throws java.lang.Exception
{
// your code goes here
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String s1[]=br.readLine().trim().split("\\ ");
String s2[]=br.readLine().trim().split("\\ ");
int flag=0;
long b=Long.parseLong(s1[0]);
long k=Long.parseLong(s1[1]);
int q=0;
k--;
while(k>=0){
long z=Long.parseLong(s2[q])*b;
if(k==0)
z=Long.parseLong(s2[q]);
q++;
k--;
z=z%2;
flag+=z;
flag%=2;
}
if(flag==1)
System.out.println("odd");
else
System.out.println("even");
}
}
| Java | ["13 3\n3 2 7", "10 9\n1 2 3 4 5 6 7 8 9", "99 5\n32 92 85 74 4", "2 2\n1 0"] | 1 second | ["even", "odd", "odd", "even"] | NoteIn the first example, $$$n = 3 \cdot 13^2 + 2 \cdot 13 + 7 = 540$$$, which is even.In the second example, $$$n = 123456789$$$ is odd.In the third example, $$$n = 32 \cdot 99^4 + 92 \cdot 99^3 + 85 \cdot 99^2 + 74 \cdot 99 + 4 = 3164015155$$$ is odd.In the fourth example $$$n = 2$$$. | Java 8 | standard input | [
"math"
] | ee105b664099808143a94a374d6d5daa | The first line contains two integers $$$b$$$ and $$$k$$$ ($$$2\le b\le 100$$$, $$$1\le k\le 10^5$$$) — the base of the number and the number of digits. The second line contains $$$k$$$ integers $$$a_1, a_2, \ldots, a_k$$$ ($$$0\le a_i < b$$$) — the digits of $$$n$$$. The representation of $$$n$$$ contains no unnecessary leading zero. That is, $$$a_1$$$ can be equal to $$$0$$$ only if $$$k = 1$$$. | 900 | Print "even" if $$$n$$$ is even, otherwise print "odd". You can print each letter in any case (upper or lower). | standard output | |
PASSED | 1d2a770c01d0ee7f8a55f49813fca883 | train_000.jsonl | 1549546500 | You are given an integer $$$n$$$ ($$$n \ge 0$$$) represented with $$$k$$$ digits in base (radix) $$$b$$$. So,$$$$$$n = a_1 \cdot b^{k-1} + a_2 \cdot b^{k-2} + \ldots a_{k-1} \cdot b + a_k.$$$$$$For example, if $$$b=17, k=3$$$ and $$$a=[11, 15, 7]$$$ then $$$n=11\cdot17^2+15\cdot17+7=3179+255+7=3441$$$.Determine whether $$$n$$$ is even or odd. | 256 megabytes | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in Actual solution is at the top
*
* @author @Ziklon
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
AParity solver = new AParity();
solver.solve(1, in, out);
out.close();
}
static class AParity {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int b = in.readInt(), k = in.readInt();
int ans = 0;
for (int i = 0; i < k; ++i) {
ans += in.readInt() * IntegerUtils.power(b, k - i - 1,2);
}
out.printLine(ans % 2 == 0 ? "even" : "odd");
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class IntegerUtils {
public static long power(long base, long exponent, long mod) {
if (base >= mod) {
base %= mod;
}
if (exponent == 0) {
return 1 % mod;
}
long result = power(base, exponent >> 1, mod);
result = result * result % mod;
if ((exponent & 1) != 0) {
result = result * base % mod;
}
return result;
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
}
| Java | ["13 3\n3 2 7", "10 9\n1 2 3 4 5 6 7 8 9", "99 5\n32 92 85 74 4", "2 2\n1 0"] | 1 second | ["even", "odd", "odd", "even"] | NoteIn the first example, $$$n = 3 \cdot 13^2 + 2 \cdot 13 + 7 = 540$$$, which is even.In the second example, $$$n = 123456789$$$ is odd.In the third example, $$$n = 32 \cdot 99^4 + 92 \cdot 99^3 + 85 \cdot 99^2 + 74 \cdot 99 + 4 = 3164015155$$$ is odd.In the fourth example $$$n = 2$$$. | Java 8 | standard input | [
"math"
] | ee105b664099808143a94a374d6d5daa | The first line contains two integers $$$b$$$ and $$$k$$$ ($$$2\le b\le 100$$$, $$$1\le k\le 10^5$$$) — the base of the number and the number of digits. The second line contains $$$k$$$ integers $$$a_1, a_2, \ldots, a_k$$$ ($$$0\le a_i < b$$$) — the digits of $$$n$$$. The representation of $$$n$$$ contains no unnecessary leading zero. That is, $$$a_1$$$ can be equal to $$$0$$$ only if $$$k = 1$$$. | 900 | Print "even" if $$$n$$$ is even, otherwise print "odd". You can print each letter in any case (upper or lower). | standard output | |
PASSED | d317f2e8e30694b88da64e0547bf1f65 | train_000.jsonl | 1549546500 | You are given an integer $$$n$$$ ($$$n \ge 0$$$) represented with $$$k$$$ digits in base (radix) $$$b$$$. So,$$$$$$n = a_1 \cdot b^{k-1} + a_2 \cdot b^{k-2} + \ldots a_{k-1} \cdot b + a_k.$$$$$$For example, if $$$b=17, k=3$$$ and $$$a=[11, 15, 7]$$$ then $$$n=11\cdot17^2+15\cdot17+7=3179+255+7=3441$$$.Determine whether $$$n$$$ is even or odd. | 256 megabytes |
//Hack it if you can !!
import java.util.*;
import java.io.*;
import java.math.*;
public class Main
{
static class FastReader
{
private InputStream mIs;private byte[] buf = new byte[1024];private int curChar,numChars;public FastReader() { this(System.in); }public FastReader(InputStream is) { mIs = is;}
public int read() {if (numChars == -1) throw new InputMismatchException();if (curChar >= numChars) {curChar = 0;try { numChars = mIs.read(buf);} catch (IOException e) { throw new InputMismatchException();}if (numChars <= 0) return -1; }return buf[curChar++];}
public String nextLine(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isEndOfLine(c));return res.toString() ;}
public String next(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isSpaceChar(c));return res.toString();}
public long l(){int c = read();while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }long res = 0; do{ if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read();}while(!isSpaceChar(c));return res * sgn;}
public int i(){int c = read() ;while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }int res = 0;do{if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read() ;}while(!isSpaceChar(c));return res * sgn;}
public double d() throws IOException {return Double.parseDouble(next()) ;}
public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; }
public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; }
public void scanIntArr(int [] arr){ for(int li=0;li<arr.length;++li){ arr[li]=i();}}
public void scanLongArr(long [] arr){for (int i=0;i<arr.length;++i){arr[i]=l();}}
public void shuffle(int [] arr){ for(int i=arr.length;i>0;--i) { int r=(int)(Math.random()*i); int temp=arr[i-1]; arr[i-1]=arr[r]; arr[r]=temp; } }
}
public static void main(String[] args)throws IOException {
/*
inputCopy
13 3
3 2 7
outputCopy
even
inputCopy
10 9
1 2 3 4 5 6 7 8 9
outputCopy
odd
inputCopy
99 5
32 92 85 74 4
outputCopy
odd
inputCopy
2 2
1 0
outputCopy
even
Note
In the first example, 𝑛=3⋅132+2⋅13+7=540, which is even.
*/
PrintWriter pw = new PrintWriter(System.out);
FastReader fr = new FastReader();
long b=fr.l();
long k=fr.l();
BigInteger num=BigInteger.ZERO;
BigInteger curMul=BigInteger.ONE;
BigInteger base=new BigInteger(b+"");
long [] arr=new long[(int)k];
fr.scanLongArr(arr);
for(int ki=arr.length-1;ki>=0;--ki)
{
// num=num.multiply(curMul).add(new BigInteger(arr[ki]+""));
num=new BigInteger(arr[ki]+"").multiply(curMul).add(num).mod(new BigInteger("2"));
curMul=curMul.multiply(base).mod(new BigInteger("2"));
//pw.println(num.toString());
}
if(num.mod(new BigInteger("2")).compareTo(BigInteger.ZERO)==0)
{
pw.println("even");
}
else
{
pw.println("odd");
}
pw.flush();
pw.close();
}
} | Java | ["13 3\n3 2 7", "10 9\n1 2 3 4 5 6 7 8 9", "99 5\n32 92 85 74 4", "2 2\n1 0"] | 1 second | ["even", "odd", "odd", "even"] | NoteIn the first example, $$$n = 3 \cdot 13^2 + 2 \cdot 13 + 7 = 540$$$, which is even.In the second example, $$$n = 123456789$$$ is odd.In the third example, $$$n = 32 \cdot 99^4 + 92 \cdot 99^3 + 85 \cdot 99^2 + 74 \cdot 99 + 4 = 3164015155$$$ is odd.In the fourth example $$$n = 2$$$. | Java 8 | standard input | [
"math"
] | ee105b664099808143a94a374d6d5daa | The first line contains two integers $$$b$$$ and $$$k$$$ ($$$2\le b\le 100$$$, $$$1\le k\le 10^5$$$) — the base of the number and the number of digits. The second line contains $$$k$$$ integers $$$a_1, a_2, \ldots, a_k$$$ ($$$0\le a_i < b$$$) — the digits of $$$n$$$. The representation of $$$n$$$ contains no unnecessary leading zero. That is, $$$a_1$$$ can be equal to $$$0$$$ only if $$$k = 1$$$. | 900 | Print "even" if $$$n$$$ is even, otherwise print "odd". You can print each letter in any case (upper or lower). | standard output | |
PASSED | 8ef1fc0ebe01d5977fc90e4573f3c1ce | train_000.jsonl | 1549546500 | You are given an integer $$$n$$$ ($$$n \ge 0$$$) represented with $$$k$$$ digits in base (radix) $$$b$$$. So,$$$$$$n = a_1 \cdot b^{k-1} + a_2 \cdot b^{k-2} + \ldots a_{k-1} \cdot b + a_k.$$$$$$For example, if $$$b=17, k=3$$$ and $$$a=[11, 15, 7]$$$ then $$$n=11\cdot17^2+15\cdot17+7=3179+255+7=3441$$$.Determine whether $$$n$$$ is even or odd. | 256 megabytes | import java.util.Scanner;
public class A {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt(),m=sc.nextInt();
int o=0;
for (int i=0;i<m;i++){
long j= sc.nextLong();
if(i==m-1){
if (j%2!=0){
o++;
break;
}
}
if ((j*n)%2!=0){
o++;
}
}
System.out.println(o%2==0?"even":"odd");
}
}
| Java | ["13 3\n3 2 7", "10 9\n1 2 3 4 5 6 7 8 9", "99 5\n32 92 85 74 4", "2 2\n1 0"] | 1 second | ["even", "odd", "odd", "even"] | NoteIn the first example, $$$n = 3 \cdot 13^2 + 2 \cdot 13 + 7 = 540$$$, which is even.In the second example, $$$n = 123456789$$$ is odd.In the third example, $$$n = 32 \cdot 99^4 + 92 \cdot 99^3 + 85 \cdot 99^2 + 74 \cdot 99 + 4 = 3164015155$$$ is odd.In the fourth example $$$n = 2$$$. | Java 8 | standard input | [
"math"
] | ee105b664099808143a94a374d6d5daa | The first line contains two integers $$$b$$$ and $$$k$$$ ($$$2\le b\le 100$$$, $$$1\le k\le 10^5$$$) — the base of the number and the number of digits. The second line contains $$$k$$$ integers $$$a_1, a_2, \ldots, a_k$$$ ($$$0\le a_i < b$$$) — the digits of $$$n$$$. The representation of $$$n$$$ contains no unnecessary leading zero. That is, $$$a_1$$$ can be equal to $$$0$$$ only if $$$k = 1$$$. | 900 | Print "even" if $$$n$$$ is even, otherwise print "odd". You can print each letter in any case (upper or lower). | standard output | |
PASSED | 3e1d96ee106d892dc56ec226e599b249 | train_000.jsonl | 1549546500 | You are given an integer $$$n$$$ ($$$n \ge 0$$$) represented with $$$k$$$ digits in base (radix) $$$b$$$. So,$$$$$$n = a_1 \cdot b^{k-1} + a_2 \cdot b^{k-2} + \ldots a_{k-1} \cdot b + a_k.$$$$$$For example, if $$$b=17, k=3$$$ and $$$a=[11, 15, 7]$$$ then $$$n=11\cdot17^2+15\cdot17+7=3179+255+7=3441$$$.Determine whether $$$n$$$ is even or odd. | 256 megabytes | import java.util.*;
public class Test {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int b = in.nextInt();
int k = in.nextInt();
int n = 0;
for(int i = k-1; i > 0; i--){
int a = in.nextInt();
n += (a * b) % 2;
}
n += in.nextInt();
System.out.println(n%2 == 0? "even" : "odd");
}
} | Java | ["13 3\n3 2 7", "10 9\n1 2 3 4 5 6 7 8 9", "99 5\n32 92 85 74 4", "2 2\n1 0"] | 1 second | ["even", "odd", "odd", "even"] | NoteIn the first example, $$$n = 3 \cdot 13^2 + 2 \cdot 13 + 7 = 540$$$, which is even.In the second example, $$$n = 123456789$$$ is odd.In the third example, $$$n = 32 \cdot 99^4 + 92 \cdot 99^3 + 85 \cdot 99^2 + 74 \cdot 99 + 4 = 3164015155$$$ is odd.In the fourth example $$$n = 2$$$. | Java 8 | standard input | [
"math"
] | ee105b664099808143a94a374d6d5daa | The first line contains two integers $$$b$$$ and $$$k$$$ ($$$2\le b\le 100$$$, $$$1\le k\le 10^5$$$) — the base of the number and the number of digits. The second line contains $$$k$$$ integers $$$a_1, a_2, \ldots, a_k$$$ ($$$0\le a_i < b$$$) — the digits of $$$n$$$. The representation of $$$n$$$ contains no unnecessary leading zero. That is, $$$a_1$$$ can be equal to $$$0$$$ only if $$$k = 1$$$. | 900 | Print "even" if $$$n$$$ is even, otherwise print "odd". You can print each letter in any case (upper or lower). | standard output | |
PASSED | 1c21e3a236218409802807603388bde0 | train_000.jsonl | 1549546500 | You are given an integer $$$n$$$ ($$$n \ge 0$$$) represented with $$$k$$$ digits in base (radix) $$$b$$$. So,$$$$$$n = a_1 \cdot b^{k-1} + a_2 \cdot b^{k-2} + \ldots a_{k-1} \cdot b + a_k.$$$$$$For example, if $$$b=17, k=3$$$ and $$$a=[11, 15, 7]$$$ then $$$n=11\cdot17^2+15\cdot17+7=3179+255+7=3441$$$.Determine whether $$$n$$$ is even or odd. | 256 megabytes |
import java.util.Scanner;
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
/**
*
* @author MANAV PATEL
*/
public class NewClass111
{
public static void main(String[] args)
{
Scanner sc = new Scanner(System.in);
int n1;
int n2;
int k=0;
long sum = 0;
n1 = sc.nextInt();
n2 = sc.nextInt();
int j=n2-1;
int arr[] = new int[n2];
for(int i=0; i<n2; i++)
{
arr[i]=sc.nextInt();
if(i!=j && (arr[i]*n1)%2==1)
{
k++;
}
}
if((k%2==1 && arr[j]%2==0) || (k%2==0 && arr[j]%2==1))
{
System.out.println("odd");
}
else
{
System.out.println("even");
}
}
}
| Java | ["13 3\n3 2 7", "10 9\n1 2 3 4 5 6 7 8 9", "99 5\n32 92 85 74 4", "2 2\n1 0"] | 1 second | ["even", "odd", "odd", "even"] | NoteIn the first example, $$$n = 3 \cdot 13^2 + 2 \cdot 13 + 7 = 540$$$, which is even.In the second example, $$$n = 123456789$$$ is odd.In the third example, $$$n = 32 \cdot 99^4 + 92 \cdot 99^3 + 85 \cdot 99^2 + 74 \cdot 99 + 4 = 3164015155$$$ is odd.In the fourth example $$$n = 2$$$. | Java 8 | standard input | [
"math"
] | ee105b664099808143a94a374d6d5daa | The first line contains two integers $$$b$$$ and $$$k$$$ ($$$2\le b\le 100$$$, $$$1\le k\le 10^5$$$) — the base of the number and the number of digits. The second line contains $$$k$$$ integers $$$a_1, a_2, \ldots, a_k$$$ ($$$0\le a_i < b$$$) — the digits of $$$n$$$. The representation of $$$n$$$ contains no unnecessary leading zero. That is, $$$a_1$$$ can be equal to $$$0$$$ only if $$$k = 1$$$. | 900 | Print "even" if $$$n$$$ is even, otherwise print "odd". You can print each letter in any case (upper or lower). | standard output | |
PASSED | a536b4a3dede64361dee79eabd88b601 | train_000.jsonl | 1549546500 | You are given an integer $$$n$$$ ($$$n \ge 0$$$) represented with $$$k$$$ digits in base (radix) $$$b$$$. So,$$$$$$n = a_1 \cdot b^{k-1} + a_2 \cdot b^{k-2} + \ldots a_{k-1} \cdot b + a_k.$$$$$$For example, if $$$b=17, k=3$$$ and $$$a=[11, 15, 7]$$$ then $$$n=11\cdot17^2+15\cdot17+7=3179+255+7=3441$$$.Determine whether $$$n$$$ is even or odd. | 256 megabytes | import java.io.InputStreamReader;
import java.io.BufferedReader;
public class cdfgr1a
{
public static void main(String args[])throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String s=br.readLine();
String ss[]=s.split(" ");
int n=Integer.parseInt(ss[0]);
int k=Integer.parseInt(ss[1]);
n%=2;
s=br.readLine();
String str[]=s.split(" ");
int arr[]=new int[k];
for(int i=0;i<k;i++)
arr[i]=Integer.parseInt(str[i]);
int sum=0;
for(int i=0;i<k;i++)
{
if(i==k-1)
{
if(arr[i]%2==1)
sum+=1;
break;
}
sum=sum+arr[i]%2*n;
}
if(sum%2==0)
System.out.println("even");
else
System.out.println("odd");
}
}
| Java | ["13 3\n3 2 7", "10 9\n1 2 3 4 5 6 7 8 9", "99 5\n32 92 85 74 4", "2 2\n1 0"] | 1 second | ["even", "odd", "odd", "even"] | NoteIn the first example, $$$n = 3 \cdot 13^2 + 2 \cdot 13 + 7 = 540$$$, which is even.In the second example, $$$n = 123456789$$$ is odd.In the third example, $$$n = 32 \cdot 99^4 + 92 \cdot 99^3 + 85 \cdot 99^2 + 74 \cdot 99 + 4 = 3164015155$$$ is odd.In the fourth example $$$n = 2$$$. | Java 8 | standard input | [
"math"
] | ee105b664099808143a94a374d6d5daa | The first line contains two integers $$$b$$$ and $$$k$$$ ($$$2\le b\le 100$$$, $$$1\le k\le 10^5$$$) — the base of the number and the number of digits. The second line contains $$$k$$$ integers $$$a_1, a_2, \ldots, a_k$$$ ($$$0\le a_i < b$$$) — the digits of $$$n$$$. The representation of $$$n$$$ contains no unnecessary leading zero. That is, $$$a_1$$$ can be equal to $$$0$$$ only if $$$k = 1$$$. | 900 | Print "even" if $$$n$$$ is even, otherwise print "odd". You can print each letter in any case (upper or lower). | standard output | |
PASSED | 58ec87a3bb7036c9761786dde9011e22 | train_000.jsonl | 1549546500 | You are given an integer $$$n$$$ ($$$n \ge 0$$$) represented with $$$k$$$ digits in base (radix) $$$b$$$. So,$$$$$$n = a_1 \cdot b^{k-1} + a_2 \cdot b^{k-2} + \ldots a_{k-1} \cdot b + a_k.$$$$$$For example, if $$$b=17, k=3$$$ and $$$a=[11, 15, 7]$$$ then $$$n=11\cdot17^2+15\cdot17+7=3179+255+7=3441$$$.Determine whether $$$n$$$ is even or odd. | 256 megabytes | import java.util.*;
public class helloworld {
public static int solve(int a[],int b,int k) {
int ans = 0; // 1 代表奇数
boolean flag = (b % 2 == 0); // flag = 1 代表 b 是偶数
int coun = 0;
if(flag == true) {
if(a[k] % 2 == 1) {
ans = 1 - ans;
}
}
else {
for(int i = 1;i <= k;i ++) {
if(a[i] % 2 == 1) ++ coun;
}
if(coun % 2 == 1) ans = 1;
}
return ans;
}
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int a[] = new int[100100];
int b,k;
b = input.nextInt();
k = input.nextInt();
for(int i = 1;i <= k;i ++) a[i] = input.nextInt();
if(solve(a,b,k) == 1) System.out.println("odd");
else System.out.println("even");
}
} | Java | ["13 3\n3 2 7", "10 9\n1 2 3 4 5 6 7 8 9", "99 5\n32 92 85 74 4", "2 2\n1 0"] | 1 second | ["even", "odd", "odd", "even"] | NoteIn the first example, $$$n = 3 \cdot 13^2 + 2 \cdot 13 + 7 = 540$$$, which is even.In the second example, $$$n = 123456789$$$ is odd.In the third example, $$$n = 32 \cdot 99^4 + 92 \cdot 99^3 + 85 \cdot 99^2 + 74 \cdot 99 + 4 = 3164015155$$$ is odd.In the fourth example $$$n = 2$$$. | Java 8 | standard input | [
"math"
] | ee105b664099808143a94a374d6d5daa | The first line contains two integers $$$b$$$ and $$$k$$$ ($$$2\le b\le 100$$$, $$$1\le k\le 10^5$$$) — the base of the number and the number of digits. The second line contains $$$k$$$ integers $$$a_1, a_2, \ldots, a_k$$$ ($$$0\le a_i < b$$$) — the digits of $$$n$$$. The representation of $$$n$$$ contains no unnecessary leading zero. That is, $$$a_1$$$ can be equal to $$$0$$$ only if $$$k = 1$$$. | 900 | Print "even" if $$$n$$$ is even, otherwise print "odd". You can print each letter in any case (upper or lower). | standard output | |
PASSED | e21327351644d249d3484cbc4597cbfe | train_000.jsonl | 1549546500 | You are given an integer $$$n$$$ ($$$n \ge 0$$$) represented with $$$k$$$ digits in base (radix) $$$b$$$. So,$$$$$$n = a_1 \cdot b^{k-1} + a_2 \cdot b^{k-2} + \ldots a_{k-1} \cdot b + a_k.$$$$$$For example, if $$$b=17, k=3$$$ and $$$a=[11, 15, 7]$$$ then $$$n=11\cdot17^2+15\cdot17+7=3179+255+7=3441$$$.Determine whether $$$n$$$ is even or odd. | 256 megabytes | import java.util.*;
public class helloworld {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int a[] = new int[100100];
int b,k;
b = input.nextInt();
k = input.nextInt();
for(int i = 1;i <= k;i ++) a[i] = input.nextInt();
int ans = 0; // 1 代表奇数
boolean flag = (b % 2 == 0); // flag = 1 代表 b 是偶数
int coun = 0;
if(flag == true) {
if(a[k] % 2 == 1) {
ans = 1 - ans;
}
}
else {
for(int i = 1;i <= k;i ++) {
if(a[i] % 2 == 1) ++ coun;
}
if(coun % 2 == 1) ans = 1;
}
if(ans == 1) System.out.println("odd");
else System.out.println("even");
}
} | Java | ["13 3\n3 2 7", "10 9\n1 2 3 4 5 6 7 8 9", "99 5\n32 92 85 74 4", "2 2\n1 0"] | 1 second | ["even", "odd", "odd", "even"] | NoteIn the first example, $$$n = 3 \cdot 13^2 + 2 \cdot 13 + 7 = 540$$$, which is even.In the second example, $$$n = 123456789$$$ is odd.In the third example, $$$n = 32 \cdot 99^4 + 92 \cdot 99^3 + 85 \cdot 99^2 + 74 \cdot 99 + 4 = 3164015155$$$ is odd.In the fourth example $$$n = 2$$$. | Java 8 | standard input | [
"math"
] | ee105b664099808143a94a374d6d5daa | The first line contains two integers $$$b$$$ and $$$k$$$ ($$$2\le b\le 100$$$, $$$1\le k\le 10^5$$$) — the base of the number and the number of digits. The second line contains $$$k$$$ integers $$$a_1, a_2, \ldots, a_k$$$ ($$$0\le a_i < b$$$) — the digits of $$$n$$$. The representation of $$$n$$$ contains no unnecessary leading zero. That is, $$$a_1$$$ can be equal to $$$0$$$ only if $$$k = 1$$$. | 900 | Print "even" if $$$n$$$ is even, otherwise print "odd". You can print each letter in any case (upper or lower). | standard output | |
PASSED | 78f9453a6c650338e4e8ecf5a74b0952 | train_000.jsonl | 1549546500 | You are given an integer $$$n$$$ ($$$n \ge 0$$$) represented with $$$k$$$ digits in base (radix) $$$b$$$. So,$$$$$$n = a_1 \cdot b^{k-1} + a_2 \cdot b^{k-2} + \ldots a_{k-1} \cdot b + a_k.$$$$$$For example, if $$$b=17, k=3$$$ and $$$a=[11, 15, 7]$$$ then $$$n=11\cdot17^2+15\cdot17+7=3179+255+7=3441$$$.Determine whether $$$n$$$ is even or odd. | 256 megabytes |
import java.util.*;
import java.io.*;
public class Main{
public static void main(String[]args) throws IOException{
Scanner scan=new Scanner(System.in);
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
PrintWriter pr=new PrintWriter(System.out);
int b=scan.nextInt();
int k=scan.nextInt();
int numOdd=0,a=0;
for(int i=0;i<k;i++){
a=scan.nextInt();
if(a%2==1)
numOdd++;
}
if(b%2==0){
if(a%2==0)
System.out.print("even");
else
System.out.print("odd");
}
else{
if(numOdd%2==0)
System.out.print("even");
else
System.out.print("odd");
}
}
} | Java | ["13 3\n3 2 7", "10 9\n1 2 3 4 5 6 7 8 9", "99 5\n32 92 85 74 4", "2 2\n1 0"] | 1 second | ["even", "odd", "odd", "even"] | NoteIn the first example, $$$n = 3 \cdot 13^2 + 2 \cdot 13 + 7 = 540$$$, which is even.In the second example, $$$n = 123456789$$$ is odd.In the third example, $$$n = 32 \cdot 99^4 + 92 \cdot 99^3 + 85 \cdot 99^2 + 74 \cdot 99 + 4 = 3164015155$$$ is odd.In the fourth example $$$n = 2$$$. | Java 8 | standard input | [
"math"
] | ee105b664099808143a94a374d6d5daa | The first line contains two integers $$$b$$$ and $$$k$$$ ($$$2\le b\le 100$$$, $$$1\le k\le 10^5$$$) — the base of the number and the number of digits. The second line contains $$$k$$$ integers $$$a_1, a_2, \ldots, a_k$$$ ($$$0\le a_i < b$$$) — the digits of $$$n$$$. The representation of $$$n$$$ contains no unnecessary leading zero. That is, $$$a_1$$$ can be equal to $$$0$$$ only if $$$k = 1$$$. | 900 | Print "even" if $$$n$$$ is even, otherwise print "odd". You can print each letter in any case (upper or lower). | standard output | |
PASSED | e38fce2c9beca63e812363cbc302e635 | train_000.jsonl | 1549546500 | You are given an integer $$$n$$$ ($$$n \ge 0$$$) represented with $$$k$$$ digits in base (radix) $$$b$$$. So,$$$$$$n = a_1 \cdot b^{k-1} + a_2 \cdot b^{k-2} + \ldots a_{k-1} \cdot b + a_k.$$$$$$For example, if $$$b=17, k=3$$$ and $$$a=[11, 15, 7]$$$ then $$$n=11\cdot17^2+15\cdot17+7=3179+255+7=3441$$$.Determine whether $$$n$$$ is even or odd. | 256 megabytes | // package CF1110;
import java.io.*;
import java.util.*;
public class CF1110A {
static FastReader s;
static PrintWriter out;
static String INPUT = "13 1\n" +
"7\n";
public static void main(String[] args) {
long time = System.currentTimeMillis();
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
out = new PrintWriter(System.out);
s = new FastReader(oj);
int b = s.nextInt();
int k = s.nextInt();
int[] arr = s.nextIntArray(k);
boolean even = true;
for (int i = 0; i < k; i++) {
int num = (k - i - 1);
if(num != 0) {
num %= 4;
if(num == 0) {
num++;
}
}
long num1= (long) ((long)arr[i] * (long)(Math.pow(b, num)));
if(num1 % 2 != 0){
if(!even) {
even = true;
} else {
even = false;
}
}
}
out.println(even ? "even\n" : "odd");
if (!oj) {
System.out.println(Arrays.deepToString(new Object[]{System.currentTimeMillis() - time + " ms"}));
}
out.flush();
}
private static class Maths {
static ArrayList<Long> printDivisors(long n) {
// Note that this loop runs till square root
ArrayList<Long> list = new ArrayList<>();
for (long i = 1; i <= Math.sqrt(n); i++) {
if (n % i == 0) {
if (n / i == i) {
list.add(i);
} else {
list.add(i);
list.add(n / i);
}
}
}
return list;
}
// GCD - Using Euclid theorem.
private static long gcd(long a, long b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
// Extended euclidean algorithm
// Used to solve equations of the form ax + by = gcd(a,b)
// return array [d, a, b] such that d = gcd(p, q), ap + bq = d
static long[] extendedEuclidean(long p, long q) {
if (q == 0)
return new long[]{p, 1, 0};
long[] vals = extendedEuclidean(q, p % q);
long d = vals[0];
long a = vals[2];
long b = vals[1] - (p / q) * vals[2];
return new long[]{d, a, b};
}
// X ^ y mod p
static long power(long x, long y, long p) {
long res = 1;
x = x % p;
while (y > 0) {
if ((y & 1) == 1)
res = (res * x) % p;
y = y >> 1;
x = (x * x) % p;
}
return res;
}
// Returns modulo inverse of a
// with respect to m using extended
// Euclid Algorithm. Refer below post for details:
// https://www.geeksforgeeks.org/multiplicative-inverse-under-modulo-m/
static long inv(long a, long m) {
long m0 = m, t, q;
long x0 = 0, x1 = 1;
if (m == 1)
return 0;
// Apply extended Euclid Algorithm
while (a > 1) {
q = a / m;
t = m;
m = a % m;
a = t;
t = x0;
x0 = x1 - q * x0;
x1 = t;
}
// Make x1 positive
if (x1 < 0)
x1 += m0;
return x1;
}
// k is size of num[] and rem[].
// Returns the smallest number
// x such that:
// x % num[0] = rem[0],
// x % num[1] = rem[1],
// ..................
// x % num[k-2] = rem[k-1]
// Assumption: Numbers in num[] are pairwise
// coprime (gcd for every pair is 1)
static long findMinX(long num[], long rem[], long k) {
int prod = 1;
for (int i = 0; i < k; i++)
prod *= num[i];
int result = 0;
for (int i = 0; i < k; i++) {
long pp = prod / num[i];
result += rem[i] * inv(pp, num[i]) * pp;
}
return result % prod;
}
}
private static class BS {
// Binary search
private static int binarySearch(int[] arr, int ele) {
int low = 0;
int high = arr.length - 1;
while (low <= high) {
int mid = (low + high) / 2;
if (arr[mid] == ele) {
return mid;
} else if (ele < arr[mid]) {
high = mid - 1;
} else {
low = mid + 1;
}
}
return -1;
}
// First occurence using binary search
private static int binarySearchFirstOccurence(int[] arr, int ele) {
int low = 0;
int high = arr.length - 1;
int ans = -1;
while (low <= high) {
int mid = (low + high) / 2;
if (arr[mid] == ele) {
ans = mid;
high = mid - 1;
} else if (ele < arr[mid]) {
high = mid - 1;
} else {
low = mid + 1;
}
}
return ans;
}
// Last occurenece using binary search
private static int binarySearchLastOccurence(int[] arr, int ele) {
int low = 0;
int high = arr.length - 1;
int ans = -1;
while (low <= high) {
int mid = (low + high) / 2;
if (arr[mid] == ele) {
ans = mid;
low = mid + 1;
} else if (ele < arr[mid]) {
high = mid - 1;
} else {
low = mid + 1;
}
}
return ans;
}
}
private static class arrays {
// Merge sort
static void merge(int arr[], int l, int m, int r) {
int n1 = m - l + 1;
int n2 = r - m;
int L[] = new int[n1];
int R[] = new int[n2];
for (int i = 0; i < n1; ++i)
L[i] = arr[l + i];
for (int j = 0; j < n2; ++j)
R[j] = arr[m + 1 + j];
int i = 0, j = 0;
int k = l;
while (i < n1 && j < n2) {
if (L[i] <= R[j]) {
arr[k] = L[i];
i++;
} else {
arr[k] = R[j];
j++;
}
k++;
}
while (i < n1) {
arr[k] = L[i];
i++;
k++;
}
while (j < n2) {
arr[k] = R[j];
j++;
k++;
}
}
static void sort(int arr[], int l, int r) {
if (l < r) {
int m = (l + r) / 2;
sort(arr, l, m);
sort(arr, m + 1, r);
merge(arr, l, m, r);
}
}
static void sort(int[] arr) {
sort(arr, 0, arr.length - 1);
}
}
private static class UnionFindDisjointSet {
int[] parent;
int[] size;
int n;
int size1;
public UnionFindDisjointSet(int n) {
this.n = n;
this.parent = new int[n];
this.size = new int[n];
for (int i = 0; i < n; i++) {
parent[i] = i;
}
for (int i = 0; i < n; i++) {
size[i] = 1;
}
this.size1 = n;
}
private int numDisjointSets() {
System.out.println(size1);
return size1;
}
private boolean find(int a, int b) {
int rootA = root(a);
int rootB = root(b);
if (rootA == rootB) {
return true;
}
return false;
}
private int root(int b) {
while (parent[b] != b) {
parent[b] = parent[parent[b]];
b = parent[b];
}
return b;
}
private void union(int a, int b) {
int rootA = root(a);
int rootB = root(b);
if (rootA == rootB) {
return;
}
if (size[rootA] < size[rootB]) {
parent[rootA] = parent[rootB];
size[rootB] += size[rootA];
} else {
parent[rootB] = parent[rootA];
size[rootA] += size[rootB];
}
size1--;
System.out.println(Arrays.toString(parent));
}
}
private static class SegTree {
int[] st;
int[] arr;
public SegTree(int[] arr) {
this.arr = arr;
int size = (int) Math.ceil(Math.log(arr.length) / Math.log(2));
st = new int[(int) ((2 * Math.pow(2, size)) - 1)];
buildSegmentTree(1, 0, arr.length - 1);
}
//**********JUST CALL THE CONSTRUCTOR, THIS FUNCTION WILL BE CALLED AUTOMATICALLY******
private void buildSegmentTree(int index, int L, int R) {
if (L == R) {
st[index] = arr[L];
return;
}
buildSegmentTree(index * 2, L, (L + R) / 2);
buildSegmentTree(index * 2 + 1, (L + R) / 2 + 1, R);
// Replace this line if you want to change the function of the Segment tree.
st[index] = Math.min(st[index * 2], st[index * 2 + 1]);
}
//***********We have to use this function **************
private int Query(int queL, int queR) {
return Query1(1, 0, arr.length - 1, queL, queR);
}
//This is a helper function.
//************* DO NOT USE THIS ****************
private int Query1(int index, int segL, int segR, int queL, int queR) {
if (queL > segR || queR < segL) {
return -1;
}
if (queL <= segL && queR >= segR) {
return st[index];
}
int ans1 = Query1(index * 2, segL, (segL + segR) / 2, queL, queR);
int ans2 = Query1(index * 2 + 1, (segL + segR) / 2 + 1, segR, queL, queR);
if (ans1 == -1) {
return ans2;
}
if (ans2 == -1) {
return ans1;
}
// Segment tree implemented for range minimum query. Change the below line to change the function.
return Math.min(ans1, ans2);
}
private void update(int idx, int val) {
update1(1, 0, arr.length - 1, idx, val);
}
private void update1(int node, int queL, int queR, int idx, int val) {
// idx - index to be updated in the array
// node - index to be updated in the seg tree
if (queL == queR) {
// Leaf node
arr[idx] += val;
st[node] += val;
} else {
int mid = (queL + queR) / 2;
if (queL <= idx && idx <= mid) {
// If idx is in the left child, recurse on the left child
update1(2 * node, queL, mid, idx, val);
} else {
// if idx is in the right child, recurse on the right child
update1(2 * node + 1, mid + 1, queR, idx, val);
}
// Internal node will have the min of both of its children
st[node] = Math.min(st[2 * node], st[2 * node + 1]);
}
}
}
private static class FastReader {
InputStream is;
public FastReader(boolean onlineJudge) {
is = onlineJudge ? System.in : new ByteArrayInputStream(INPUT.getBytes());
}
byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
int readByte() {
if (lenbuf == -1)
throw new InputMismatchException();
if (ptrbuf >= lenbuf) {
ptrbuf = 0;
try {
lenbuf = is.read(inbuf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0)
return -1;
}
return inbuf[ptrbuf++];
}
boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
int skip() {
int b;
while ((b = readByte()) != -1 && isSpaceChar(b))
;
return b;
}
double nextDouble() {
return Double.parseDouble(next());
}
char nextChar() {
return (char) skip();
}
String next() {
int b = skip();
StringBuilder sb = new StringBuilder();
while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
String nextLine() {
int b = skip();
StringBuilder sb = new StringBuilder();
while ((!isSpaceChar(b) || b == ' ')) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
char[] next(int n) {
char[] buf = new char[n];
int b = skip(), p = 0;
while (p < n && !(isSpaceChar(b))) {
buf[p++] = (char) b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
int nextInt() {
int num = 0, b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
long nextLong() {
long num = 0;
int b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
char[][] nextMatrix(int n, int m) {
char[][] map = new char[n][];
for (int i = 0; i < n; i++)
map[i] = next(m);
return map;
}
int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
int[][] next2DInt(int n, int m) {
int[][] arr = new int[n][];
for (int i = 0; i < n; i++) {
arr[i] = nextIntArray(m);
}
return arr;
}
long[][] next2DLong(int n, int m) {
long[][] arr = new long[n][];
for (int i = 0; i < n; i++) {
arr[i] = nextLongArray(m);
}
return arr;
}
int[] shuffle(int[] arr) {
Random r = new Random();
for (int i = 1, j; i < arr.length; i++) {
j = r.nextInt(i);
arr[i] = arr[i] ^ arr[j];
arr[j] = arr[i] ^ arr[j];
arr[i] = arr[i] ^ arr[j];
}
return arr;
}
int[] uniq(int[] arr) {
Arrays.sort(arr);
int[] rv = new int[arr.length];
int pos = 0;
rv[pos++] = arr[0];
for (int i = 1; i < arr.length; i++) {
if (arr[i] != arr[i - 1]) {
rv[pos++] = arr[i];
}
}
return Arrays.copyOf(rv, pos);
}
}
}
| Java | ["13 3\n3 2 7", "10 9\n1 2 3 4 5 6 7 8 9", "99 5\n32 92 85 74 4", "2 2\n1 0"] | 1 second | ["even", "odd", "odd", "even"] | NoteIn the first example, $$$n = 3 \cdot 13^2 + 2 \cdot 13 + 7 = 540$$$, which is even.In the second example, $$$n = 123456789$$$ is odd.In the third example, $$$n = 32 \cdot 99^4 + 92 \cdot 99^3 + 85 \cdot 99^2 + 74 \cdot 99 + 4 = 3164015155$$$ is odd.In the fourth example $$$n = 2$$$. | Java 8 | standard input | [
"math"
] | ee105b664099808143a94a374d6d5daa | The first line contains two integers $$$b$$$ and $$$k$$$ ($$$2\le b\le 100$$$, $$$1\le k\le 10^5$$$) — the base of the number and the number of digits. The second line contains $$$k$$$ integers $$$a_1, a_2, \ldots, a_k$$$ ($$$0\le a_i < b$$$) — the digits of $$$n$$$. The representation of $$$n$$$ contains no unnecessary leading zero. That is, $$$a_1$$$ can be equal to $$$0$$$ only if $$$k = 1$$$. | 900 | Print "even" if $$$n$$$ is even, otherwise print "odd". You can print each letter in any case (upper or lower). | standard output | |
PASSED | acb8cd1c1c5e989435b07b276819705d | train_000.jsonl | 1384443000 | A boy Petya loves chess very much. He even came up with a chess piece of his own, a semiknight. The semiknight can move in any of these four directions: 2 squares forward and 2 squares to the right, 2 squares forward and 2 squares to the left, 2 squares backward and 2 to the right and 2 squares backward and 2 to the left. Naturally, the semiknight cannot move beyond the limits of the chessboard.Petya put two semiknights on a standard chessboard. Petya simultaneously moves with both semiknights. The squares are rather large, so after some move the semiknights can meet, that is, they can end up in the same square. After the meeting the semiknights can move on, so it is possible that they meet again. Petya wonders if there is such sequence of moves when the semiknights meet. Petya considers some squares bad. That is, they do not suit for the meeting. The semiknights can move through these squares but their meetings in these squares don't count.Petya prepared multiple chess boards. Help Petya find out whether the semiknights can meet on some good square for each board.Please see the test case analysis. | 256 megabytes | import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
public class knightMoves {
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(new OutputStreamWriter(System.out));
int t = Integer.parseInt(br.readLine());
for(int i=0;i<t;++i)
{
int k1x=0,k1y=0,k2x=0,k2y=0;
boolean k1 = false,k2=false;
for(int j=0;j<8;++j)
{
String row = br.readLine();
for(int k=0;k<8;++k)
{
if(row.charAt(k)=='K')
{
if(!k1)
{
k1x=j;
k1y=k;
k1=true;
}
else
if(!k2)
{
k2x=j;
k2y=k;
k2=true;
}
}
}
}
int v1 = Math.abs(k1x-k2x);
int v2 = Math.abs(k1y-k2y);
if(v1%4==0 && v2%4==0)
{
pw.println("YES");
}
else
{
pw.println("NO");
}
if(i<(t-1))
{
br.readLine();
}
}
pw.flush();
pw.close();
}
}
| Java | ["2\n........\n........\n......#.\nK..##..#\n.......#\n...##..#\n......#.\nK.......\n\n........\n........\n..#.....\n..#..#..\n..####..\n...##...\n........\n....K#K#"] | 1 second | ["YES\nNO"] | NoteConsider the first board from the sample. We will assume the rows and columns of the matrix to be numbered 1 through 8 from top to bottom and from left to right, correspondingly. The knights can meet, for example, in square (2, 7). The semiknight from square (4, 1) goes to square (2, 3) and the semiknight goes from square (8, 1) to square (6, 3). Then both semiknights go to (4, 5) but this square is bad, so they move together to square (2, 7).On the second board the semiknights will never meet. | Java 6 | standard input | [
"greedy",
"math"
] | 4f3bec9c36d0ac2fdb8041469133458c | The first line contains number t (1 ≤ t ≤ 50) — the number of boards. Each board is described by a matrix of characters, consisting of 8 rows and 8 columns. The matrix consists of characters ".", "#", "K", representing an empty good square, a bad square and the semiknight's position, correspondingly. It is guaranteed that matrix contains exactly 2 semiknights. The semiknight's squares are considered good for the meeting. The tests are separated by empty line. | 1,500 | For each test, print on a single line the answer to the problem: "YES", if the semiknights can meet and "NO" otherwise. | standard output | |
PASSED | 7cb07126579cb1995ed6211089c5ead7 | train_000.jsonl | 1384443000 | A boy Petya loves chess very much. He even came up with a chess piece of his own, a semiknight. The semiknight can move in any of these four directions: 2 squares forward and 2 squares to the right, 2 squares forward and 2 squares to the left, 2 squares backward and 2 to the right and 2 squares backward and 2 to the left. Naturally, the semiknight cannot move beyond the limits of the chessboard.Petya put two semiknights on a standard chessboard. Petya simultaneously moves with both semiknights. The squares are rather large, so after some move the semiknights can meet, that is, they can end up in the same square. After the meeting the semiknights can move on, so it is possible that they meet again. Petya wonders if there is such sequence of moves when the semiknights meet. Petya considers some squares bad. That is, they do not suit for the meeting. The semiknights can move through these squares but their meetings in these squares don't count.Petya prepared multiple chess boards. Help Petya find out whether the semiknights can meet on some good square for each board.Please see the test case analysis. | 256 megabytes | import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
public class knightMoves {
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(new OutputStreamWriter(System.out));
int t = Integer.parseInt(br.readLine());
for(int i=0;i<t;++i)
{
int k1x=0,k1y=0,k2x=0,k2y=0;
boolean k1 = false,k2=false;
char[][] values = new char[8][8];
for(int j=0;j<8;++j)
{
String row = br.readLine();
for(int k=0;k<8;++k)
{
values[j][k] = row.charAt(k);
if(values[j][k]=='K')
{
if(!k1)
{
k1x=j;
k1y=k;
k1=true;
}
else
if(!k2)
{
k2x=j;
k2y=k;
k2=true;
}
}
}
}
// if(k1x==k2x)
// {
// pw.println("NO");
// }
// else
// {
int v1 = Math.abs(k1x-k2x);
int v2 = Math.abs(k1y-k2y);
if(v1%4==0 && v2%4==0)
{
// System.out.println(v1+" "+v2);
pw.println("YES");
}
else
{
pw.println("NO");
}
// }
if(i<(t-1))
{
br.readLine();
}
}
pw.flush();
pw.close();
}
}
| Java | ["2\n........\n........\n......#.\nK..##..#\n.......#\n...##..#\n......#.\nK.......\n\n........\n........\n..#.....\n..#..#..\n..####..\n...##...\n........\n....K#K#"] | 1 second | ["YES\nNO"] | NoteConsider the first board from the sample. We will assume the rows and columns of the matrix to be numbered 1 through 8 from top to bottom and from left to right, correspondingly. The knights can meet, for example, in square (2, 7). The semiknight from square (4, 1) goes to square (2, 3) and the semiknight goes from square (8, 1) to square (6, 3). Then both semiknights go to (4, 5) but this square is bad, so they move together to square (2, 7).On the second board the semiknights will never meet. | Java 6 | standard input | [
"greedy",
"math"
] | 4f3bec9c36d0ac2fdb8041469133458c | The first line contains number t (1 ≤ t ≤ 50) — the number of boards. Each board is described by a matrix of characters, consisting of 8 rows and 8 columns. The matrix consists of characters ".", "#", "K", representing an empty good square, a bad square and the semiknight's position, correspondingly. It is guaranteed that matrix contains exactly 2 semiknights. The semiknight's squares are considered good for the meeting. The tests are separated by empty line. | 1,500 | For each test, print on a single line the answer to the problem: "YES", if the semiknights can meet and "NO" otherwise. | standard output | |
PASSED | 32714060e02c05d53219c759674fef92 | train_000.jsonl | 1384443000 | A boy Petya loves chess very much. He even came up with a chess piece of his own, a semiknight. The semiknight can move in any of these four directions: 2 squares forward and 2 squares to the right, 2 squares forward and 2 squares to the left, 2 squares backward and 2 to the right and 2 squares backward and 2 to the left. Naturally, the semiknight cannot move beyond the limits of the chessboard.Petya put two semiknights on a standard chessboard. Petya simultaneously moves with both semiknights. The squares are rather large, so after some move the semiknights can meet, that is, they can end up in the same square. After the meeting the semiknights can move on, so it is possible that they meet again. Petya wonders if there is such sequence of moves when the semiknights meet. Petya considers some squares bad. That is, they do not suit for the meeting. The semiknights can move through these squares but their meetings in these squares don't count.Petya prepared multiple chess boards. Help Petya find out whether the semiknights can meet on some good square for each board.Please see the test case analysis. | 256 megabytes | import java.util.Scanner;
public class SemiKnight {
public static void main (String[] args) {
new SemiKnight().solve();
}
public void solve () {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
in.nextLine();
for (int j = 0; j < n; j++) {
int k1X = 0;
int k1Y = 0;
int k2X = 0;
int k2Y = 0;
boolean firstKnight = false;
for (int i = 0; i < 8; i++) {
String line = in.nextLine();
// System.out.println(line+"__"+i);
int ind = line.indexOf("K");
if (ind != -1) {
if (!firstKnight) {
k1X = line.indexOf("K");
k1Y = i;
firstKnight = true;
}
else {
k2X = line.indexOf("K");
k2Y = i;
}
if (ind + 1 <= 8) {
line = line.substring(ind + 1);
int ind2 = line.indexOf("K");
if (ind2 != -1) {
if (!firstKnight) {
k1X = ind2 + ind+1;
k1Y = i;
firstKnight = true;
}
else {
k2X = ind2 + ind+1;
k2Y = i;
}
}
}
}
}
if(j!=n-1){
in.nextLine();
}
// System.out.println(k1X + " " + k1Y);
// System.out.println(k2X + " " + k2Y);
int xDiff = Math.abs(k1X - k2X);
int yDiff = Math.abs(k1Y - k2Y);
if (xDiff%4==0 && yDiff % 4 == 0) {
System.out.println("YES");
}
else {
System.out.println("NO");
}
}
}
}
| Java | ["2\n........\n........\n......#.\nK..##..#\n.......#\n...##..#\n......#.\nK.......\n\n........\n........\n..#.....\n..#..#..\n..####..\n...##...\n........\n....K#K#"] | 1 second | ["YES\nNO"] | NoteConsider the first board from the sample. We will assume the rows and columns of the matrix to be numbered 1 through 8 from top to bottom and from left to right, correspondingly. The knights can meet, for example, in square (2, 7). The semiknight from square (4, 1) goes to square (2, 3) and the semiknight goes from square (8, 1) to square (6, 3). Then both semiknights go to (4, 5) but this square is bad, so they move together to square (2, 7).On the second board the semiknights will never meet. | Java 6 | standard input | [
"greedy",
"math"
] | 4f3bec9c36d0ac2fdb8041469133458c | The first line contains number t (1 ≤ t ≤ 50) — the number of boards. Each board is described by a matrix of characters, consisting of 8 rows and 8 columns. The matrix consists of characters ".", "#", "K", representing an empty good square, a bad square and the semiknight's position, correspondingly. It is guaranteed that matrix contains exactly 2 semiknights. The semiknight's squares are considered good for the meeting. The tests are separated by empty line. | 1,500 | For each test, print on a single line the answer to the problem: "YES", if the semiknights can meet and "NO" otherwise. | standard output | |
PASSED | 16b08553c40d4f2c1166c90748bfd347 | train_000.jsonl | 1384443000 | A boy Petya loves chess very much. He even came up with a chess piece of his own, a semiknight. The semiknight can move in any of these four directions: 2 squares forward and 2 squares to the right, 2 squares forward and 2 squares to the left, 2 squares backward and 2 to the right and 2 squares backward and 2 to the left. Naturally, the semiknight cannot move beyond the limits of the chessboard.Petya put two semiknights on a standard chessboard. Petya simultaneously moves with both semiknights. The squares are rather large, so after some move the semiknights can meet, that is, they can end up in the same square. After the meeting the semiknights can move on, so it is possible that they meet again. Petya wonders if there is such sequence of moves when the semiknights meet. Petya considers some squares bad. That is, they do not suit for the meeting. The semiknights can move through these squares but their meetings in these squares don't count.Petya prepared multiple chess boards. Help Petya find out whether the semiknights can meet on some good square for each board.Please see the test case analysis. | 256 megabytes | import java.util.*;
public class cf362A{
public static void main(String args[])
{
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
for(int i=0; i<t; i++)
{
int[][] matrix = new int[8][8];
int[][] knights = new int[2][2];
int kcount = 0;
for(int j=0; j<8; j++)
{
String inp = sc.next();
for(int k=0; k<8; k++)
{
if(inp.charAt(k) == '#' )
{
matrix[j][k] = 1;
}
if(inp.charAt(k) == 'K')
{
matrix[j][k] = 2;
knights[kcount][0] = j;
knights[kcount][1] = k;
kcount++;
}
}
}
boolean[][][][] visited = new boolean[8][8][8][8];
if(ifPossible(matrix, knights,visited))
System.out.println("YES");
else
System.out.println("NO");
}
}
public static boolean ifPossible(int[][] matrix, int[][] knights, boolean[][][][] visited)
{
if(knights[0][0] == knights[1][0] && knights[0][1] == knights[1][1] && matrix[knights[0][0]][knights[0][1]] != 1)
{
return true;
}
visited[knights[0][0]][knights[0][1]][knights[1][0]][knights[1][1]] = true;
if(knights[0][0] + 2 < 8 && knights[0][1]+2 < 8)
{
if(knights[1][0] + 2 < 8 && knights[1][1]+2 < 8)
{
int[][] temp = new int[2][2];
temp[0][0] = knights[0][0] + 2;
temp[0][1] = knights[0][1] + 2;
temp[1][0] = knights[1][0] + 2;
temp[1][1] = knights[1][1] + 2;
if(!visited[temp[0][0]][temp[0][1]][temp[1][0]][temp[1][1]])
if(ifPossible(matrix,temp,visited))
return true;
}
if(knights[1][0] + 2 < 8 && knights[1][1]-2 >=0)
{
int[][] temp = new int[2][2];
temp[0][0] = knights[0][0] + 2;
temp[0][1] = knights[0][1] + 2;
temp[1][0] = knights[1][0] + 2;
temp[1][1] = knights[1][1] - 2;
if(!visited[temp[0][0]][temp[0][1]][temp[1][0]][temp[1][1]])
if(ifPossible(matrix,temp,visited))
return true;
}
if(knights[1][0] - 2 >=0 && knights[1][1]+2 < 8)
{
int[][] temp = new int[2][2];
temp[0][0] = knights[0][0] + 2;
temp[0][1] = knights[0][1] + 2;
temp[1][0] = knights[1][0] - 2;
temp[1][1] = knights[1][1] + 2;
if(!visited[temp[0][0]][temp[0][1]][temp[1][0]][temp[1][1]])
if(ifPossible(matrix,temp,visited))
return true;
}
if(knights[1][0] - 2 >= 0 && knights[1][1]-2 >=0)
{
int[][] temp = new int[2][2];
temp[0][0] = knights[0][0] + 2;
temp[0][1] = knights[0][1] + 2;
temp[1][0] = knights[1][0] - 2;
temp[1][1] = knights[1][1] - 2;
if(!visited[temp[0][0]][temp[0][1]][temp[1][0]][temp[1][1]])
if(ifPossible(matrix,temp,visited))
return true;
}
}
if(knights[0][0] + 2 < 8 && knights[0][1]-2 >=0)
{
if(knights[1][0] + 2 < 8 && knights[1][1]+2 < 8)
{
int[][] temp = new int[2][2];
temp[0][0] = knights[0][0] + 2;
temp[0][1] = knights[0][1] - 2;
temp[1][0] = knights[1][0] + 2;
temp[1][1] = knights[1][1] + 2;
if(!visited[temp[0][0]][temp[0][1]][temp[1][0]][temp[1][1]])
if(ifPossible(matrix,temp,visited))
return true;
}
if(knights[1][0] + 2 < 8 && knights[1][1]-2 >=0)
{
int[][] temp = new int[2][2];
temp[0][0] = knights[0][0] + 2;
temp[0][1] = knights[0][1] - 2;
temp[1][0] = knights[1][0] + 2;
temp[1][1] = knights[1][1] - 2;
if(!visited[temp[0][0]][temp[0][1]][temp[1][0]][temp[1][1]])
if(ifPossible(matrix,temp,visited))
return true;
}
if(knights[1][0] - 2 >=0 && knights[1][1]+2 < 8)
{
int[][] temp = new int[2][2];
temp[0][0] = knights[0][0] + 2;
temp[0][1] = knights[0][1] - 2;
temp[1][0] = knights[1][0] - 2;
temp[1][1] = knights[1][1] + 2;
if(!visited[temp[0][0]][temp[0][1]][temp[1][0]][temp[1][1]])
if(ifPossible(matrix,temp,visited))
return true;
}
if(knights[1][0] - 2 >= 0 && knights[1][1]-2 >=0)
{
int[][] temp = new int[2][2];
temp[0][0] = knights[0][0] + 2;
temp[0][1] = knights[0][1] - 2;
temp[1][0] = knights[1][0] - 2;
temp[1][1] = knights[1][1] - 2;
if(!visited[temp[0][0]][temp[0][1]][temp[1][0]][temp[1][1]])
if(ifPossible(matrix,temp,visited))
return true;
}
}
if(knights[0][0] - 2 >=0 && knights[0][1]+2 < 8)
{
if(knights[1][0] + 2 < 8 && knights[1][1]+2 < 8)
{
int[][] temp = new int[2][2];
temp[0][0] = knights[0][0] - 2;
temp[0][1] = knights[0][1] + 2;
temp[1][0] = knights[1][0] + 2;
temp[1][1] = knights[1][1] + 2;
if(!visited[temp[0][0]][temp[0][1]][temp[1][0]][temp[1][1]])
if(ifPossible(matrix,temp,visited))
return true;
}
if(knights[1][0] + 2 < 8 && knights[1][1]-2 >=0)
{
int[][] temp = new int[2][2];
temp[0][0] = knights[0][0] - 2;
temp[0][1] = knights[0][1] + 2;
temp[1][0] = knights[1][0] + 2;
temp[1][1] = knights[1][1] - 2;
if(!visited[temp[0][0]][temp[0][1]][temp[1][0]][temp[1][1]])
if(ifPossible(matrix,temp,visited))
return true;
}
if(knights[1][0] - 2 >=0 && knights[1][1]+2 < 8)
{
int[][] temp = new int[2][2];
temp[0][0] = knights[0][0] - 2;
temp[0][1] = knights[0][1] + 2;
temp[1][0] = knights[1][0] - 2;
temp[1][1] = knights[1][1] + 2;
if(!visited[temp[0][0]][temp[0][1]][temp[1][0]][temp[1][1]])
if(ifPossible(matrix,temp,visited))
return true;
}
if(knights[1][0] - 2 >= 0 && knights[1][1]-2 >=0)
{
int[][] temp = new int[2][2];
temp[0][0] = knights[0][0] - 2;
temp[0][1] = knights[0][1] + 2;
temp[1][0] = knights[1][0] - 2;
temp[1][1] = knights[1][1] - 2;
if(!visited[temp[0][0]][temp[0][1]][temp[1][0]][temp[1][1]])
if(ifPossible(matrix,temp,visited))
return true;
}
}
if(knights[0][0] - 2 >= 0 && knights[0][1]-2 >=0)
{
if(knights[1][0] + 2 < 8 && knights[1][1]+2 < 8)
{
int[][] temp = new int[2][2];
temp[0][0] = knights[0][0] - 2;
temp[0][1] = knights[0][1] - 2;
temp[1][0] = knights[1][0] + 2;
temp[1][1] = knights[1][1] + 2;
if(!visited[temp[0][0]][temp[0][1]][temp[1][0]][temp[1][1]])
if(ifPossible(matrix,temp,visited))
return true;
}
if(knights[1][0] + 2 < 8 && knights[1][1]-2 >=0)
{
int[][] temp = new int[2][2];
temp[0][0] = knights[0][0] - 2;
temp[0][1] = knights[0][1] - 2;
temp[1][0] = knights[1][0] + 2;
temp[1][1] = knights[1][1] - 2;
if(!visited[temp[0][0]][temp[0][1]][temp[1][0]][temp[1][1]])
if(ifPossible(matrix,temp,visited))
return true;
}
if(knights[1][0] - 2 >=0 && knights[1][1]+2 < 8)
{
int[][] temp = new int[2][2];
temp[0][0] = knights[0][0] - 2;
temp[0][1] = knights[0][1] - 2;
temp[1][0] = knights[1][0] - 2;
temp[1][1] = knights[1][1] + 2;
if(!visited[temp[0][0]][temp[0][1]][temp[1][0]][temp[1][1]])
if(ifPossible(matrix,temp,visited))
return true;
}
if(knights[1][0] - 2 >= 0 && knights[1][1]-2 >=0)
{
int[][] temp = new int[2][2];
temp[0][0] = knights[0][0] - 2;
temp[0][1] = knights[0][1] - 2;
temp[1][0] = knights[1][0] - 2;
temp[1][1] = knights[1][1] - 2;
if(!visited[temp[0][0]][temp[0][1]][temp[1][0]][temp[1][1]])
if(ifPossible(matrix,temp,visited))
return true;
}
}
return false;
}
}
| Java | ["2\n........\n........\n......#.\nK..##..#\n.......#\n...##..#\n......#.\nK.......\n\n........\n........\n..#.....\n..#..#..\n..####..\n...##...\n........\n....K#K#"] | 1 second | ["YES\nNO"] | NoteConsider the first board from the sample. We will assume the rows and columns of the matrix to be numbered 1 through 8 from top to bottom and from left to right, correspondingly. The knights can meet, for example, in square (2, 7). The semiknight from square (4, 1) goes to square (2, 3) and the semiknight goes from square (8, 1) to square (6, 3). Then both semiknights go to (4, 5) but this square is bad, so they move together to square (2, 7).On the second board the semiknights will never meet. | Java 6 | standard input | [
"greedy",
"math"
] | 4f3bec9c36d0ac2fdb8041469133458c | The first line contains number t (1 ≤ t ≤ 50) — the number of boards. Each board is described by a matrix of characters, consisting of 8 rows and 8 columns. The matrix consists of characters ".", "#", "K", representing an empty good square, a bad square and the semiknight's position, correspondingly. It is guaranteed that matrix contains exactly 2 semiknights. The semiknight's squares are considered good for the meeting. The tests are separated by empty line. | 1,500 | For each test, print on a single line the answer to the problem: "YES", if the semiknights can meet and "NO" otherwise. | standard output | |
PASSED | 426d9666b00048dfb52ba0a7b98b8643 | train_000.jsonl | 1384443000 | A boy Petya loves chess very much. He even came up with a chess piece of his own, a semiknight. The semiknight can move in any of these four directions: 2 squares forward and 2 squares to the right, 2 squares forward and 2 squares to the left, 2 squares backward and 2 to the right and 2 squares backward and 2 to the left. Naturally, the semiknight cannot move beyond the limits of the chessboard.Petya put two semiknights on a standard chessboard. Petya simultaneously moves with both semiknights. The squares are rather large, so after some move the semiknights can meet, that is, they can end up in the same square. After the meeting the semiknights can move on, so it is possible that they meet again. Petya wonders if there is such sequence of moves when the semiknights meet. Petya considers some squares bad. That is, they do not suit for the meeting. The semiknights can move through these squares but their meetings in these squares don't count.Petya prepared multiple chess boards. Help Petya find out whether the semiknights can meet on some good square for each board.Please see the test case analysis. | 256 megabytes | import java.util.*;
import static java.lang.Math.*;
public class A {
void run() {
Scanner sc = new Scanner(System.in);
int N = sc.nextInt();
for (int t = 0; t < N; ++t) {
sc.nextLine();
int[][] pos = new int[][] {null, null};
for (int i = 0; i < 8; ++i) {
char[] c = sc.nextLine().toCharArray();
for (int j = 0; j < 8; ++j) {
if (c[j] == 'K') {
int[] k = new int[] {i, j};
if (pos[0] == null) {
pos[0] = k;
} else {
pos[1] = k;
}
}
}
}
int dx = pos[0][0] - pos[1][0];
int dy = pos[0][1] - pos[1][1];
if (dx % 4 == 0 && dy % 4 == 0) {
p("YES\n");
} else {
p("NO\n");
}
}
}
void p(String f,Object...p) {
System.out.printf(f, p);
}
public A() {}
public static void main(String[] args) {
new A().run();
}
}
| Java | ["2\n........\n........\n......#.\nK..##..#\n.......#\n...##..#\n......#.\nK.......\n\n........\n........\n..#.....\n..#..#..\n..####..\n...##...\n........\n....K#K#"] | 1 second | ["YES\nNO"] | NoteConsider the first board from the sample. We will assume the rows and columns of the matrix to be numbered 1 through 8 from top to bottom and from left to right, correspondingly. The knights can meet, for example, in square (2, 7). The semiknight from square (4, 1) goes to square (2, 3) and the semiknight goes from square (8, 1) to square (6, 3). Then both semiknights go to (4, 5) but this square is bad, so they move together to square (2, 7).On the second board the semiknights will never meet. | Java 6 | standard input | [
"greedy",
"math"
] | 4f3bec9c36d0ac2fdb8041469133458c | The first line contains number t (1 ≤ t ≤ 50) — the number of boards. Each board is described by a matrix of characters, consisting of 8 rows and 8 columns. The matrix consists of characters ".", "#", "K", representing an empty good square, a bad square and the semiknight's position, correspondingly. It is guaranteed that matrix contains exactly 2 semiknights. The semiknight's squares are considered good for the meeting. The tests are separated by empty line. | 1,500 | For each test, print on a single line the answer to the problem: "YES", if the semiknights can meet and "NO" otherwise. | standard output | |
PASSED | 475c906d927e203e6e9561a505128618 | train_000.jsonl | 1384443000 | A boy Petya loves chess very much. He even came up with a chess piece of his own, a semiknight. The semiknight can move in any of these four directions: 2 squares forward and 2 squares to the right, 2 squares forward and 2 squares to the left, 2 squares backward and 2 to the right and 2 squares backward and 2 to the left. Naturally, the semiknight cannot move beyond the limits of the chessboard.Petya put two semiknights on a standard chessboard. Petya simultaneously moves with both semiknights. The squares are rather large, so after some move the semiknights can meet, that is, they can end up in the same square. After the meeting the semiknights can move on, so it is possible that they meet again. Petya wonders if there is such sequence of moves when the semiknights meet. Petya considers some squares bad. That is, they do not suit for the meeting. The semiknights can move through these squares but their meetings in these squares don't count.Petya prepared multiple chess boards. Help Petya find out whether the semiknights can meet on some good square for each board.Please see the test case analysis. | 256 megabytes | import java.util.Scanner;
public class JavaApplication1 {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
// TODO code application logic here
int t;
Scanner sc = new Scanner(System.in);
t = sc.nextInt();
for(int yyyy = 1; yyyy <= t; yyyy++)
{
char s;
int kf1=0,kf2=0,ks1=0,ks2=0;
boolean flag = false;
boolean Mass[][];
Mass = new boolean[2][4];
String str = new String();
for(int i = 0; i <= 7; i++)
{
str = sc.next();
for(int j = 0; j <= 7; j++)
{
s = str.charAt(j);
if(s == 'K')
{
if(!flag)
{
flag = true;
kf1 = i%4;
ks1 = j%4;
}
else
{
kf2 = i%4;
ks2 = j%4;
}
}
if(s == '.')
{
Mass[i%2][(i+j)%4] = true;
}
}
}
if((ks1 == ks2)&&(kf1 == kf2))
{
System.out.println("YES");
}
else
{
System.out.println("NO");
}
}
}
} | Java | ["2\n........\n........\n......#.\nK..##..#\n.......#\n...##..#\n......#.\nK.......\n\n........\n........\n..#.....\n..#..#..\n..####..\n...##...\n........\n....K#K#"] | 1 second | ["YES\nNO"] | NoteConsider the first board from the sample. We will assume the rows and columns of the matrix to be numbered 1 through 8 from top to bottom and from left to right, correspondingly. The knights can meet, for example, in square (2, 7). The semiknight from square (4, 1) goes to square (2, 3) and the semiknight goes from square (8, 1) to square (6, 3). Then both semiknights go to (4, 5) but this square is bad, so they move together to square (2, 7).On the second board the semiknights will never meet. | Java 6 | standard input | [
"greedy",
"math"
] | 4f3bec9c36d0ac2fdb8041469133458c | The first line contains number t (1 ≤ t ≤ 50) — the number of boards. Each board is described by a matrix of characters, consisting of 8 rows and 8 columns. The matrix consists of characters ".", "#", "K", representing an empty good square, a bad square and the semiknight's position, correspondingly. It is guaranteed that matrix contains exactly 2 semiknights. The semiknight's squares are considered good for the meeting. The tests are separated by empty line. | 1,500 | For each test, print on a single line the answer to the problem: "YES", if the semiknights can meet and "NO" otherwise. | standard output | |
PASSED | 6a5163d454d4128b3dc174ca8689e7d0 | train_000.jsonl | 1384443000 | A boy Petya loves chess very much. He even came up with a chess piece of his own, a semiknight. The semiknight can move in any of these four directions: 2 squares forward and 2 squares to the right, 2 squares forward and 2 squares to the left, 2 squares backward and 2 to the right and 2 squares backward and 2 to the left. Naturally, the semiknight cannot move beyond the limits of the chessboard.Petya put two semiknights on a standard chessboard. Petya simultaneously moves with both semiknights. The squares are rather large, so after some move the semiknights can meet, that is, they can end up in the same square. After the meeting the semiknights can move on, so it is possible that they meet again. Petya wonders if there is such sequence of moves when the semiknights meet. Petya considers some squares bad. That is, they do not suit for the meeting. The semiknights can move through these squares but their meetings in these squares don't count.Petya prepared multiple chess boards. Help Petya find out whether the semiknights can meet on some good square for each board.Please see the test case analysis. | 256 megabytes | import java.io.*;
import java.util.*;
public class A {
public static void main(String[] args) throws IOException {
A solver = new A();
solver.solve();
}
private void solve() throws IOException {
FastScanner sc = new FastScanner(System.in);
// sc = new FastScanner("2\n" +
// "........\n" +
// "........\n" +
// "......#.\n" +
// "K..##..#\n" +
// ".......#\n" +
// "...##..#\n" +
// "......#.\n" +
// "K.......\n" +
// "\n" +
// "........\n" +
// "........\n" +
// "..#.....\n" +
// "..#..#..\n" +
// "..####..\n" +
// "...##...\n" +
// "........\n" +
// "....K#K#\n");
int n = sc.nextInt();
for (int t = 0; t < n; t++) {
int x = -1;
int y = -1;
int xx = -1;
int yy = -1;
for (int i = 0; i < 8; i++) {
String line = sc.next();
for (int j = 0; j < line.length(); j++) {
if (line.charAt(j) == 'K') {
if (x == -1 || y == -1) {
x = i;
y = j;
} else {
xx = i;
yy = j;
}
}
}
}
boolean[][] m = new boolean[8][8];
boolean r = dfs(x, y, xx, yy, 0, m);
System.out.println(r ? "YES" : "NO");
}
}
private boolean dfs(int x, int y, int xx, int yy, int i, boolean[][] m) {
if (x < 0 || y < 0 || x >= 8 || y >= 8) return false;
if (m[x][y]) return false;
m[x][y] = true;
if (x == xx && y == yy && i % 2 == 0) return true;
if (dfs(x + 2, y + 2, xx, yy, i + 1, m)) return true;
if (dfs(x - 2, y - 2, xx, yy, i + 1, m)) return true;
if (dfs(x + 2, y - 2, xx, yy, i + 1, m)) return true;
if (dfs(x - 2, y + 2, xx, yy, i + 1, m)) return true;
return false;
}
private static class FastScanner {
private BufferedReader br;
private StringTokenizer st;
public FastScanner(InputStream in) throws IOException {
br = new BufferedReader(new InputStreamReader(in));
}
public FastScanner(File file) throws IOException {
br = new BufferedReader(new FileReader(file));
}
public FastScanner(String s) {
br = new BufferedReader(new StringReader(s));
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
return "";
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
| Java | ["2\n........\n........\n......#.\nK..##..#\n.......#\n...##..#\n......#.\nK.......\n\n........\n........\n..#.....\n..#..#..\n..####..\n...##...\n........\n....K#K#"] | 1 second | ["YES\nNO"] | NoteConsider the first board from the sample. We will assume the rows and columns of the matrix to be numbered 1 through 8 from top to bottom and from left to right, correspondingly. The knights can meet, for example, in square (2, 7). The semiknight from square (4, 1) goes to square (2, 3) and the semiknight goes from square (8, 1) to square (6, 3). Then both semiknights go to (4, 5) but this square is bad, so they move together to square (2, 7).On the second board the semiknights will never meet. | Java 6 | standard input | [
"greedy",
"math"
] | 4f3bec9c36d0ac2fdb8041469133458c | The first line contains number t (1 ≤ t ≤ 50) — the number of boards. Each board is described by a matrix of characters, consisting of 8 rows and 8 columns. The matrix consists of characters ".", "#", "K", representing an empty good square, a bad square and the semiknight's position, correspondingly. It is guaranteed that matrix contains exactly 2 semiknights. The semiknight's squares are considered good for the meeting. The tests are separated by empty line. | 1,500 | For each test, print on a single line the answer to the problem: "YES", if the semiknights can meet and "NO" otherwise. | standard output | |
PASSED | fc2dd7cbe309a0b144ae40f87e34c42d | train_000.jsonl | 1384443000 | A boy Petya loves chess very much. He even came up with a chess piece of his own, a semiknight. The semiknight can move in any of these four directions: 2 squares forward and 2 squares to the right, 2 squares forward and 2 squares to the left, 2 squares backward and 2 to the right and 2 squares backward and 2 to the left. Naturally, the semiknight cannot move beyond the limits of the chessboard.Petya put two semiknights on a standard chessboard. Petya simultaneously moves with both semiknights. The squares are rather large, so after some move the semiknights can meet, that is, they can end up in the same square. After the meeting the semiknights can move on, so it is possible that they meet again. Petya wonders if there is such sequence of moves when the semiknights meet. Petya considers some squares bad. That is, they do not suit for the meeting. The semiknights can move through these squares but their meetings in these squares don't count.Petya prepared multiple chess boards. Help Petya find out whether the semiknights can meet on some good square for each board.Please see the test case analysis. | 256 megabytes | import java.util.*;
public class SemiKnights362A
{
public static void main(String[] args)
{
// Set up scanner
Scanner sc = new Scanner(System.in);
// System.out.println("Enter n");
int n = sc.nextInt();
for (int i=0; i<n; i++)
{
int k1r = -1;
int k2r = -1;
int k1c = -1;
int k2c = -1;
for (int r=0; r<8; r++)
{
// System.out.println("Enter next row");
String st = sc.next();
for (int c=0; c<8; c++)
{
String ch = st.substring(c,c+1);
if (ch.equals("K"))
{
if (k1r == -1) // The first one
{
k1r = r;
k1c = c;
}
else // The second one
{
k2r = r;
k2c = c;
}
}
}
}
if (k1r%4 != k2r%4)
{
System.out.println("NO");
}
else if (k1c%4 != k2c%4)
{
System.out.println("NO");
}
else if ((k1r+k1c)%4 != (k2r+k2c)%4)
{
System.out.println("NO");
}
else
{
System.out.println("YES");
}
}
}
}
| Java | ["2\n........\n........\n......#.\nK..##..#\n.......#\n...##..#\n......#.\nK.......\n\n........\n........\n..#.....\n..#..#..\n..####..\n...##...\n........\n....K#K#"] | 1 second | ["YES\nNO"] | NoteConsider the first board from the sample. We will assume the rows and columns of the matrix to be numbered 1 through 8 from top to bottom and from left to right, correspondingly. The knights can meet, for example, in square (2, 7). The semiknight from square (4, 1) goes to square (2, 3) and the semiknight goes from square (8, 1) to square (6, 3). Then both semiknights go to (4, 5) but this square is bad, so they move together to square (2, 7).On the second board the semiknights will never meet. | Java 6 | standard input | [
"greedy",
"math"
] | 4f3bec9c36d0ac2fdb8041469133458c | The first line contains number t (1 ≤ t ≤ 50) — the number of boards. Each board is described by a matrix of characters, consisting of 8 rows and 8 columns. The matrix consists of characters ".", "#", "K", representing an empty good square, a bad square and the semiknight's position, correspondingly. It is guaranteed that matrix contains exactly 2 semiknights. The semiknight's squares are considered good for the meeting. The tests are separated by empty line. | 1,500 | For each test, print on a single line the answer to the problem: "YES", if the semiknights can meet and "NO" otherwise. | standard output | |
PASSED | 82e1e81b085acf10b1b89a1437088eaf | train_000.jsonl | 1585233300 | You are given two positive integers $$$a$$$ and $$$b$$$. In one move you can increase $$$a$$$ by $$$1$$$ (replace $$$a$$$ with $$$a+1$$$). Your task is to find the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. It is possible, that you have to make $$$0$$$ moves, as $$$a$$$ is already divisible by $$$b$$$. You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.math.*;
import java.security.*;
import java.text.*;
import java.lang.*;
import java.util.*;
import java.util.concurrent.*;
public class Result{
public static void main(String[] args) {
Scanner s=new Scanner(System.in);
int t=s.nextInt();
while(t-->0){
int a=s.nextInt();
int b=s.nextInt();
int k=a/b;
if(k==0){
System.out.println(b-a);
}
else{
if(a%b==0){
System.out.println(0);
}
else{
System.out.println(((k+1)*b)-a);
}
}
}
}
} | Java | ["5\n10 4\n13 9\n100 13\n123 456\n92 46"] | 1 second | ["2\n5\n4\n333\n0"] | null | Java 8 | standard input | [
"math"
] | d9fd10700cb122b148202a664e7f7689 | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Then $$$t$$$ test cases follow. The only line of the test case contains two integers $$$a$$$ and $$$b$$$ ($$$1 \le a, b \le 10^9$$$). | 800 | For each test case print the answer — the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. | standard output | |
PASSED | 18980078faf84e7317ee4f74d2f075c9 | train_000.jsonl | 1585233300 | You are given two positive integers $$$a$$$ and $$$b$$$. In one move you can increase $$$a$$$ by $$$1$$$ (replace $$$a$$$ with $$$a+1$$$). Your task is to find the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. It is possible, that you have to make $$$0$$$ moves, as $$$a$$$ is already divisible by $$$b$$$. You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.Scanner;
import java.util.*;
public class Divisible {
public static void main(String args[]){
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
int res[]=new int[t];
for(int i=0;i<t;i++){
int a=sc.nextInt();
int b=sc.nextInt();
res[i]=getCount(a,b);
}
for(int i:res){
System.out.println(i);
}
}
public static int getCount(int a,int b){
int count=0;
int rem=a%b;
// while(rem!=0){
// a=a+1;
// count++;
// rem=a%b;
// }
if(a%b==0)
return 0;
return (b-(a%b));
}
} | Java | ["5\n10 4\n13 9\n100 13\n123 456\n92 46"] | 1 second | ["2\n5\n4\n333\n0"] | null | Java 8 | standard input | [
"math"
] | d9fd10700cb122b148202a664e7f7689 | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Then $$$t$$$ test cases follow. The only line of the test case contains two integers $$$a$$$ and $$$b$$$ ($$$1 \le a, b \le 10^9$$$). | 800 | For each test case print the answer — the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. | standard output | |
PASSED | 8095cbbe2b9ce4a727de826ed284c63f | train_000.jsonl | 1585233300 | You are given two positive integers $$$a$$$ and $$$b$$$. In one move you can increase $$$a$$$ by $$$1$$$ (replace $$$a$$$ with $$$a+1$$$). Your task is to find the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. It is possible, that you have to make $$$0$$$ moves, as $$$a$$$ is already divisible by $$$b$$$. You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
public class Problem1
{
public static void main(String[] args)
{
Scanner read=new Scanner(System.in);
int t=read.nextInt();
for(int i=0;i<t;i++)
{
int a=read.nextInt();
int b=read.nextInt();
if(a%b==0)
System.out.println(0);
else
{
double divide=a*1.0/b;
int result=((int)Math.ceil(divide))*b-a;
System.out.println(result);
}
}
}
} | Java | ["5\n10 4\n13 9\n100 13\n123 456\n92 46"] | 1 second | ["2\n5\n4\n333\n0"] | null | Java 8 | standard input | [
"math"
] | d9fd10700cb122b148202a664e7f7689 | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Then $$$t$$$ test cases follow. The only line of the test case contains two integers $$$a$$$ and $$$b$$$ ($$$1 \le a, b \le 10^9$$$). | 800 | For each test case print the answer — the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. | standard output | |
PASSED | 9f88da3252d40e486d2aa859962495b7 | train_000.jsonl | 1585233300 | You are given two positive integers $$$a$$$ and $$$b$$$. In one move you can increase $$$a$$$ by $$$1$$$ (replace $$$a$$$ with $$$a+1$$$). Your task is to find the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. It is possible, that you have to make $$$0$$$ moves, as $$$a$$$ is already divisible by $$$b$$$. You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.Scanner;
public class Main{
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
long[] out = new long[n];
for(int i=0; i<n; i++){
long a = scanner.nextLong();
long b = scanner.nextLong();
int count = 0;
// while(a % b != 0){
// a++;
// count++;
// }
long c = a % b;
if(c != 0)
out[i] = b - c;
else
out[i] = c;
}
for(int i=0; i<n; i++){
System.out.println(out[i]);
}
}
} | Java | ["5\n10 4\n13 9\n100 13\n123 456\n92 46"] | 1 second | ["2\n5\n4\n333\n0"] | null | Java 8 | standard input | [
"math"
] | d9fd10700cb122b148202a664e7f7689 | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Then $$$t$$$ test cases follow. The only line of the test case contains two integers $$$a$$$ and $$$b$$$ ($$$1 \le a, b \le 10^9$$$). | 800 | For each test case print the answer — the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. | standard output | |
PASSED | 5ded8aedccb8bfbe42a602fae5512fd1 | train_000.jsonl | 1585233300 | You are given two positive integers $$$a$$$ and $$$b$$$. In one move you can increase $$$a$$$ by $$$1$$$ (replace $$$a$$$ with $$$a+1$$$). Your task is to find the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. It is possible, that you have to make $$$0$$$ moves, as $$$a$$$ is already divisible by $$$b$$$. You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
public class div{
public static void main(String[] args){
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int t=n;
int[] ans=new int[n];
int i=0;
while( (n--) > 0 ) {
double a = sc.nextDouble();
double b = sc.nextDouble();
int count=0;
if((a%b)!=0){
if(b>a){
count=(int)(b-a);
}
else{
double div=Math.ceil(a/b);
div=(int)div;
count=(int)(div*b-a);
}
}
ans[i]=count;
i++;
}
for(int j=0;j<t;j++)
System.out.println(ans[j]);
}
} | Java | ["5\n10 4\n13 9\n100 13\n123 456\n92 46"] | 1 second | ["2\n5\n4\n333\n0"] | null | Java 8 | standard input | [
"math"
] | d9fd10700cb122b148202a664e7f7689 | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Then $$$t$$$ test cases follow. The only line of the test case contains two integers $$$a$$$ and $$$b$$$ ($$$1 \le a, b \le 10^9$$$). | 800 | For each test case print the answer — the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. | standard output | |
PASSED | 01a7f53ed29760a95372215418953204 | train_000.jsonl | 1585233300 | You are given two positive integers $$$a$$$ and $$$b$$$. In one move you can increase $$$a$$$ by $$$1$$$ (replace $$$a$$$ with $$$a+1$$$). Your task is to find the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. It is possible, that you have to make $$$0$$$ moves, as $$$a$$$ is already divisible by $$$b$$$. You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.Scanner;
import java.lang.*;
public class Test
{
public void check(long a,long b)
{
if(a%b==0)
System.out.println("0");
else
{
System.out.println(b-(a%b));
}
}
public static void main(String [] args)
{
Test t1=new Test();
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t!=0)
{
long a,b;
a=sc.nextInt();
b=sc.nextInt();
t1.check(a,b);
t--;
}
}
} | Java | ["5\n10 4\n13 9\n100 13\n123 456\n92 46"] | 1 second | ["2\n5\n4\n333\n0"] | null | Java 8 | standard input | [
"math"
] | d9fd10700cb122b148202a664e7f7689 | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Then $$$t$$$ test cases follow. The only line of the test case contains two integers $$$a$$$ and $$$b$$$ ($$$1 \le a, b \le 10^9$$$). | 800 | For each test case print the answer — the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. | standard output | |
PASSED | cfa72e0ac2849db1bb700c29d2e7aa6d | train_000.jsonl | 1585233300 | You are given two positive integers $$$a$$$ and $$$b$$$. In one move you can increase $$$a$$$ by $$$1$$$ (replace $$$a$$$ with $$$a+1$$$). Your task is to find the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. It is possible, that you have to make $$$0$$$ moves, as $$$a$$$ is already divisible by $$$b$$$. You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.util.*;
public class Divisibility {
public static void main(String[] args) throws IOException{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int t = Integer.parseInt(br.readLine());
for (int i = 0; i < t; i++) {
StringTokenizer st = new StringTokenizer(br.readLine());
int a = Integer.parseInt(st.nextToken());
int b = Integer.parseInt(st.nextToken());
System.out.println((int)Math.ceil((double)a / b) * b - a);
}
br.close();
}
} | Java | ["5\n10 4\n13 9\n100 13\n123 456\n92 46"] | 1 second | ["2\n5\n4\n333\n0"] | null | Java 8 | standard input | [
"math"
] | d9fd10700cb122b148202a664e7f7689 | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Then $$$t$$$ test cases follow. The only line of the test case contains two integers $$$a$$$ and $$$b$$$ ($$$1 \le a, b \le 10^9$$$). | 800 | For each test case print the answer — the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. | standard output | |
PASSED | 83ef119454ff6da6049c50aa7c48f0e7 | train_000.jsonl | 1585233300 | You are given two positive integers $$$a$$$ and $$$b$$$. In one move you can increase $$$a$$$ by $$$1$$$ (replace $$$a$$$ with $$$a+1$$$). Your task is to find the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. It is possible, that you have to make $$$0$$$ moves, as $$$a$$$ is already divisible by $$$b$$$. You have to answer $$$t$$$ independent test cases. | 256 megabytes |
import java.util.Scanner;
/**
*
* @author Perry
*/
public class DivisibilityProblem {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
// TODO code application logic here
Scanner input=new Scanner(System.in);
int []A;
A=new int[200000];
int n1=0;
int n2=0;
int moves=0;
// System.out.println("Insert input:");
int numop=input.nextInt();
for(int i=0;i<numop;i++)
{
n1=input.nextInt();
n2=input.nextInt();
if(n1%n2==0)
{
moves=0;
} else{
moves=n2-(n1%n2);
}
A[i]=moves;
}
for(int x=0;x<numop;x++)
{
System.out.println(" "+A[x]);
}
}
}
| Java | ["5\n10 4\n13 9\n100 13\n123 456\n92 46"] | 1 second | ["2\n5\n4\n333\n0"] | null | Java 8 | standard input | [
"math"
] | d9fd10700cb122b148202a664e7f7689 | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Then $$$t$$$ test cases follow. The only line of the test case contains two integers $$$a$$$ and $$$b$$$ ($$$1 \le a, b \le 10^9$$$). | 800 | For each test case print the answer — the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. | standard output | |
PASSED | e9cedbdb5d0de777ad968536793bd3ae | train_000.jsonl | 1585233300 | You are given two positive integers $$$a$$$ and $$$b$$$. In one move you can increase $$$a$$$ by $$$1$$$ (replace $$$a$$$ with $$$a+1$$$). Your task is to find the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. It is possible, that you have to make $$$0$$$ moves, as $$$a$$$ is already divisible by $$$b$$$. You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.util.*;
import java.math.*;
public class Main {
static boolean GET = true;
static void solve(int t, int w) throws IOException {
long a = nl();
long b = nl();
if(a % b == 0) {
println("0");
return;
}
long q = 0;
try {
q = a / b;
}catch(Exception e) {}
++q;
b = b * q;
println(b - a);
}
//default java template to get started quickly...
public static void main(String[] string) throws IOException {
int t = 1;
if(GET)
t = ni();
for(int i = 1; i <= t; ++i)
solve(t, i);
out.flush();
}
static int ni() {
return sc.nextInt();
}
static long nl() {
return sc.nextLong();
}
static String str() {
return sc.next();
}
static void print(Object... o) {
int len = o.length;
if(String.valueOf(o[len - 1]).equals(" ")) {
for(int i = 0; i < len; ++i)
out.print(String.valueOf(o[i]) + " ");
return;
}
for(int i = 0; i < len; ++i)
out.print(String.valueOf(o[i]));
}
static void println(Object... o) {
int len = o.length;
if(len == 0) {
out.println();
return;
}
for(int i = 0; i < len; ++i)
out.println(String.valueOf(o[i]));
}
static Scanner sc = new Scanner(System.in);
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static PrintWriter out = new PrintWriter(System.out);
}
| Java | ["5\n10 4\n13 9\n100 13\n123 456\n92 46"] | 1 second | ["2\n5\n4\n333\n0"] | null | Java 8 | standard input | [
"math"
] | d9fd10700cb122b148202a664e7f7689 | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Then $$$t$$$ test cases follow. The only line of the test case contains two integers $$$a$$$ and $$$b$$$ ($$$1 \le a, b \le 10^9$$$). | 800 | For each test case print the answer — the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. | standard output | |
PASSED | 8a513fad460e51a1fa88e299115387d0 | train_000.jsonl | 1585233300 | You are given two positive integers $$$a$$$ and $$$b$$$. In one move you can increase $$$a$$$ by $$$1$$$ (replace $$$a$$$ with $$$a+1$$$). Your task is to find the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. It is possible, that you have to make $$$0$$$ moves, as $$$a$$$ is already divisible by $$$b$$$. You have to answer $$$t$$$ independent test cases. | 256 megabytes | //package com.company;
import java.util.Scanner;
public class Main {
private static Scanner input = new Scanner(System.in);
public static void main(String[] args) {
int n = input.nextInt();
for(int i = 0; i < n; i++){
int a = input.nextInt();
int b = input.nextInt();
System.out.println(a%b==0 ? 0 : b-(a%b));
}
}
}
| Java | ["5\n10 4\n13 9\n100 13\n123 456\n92 46"] | 1 second | ["2\n5\n4\n333\n0"] | null | Java 8 | standard input | [
"math"
] | d9fd10700cb122b148202a664e7f7689 | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Then $$$t$$$ test cases follow. The only line of the test case contains two integers $$$a$$$ and $$$b$$$ ($$$1 \le a, b \le 10^9$$$). | 800 | For each test case print the answer — the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. | standard output | |
PASSED | 3502b27e49206fc9c067345c55b4ce77 | train_000.jsonl | 1585233300 | You are given two positive integers $$$a$$$ and $$$b$$$. In one move you can increase $$$a$$$ by $$$1$$$ (replace $$$a$$$ with $$$a+1$$$). Your task is to find the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. It is possible, that you have to make $$$0$$$ moves, as $$$a$$$ is already divisible by $$$b$$$. You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) {
FastReader in = new FastReader();
PrintWriter out = new PrintWriter(System.out);
int t=in.nextInt();
while (t-->0) {
int a = in.nextInt();
int b = in.nextInt();
int cont = 0;
if (a%b!=0) {
if (a < b) {
cont = b - a;
} else {
cont = b - a % b;
}
}
out.println(cont);
}
out.close();
}
/* public static long factorial(int m) {
if (m == 0)
return 1;
return (m * factorial(m - 1));
}
public static long GCD(long a, long b) {
if (b == 0)
return a;
return GCD(b, a % b);
}
*/
}
class FastReader {
private BufferedReader br;
private StringTokenizer st;
public FastReader() {
InputStreamReader inr = new InputStreamReader(System.in);
br = new BufferedReader(inr);
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
long nextLong() {
return Long.parseLong(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
| Java | ["5\n10 4\n13 9\n100 13\n123 456\n92 46"] | 1 second | ["2\n5\n4\n333\n0"] | null | Java 8 | standard input | [
"math"
] | d9fd10700cb122b148202a664e7f7689 | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Then $$$t$$$ test cases follow. The only line of the test case contains two integers $$$a$$$ and $$$b$$$ ($$$1 \le a, b \le 10^9$$$). | 800 | For each test case print the answer — the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. | standard output | |
PASSED | bd62e5f96213464029b19140affd90a7 | train_000.jsonl | 1585233300 | You are given two positive integers $$$a$$$ and $$$b$$$. In one move you can increase $$$a$$$ by $$$1$$$ (replace $$$a$$$ with $$$a+1$$$). Your task is to find the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. It is possible, that you have to make $$$0$$$ moves, as $$$a$$$ is already divisible by $$$b$$$. You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.Arrays;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int T = sc.nextInt();
while(T-->0) {
int a = sc.nextInt();
int b = sc.nextInt();
if(a%b!=0)
System.out.println(b-a%b);
else
System.out.println(0);
}
}
}
| Java | ["5\n10 4\n13 9\n100 13\n123 456\n92 46"] | 1 second | ["2\n5\n4\n333\n0"] | null | Java 8 | standard input | [
"math"
] | d9fd10700cb122b148202a664e7f7689 | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Then $$$t$$$ test cases follow. The only line of the test case contains two integers $$$a$$$ and $$$b$$$ ($$$1 \le a, b \le 10^9$$$). | 800 | For each test case print the answer — the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. | standard output | |
PASSED | 54213f8b188f4a4a32a3ec89a7ad10a8 | train_000.jsonl | 1585233300 | You are given two positive integers $$$a$$$ and $$$b$$$. In one move you can increase $$$a$$$ by $$$1$$$ (replace $$$a$$$ with $$$a+1$$$). Your task is to find the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. It is possible, that you have to make $$$0$$$ moves, as $$$a$$$ is already divisible by $$$b$$$. You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int T = sc.nextInt();
while(T-->0) {
int a = sc.nextInt();
int b = sc.nextInt();
if(a%b == 0)
System.out.println(0);
else
System.out.println(b-a%b);
}
}
}
| Java | ["5\n10 4\n13 9\n100 13\n123 456\n92 46"] | 1 second | ["2\n5\n4\n333\n0"] | null | Java 8 | standard input | [
"math"
] | d9fd10700cb122b148202a664e7f7689 | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Then $$$t$$$ test cases follow. The only line of the test case contains two integers $$$a$$$ and $$$b$$$ ($$$1 \le a, b \le 10^9$$$). | 800 | For each test case print the answer — the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. | standard output | |
PASSED | 86e9f325c765578816b222080d502d74 | train_000.jsonl | 1585233300 | You are given two positive integers $$$a$$$ and $$$b$$$. In one move you can increase $$$a$$$ by $$$1$$$ (replace $$$a$$$ with $$$a+1$$$). Your task is to find the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. It is possible, that you have to make $$$0$$$ moves, as $$$a$$$ is already divisible by $$$b$$$. You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.Scanner;
public class Main {
static boolean[][] arr;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int T = sc.nextInt();
while(T-->0) {
int a = sc.nextInt();
int b = sc.nextInt();
if(a<b) {
System.out.println(b-a);
} else if(a%b==0) {
System.out.println(0);
} else {
System.out.println(b-a%b);
}
}
}
}
| Java | ["5\n10 4\n13 9\n100 13\n123 456\n92 46"] | 1 second | ["2\n5\n4\n333\n0"] | null | Java 8 | standard input | [
"math"
] | d9fd10700cb122b148202a664e7f7689 | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Then $$$t$$$ test cases follow. The only line of the test case contains two integers $$$a$$$ and $$$b$$$ ($$$1 \le a, b \le 10^9$$$). | 800 | For each test case print the answer — the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. | standard output | |
PASSED | 28b1c61317820280b0062948e0247d9a | train_000.jsonl | 1585233300 | You are given two positive integers $$$a$$$ and $$$b$$$. In one move you can increase $$$a$$$ by $$$1$$$ (replace $$$a$$$ with $$$a+1$$$). Your task is to find the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. It is possible, that you have to make $$$0$$$ moves, as $$$a$$$ is already divisible by $$$b$$$. You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
public class Main
{
public static void main(String at[])
{
Scanner in=new Scanner(System.in);
int t=in.nextInt();
while(t-->0)
{
int a=in.nextInt(),b=in.nextInt();
if(a%b==0)
System.out.println(0);
else
{
int x=(a/b +1)*b;
System.out.println(x-a);
}
}
}
} | Java | ["5\n10 4\n13 9\n100 13\n123 456\n92 46"] | 1 second | ["2\n5\n4\n333\n0"] | null | Java 8 | standard input | [
"math"
] | d9fd10700cb122b148202a664e7f7689 | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Then $$$t$$$ test cases follow. The only line of the test case contains two integers $$$a$$$ and $$$b$$$ ($$$1 \le a, b \le 10^9$$$). | 800 | For each test case print the answer — the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. | standard output | |
PASSED | 2ddc5d9bccf0d02c34bafc1a64d9c805 | train_000.jsonl | 1585233300 | You are given two positive integers $$$a$$$ and $$$b$$$. In one move you can increase $$$a$$$ by $$$1$$$ (replace $$$a$$$ with $$$a+1$$$). Your task is to find the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. It is possible, that you have to make $$$0$$$ moves, as $$$a$$$ is already divisible by $$$b$$$. You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
public class class1 {
public static void main (String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
for(int i =0;i<n;i++) {
int n2 = sc.nextInt();
int n3 = sc.nextInt();
System.out.println((n3 - n2%n3)%n3);
}
sc.close();
}
/*if(n2<n3) {
System.out.println(n3-n2);
}
else {
while(n2%n3!=0) {
k++;
n2++;
}
System.out.println(k);
}
}*/
}
/* //Way Too Long Words
Scanner sc = new Scanner(System.in);
double length = sc.nextInt();
String in = null;
for(int i = 0; i <= length; i++)
{
in = sc.nextLine();
if(in.length() > 10)
{
System.out.print(in.charAt(0));
System.out.print(in.length() -2);
System.out.println(in.charAt(in.length() -1));
}else
System.out.println(in);
}
}*/
/*//Telephone Number
Scanner sc1 = new Scanner(System.in);
int n = sc1.nextInt();
int i =0;
sc1.nextLine();
while(i!=n) {
i++;
int tel = sc1.nextInt();
sc1.nextLine();
String s2 = sc1.nextLine();
char [] tab = s2.toCharArray();
String x="NO";
for(int j=0;j<tab.length;j++) {
if((tab[j]=='8' && (j+11) <=tel)) {
x="YES";
}
}
System.out.println(x);
}
sc1.close();
}}*/
/*//Anton and Danik
Scanner sc = new Scanner(System.in);
int x = sc.nextInt();
sc.nextLine();
String s = sc.nextLine();
int ka=0;
int kd=0;
char [] temp = s.toCharArray();
for(int i=0;i<temp.length;i++) {
if(temp[i]=='A') {
ka++;
}else {
kd++;
}
}
if(ka>kd) {
System.out.println("Anton");
}
else if(ka ==kd) {
System.out.println("Friendship");
}
else {
System.out.println("Danik");
}
}
}*/
/* //Elephant
* Scanner sc = new Scanner(System.in);
int x = sc.nextInt();
int k=0;
while(x>=5) {
x=x-5;
k++;
}
while(x>=4) {
x=x-4;
k++;
}
while(x>=3) {
x=x-3;
k++;
}
while(x>=2) {
x=x-2;
k++;
}
while(x>0) {
x=x-1;
k++;
}
System.out.println(k);
sc.close();
}}*/
/* //Love "A"
* Scanner sc = new Scanner(System.in);
String mo = sc.nextLine();
char [] mot = mo.toCharArray();
int c=0;
for(int i=0;i<mot.length;i++) {
if(mot[i]=='a') {
c++;
}
}
int tot = mot.length;
while(c<=Math.floor(tot/2)) {
tot--;
}
System.out.println(tot);
sc.close();
}}*/
/* //In Search of an Easy Problem
* Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
sc.nextLine();
String mo = sc.nextLine();
if(mo.contains("1")) {
System.out.println("HARD");
}
else {
System.out.println("EASY");
}
sc.close();
}}*/
/* //Beautiful Matrix
* Scanner sc = new Scanner(System.in);
int i = 1;
int j = 1;
for (i = 1; i <= 5; i++) {
if (sc.nextInt() == 1) {
break;
}
// Increment;
if (i == 5) {
j++;
i = 0;
}
}
System.out.println(Math.abs(i-3)+Math.abs(j-3));
}
} */
/* //Suffix Three
Scanner sc1 = new Scanner(System.in) ;
int k = sc1.nextInt();
int i=0;
while (i<=k) {
i++;
String str = sc1.nextLine();
if(str.length()>=2 && str.length() <4) {
if(str.charAt(str.length()-2)=='p' && str.charAt(str.length()-1)=='o') {
System.out.println("FILIPINO");
}
}
if(str.length()==4) {
if((str.charAt((str.length()-4))=='d' && str.charAt(str.length()-3)=='e' && str.charAt(str.length()-2)=='s' && str.charAt(str.length()-1)=='u') || (str.charAt((str.length()-4))=='m' && str.charAt(str.length()-3)=='a' && str.charAt(str.length()-2)=='s' && str.charAt(str.length()-1)=='u')){
System.out.println("JAPANESE");
}
if(str.charAt(str.length()-2)=='p' && str.charAt(str.length()-1)=='o') {
System.out.println("FILIPINO"); }
}
if(str.length()>=5) {
if(str.charAt(str.length()-2)=='p' && str.charAt(str.length()-1)=='o') {
System.out.println("FILIPINO");
}
if((str.charAt((str.length()-4))=='d' && str.charAt(str.length()-3)=='e' && str.charAt(str.length()-2)=='s' && str.charAt(str.length()-1)=='u') || (str.charAt((str.length()-4))=='m' && str.charAt(str.length()-3)=='a' && str.charAt(str.length()-2)=='s' && str.charAt(str.length()-1)=='u')){
System.out.println("JAPANESE");
}
if((str.charAt((str.length()-5))=='m' && str.charAt(str.length()-4)=='n' && str.charAt(str.length()-3)=='i' && str.charAt(str.length()-2)=='d' && str.charAt(str.length()-1)=='a')){
System.out.println("KOREAN");
}
}
}
sc1.close();
}}
*/
| Java | ["5\n10 4\n13 9\n100 13\n123 456\n92 46"] | 1 second | ["2\n5\n4\n333\n0"] | null | Java 8 | standard input | [
"math"
] | d9fd10700cb122b148202a664e7f7689 | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Then $$$t$$$ test cases follow. The only line of the test case contains two integers $$$a$$$ and $$$b$$$ ($$$1 \le a, b \le 10^9$$$). | 800 | For each test case print the answer — the minimum number of moves you need to do in order to make $$$a$$$ divisible by $$$b$$$. | standard output | |
PASSED | 8397a7b8baa4fdde8f5adf84560d647f | train_000.jsonl | 1589707200 | Polycarp plays a computer game. In this game, the players summon armies of magical minions, which then fight each other.Polycarp can summon $$$n$$$ different minions. The initial power level of the $$$i$$$-th minion is $$$a_i$$$, and when it is summoned, all previously summoned minions' power levels are increased by $$$b_i$$$. The minions can be summoned in any order.Unfortunately, Polycarp cannot have more than $$$k$$$ minions under his control. To get rid of unwanted minions after summoning them, he may destroy them. Each minion can be summoned (and destroyed) only once.Polycarp's goal is to summon the strongest possible army. Formally, he wants to maximize the sum of power levels of all minions under his control (those which are summoned and not destroyed).Help Polycarp to make up a plan of actions to summon the strongest possible army! | 512 megabytes | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.util.Comparator;
import java.util.ArrayDeque;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
SummoningMinions solver = new SummoningMinions();
solver.solve(1, in, out);
out.close();
}
static class SummoningMinions {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int T = in.nextInt();
while (T-- > 0) {
int N = in.nextInt();
int K = in.nextInt();
int[][] arr = new int[N][3];
for (int i = 0; i < N; i++) {
arr[i][0] = in.nextInt();
arr[i][1] = in.nextInt();
arr[i][2] = i + 1;
}
Arrays.sort(arr, new Comparator<int[]>() {
public int compare(int[] ints, int[] t1) {
return Integer.compare(ints[1], t1[1]);
}
});
long[][] dp = new long[N][K + 1];
boolean[][] add = new boolean[N][K + 1];
Arrays.fill(dp[0], Long.MIN_VALUE);
dp[0][0] = (K - 1) * arr[0][1];
dp[0][1] = (arr[0][0]);
add[0][1] = true;
for (int i = 1; i < N; i++) {
for (int j = 0; j <= K; j++) {
dp[i][j] = dp[i - 1][j] + (K - 1) * arr[i][1];
if (j > 0) {
if (dp[i - 1][j - 1] + arr[i][0] + arr[i][1] * (j - 1) > dp[i][j]) {
add[i][j] = true;
dp[i][j] = dp[i - 1][j - 1] + arr[i][0] + arr[i][1] * (j - 1);
}
}
}
}
int u = K;
ArrayDeque<Integer> order = new ArrayDeque<>();
ArrayList<Integer> not_added = new ArrayList<>();
for (int i = N - 1; i >= 0; i--) {
if (add[i][u]) {
order.addFirst(arr[i][2]);
u--;
} else {
not_added.add(arr[i][2]);
}
}
StringBuilder str = new StringBuilder();
str.append((2 * N - K) + "\n");
// assert false;
while (order.size() > 1) {
str.append(order.removeFirst() + " ");
}
for (int i : not_added) {
str.append(i + " ");
str.append((-i) + " ");
}
str.append(order.removeFirst() + " ");
out.println(str.toString());
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
| Java | ["3\n5 2\n5 3\n7 0\n5 0\n4 0\n10 0\n2 1\n10 100\n50 10\n5 5\n1 5\n2 4\n3 3\n4 2\n5 1"] | 6 seconds | ["4\n2 1 -1 5\n1\n2\n5\n5 4 3 2 1"] | NoteConsider the example test.In the first test case, Polycarp can summon the minion $$$2$$$ with power level $$$7$$$, then summon the minion $$$1$$$, which will increase the power level of the previous minion by $$$3$$$, then destroy the minion $$$1$$$, and finally, summon the minion $$$5$$$. After this, Polycarp will have two minions with power levels of $$$10$$$.In the second test case, Polycarp can control only one minion, so he should choose the strongest of them and summon it.In the third test case, Polycarp is able to summon and control all five minions. | Java 8 | standard input | [
"dp",
"greedy",
"constructive algorithms",
"flows",
"graph matchings",
"sortings"
] | e764c6437ce11b6b0cee015bc8b8e0b5 | The first line contains one integer $$$T$$$ ($$$1 \le T \le 75$$$) — the number of test cases. Each test case begins with a line containing two integers $$$n$$$ and $$$k$$$ ($$$1 \le k \le n \le 75$$$) — the number of minions availible for summoning, and the maximum number of minions that can be controlled by Polycarp, respectively. Then $$$n$$$ lines follow, the $$$i$$$-th line contains $$$2$$$ integers $$$a_i$$$ and $$$b_i$$$ ($$$1 \le a_i \le 10^5$$$, $$$0 \le b_i \le 10^5$$$) — the parameters of the $$$i$$$-th minion. | 2,500 | For each test case print the optimal sequence of actions as follows: Firstly, print $$$m$$$ — the number of actions which Polycarp has to perform ($$$0 \le m \le 2n$$$). Then print $$$m$$$ integers $$$o_1$$$, $$$o_2$$$, ..., $$$o_m$$$, where $$$o_i$$$ denotes the $$$i$$$-th action as follows: if the $$$i$$$-th action is to summon the minion $$$x$$$, then $$$o_i = x$$$, and if the $$$i$$$-th action is to destroy the minion $$$x$$$, then $$$o_i = -x$$$. Each minion can be summoned at most once and cannot be destroyed before being summoned (and, obviously, cannot be destroyed more than once). The number of minions in Polycarp's army should be not greater than $$$k$$$ after every action. If there are multiple optimal sequences, print any of them. | standard output | |
PASSED | 785aebb0375b4a91604705e4755ad466 | train_000.jsonl | 1589707200 | Polycarp plays a computer game. In this game, the players summon armies of magical minions, which then fight each other.Polycarp can summon $$$n$$$ different minions. The initial power level of the $$$i$$$-th minion is $$$a_i$$$, and when it is summoned, all previously summoned minions' power levels are increased by $$$b_i$$$. The minions can be summoned in any order.Unfortunately, Polycarp cannot have more than $$$k$$$ minions under his control. To get rid of unwanted minions after summoning them, he may destroy them. Each minion can be summoned (and destroyed) only once.Polycarp's goal is to summon the strongest possible army. Formally, he wants to maximize the sum of power levels of all minions under his control (those which are summoned and not destroyed).Help Polycarp to make up a plan of actions to summon the strongest possible army! | 512 megabytes | /******************************************************************************
Online Java Compiler.
Code, Compile, Run and Debug java program online.
Write your code in this editor and press "Run" button to execute it.
*******************************************************************************/
import java.util.*;
import java.io.*;
public class Main{
public static void main(String []args) throws Exception{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
PrintWriter out = new PrintWriter(System.out);
int trials = Integer.parseInt(st.nextToken());
for(int trial = 0; trial < trials; trial++){
st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int k = Integer.parseInt(st.nextToken());
int[][] minion = new int[n][3];
for(int i = 0; i < n; i++){
st = new StringTokenizer(br.readLine());
int a = Integer.parseInt(st.nextToken());
int b = Integer.parseInt(st.nextToken());
minion[i][0] = a;
minion[i][1] = b;
minion[i][2] = i+1;
}
sort(minion, 0, n-1);
int[][] dp = new int[n+1][k+1];
for(int i = 1; i <= n; i++){
dp[i][0] = dp[i-1][0] + (k-1)*minion[i-1][1];
for(int j = 1; j <= k; j++){
if(j < i)
dp[i][j] = Math.max(dp[i-1][j] + (k-1)*minion[i-1][1], dp[i-1][j-1] + (j-1)*minion[i-1][1] + minion[i-1][0]);
else if(j == i)
dp[i][j] = dp[i-1][j-1] + (j-1)*minion[i-1][1] + minion[i-1][0];
}
}
int i = n;
int j = k;
Stack<Integer> stay = new Stack<Integer>();
HashSet<Integer> remove = new HashSet<Integer>();
while(j > 0){
if(dp[i][j] == dp[i-1][j-1] + (j-1)*minion[i-1][1] + minion[i-1][0]){
stay.push(minion[i-1][2]);
j--;
}
else
remove.add(minion[i-1][2]);
i--;
}
while(i > 0){
remove.add(minion[i-1][2]);
i--;
}
StringJoiner sj = new StringJoiner(" ");
for(i = 0; i < k-1; i++)
sj.add(Integer.toString(stay.pop()));
for(int l:remove){
sj.add(Integer.toString(l));
sj.add(Integer.toString(-l));
}
sj.add(Integer.toString(stay.pop()));
out.println(2*n-k);
out.println(sj);
}
out.close();
}
static void sort(int[][] arr, int l, int r){
if (l < r)
{
// Find the middle point
int m = (l+r)/2;
// Sort first and second halves
sort(arr, l, m);
sort(arr , m+1, r);
// Merge the sorted halves
merge(arr, l, m, r);
}
}
static void merge(int[][] arr, int l, int m, int r)
{
// Find sizes of two subarrays to be merged
int n1 = m - l + 1;
int n2 = r - m;
/* Create temp arrays */
int L[][] = new int [n1][3];
int R[][] = new int [n2][3];
/*Copy data to temp arrays*/
for (int i=0; i<n1; ++i){
L[i][0] = arr[l + i][0];
L[i][1] = arr[l+i][1];
L[i][2] = arr[l+i][2];
}
for (int j=0; j<n2; ++j){
R[j][0] = arr[m + 1+ j][0];
R[j][1] = arr[m+1+j][1];
R[j][2] = arr[m+1+j][2];
}
/* Merge the temp arrays */
// Initial indexes of first and second subarrays
int i = 0, j = 0;
// Initial index of merged subarry array
int k = l;
while (i < n1 && j < n2)
{
if (L[i][1] < R[j][1] || (L[i][1] == R[j][1] && L[i][0] < R[j][0]))
{
arr[k][0] = L[i][0];
arr[k][1] = L[i][1];
arr[k][2] = L[i][2];
i++;
}
else
{
arr[k][0] = R[j][0];
arr[k][1] = R[j][1];
arr[k][2] = R[j][2];
j++;
}
k++;
}
/* Copy remaining elements of L[] if any */
while (i < n1)
{
arr[k][0] = L[i][0];
arr[k][1] = L[i][1];
arr[k][2] = L[i][2];
i++;
k++;
}
/* Copy remaining elements of R[] if any */
while (j < n2)
{
arr[k][0] = R[j][0];
arr[k][1] = R[j][1];
arr[k][2] = R[j][2];
j++;
k++;
}
}
} | Java | ["3\n5 2\n5 3\n7 0\n5 0\n4 0\n10 0\n2 1\n10 100\n50 10\n5 5\n1 5\n2 4\n3 3\n4 2\n5 1"] | 6 seconds | ["4\n2 1 -1 5\n1\n2\n5\n5 4 3 2 1"] | NoteConsider the example test.In the first test case, Polycarp can summon the minion $$$2$$$ with power level $$$7$$$, then summon the minion $$$1$$$, which will increase the power level of the previous minion by $$$3$$$, then destroy the minion $$$1$$$, and finally, summon the minion $$$5$$$. After this, Polycarp will have two minions with power levels of $$$10$$$.In the second test case, Polycarp can control only one minion, so he should choose the strongest of them and summon it.In the third test case, Polycarp is able to summon and control all five minions. | Java 8 | standard input | [
"dp",
"greedy",
"constructive algorithms",
"flows",
"graph matchings",
"sortings"
] | e764c6437ce11b6b0cee015bc8b8e0b5 | The first line contains one integer $$$T$$$ ($$$1 \le T \le 75$$$) — the number of test cases. Each test case begins with a line containing two integers $$$n$$$ and $$$k$$$ ($$$1 \le k \le n \le 75$$$) — the number of minions availible for summoning, and the maximum number of minions that can be controlled by Polycarp, respectively. Then $$$n$$$ lines follow, the $$$i$$$-th line contains $$$2$$$ integers $$$a_i$$$ and $$$b_i$$$ ($$$1 \le a_i \le 10^5$$$, $$$0 \le b_i \le 10^5$$$) — the parameters of the $$$i$$$-th minion. | 2,500 | For each test case print the optimal sequence of actions as follows: Firstly, print $$$m$$$ — the number of actions which Polycarp has to perform ($$$0 \le m \le 2n$$$). Then print $$$m$$$ integers $$$o_1$$$, $$$o_2$$$, ..., $$$o_m$$$, where $$$o_i$$$ denotes the $$$i$$$-th action as follows: if the $$$i$$$-th action is to summon the minion $$$x$$$, then $$$o_i = x$$$, and if the $$$i$$$-th action is to destroy the minion $$$x$$$, then $$$o_i = -x$$$. Each minion can be summoned at most once and cannot be destroyed before being summoned (and, obviously, cannot be destroyed more than once). The number of minions in Polycarp's army should be not greater than $$$k$$$ after every action. If there are multiple optimal sequences, print any of them. | standard output | |
PASSED | bfd059da541815208bae24a5252c2f61 | train_000.jsonl | 1589707200 | Polycarp plays a computer game. In this game, the players summon armies of magical minions, which then fight each other.Polycarp can summon $$$n$$$ different minions. The initial power level of the $$$i$$$-th minion is $$$a_i$$$, and when it is summoned, all previously summoned minions' power levels are increased by $$$b_i$$$. The minions can be summoned in any order.Unfortunately, Polycarp cannot have more than $$$k$$$ minions under his control. To get rid of unwanted minions after summoning them, he may destroy them. Each minion can be summoned (and destroyed) only once.Polycarp's goal is to summon the strongest possible army. Formally, he wants to maximize the sum of power levels of all minions under his control (those which are summoned and not destroyed).Help Polycarp to make up a plan of actions to summon the strongest possible army! | 512 megabytes | import java.io.*;
import java.util.*;
import java.math.*;
public class F {
static final boolean RUN_TIMING = false;
static PushbackReader in = new PushbackReader(new BufferedReader(new InputStreamReader(System.in)), 1024);
static PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
public void go() throws IOException {
// in = new PushbackReader(new BufferedReader(new FileReader(new File("test.txt"))), 1024);
// out = new PrintWriter(new FileWriter(new File("output.txt")));
int zzz = ipar();
for (int zz = 0; zz < zzz; zz++) {
int n = ipar();
int k = ipar();
Minion[] arr = new Minion[n];
for (int i = 0; i < n; i++) {
int a = ipar();
int b = ipar();
arr[i] = new Minion(a, b, i);
}
Arrays.sort(arr, (a, b) -> a.b - b.b);
int[][] dp = new int[n+1][k+1];
int[][] index = new int[n+1][k+1];
for (int i = 0; i < k; i++) {
dp[n][i] = Integer.MIN_VALUE;
}
for (int i = n-1; i >= 0; i--) {
for (int e = 0; e <= k; e++) {
dp[i][e] = dp[i+1][e] + arr[i].getDestroy(k-1);
index[i][e] = -arr[i].i-1;
}
for (int e = 0; e < k; e++) {
if (dp[i+1][e+1] + arr[i].getAdd(e) > dp[i][e]) {
dp[i][e] = dp[i+1][e+1] + arr[i].getAdd(e);
index[i][e] = arr[i].i+1;
}
}
}
ArrayList<Integer> adds = new ArrayList<>();
ArrayList<Integer> destroys = new ArrayList<>();
for (int i = 0; i < n; i++) {
if (index[i][adds.size()] > 0) {
adds.add(index[i][adds.size()]);
} else {
destroys.add(-index[i][adds.size()]);
}
}
// for (int[] a : dp) {
// out.println(Arrays.toString(a));
// }
out.println(adds.size() + destroys.size()*2);
for (int i = 0; i < k-1; i++) {
out.print(adds.get(i));
out.print(" ");
}
for (int i = 0; i < n-k; i++) {
out.print(destroys.get(i));
out.print(" ");
out.print(-destroys.get(i));
out.print(" ");
}
out.println(adds.get(k-1));
}
out.flush();
in.close();
}
private class Minion {
int a, b, i;
public Minion(int a, int b, int i) {
this.a = a;
this.b = b;
this.i = i;
}
public int getAdd(int t) {
return a + b*t;
}
public int getDestroy(int t) {
return b*t;
}
public String toString() {
return String.format("%d=(%d,%d)", i, a, b);
}
}
public int ipar() throws IOException {
return Integer.parseInt(spar());
}
public int[] iapar(int n) throws IOException {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = ipar();
}
return arr;
}
public long lpar() throws IOException {
return Long.parseLong(spar());
}
public long[] lapar(int n) throws IOException {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = lpar();
}
return arr;
}
public double dpar() throws IOException {
return Double.parseDouble(spar());
}
public String spar() throws IOException {
StringBuilder sb = new StringBuilder(1024);
int c;
do {
c = in.read();
} while (Character.isWhitespace(c) && c != -1);
if (c == -1) {
throw new NoSuchElementException("Reached EOF");
}
do {
sb.append((char)c);
c = in.read();
} while (!Character.isWhitespace(c) && c != -1);
while (c != '\n' && Character.isWhitespace(c) && c != -1) {
c = in.read();
}
if (c != -1 && c != '\n') {
in.unread(c);
}
return sb.toString();
}
public String linepar() throws IOException {
StringBuilder sb = new StringBuilder(1024);
int c;
while ((c = in.read()) != '\n' && c != -1) {
if (c == '\r') {
continue;
}
sb.append((char)c);
}
return sb.toString();
}
public boolean haspar() throws IOException {
String line = linepar();
if (line.isEmpty()) {
return false;
}
in.unread('\n');
in.unread(line.toCharArray());
return true;
}
public static void main(String[] args) throws IOException {
long time = 0;
time -= System.nanoTime();
new F().go();
time += System.nanoTime();
if (RUN_TIMING) {
System.out.printf("%.3f ms%n", time/1000000.0);
}
out.flush();
in.close();
}
}
| Java | ["3\n5 2\n5 3\n7 0\n5 0\n4 0\n10 0\n2 1\n10 100\n50 10\n5 5\n1 5\n2 4\n3 3\n4 2\n5 1"] | 6 seconds | ["4\n2 1 -1 5\n1\n2\n5\n5 4 3 2 1"] | NoteConsider the example test.In the first test case, Polycarp can summon the minion $$$2$$$ with power level $$$7$$$, then summon the minion $$$1$$$, which will increase the power level of the previous minion by $$$3$$$, then destroy the minion $$$1$$$, and finally, summon the minion $$$5$$$. After this, Polycarp will have two minions with power levels of $$$10$$$.In the second test case, Polycarp can control only one minion, so he should choose the strongest of them and summon it.In the third test case, Polycarp is able to summon and control all five minions. | Java 8 | standard input | [
"dp",
"greedy",
"constructive algorithms",
"flows",
"graph matchings",
"sortings"
] | e764c6437ce11b6b0cee015bc8b8e0b5 | The first line contains one integer $$$T$$$ ($$$1 \le T \le 75$$$) — the number of test cases. Each test case begins with a line containing two integers $$$n$$$ and $$$k$$$ ($$$1 \le k \le n \le 75$$$) — the number of minions availible for summoning, and the maximum number of minions that can be controlled by Polycarp, respectively. Then $$$n$$$ lines follow, the $$$i$$$-th line contains $$$2$$$ integers $$$a_i$$$ and $$$b_i$$$ ($$$1 \le a_i \le 10^5$$$, $$$0 \le b_i \le 10^5$$$) — the parameters of the $$$i$$$-th minion. | 2,500 | For each test case print the optimal sequence of actions as follows: Firstly, print $$$m$$$ — the number of actions which Polycarp has to perform ($$$0 \le m \le 2n$$$). Then print $$$m$$$ integers $$$o_1$$$, $$$o_2$$$, ..., $$$o_m$$$, where $$$o_i$$$ denotes the $$$i$$$-th action as follows: if the $$$i$$$-th action is to summon the minion $$$x$$$, then $$$o_i = x$$$, and if the $$$i$$$-th action is to destroy the minion $$$x$$$, then $$$o_i = -x$$$. Each minion can be summoned at most once and cannot be destroyed before being summoned (and, obviously, cannot be destroyed more than once). The number of minions in Polycarp's army should be not greater than $$$k$$$ after every action. If there are multiple optimal sequences, print any of them. | standard output | |
PASSED | e42effcd1090e3581afb3575a27e5188 | train_000.jsonl | 1589707200 | Polycarp plays a computer game. In this game, the players summon armies of magical minions, which then fight each other.Polycarp can summon $$$n$$$ different minions. The initial power level of the $$$i$$$-th minion is $$$a_i$$$, and when it is summoned, all previously summoned minions' power levels are increased by $$$b_i$$$. The minions can be summoned in any order.Unfortunately, Polycarp cannot have more than $$$k$$$ minions under his control. To get rid of unwanted minions after summoning them, he may destroy them. Each minion can be summoned (and destroyed) only once.Polycarp's goal is to summon the strongest possible army. Formally, he wants to maximize the sum of power levels of all minions under his control (those which are summoned and not destroyed).Help Polycarp to make up a plan of actions to summon the strongest possible army! | 512 megabytes | import java.util.Arrays;
import java.util.Scanner;
/*
1
5 2
5 3
7 0
5 0
4 0
10 0
*/
public class SummoningMinions2 {
public static void main(String[] args) {
Scanner fs=new Scanner(System.in);
int T=fs.nextInt();
for (int tt=0; tt<T; tt++) {
int n=fs.nextInt(), k=fs.nextInt();
long ans=0;
int[][] cost=new int[k][n];
for (int i=0; i<n; i++) {
int a=fs.nextInt(), b=fs.nextInt();
ans+=(k-1)*(long)b;
for (int spot=0; spot<k; spot++)
cost[spot][i]=-(-(k-1)*b+spot*b+a);
}
// for (int spot=0; spot<k; spot++) {
// for (int i=0; i<n; i++) {
// System.out.print(cost[spot][i]+" ");
// }
// System.out.println();
// }
hungarian(cost);
// for (int spot=0; spot<k; spot++) {
// System.out.println("Matched spot "+spot+" with "+rowMatchesWith[spot]);
// }
boolean[] chosen=new boolean[n];
for (int i=0; i<k; i++) chosen[rowMatchesWith[i]]=true;
System.out.println(k-1 + 2*(n-k) + 1);
for (int i=0; i+1<k; i++) {
System.out.print(1+rowMatchesWith[i]+" ");
}
for (int i=0; i<n; i++) if (!chosen[i]) System.out.print((1+i)+" -"+(1+i)+" ");
System.out.println(rowMatchesWith[k-1]+1);
}
}
// finds MINIMUM total matching cost of
// each row to some column, using each col at most once
// **nRows must be <= nCols**
//rowMatchWith[i] = the column that row i matched with
static int[] rowMatchesWith;
static int hungarian(int[][] a) {
int n=a.length, m=a[0].length; if (n>m) throw null;
int[] u=new int[n], v=new int[m+1]; //edge (i->j) >= u[i]+v[j]
int[] p=new int[m+1]; //p[j] = left match for right node j
Arrays.fill(p, -1);
for (int i=0; i<n; i++) {//find alternating path for node i
int j0=m; p[j0]=i;
int[] dist=new int[m+1], from=new int[m+1];
boolean[] seen=new boolean[m+1];
Arrays.fill(dist, Integer.MAX_VALUE);
Arrays.fill(from, -1);
while (p[j0]!=-1) {
seen[j0]=true; int i0=p[j0], delta=Integer.MAX_VALUE, j1=-1;
for (int j=0; j<m; j++) {//consider edges i0 -> everything
if (seen[j]) continue;
int candDist=a[i0][j]-u[i0]-v[j];
if (candDist<dist[j]) {dist[j]=candDist; from[j]=j0;}
if (dist[j]<delta) {delta=dist[j]; j1=j;}
}
//it costs at least delta to get somewhere else,
//subtract that from all distances and add cost to u, v, arrays
//from all done -> not done edges
for (int j=0; j<=m; j++) {
if (seen[j]) {u[p[j]]+=delta; v[j]-=delta;}
else dist[j]-=delta;
}
j0=j1;
}
//flip alternating path
while (j0!=m) { int j1=from[j0]; p[j0]=p[j1]; j0=j1; }
}
//sum of deltas is stored at v[m] coincidentally
int ans=-v[m];
rowMatchesWith=new int[n];
for (int j=0; j<m; j++) if (p[j]!=-1) rowMatchesWith[p[j]]=j;
return ans;
}
}
| Java | ["3\n5 2\n5 3\n7 0\n5 0\n4 0\n10 0\n2 1\n10 100\n50 10\n5 5\n1 5\n2 4\n3 3\n4 2\n5 1"] | 6 seconds | ["4\n2 1 -1 5\n1\n2\n5\n5 4 3 2 1"] | NoteConsider the example test.In the first test case, Polycarp can summon the minion $$$2$$$ with power level $$$7$$$, then summon the minion $$$1$$$, which will increase the power level of the previous minion by $$$3$$$, then destroy the minion $$$1$$$, and finally, summon the minion $$$5$$$. After this, Polycarp will have two minions with power levels of $$$10$$$.In the second test case, Polycarp can control only one minion, so he should choose the strongest of them and summon it.In the third test case, Polycarp is able to summon and control all five minions. | Java 8 | standard input | [
"dp",
"greedy",
"constructive algorithms",
"flows",
"graph matchings",
"sortings"
] | e764c6437ce11b6b0cee015bc8b8e0b5 | The first line contains one integer $$$T$$$ ($$$1 \le T \le 75$$$) — the number of test cases. Each test case begins with a line containing two integers $$$n$$$ and $$$k$$$ ($$$1 \le k \le n \le 75$$$) — the number of minions availible for summoning, and the maximum number of minions that can be controlled by Polycarp, respectively. Then $$$n$$$ lines follow, the $$$i$$$-th line contains $$$2$$$ integers $$$a_i$$$ and $$$b_i$$$ ($$$1 \le a_i \le 10^5$$$, $$$0 \le b_i \le 10^5$$$) — the parameters of the $$$i$$$-th minion. | 2,500 | For each test case print the optimal sequence of actions as follows: Firstly, print $$$m$$$ — the number of actions which Polycarp has to perform ($$$0 \le m \le 2n$$$). Then print $$$m$$$ integers $$$o_1$$$, $$$o_2$$$, ..., $$$o_m$$$, where $$$o_i$$$ denotes the $$$i$$$-th action as follows: if the $$$i$$$-th action is to summon the minion $$$x$$$, then $$$o_i = x$$$, and if the $$$i$$$-th action is to destroy the minion $$$x$$$, then $$$o_i = -x$$$. Each minion can be summoned at most once and cannot be destroyed before being summoned (and, obviously, cannot be destroyed more than once). The number of minions in Polycarp's army should be not greater than $$$k$$$ after every action. If there are multiple optimal sequences, print any of them. | standard output | |
PASSED | 92f6b1e72d3a9c64ad15cd572d057aa0 | train_000.jsonl | 1589707200 | Polycarp plays a computer game. In this game, the players summon armies of magical minions, which then fight each other.Polycarp can summon $$$n$$$ different minions. The initial power level of the $$$i$$$-th minion is $$$a_i$$$, and when it is summoned, all previously summoned minions' power levels are increased by $$$b_i$$$. The minions can be summoned in any order.Unfortunately, Polycarp cannot have more than $$$k$$$ minions under his control. To get rid of unwanted minions after summoning them, he may destroy them. Each minion can be summoned (and destroyed) only once.Polycarp's goal is to summon the strongest possible army. Formally, he wants to maximize the sum of power levels of all minions under his control (those which are summoned and not destroyed).Help Polycarp to make up a plan of actions to summon the strongest possible army! | 512 megabytes | import java.util.Arrays;
import java.util.Scanner;
public class SummoningMinions {
public static void main(String[] args) {
Scanner fs=new Scanner(System.in);
int T=fs.nextInt();
for (int tt=0; tt<T; tt++) {
int n=fs.nextInt(), k=fs.nextInt();
long ans=0;
int[][] cost=new int[k][n];
for (int i=0; i<n; i++) {
int a=fs.nextInt(), b=fs.nextInt();
ans+=(k-1)*(long)b;
for (int spot=0; spot<k; spot++)
cost[spot][i]=-(k-1)*b+spot*b+a;
}
Hungarian h=new Hungarian(cost);
h.run();
boolean[] chosen=new boolean[n];
for (int i=0; i<k; i++) chosen[h.xy[i]]=true;
System.out.println(k-1 + 2*(n-k) + 1);
for (int i=0; i+1<k; i++) {
System.out.print(1+h.xy[i]+" ");
}
for (int i=0; i<n; i++) if (!chosen[i]) System.out.print((1+i)+" -"+(1+i)+" ");
System.out.println(h.xy[k-1]+1);
}
}
// #rows of cost matrix MUST be <= #columns
// xy[i] tells you what item i from the left matched with
// Given a cost matrix, matches each row with a column that MAXIMIZES
// total of selected edges.
static class Hungarian {
static int inf=100000000;
int[][] c;
int[] lx, ly, xy, yx, s, sx, p, q;
int n, m;
boolean[] S, T;
public Hungarian(int[][] cost) {
c=cost;
n=c.length;
m=c[0].length;
// INIT: lx[n],xy[n],prev[n],q[n],ly[m],yx[m],s[m],sx[m]
S=new boolean[n];
T=new boolean[m];
// #
// Array initialization
lx=new int[n];
ly=new int[m];
xy=new int[n];
yx=new int[m];
s=new int[m];
sx=new int[m];
p=new int[n];
q=new int[n];
// $
}
void augment() {
int x, y, root=-1, wr=0, rd=0;
Arrays.fill(p, -1);
Arrays.fill(S, false);
Arrays.fill(T, false);
for (x=0; x<n; x++) {
if (xy[x]==-1) {
q[wr++]=root=x;
p[x]=-2;
S[x]=true;
break;
}
}
for (y=0; y<m; y++) {
s[y]=lx[root]+ly[y]-c[root][y];
sx[y]=root;
}
while (y>=m) {
while (rd<wr&&y>=m) {
x=q[rd++];
for (y=0; y<m; y++) {
if (c[x][y]==lx[x]+ly[y]&&!T[y]) {
if (yx[y]==-1)
break;
T[y]=true;
q[wr++]=yx[y];
addToTree(yx[y], x);
}
}
}
if (y<m)
break;
updateLabels();
wr=rd=0;
for (y=0; y<m; y++) {
if (!T[y]&&s[y]==0) {
if (yx[y]==-1) {
x=sx[y];
break;
} else {
T[y]=true;
if (!S[yx[y]]) {
q[wr++]=yx[y];
addToTree(yx[y], sx[y]);
}
}
}
}
}
for (int cx=x, cy=y, ty; cx!=-2; cx=p[cx], cy=ty) {
ty=xy[cx];
yx[cy]=cx;
xy[cx]=cy;
}
}
void updateLabels() {
int x, y, delta=inf;
for (y=0; y<m; y++)
delta=Math.min(delta, !T[y]?s[y]:inf);
for (x=0; x<n; x++)
lx[x]-=S[x]?delta:0;
for (y=0; y<m; y++) {
ly[y]+=T[y]?delta:0;
s[y]-=!T[y]?delta:0;
}
}
void addToTree(int x, int prevX) {
S[x]=true;
p[x]=prevX;
for (int y=0; y<m; y++) {
if (lx[x]+ly[y]-c[x][y]<s[y]) {
s[y]=lx[x]+ly[y]-c[x][y];
sx[y]=x;
}
}
}
int run() {
Arrays.fill(xy, -1);
Arrays.fill(yx, -1);
for (int x=0; x<n; x++)
for (int y=0; y<m; y++)
lx[x]=Math.max(lx[x], c[x][y]);
for (int i=0; i<n; i++)
augment();
int ret=0;
for (int x=0; x<n; x++)
ret+=c[x][xy[x]];
return ret;
}
}
}
| Java | ["3\n5 2\n5 3\n7 0\n5 0\n4 0\n10 0\n2 1\n10 100\n50 10\n5 5\n1 5\n2 4\n3 3\n4 2\n5 1"] | 6 seconds | ["4\n2 1 -1 5\n1\n2\n5\n5 4 3 2 1"] | NoteConsider the example test.In the first test case, Polycarp can summon the minion $$$2$$$ with power level $$$7$$$, then summon the minion $$$1$$$, which will increase the power level of the previous minion by $$$3$$$, then destroy the minion $$$1$$$, and finally, summon the minion $$$5$$$. After this, Polycarp will have two minions with power levels of $$$10$$$.In the second test case, Polycarp can control only one minion, so he should choose the strongest of them and summon it.In the third test case, Polycarp is able to summon and control all five minions. | Java 8 | standard input | [
"dp",
"greedy",
"constructive algorithms",
"flows",
"graph matchings",
"sortings"
] | e764c6437ce11b6b0cee015bc8b8e0b5 | The first line contains one integer $$$T$$$ ($$$1 \le T \le 75$$$) — the number of test cases. Each test case begins with a line containing two integers $$$n$$$ and $$$k$$$ ($$$1 \le k \le n \le 75$$$) — the number of minions availible for summoning, and the maximum number of minions that can be controlled by Polycarp, respectively. Then $$$n$$$ lines follow, the $$$i$$$-th line contains $$$2$$$ integers $$$a_i$$$ and $$$b_i$$$ ($$$1 \le a_i \le 10^5$$$, $$$0 \le b_i \le 10^5$$$) — the parameters of the $$$i$$$-th minion. | 2,500 | For each test case print the optimal sequence of actions as follows: Firstly, print $$$m$$$ — the number of actions which Polycarp has to perform ($$$0 \le m \le 2n$$$). Then print $$$m$$$ integers $$$o_1$$$, $$$o_2$$$, ..., $$$o_m$$$, where $$$o_i$$$ denotes the $$$i$$$-th action as follows: if the $$$i$$$-th action is to summon the minion $$$x$$$, then $$$o_i = x$$$, and if the $$$i$$$-th action is to destroy the minion $$$x$$$, then $$$o_i = -x$$$. Each minion can be summoned at most once and cannot be destroyed before being summoned (and, obviously, cannot be destroyed more than once). The number of minions in Polycarp's army should be not greater than $$$k$$$ after every action. If there are multiple optimal sequences, print any of them. | standard output | |
PASSED | 2f10de90e62d506bb896efb859eb13df | train_000.jsonl | 1589707200 | Polycarp plays a computer game. In this game, the players summon armies of magical minions, which then fight each other.Polycarp can summon $$$n$$$ different minions. The initial power level of the $$$i$$$-th minion is $$$a_i$$$, and when it is summoned, all previously summoned minions' power levels are increased by $$$b_i$$$. The minions can be summoned in any order.Unfortunately, Polycarp cannot have more than $$$k$$$ minions under his control. To get rid of unwanted minions after summoning them, he may destroy them. Each minion can be summoned (and destroyed) only once.Polycarp's goal is to summon the strongest possible army. Formally, he wants to maximize the sum of power levels of all minions under his control (those which are summoned and not destroyed).Help Polycarp to make up a plan of actions to summon the strongest possible army! | 512 megabytes | import java.util.Arrays;
import java.util.Scanner;
public class SummoningMinions2 {
public static void main(String[] args) {
Scanner fs=new Scanner(System.in);
int T=fs.nextInt();
for (int tt=0; tt<T; tt++) {
int n=fs.nextInt(), k=fs.nextInt();
int[][] cost=new int[k][n];
for (int i=0; i<n; i++) {
int a=fs.nextInt(), b=fs.nextInt();
for (int spot=0; spot<k; spot++)
cost[spot][i]=-(-(k-1)*b+spot*b+a);
}
hungarian(cost);
boolean[] chosen=new boolean[n];
for (int i=0; i<k; i++) chosen[rowMatchesWith[i]]=true;
System.out.println(k-1 + 2*(n-k) + 1);
for (int i=0; i+1<k; i++) {
System.out.print(1+rowMatchesWith[i]+" ");
}
for (int i=0; i<n; i++) if (!chosen[i]) System.out.print((1+i)+" -"+(1+i)+" ");
System.out.println(rowMatchesWith[k-1]+1);
}
}
// finds MINIMUM total matching cost of
// each row to some column, using each col at most once
// **nRows must be <= nCols**
//rowMatchWith[i] = the column that row i matched with
static int[] rowMatchesWith;
static int hungarian(int[][] a) {
int n=a.length, m=a[0].length; if (n>m) throw null;
int[] u=new int[n], v=new int[m+1]; //edge (i->j) >= u[i]+v[j]
int[] p=new int[m+1]; //p[j] = left match for right node j
Arrays.fill(p, -1);
for (int i=0; i<n; i++) {//find alternating path for node i
int j0=m; p[j0]=i;
int[] dist=new int[m+1], from=new int[m+1];
boolean[] seen=new boolean[m+1];
Arrays.fill(dist, Integer.MAX_VALUE);
Arrays.fill(from, -1);
while (p[j0]!=-1) {
seen[j0]=true; int i0=p[j0], delta=Integer.MAX_VALUE, j1=-1;
for (int j=0; j<m; j++) {//consider edges i0 -> everything
if (seen[j]) continue;
int candDist=a[i0][j]-u[i0]-v[j];
if (candDist<dist[j]) {dist[j]=candDist; from[j]=j0;}
if (dist[j]<delta) {delta=dist[j]; j1=j;}
}
//it costs at least delta to get somewhere else,
//subtract that from all distances and add cost to u, v, arrays
//from all done -> not done edges
for (int j=0; j<=m; j++) {
if (seen[j]) {u[p[j]]+=delta; v[j]-=delta;}
else dist[j]-=delta;
}
j0=j1;
}
//flip alternating path
while (j0!=m) { int j1=from[j0]; p[j0]=p[j1]; j0=j1; }
}
//sum of deltas is stored at v[m] coincidentally
int ans=-v[m];
rowMatchesWith=new int[n];
for (int j=0; j<m; j++) if (p[j]!=-1) rowMatchesWith[p[j]]=j;
return ans;
}
}
| Java | ["3\n5 2\n5 3\n7 0\n5 0\n4 0\n10 0\n2 1\n10 100\n50 10\n5 5\n1 5\n2 4\n3 3\n4 2\n5 1"] | 6 seconds | ["4\n2 1 -1 5\n1\n2\n5\n5 4 3 2 1"] | NoteConsider the example test.In the first test case, Polycarp can summon the minion $$$2$$$ with power level $$$7$$$, then summon the minion $$$1$$$, which will increase the power level of the previous minion by $$$3$$$, then destroy the minion $$$1$$$, and finally, summon the minion $$$5$$$. After this, Polycarp will have two minions with power levels of $$$10$$$.In the second test case, Polycarp can control only one minion, so he should choose the strongest of them and summon it.In the third test case, Polycarp is able to summon and control all five minions. | Java 8 | standard input | [
"dp",
"greedy",
"constructive algorithms",
"flows",
"graph matchings",
"sortings"
] | e764c6437ce11b6b0cee015bc8b8e0b5 | The first line contains one integer $$$T$$$ ($$$1 \le T \le 75$$$) — the number of test cases. Each test case begins with a line containing two integers $$$n$$$ and $$$k$$$ ($$$1 \le k \le n \le 75$$$) — the number of minions availible for summoning, and the maximum number of minions that can be controlled by Polycarp, respectively. Then $$$n$$$ lines follow, the $$$i$$$-th line contains $$$2$$$ integers $$$a_i$$$ and $$$b_i$$$ ($$$1 \le a_i \le 10^5$$$, $$$0 \le b_i \le 10^5$$$) — the parameters of the $$$i$$$-th minion. | 2,500 | For each test case print the optimal sequence of actions as follows: Firstly, print $$$m$$$ — the number of actions which Polycarp has to perform ($$$0 \le m \le 2n$$$). Then print $$$m$$$ integers $$$o_1$$$, $$$o_2$$$, ..., $$$o_m$$$, where $$$o_i$$$ denotes the $$$i$$$-th action as follows: if the $$$i$$$-th action is to summon the minion $$$x$$$, then $$$o_i = x$$$, and if the $$$i$$$-th action is to destroy the minion $$$x$$$, then $$$o_i = -x$$$. Each minion can be summoned at most once and cannot be destroyed before being summoned (and, obviously, cannot be destroyed more than once). The number of minions in Polycarp's army should be not greater than $$$k$$$ after every action. If there are multiple optimal sequences, print any of them. | standard output | |
PASSED | 7eb843eaae455c2f066cca59392f1415 | train_000.jsonl | 1589707200 | Polycarp plays a computer game. In this game, the players summon armies of magical minions, which then fight each other.Polycarp can summon $$$n$$$ different minions. The initial power level of the $$$i$$$-th minion is $$$a_i$$$, and when it is summoned, all previously summoned minions' power levels are increased by $$$b_i$$$. The minions can be summoned in any order.Unfortunately, Polycarp cannot have more than $$$k$$$ minions under his control. To get rid of unwanted minions after summoning them, he may destroy them. Each minion can be summoned (and destroyed) only once.Polycarp's goal is to summon the strongest possible army. Formally, he wants to maximize the sum of power levels of all minions under his control (those which are summoned and not destroyed).Help Polycarp to make up a plan of actions to summon the strongest possible army! | 512 megabytes | /*
ID: tommatt1
LANG: JAVA
TASK:
*/
import java.util.*;
import java.io.*;
public class cf1354f{
public static void main(String[] args)throws IOException {
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
BufferedReader bf=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer(bf.readLine());
int tt=Integer.parseInt(st.nextToken());
while(tt-->0) {
st=new StringTokenizer(bf.readLine());
int n=Integer.parseInt(st.nextToken());
int k=Integer.parseInt(st.nextToken());
pair[] mnn=new pair[n+1];
boolean[] inc=new boolean[n+1];
boolean[][] poss=new boolean[n+1][k+1];
int[][] dp=new int[n+1][k+1];
for(int i=1;i<=n;i++) {
st=new StringTokenizer(bf.readLine());
int a=Integer.parseInt(st.nextToken());
int b=Integer.parseInt(st.nextToken());
mnn[i]=new pair(a,b,i);
}
for(int i=0;i<=n;i++) {
Arrays.fill(dp[i], 1, k+1, Integer.MIN_VALUE/2);
}
Arrays.sort(mnn,1,n+1);
for(int i=1;i<=n;i++) {
for(int j=k;j>0;j--) {
dp[i][j]=Math.max(dp[i-1][j], dp[i-1][j-1]+mnn[i].a-mnn[i].b*(k-j));
poss[i][j]=(dp[i][j]^dp[i-1][j])==0?false:true;
}
}
for(int i=n,j=k;i>0;i--) {
if(poss[i][j]) {
inc[i]=true;
j--;
}
}
out.println(k+2*(n-k));
for(int i=1,j=0;i<=n;i++) {
if(j==k-1) {
for(int z=1;z<=n;z++) {
if(!inc[z]) {
out.print(mnn[z].c+" "+(-mnn[z].c)+" ");
}
}
j++;
}
if(inc[i]) {
out.print(mnn[i].c+" ");
j++;
}
}
out.println();
}
out.close();
}
static class pair implements Comparable<pair>{
int a,b,c;
public pair(int x,int y,int z) {
a=x;b=y;c=z;
}
public int compareTo(pair p) {
return b-p.b;
//if(a>p.a) return 1;
}
}
}
| Java | ["3\n5 2\n5 3\n7 0\n5 0\n4 0\n10 0\n2 1\n10 100\n50 10\n5 5\n1 5\n2 4\n3 3\n4 2\n5 1"] | 6 seconds | ["4\n2 1 -1 5\n1\n2\n5\n5 4 3 2 1"] | NoteConsider the example test.In the first test case, Polycarp can summon the minion $$$2$$$ with power level $$$7$$$, then summon the minion $$$1$$$, which will increase the power level of the previous minion by $$$3$$$, then destroy the minion $$$1$$$, and finally, summon the minion $$$5$$$. After this, Polycarp will have two minions with power levels of $$$10$$$.In the second test case, Polycarp can control only one minion, so he should choose the strongest of them and summon it.In the third test case, Polycarp is able to summon and control all five minions. | Java 8 | standard input | [
"dp",
"greedy",
"constructive algorithms",
"flows",
"graph matchings",
"sortings"
] | e764c6437ce11b6b0cee015bc8b8e0b5 | The first line contains one integer $$$T$$$ ($$$1 \le T \le 75$$$) — the number of test cases. Each test case begins with a line containing two integers $$$n$$$ and $$$k$$$ ($$$1 \le k \le n \le 75$$$) — the number of minions availible for summoning, and the maximum number of minions that can be controlled by Polycarp, respectively. Then $$$n$$$ lines follow, the $$$i$$$-th line contains $$$2$$$ integers $$$a_i$$$ and $$$b_i$$$ ($$$1 \le a_i \le 10^5$$$, $$$0 \le b_i \le 10^5$$$) — the parameters of the $$$i$$$-th minion. | 2,500 | For each test case print the optimal sequence of actions as follows: Firstly, print $$$m$$$ — the number of actions which Polycarp has to perform ($$$0 \le m \le 2n$$$). Then print $$$m$$$ integers $$$o_1$$$, $$$o_2$$$, ..., $$$o_m$$$, where $$$o_i$$$ denotes the $$$i$$$-th action as follows: if the $$$i$$$-th action is to summon the minion $$$x$$$, then $$$o_i = x$$$, and if the $$$i$$$-th action is to destroy the minion $$$x$$$, then $$$o_i = -x$$$. Each minion can be summoned at most once and cannot be destroyed before being summoned (and, obviously, cannot be destroyed more than once). The number of minions in Polycarp's army should be not greater than $$$k$$$ after every action. If there are multiple optimal sequences, print any of them. | standard output | |
PASSED | 4c39cf2fa2627aed43d0c72f204ff825 | train_000.jsonl | 1589707200 | Polycarp plays a computer game. In this game, the players summon armies of magical minions, which then fight each other.Polycarp can summon $$$n$$$ different minions. The initial power level of the $$$i$$$-th minion is $$$a_i$$$, and when it is summoned, all previously summoned minions' power levels are increased by $$$b_i$$$. The minions can be summoned in any order.Unfortunately, Polycarp cannot have more than $$$k$$$ minions under his control. To get rid of unwanted minions after summoning them, he may destroy them. Each minion can be summoned (and destroyed) only once.Polycarp's goal is to summon the strongest possible army. Formally, he wants to maximize the sum of power levels of all minions under his control (those which are summoned and not destroyed).Help Polycarp to make up a plan of actions to summon the strongest possible army! | 512 megabytes | import java.io.*;
import java.util.*;
public class Sol{
static class specInt {
int restore[];
int val;
public specInt(int val) {
this.val = val;
restore = new int[n+1];
}
}
public static int mxN = 76;
public static specInt dp[][] = new specInt[mxN][mxN];
public static int arr[][];
public static int n, k;
public static int restore[];
public static void main(String[] args) throws IOException{
FastIO sc = new FastIO(System.in);
PrintWriter out = new PrintWriter(System.out);
int t = sc.nextInt();
while(t-->0) {
n = sc.nextInt();
k = sc.nextInt();
arr = new int[n+1][3];
restore = new int[n+1];
for(int i=0; i<mxN; ++i) {
for(int j=0; j<mxN; ++j) {
dp[i][j] = new specInt(Integer.MIN_VALUE);
}
}
for(int i=1; i<=n; ++i) {
arr[i][0] = sc.nextInt();
arr[i][1] = sc.nextInt();
arr[i][2] = i;
}
ColumnSort(arr, 1);
dp[0][0].val = 0;
for(int i=1; i<=n; ++i) {
for(int j=0; j<=k; ++j) {
//if(dp[i-1][j].val!=Integer.MIN_VALUE) {
if(arr[i][1]*(k-1)+dp[i-1][j].val>dp[i][j].val) {
dp[i][j].val = arr[i][1]*(k-1)+dp[i-1][j].val;
for(int b=1; b<=n; ++b) {
dp[i][j].restore[b] = dp[i-1][j].restore[b];
}
dp[i][j].restore[i] = 0;
}
if(j<k&&arr[i][0] + arr[i][1]*j+dp[i-1][j].val>dp[i][j+1].val) {
dp[i][j+1].val = arr[i][0] + arr[i][1]*j+dp[i-1][j].val;
for(int b=1; b<=n; ++b) {
dp[i][j+1].restore[b] = dp[i-1][j].restore[b];
}
dp[i][j+1].restore[i] = 1;
}
//}
}
}
int idx = 0;
int num = 0;
for(int i=1; i<=n; ++i) {
if(dp[n][k].restore[i]==1) num++;
else num+=2;
}
out.println(num);
for(int i=1; i<=n; ++i) {
if(idx<k-1&&dp[n][k].restore[i]==1) {
out.print(arr[i][2] + " ");
idx++;
}
}
for(int i=1; i<=n; ++i) {
if(dp[n][k].restore[i]==0) {
out.print(arr[i][2] + " " + (-arr[i][2]) + " ");
}
}
for(int i=n; i>=0; --i) {
if(dp[n][k].restore[i]==1) {
out.println(arr[i][2]);
break;
}
}
out.println();
}
out.close();
}
public static void ColumnSort(int arr[][], int col) {
Arrays.sort(arr, new Comparator<int[]>() {
@Override
public int compare(int[] entry1,
int[] entry2) {
Integer a = entry1[col];
Integer b = entry2[col];
return a.compareTo(b);
}
});
}
static class FastIO {
// Is your Fast I/O being bad?
InputStream dis;
byte[] buffer = new byte[1 << 17];
int pointer = 0;
public FastIO(String fileName) throws IOException {
dis = new FileInputStream(fileName);
}
public FastIO(InputStream is) throws IOException {
dis = is;
}
int nextInt() throws IOException {
int ret = 0;
byte b;
do {
b = nextByte();
} while (b <= ' ');
boolean negative = false;
if (b == '-') {
negative = true;
b = nextByte();
}
while (b >= '0' && b <= '9') {
ret = 10 * ret + b - '0';
b = nextByte();
}
return (negative) ? -ret : ret;
}
long nextLong() throws IOException {
long ret = 0;
byte b;
do {
b = nextByte();
} while (b <= ' ');
boolean negative = false;
if (b == '-') {
negative = true;
b = nextByte();
}
while (b >= '0' && b <= '9') {
ret = 10 * ret + b - '0';
b = nextByte();
}
return (negative) ? -ret : ret;
}
byte nextByte() throws IOException {
if (pointer == buffer.length) {
dis.read(buffer, 0, buffer.length);
pointer = 0;
}
return buffer[pointer++];
}
String next() throws IOException {
StringBuffer ret = new StringBuffer();
byte b;
do {
b = nextByte();
} while (b <= ' ');
while (b > ' ') {
ret.appendCodePoint(b);
b = nextByte();
}
return ret.toString();
}
}
} | Java | ["3\n5 2\n5 3\n7 0\n5 0\n4 0\n10 0\n2 1\n10 100\n50 10\n5 5\n1 5\n2 4\n3 3\n4 2\n5 1"] | 6 seconds | ["4\n2 1 -1 5\n1\n2\n5\n5 4 3 2 1"] | NoteConsider the example test.In the first test case, Polycarp can summon the minion $$$2$$$ with power level $$$7$$$, then summon the minion $$$1$$$, which will increase the power level of the previous minion by $$$3$$$, then destroy the minion $$$1$$$, and finally, summon the minion $$$5$$$. After this, Polycarp will have two minions with power levels of $$$10$$$.In the second test case, Polycarp can control only one minion, so he should choose the strongest of them and summon it.In the third test case, Polycarp is able to summon and control all five minions. | Java 8 | standard input | [
"dp",
"greedy",
"constructive algorithms",
"flows",
"graph matchings",
"sortings"
] | e764c6437ce11b6b0cee015bc8b8e0b5 | The first line contains one integer $$$T$$$ ($$$1 \le T \le 75$$$) — the number of test cases. Each test case begins with a line containing two integers $$$n$$$ and $$$k$$$ ($$$1 \le k \le n \le 75$$$) — the number of minions availible for summoning, and the maximum number of minions that can be controlled by Polycarp, respectively. Then $$$n$$$ lines follow, the $$$i$$$-th line contains $$$2$$$ integers $$$a_i$$$ and $$$b_i$$$ ($$$1 \le a_i \le 10^5$$$, $$$0 \le b_i \le 10^5$$$) — the parameters of the $$$i$$$-th minion. | 2,500 | For each test case print the optimal sequence of actions as follows: Firstly, print $$$m$$$ — the number of actions which Polycarp has to perform ($$$0 \le m \le 2n$$$). Then print $$$m$$$ integers $$$o_1$$$, $$$o_2$$$, ..., $$$o_m$$$, where $$$o_i$$$ denotes the $$$i$$$-th action as follows: if the $$$i$$$-th action is to summon the minion $$$x$$$, then $$$o_i = x$$$, and if the $$$i$$$-th action is to destroy the minion $$$x$$$, then $$$o_i = -x$$$. Each minion can be summoned at most once and cannot be destroyed before being summoned (and, obviously, cannot be destroyed more than once). The number of minions in Polycarp's army should be not greater than $$$k$$$ after every action. If there are multiple optimal sequences, print any of them. | standard output | |
PASSED | 0e8786d08b4807490078fcad43033412 | train_000.jsonl | 1589707200 | Polycarp plays a computer game. In this game, the players summon armies of magical minions, which then fight each other.Polycarp can summon $$$n$$$ different minions. The initial power level of the $$$i$$$-th minion is $$$a_i$$$, and when it is summoned, all previously summoned minions' power levels are increased by $$$b_i$$$. The minions can be summoned in any order.Unfortunately, Polycarp cannot have more than $$$k$$$ minions under his control. To get rid of unwanted minions after summoning them, he may destroy them. Each minion can be summoned (and destroyed) only once.Polycarp's goal is to summon the strongest possible army. Formally, he wants to maximize the sum of power levels of all minions under his control (those which are summoned and not destroyed).Help Polycarp to make up a plan of actions to summon the strongest possible army! | 512 megabytes | import java.io.*;
import java.util.*;
public class Main {
static final long MOD = 1000000007L;
static final int INF = 50000000;
static final int NINF = -500000000;
static ArrayDeque<int[]>[] graph;
public static void main(String[] args) {
FastScanner sc = new FastScanner();
PrintWriter pw = new PrintWriter(System.out);
int Q = sc.ni();
for (int q = 0; q < Q; q++) {
int N = sc.ni();
int K = sc.ni();
int[][] nums = new int[N+1][3]; //A,B,i
Arrays.fill(nums[0],-1);
for (int i = 1; i <= N; i++)
nums[i] = new int[] {sc.ni(),sc.ni(),i};
sort(nums);
int[][] dp = new int[N+1][K+1]; //put minion i in position j
for (int i = 0; i <= N; i++)
Arrays.fill(dp[i], NINF);
dp[0][0] = 0;
int[][] from = new int[N+1][K+1]; //equal to k or k-1
for (int i = 1; i <= N; i++) {
for (int j = 0; j <= Math.min(i, K); j++) {
int v1 = 0;
if (j > 0)
v1 = dp[i-1][j-1]+nums[i][0]+(j-1)*nums[i][1]; //put this minion in the final roster
int v2 = dp[i-1][j]+(K-1)*nums[i][1]; //this is a throwaway minion
if (v1 > v2) {
dp[i][j] = v1;
from[i][j] = j-1;
} else {
dp[i][j] = v2;
from[i][j] = j;
}
}
}
//pw.println(Arrays.deepToString(nums));
//pw.println(Arrays.deepToString(dp));
//pw.println(Arrays.deepToString(from));
ArrayList<Integer> survived = new ArrayList<Integer>();
ArrayList<Integer> killed = new ArrayList<Integer>();
int pos = K;
for (int i = N; i >= 1; i--) {
if (from[i][pos]==pos) {
killed.add(nums[i][2]);
} else {
survived.add(nums[i][2]);
}
pos = from[i][pos];
}
Collections.reverse(survived);
ArrayList<Integer> ans = new ArrayList<Integer>();
for (int i = 0; i < survived.size()-1; i++) {
ans.add(survived.get(i));
}
for (int i = 0; i < killed.size(); i++) {
int idx = killed.get(i);
ans.add(idx);
ans.add(0-idx);
}
ans.add(survived.get(survived.size()-1));
pw.println(ans.size());
for (int a: ans)
pw.print(a + " ");
pw.println();
}
pw.close();
}
public static void sort(int[][] arr) {
//Sort an array (immune to quicksort TLE)
Random rgen = new Random();
for (int i = 0; i < arr.length; i++) {
int randomPosition = rgen.nextInt(arr.length);
int[] temp = arr[i];
arr[i] = arr[randomPosition];
arr[randomPosition] = temp;
}
Arrays.sort(arr, new Comparator<int[]>() {
@Override
public int compare(int[] arr1, int[] arr2) {
return arr1[1]-arr2[1];
//Ascending order.
}
});
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int ni() {
return Integer.parseInt(next());
}
long nl() {
return Long.parseLong(next());
}
double nd() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
} | Java | ["3\n5 2\n5 3\n7 0\n5 0\n4 0\n10 0\n2 1\n10 100\n50 10\n5 5\n1 5\n2 4\n3 3\n4 2\n5 1"] | 6 seconds | ["4\n2 1 -1 5\n1\n2\n5\n5 4 3 2 1"] | NoteConsider the example test.In the first test case, Polycarp can summon the minion $$$2$$$ with power level $$$7$$$, then summon the minion $$$1$$$, which will increase the power level of the previous minion by $$$3$$$, then destroy the minion $$$1$$$, and finally, summon the minion $$$5$$$. After this, Polycarp will have two minions with power levels of $$$10$$$.In the second test case, Polycarp can control only one minion, so he should choose the strongest of them and summon it.In the third test case, Polycarp is able to summon and control all five minions. | Java 8 | standard input | [
"dp",
"greedy",
"constructive algorithms",
"flows",
"graph matchings",
"sortings"
] | e764c6437ce11b6b0cee015bc8b8e0b5 | The first line contains one integer $$$T$$$ ($$$1 \le T \le 75$$$) — the number of test cases. Each test case begins with a line containing two integers $$$n$$$ and $$$k$$$ ($$$1 \le k \le n \le 75$$$) — the number of minions availible for summoning, and the maximum number of minions that can be controlled by Polycarp, respectively. Then $$$n$$$ lines follow, the $$$i$$$-th line contains $$$2$$$ integers $$$a_i$$$ and $$$b_i$$$ ($$$1 \le a_i \le 10^5$$$, $$$0 \le b_i \le 10^5$$$) — the parameters of the $$$i$$$-th minion. | 2,500 | For each test case print the optimal sequence of actions as follows: Firstly, print $$$m$$$ — the number of actions which Polycarp has to perform ($$$0 \le m \le 2n$$$). Then print $$$m$$$ integers $$$o_1$$$, $$$o_2$$$, ..., $$$o_m$$$, where $$$o_i$$$ denotes the $$$i$$$-th action as follows: if the $$$i$$$-th action is to summon the minion $$$x$$$, then $$$o_i = x$$$, and if the $$$i$$$-th action is to destroy the minion $$$x$$$, then $$$o_i = -x$$$. Each minion can be summoned at most once and cannot be destroyed before being summoned (and, obviously, cannot be destroyed more than once). The number of minions in Polycarp's army should be not greater than $$$k$$$ after every action. If there are multiple optimal sequences, print any of them. | standard output | |
PASSED | 1cf3fe9378dd20929a90fd41b01e6e4e | train_000.jsonl | 1589707200 | Polycarp plays a computer game. In this game, the players summon armies of magical minions, which then fight each other.Polycarp can summon $$$n$$$ different minions. The initial power level of the $$$i$$$-th minion is $$$a_i$$$, and when it is summoned, all previously summoned minions' power levels are increased by $$$b_i$$$. The minions can be summoned in any order.Unfortunately, Polycarp cannot have more than $$$k$$$ minions under his control. To get rid of unwanted minions after summoning them, he may destroy them. Each minion can be summoned (and destroyed) only once.Polycarp's goal is to summon the strongest possible army. Formally, he wants to maximize the sum of power levels of all minions under his control (those which are summoned and not destroyed).Help Polycarp to make up a plan of actions to summon the strongest possible army! | 512 megabytes | /*
If you want to aim high, aim high
Don't let that studying and grades consume you
Just live life young
******************************
If I'm the sun, you're the moon
Because when I go up, you go down
*******************************
I'm working for the day I will surpass you
https://www.a2oj.com/Ladder16.html
*/
import java.util.*;
import java.io.*;
import java.math.*;
public class x1354F2
{
public static void main(String omkar[]) throws Exception
{
BufferedReader infile = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(infile.readLine());
int T = Integer.parseInt(st.nextToken());
StringBuilder sb = new StringBuilder();
while(T-->0)
{
st = new StringTokenizer(infile.readLine());
int N = Integer.parseInt(st.nextToken());
int K = Integer.parseInt(st.nextToken());
Minion[] arr = new Minion[N];
for(int i=0; i < N; i++)
{
st = new StringTokenizer(infile.readLine());
int a = Integer.parseInt(st.nextToken());
int b = Integer.parseInt(st.nextToken());
arr[i] = new Minion(a, b, i);
}
Arrays.sort(arr);
Node[][] par = new Node[N][K+1];
long[][] dp = new long[N][K+1];
for(int i=0; i < N; i++)
Arrays.fill(dp[i], -1);
dp[0][1] = arr[0].a;
par[0][1] = new Node(-1, 420);
if(N != K)
{
dp[0][0] = arr[0].b*(K-1);
par[0][0] = new Node(-1, 420);
}
for(int i=1; i < N; i++)
for(int k=0; k <= K; k++)
{
if(i+1 < k)
break;
int boof = i-k+1;
long max = -1L;
if(i >= k && dp[i-1][k] != -1)
max = dp[i-1][k]+arr[i].b*(K-1);
if(k > 0 && dp[i-1][k-1] != -1)
max = Math.max(max, dp[i-1][k-1]+arr[i].a+arr[i].b*(k-1));
dp[i][k] = max;
if(max == dp[i-1][k]+arr[i].b*(K-1) && dp[i-1][k] != -1)
par[i][k] = new Node(i-1, k);
else if(max != -1)
par[i][k] = new Node(i-1, k-1);
}
//restore
ArrayList<Integer> ls = new ArrayList<Integer>();
HashSet<Integer> set = new HashSet<Integer>();
for(int i=0; i < N; i++)
set.add(i);
Node curr = new Node(N-1, K);
while(curr.dex > 0)
{
int i = curr.dex;
int k = curr.cnt;
Node next = par[i][k];
if(k == next.cnt+1)
{
ls.add(arr[i].dex);
set.remove(arr[i].dex);
}
curr = next;
}
if(curr.cnt == 1)
{
ls.add(arr[0].dex);
set.remove(arr[0].dex);
}
Collections.reverse(ls);
ArrayList<Integer> res = new ArrayList<Integer>();
for(int i=0; i < ls.size()-1; i++)
res.add(ls.get(i)+1);
for(int x: set)
{
res.add(x+1);
res.add(-x-1);
}
res.add(ls.get(ls.size()-1)+1);
sb.append(res.size()+"\n");
for(int x: res)
sb.append(x+" ");
sb.append("\n");
}
System.out.print(sb);
}
}
class Minion implements Comparable<Minion>
{
public long a;
public long b;
public int dex;
public Minion(long x, long y, int d)
{
a = x;
b = y;
dex = d;
}
public int compareTo(Minion oth)
{
if(b == oth.b)
return (int)(oth.a-a);
return (int)(b-oth.b);
}
}
class Node
{
public int dex;
public int cnt;
public Node(int a, int c)
{
dex = a;
cnt = c;
}
} | Java | ["3\n5 2\n5 3\n7 0\n5 0\n4 0\n10 0\n2 1\n10 100\n50 10\n5 5\n1 5\n2 4\n3 3\n4 2\n5 1"] | 6 seconds | ["4\n2 1 -1 5\n1\n2\n5\n5 4 3 2 1"] | NoteConsider the example test.In the first test case, Polycarp can summon the minion $$$2$$$ with power level $$$7$$$, then summon the minion $$$1$$$, which will increase the power level of the previous minion by $$$3$$$, then destroy the minion $$$1$$$, and finally, summon the minion $$$5$$$. After this, Polycarp will have two minions with power levels of $$$10$$$.In the second test case, Polycarp can control only one minion, so he should choose the strongest of them and summon it.In the third test case, Polycarp is able to summon and control all five minions. | Java 8 | standard input | [
"dp",
"greedy",
"constructive algorithms",
"flows",
"graph matchings",
"sortings"
] | e764c6437ce11b6b0cee015bc8b8e0b5 | The first line contains one integer $$$T$$$ ($$$1 \le T \le 75$$$) — the number of test cases. Each test case begins with a line containing two integers $$$n$$$ and $$$k$$$ ($$$1 \le k \le n \le 75$$$) — the number of minions availible for summoning, and the maximum number of minions that can be controlled by Polycarp, respectively. Then $$$n$$$ lines follow, the $$$i$$$-th line contains $$$2$$$ integers $$$a_i$$$ and $$$b_i$$$ ($$$1 \le a_i \le 10^5$$$, $$$0 \le b_i \le 10^5$$$) — the parameters of the $$$i$$$-th minion. | 2,500 | For each test case print the optimal sequence of actions as follows: Firstly, print $$$m$$$ — the number of actions which Polycarp has to perform ($$$0 \le m \le 2n$$$). Then print $$$m$$$ integers $$$o_1$$$, $$$o_2$$$, ..., $$$o_m$$$, where $$$o_i$$$ denotes the $$$i$$$-th action as follows: if the $$$i$$$-th action is to summon the minion $$$x$$$, then $$$o_i = x$$$, and if the $$$i$$$-th action is to destroy the minion $$$x$$$, then $$$o_i = -x$$$. Each minion can be summoned at most once and cannot be destroyed before being summoned (and, obviously, cannot be destroyed more than once). The number of minions in Polycarp's army should be not greater than $$$k$$$ after every action. If there are multiple optimal sequences, print any of them. | standard output | |
PASSED | 032e7050bac3b599d1e62d55ded33be6 | train_000.jsonl | 1589707200 | Polycarp plays a computer game. In this game, the players summon armies of magical minions, which then fight each other.Polycarp can summon $$$n$$$ different minions. The initial power level of the $$$i$$$-th minion is $$$a_i$$$, and when it is summoned, all previously summoned minions' power levels are increased by $$$b_i$$$. The minions can be summoned in any order.Unfortunately, Polycarp cannot have more than $$$k$$$ minions under his control. To get rid of unwanted minions after summoning them, he may destroy them. Each minion can be summoned (and destroyed) only once.Polycarp's goal is to summon the strongest possible army. Formally, he wants to maximize the sum of power levels of all minions under his control (those which are summoned and not destroyed).Help Polycarp to make up a plan of actions to summon the strongest possible army! | 512 megabytes | import java.io.*;
import java.text.*;
import java.util.*;
import java.math.*;
public class template {
public static void main(String[] args) throws Exception {
new template().run();
}
public void run() throws Exception {
FastScanner f = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
int asdf = f.nextInt();
while(asdf-->0) {
int n = f.nextInt(), k = f.nextInt();
Pair[] arr = new Pair[n];
for(int i = 0; i < n; i++) arr[i] = new Pair(f.nextInt(), f.nextInt(),i);
Arrays.sort(arr);
boolean[][] use = new boolean[n+1][k+1];
int[][] dp = new int[n+1][k+1];
for(int[] i : dp) Arrays.fill(i, -2147483648);
dp[0][0] = 0;
for(int i = 0; i < n; i++)
for(int j = 0; j <= k; j++) {
if(dp[i+1][j] < dp[i][j]+(k-1)*(arr[i].b)) {
dp[i+1][j] = dp[i][j]+(k-1)*(arr[i].b);
use[i+1][j] = false;
}
if(j != k && dp[i+1][j+1] < dp[i][j]+j*arr[i].b+arr[i].a) {
dp[i+1][j+1] = dp[i][j]+j*arr[i].b+arr[i].a;
use[i+1][j+1] = true;
}
}
int j = k;
boolean[] del = new boolean[n];
for(int i = n; i > 0; i--) {
if(use[i][j])
j--;
else del[i-1] = true;
}
out.println(2*n-k);
int last = -1;
for(int i = 0; i < n; i++)
if(!del[i]) {
if(last != -1) out.print(last + " ");
last = arr[i].i+1;
}
for(int i = 0; i < n; i++)
if(del[i]) out.print(arr[i].i+1+" " + -(arr[i].i+1) + " ");
out.println(last);
}
out.flush();
}
class Pair implements Comparable<Pair> {
int a, b, i;
public Pair(int a, int b, int i) {
this.a = a;
this.b = b;
this.i = i;
}
public int compareTo(Pair p) {
return Integer.compare(b, p.b);
}
public String toString() {
return a + "," + b;
}
}
static class FastScanner {
public BufferedReader reader;
public StringTokenizer tokenizer;
public FastScanner() {
reader = new BufferedReader(new InputStreamReader(System.in), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
try {
return reader.readLine();
} catch(IOException e) {
throw new RuntimeException(e);
}
}
}
}
| Java | ["3\n5 2\n5 3\n7 0\n5 0\n4 0\n10 0\n2 1\n10 100\n50 10\n5 5\n1 5\n2 4\n3 3\n4 2\n5 1"] | 6 seconds | ["4\n2 1 -1 5\n1\n2\n5\n5 4 3 2 1"] | NoteConsider the example test.In the first test case, Polycarp can summon the minion $$$2$$$ with power level $$$7$$$, then summon the minion $$$1$$$, which will increase the power level of the previous minion by $$$3$$$, then destroy the minion $$$1$$$, and finally, summon the minion $$$5$$$. After this, Polycarp will have two minions with power levels of $$$10$$$.In the second test case, Polycarp can control only one minion, so he should choose the strongest of them and summon it.In the third test case, Polycarp is able to summon and control all five minions. | Java 8 | standard input | [
"dp",
"greedy",
"constructive algorithms",
"flows",
"graph matchings",
"sortings"
] | e764c6437ce11b6b0cee015bc8b8e0b5 | The first line contains one integer $$$T$$$ ($$$1 \le T \le 75$$$) — the number of test cases. Each test case begins with a line containing two integers $$$n$$$ and $$$k$$$ ($$$1 \le k \le n \le 75$$$) — the number of minions availible for summoning, and the maximum number of minions that can be controlled by Polycarp, respectively. Then $$$n$$$ lines follow, the $$$i$$$-th line contains $$$2$$$ integers $$$a_i$$$ and $$$b_i$$$ ($$$1 \le a_i \le 10^5$$$, $$$0 \le b_i \le 10^5$$$) — the parameters of the $$$i$$$-th minion. | 2,500 | For each test case print the optimal sequence of actions as follows: Firstly, print $$$m$$$ — the number of actions which Polycarp has to perform ($$$0 \le m \le 2n$$$). Then print $$$m$$$ integers $$$o_1$$$, $$$o_2$$$, ..., $$$o_m$$$, where $$$o_i$$$ denotes the $$$i$$$-th action as follows: if the $$$i$$$-th action is to summon the minion $$$x$$$, then $$$o_i = x$$$, and if the $$$i$$$-th action is to destroy the minion $$$x$$$, then $$$o_i = -x$$$. Each minion can be summoned at most once and cannot be destroyed before being summoned (and, obviously, cannot be destroyed more than once). The number of minions in Polycarp's army should be not greater than $$$k$$$ after every action. If there are multiple optimal sequences, print any of them. | standard output | |
PASSED | 81533ecb9e3f3530f78bf371bb4c5810 | train_000.jsonl | 1589707200 | Polycarp plays a computer game. In this game, the players summon armies of magical minions, which then fight each other.Polycarp can summon $$$n$$$ different minions. The initial power level of the $$$i$$$-th minion is $$$a_i$$$, and when it is summoned, all previously summoned minions' power levels are increased by $$$b_i$$$. The minions can be summoned in any order.Unfortunately, Polycarp cannot have more than $$$k$$$ minions under his control. To get rid of unwanted minions after summoning them, he may destroy them. Each minion can be summoned (and destroyed) only once.Polycarp's goal is to summon the strongest possible army. Formally, he wants to maximize the sum of power levels of all minions under his control (those which are summoned and not destroyed).Help Polycarp to make up a plan of actions to summon the strongest possible army! | 512 megabytes | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.stream.IntStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.stream.Collectors;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.Stream;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.Comparator;
import java.util.Collections;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author out_of_the_box
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
FSummoningMinions solver = new FSummoningMinions();
int testCount = Integer.parseInt(in.next());
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
static class FSummoningMinions {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
int k = in.nextInt();
int[] a = new int[n];
int[] b = new int[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
b[i] = in.nextInt();
}
int[][] dp = new int[n][k + 1];
int[] indexes = new int[n];
for (int i = 0; i < n; i++) {
indexes[i] = i;
}
indexes = Arrays.stream(indexes).boxed().sorted(Comparator.comparingInt(ind -> b[ind])).mapToInt(i -> i)
.toArray();
boolean[][] select = new boolean[n][k + 1];
dp[0][0] = (k - 1) * b[indexes[0]];
dp[0][1] = a[indexes[0]];
select[0][1] = true;
for (int i = 1; i < n; i++) {
dp[i][0] = dp[i - 1][0] + (k - 1) * (b[indexes[i]]);
}
for (int i = 1; i < n; i++) {
int maxJ = Math.min(i + 1, k);
for (int j = 1; j <= maxJ; j++) {
int first = dp[i - 1][j - 1] + a[indexes[i]] + (j - 1) * b[indexes[i]];
int second = (j <= i) ? dp[i - 1][j] + (k - 1) * b[indexes[i]] : (-1);
if (first >= second) {
dp[i][j] = first;
select[i][j] = true;
} else {
dp[i][j] = second;
}
}
}
List<Integer> selected = new ArrayList<>();
boolean[] selectedFlag = new boolean[n];
int tbs = k;
for (int i = n - 1; i >= 0; i--) {
if (tbs == 0) break;
if (select[i][tbs]) {
selected.add(indexes[i]);
selectedFlag[indexes[i]] = true;
tbs--;
}
}
List<Integer> listA = Arrays.stream(a).boxed().collect(Collectors.toList());
List<Integer> listB = Arrays.stream(b).boxed().collect(Collectors.toList());
String message =
String.format("Selected size mismatch. size = %d, k = %d, n = %d, a = %s, b = %s", selected.size(),
k, n, listA, listB);
MiscUtility.assertion(selected.size() == k, message);
Collections.reverse(selected);
int m = k + (n - k) * 2;
out.println(m);
for (int i = 0; i < (k - 1); i++) {
out.print((selected.get(i) + 1) + " ");
}
for (int i = 0; i < n; i++) {
if (!selectedFlag[i]) {
out.print((i + 1) + " ");
out.print(-(i + 1) + " ");
}
}
out.print(selected.get(k - 1) + 1);
out.println();
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void println() {
writer.println();
}
public void close() {
writer.close();
}
public void print(int i) {
writer.print(i);
}
public void println(int i) {
writer.println(i);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String nextString() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
if (Character.isValidCodePoint(c)) {
res.appendCodePoint(c);
}
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return nextString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class MiscUtility {
public static void assertion(boolean condition, String message) {
if (!condition) {
throw new RuntimeException("Assertion failed. " + message);
}
}
}
}
| Java | ["3\n5 2\n5 3\n7 0\n5 0\n4 0\n10 0\n2 1\n10 100\n50 10\n5 5\n1 5\n2 4\n3 3\n4 2\n5 1"] | 6 seconds | ["4\n2 1 -1 5\n1\n2\n5\n5 4 3 2 1"] | NoteConsider the example test.In the first test case, Polycarp can summon the minion $$$2$$$ with power level $$$7$$$, then summon the minion $$$1$$$, which will increase the power level of the previous minion by $$$3$$$, then destroy the minion $$$1$$$, and finally, summon the minion $$$5$$$. After this, Polycarp will have two minions with power levels of $$$10$$$.In the second test case, Polycarp can control only one minion, so he should choose the strongest of them and summon it.In the third test case, Polycarp is able to summon and control all five minions. | Java 8 | standard input | [
"dp",
"greedy",
"constructive algorithms",
"flows",
"graph matchings",
"sortings"
] | e764c6437ce11b6b0cee015bc8b8e0b5 | The first line contains one integer $$$T$$$ ($$$1 \le T \le 75$$$) — the number of test cases. Each test case begins with a line containing two integers $$$n$$$ and $$$k$$$ ($$$1 \le k \le n \le 75$$$) — the number of minions availible for summoning, and the maximum number of minions that can be controlled by Polycarp, respectively. Then $$$n$$$ lines follow, the $$$i$$$-th line contains $$$2$$$ integers $$$a_i$$$ and $$$b_i$$$ ($$$1 \le a_i \le 10^5$$$, $$$0 \le b_i \le 10^5$$$) — the parameters of the $$$i$$$-th minion. | 2,500 | For each test case print the optimal sequence of actions as follows: Firstly, print $$$m$$$ — the number of actions which Polycarp has to perform ($$$0 \le m \le 2n$$$). Then print $$$m$$$ integers $$$o_1$$$, $$$o_2$$$, ..., $$$o_m$$$, where $$$o_i$$$ denotes the $$$i$$$-th action as follows: if the $$$i$$$-th action is to summon the minion $$$x$$$, then $$$o_i = x$$$, and if the $$$i$$$-th action is to destroy the minion $$$x$$$, then $$$o_i = -x$$$. Each minion can be summoned at most once and cannot be destroyed before being summoned (and, obviously, cannot be destroyed more than once). The number of minions in Polycarp's army should be not greater than $$$k$$$ after every action. If there are multiple optimal sequences, print any of them. | standard output | |
PASSED | 986ed672e3c2aee1b11e95a6176321dc | train_000.jsonl | 1573914900 | You're given two arrays $$$a[1 \dots n]$$$ and $$$b[1 \dots n]$$$, both of the same length $$$n$$$.In order to perform a push operation, you have to choose three integers $$$l, r, k$$$ satisfying $$$1 \le l \le r \le n$$$ and $$$k > 0$$$. Then, you will add $$$k$$$ to elements $$$a_l, a_{l+1}, \ldots, a_r$$$.For example, if $$$a = [3, 7, 1, 4, 1, 2]$$$ and you choose $$$(l = 3, r = 5, k = 2)$$$, the array $$$a$$$ will become $$$[3, 7, \underline{3, 6, 3}, 2]$$$.You can do this operation at most once. Can you make array $$$a$$$ equal to array $$$b$$$?(We consider that $$$a = b$$$ if and only if, for every $$$1 \le i \le n$$$, $$$a_i = b_i$$$) | 256 megabytes | import java.io.*;
import java.util.*;
public class Main{
static int mod = (int)(Math.pow(10, 9) + 7);
public static void main(String[] args) {
MyScanner sc = new MyScanner();
out = new PrintWriter(new BufferedOutputStream(System.out));
int t= sc.nextInt();
while (t-->0) {
int n = sc.nextInt();
int[] a = new int[n];
int[] b = new int[n];
int[] d = new int[n];
for (int i= 0 ; i < n; i++){
a[i] = sc.nextInt();
}
for (int i= 0 ; i < n; i++){
b[i] = sc.nextInt();
}
Set<Integer> nums = new HashSet<Integer>();
boolean works = true;
for (int i= 0 ; i < n; i++){
d[i] = b[i] - a[i];
// out.println(d[i] + " " + t);
if (d[i] == 0) {
continue;
}
else if (d[i] < 0){
works = false;
break;
}
else{
// out.println(d[i] + " " + t);
nums.add(d[i]);
}
}
// for (int i: nums){
// out.print(i + " ");
// }
// out.println();
if (nums.size() >= 2) works = false;
if (works && nums.size() == 1){
//out.println(t);
List<Integer> nu = new ArrayList<Integer>();
nu.addAll(nums);
int k = nu.get(0);
int streak = 0;
int total = 0;
int maxStreak = 0;
for (int i = 0; i < n; i++){
if (d[i] == k){
streak++;
total++;
}
else{
maxStreak = Integer.max(streak, maxStreak);
streak = 0;
}
}
maxStreak = Integer.max(streak, maxStreak);
//out.println(maxStreak + " " +total + " " + t);
if (maxStreak != total) works = false;
}
if (!works){
out.println("nO");
}
else out.println("yEs");
}
out.close();
}
static long pow(long a, long N) {
if (N == 0) return 1;
else if (N == 1) return a;
else {
long R = pow(a,N/2);
if (N % 2 == 0) {
return R*R;
}
else {
return R*R*a;
}
}
}
static long powMod(long a, long N) {
if (N == 0) return 1;
else if (N == 1) return a % mod;
else {
long R = powMod(a,N/2) % mod;
R *= R % mod;
if (N % 2 == 0) {
R *= a % mod;
}
return R % mod;
}
}
static void mergeSort(int[] A){ // low to hi sort, single array only
int n = A.length;
if (n < 2) return;
int[] l = new int[n/2];
int[] r = new int[n - n/2];
for (int i = 0; i < n/2; i++){
l[i] = A[i];
}
for (int j = n/2; j < n; j++){
r[j-n/2] = A[j];
}
mergeSort(l);
mergeSort(r);
merge(l, r, A);
}
static void merge(int[] l, int[] r, int[] a){
int i = 0, j = 0, k = 0;
while (i < l.length && j < r.length && k < a.length){
if (l[i] < r[j]){
a[k] = l[i];
i++;
}
else{
a[k] = r[j];
j++;
}
k++;
}
while (i < l.length){
a[k] = l[i];
i++;
k++;
}
while (j < r.length){
a[k] = r[j];
j++;
k++;
}
}
//-----------PrintWriter for faster output---------------------------------
public static PrintWriter out;
//-----------MyScanner class for faster input----------
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
//--------------------------------------------------------
}
| Java | ["4\n6\n3 7 1 4 1 2\n3 7 3 6 3 2\n5\n1 1 1 1 1\n1 2 1 3 1\n2\n42 42\n42 42\n1\n7\n6"] | 1 second | ["YES\nNO\nYES\nNO"] | NoteThe first test case is described in the statement: we can perform a push operation with parameters $$$(l=3, r=5, k=2)$$$ to make $$$a$$$ equal to $$$b$$$.In the second test case, we would need at least two operations to make $$$a$$$ equal to $$$b$$$.In the third test case, arrays $$$a$$$ and $$$b$$$ are already equal.In the fourth test case, it's impossible to make $$$a$$$ equal to $$$b$$$, because the integer $$$k$$$ has to be positive. | Java 8 | standard input | [
"implementation"
] | 0e0ef011ebe7198b7189fce562b7d6c1 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 20$$$) — the number of test cases in the input. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 100\ 000$$$) — the number of elements in each array. The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 1000$$$). The third line of each test case contains $$$n$$$ integers $$$b_1, b_2, \ldots, b_n$$$ ($$$1 \le b_i \le 1000$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$10^5$$$. | 1,000 | For each test case, output one line containing "YES" if it's possible to make arrays $$$a$$$ and $$$b$$$ equal by performing at most once the described operation or "NO" if it's impossible. You can print each letter in any case (upper or lower). | standard output | |
PASSED | f588ffde6907de66c7fabda53692b587 | train_000.jsonl | 1573914900 | You're given two arrays $$$a[1 \dots n]$$$ and $$$b[1 \dots n]$$$, both of the same length $$$n$$$.In order to perform a push operation, you have to choose three integers $$$l, r, k$$$ satisfying $$$1 \le l \le r \le n$$$ and $$$k > 0$$$. Then, you will add $$$k$$$ to elements $$$a_l, a_{l+1}, \ldots, a_r$$$.For example, if $$$a = [3, 7, 1, 4, 1, 2]$$$ and you choose $$$(l = 3, r = 5, k = 2)$$$, the array $$$a$$$ will become $$$[3, 7, \underline{3, 6, 3}, 2]$$$.You can do this operation at most once. Can you make array $$$a$$$ equal to array $$$b$$$?(We consider that $$$a = b$$$ if and only if, for every $$$1 \le i \le n$$$, $$$a_i = b_i$$$) | 256 megabytes |
import java.io.*;
import java.util.*;
public class A {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
//StringBuilder sb=new StringBuilder();
//StringTokenizer st=new StringTokenizer(br.readLine());
int q = Integer.parseInt(br.readLine());
int k =1;
w:while (q-- > 0) {
int n = Integer.parseInt(br.readLine());
int a[] =new int[n];
int b[] =new int[n];
StringTokenizer st=new StringTokenizer(br.readLine());
for(int i=0 ;i<n;i++){
a[i]=Integer.parseInt(st.nextToken());
}
st=new StringTokenizer(br.readLine());
for(int i=0 ;i<n;i++){
b[i]=Integer.parseInt(st.nextToken());
}
int c[]=new int[n];
for(int i=0 ;i<n;i++){
c[i]=b[i]-a[i];
}
//out.println(Arrays.toString(c));
for(int i=0 ;i<n;i++){
if(c[i]<0){out.println("NO");continue w;}
}
int g=0;
HashSet<Integer> hs=new HashSet<>();
for(int i=0 ;i<c.length;i++){
if(c[i]>0){hs.add(c[i]);}
}
if(hs.size()>1){out.println("NO");continue;}
for(int i=0 ;i<c.length-1;i++){
if(c[i]!=c[i+1]){g++;}
}
if(g==0){out.println("YES");continue;}
if(b[0]!=a[0]||(b[c.length-1]!=a[c.length-1])){
if(g==1){out.println("YES");continue;}
else
{
out.println("NO");continue;
}
}
if(g==2){out.println("YES");continue;}
else
{
out.println("NO");continue;
}
//out.println(Arrays.toString(c));
}//out.println();
out.close();
}
} | Java | ["4\n6\n3 7 1 4 1 2\n3 7 3 6 3 2\n5\n1 1 1 1 1\n1 2 1 3 1\n2\n42 42\n42 42\n1\n7\n6"] | 1 second | ["YES\nNO\nYES\nNO"] | NoteThe first test case is described in the statement: we can perform a push operation with parameters $$$(l=3, r=5, k=2)$$$ to make $$$a$$$ equal to $$$b$$$.In the second test case, we would need at least two operations to make $$$a$$$ equal to $$$b$$$.In the third test case, arrays $$$a$$$ and $$$b$$$ are already equal.In the fourth test case, it's impossible to make $$$a$$$ equal to $$$b$$$, because the integer $$$k$$$ has to be positive. | Java 8 | standard input | [
"implementation"
] | 0e0ef011ebe7198b7189fce562b7d6c1 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 20$$$) — the number of test cases in the input. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 100\ 000$$$) — the number of elements in each array. The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 1000$$$). The third line of each test case contains $$$n$$$ integers $$$b_1, b_2, \ldots, b_n$$$ ($$$1 \le b_i \le 1000$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$10^5$$$. | 1,000 | For each test case, output one line containing "YES" if it's possible to make arrays $$$a$$$ and $$$b$$$ equal by performing at most once the described operation or "NO" if it's impossible. You can print each letter in any case (upper or lower). | standard output | |
PASSED | 35be249d299803fd2cef5d64876e6b86 | train_000.jsonl | 1573914900 | You're given two arrays $$$a[1 \dots n]$$$ and $$$b[1 \dots n]$$$, both of the same length $$$n$$$.In order to perform a push operation, you have to choose three integers $$$l, r, k$$$ satisfying $$$1 \le l \le r \le n$$$ and $$$k > 0$$$. Then, you will add $$$k$$$ to elements $$$a_l, a_{l+1}, \ldots, a_r$$$.For example, if $$$a = [3, 7, 1, 4, 1, 2]$$$ and you choose $$$(l = 3, r = 5, k = 2)$$$, the array $$$a$$$ will become $$$[3, 7, \underline{3, 6, 3}, 2]$$$.You can do this operation at most once. Can you make array $$$a$$$ equal to array $$$b$$$?(We consider that $$$a = b$$$ if and only if, for every $$$1 \le i \le n$$$, $$$a_i = b_i$$$) | 256 megabytes | import java.util.*;
public class Main{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t-->0){
int n = sc.nextInt();
int[] a = new int[n];
int[] b = new int[n];
for(int i=0;i<n;i++)a[i]=sc.nextInt();
for(int i=0;i<n;i++)b[i]=sc.nextInt();
int[] c = new int[n];
boolean flag = true;
int last = 0;
int l = 0;
int r = n-1;
for(int i=0;i<n;i++){
c[i]=b[i]-a[i];
if(c[i]<0)flag = false;
}
for(int i=0;i<n;i++){
if(c[i]>0){
l=i;
break;
}
}
for(int i=n-1;i>=0;i--){
if(c[i]>0){
r=i;
break;
}
}
int mi = c[l];
for(int i=l;i<=r;i++){
c[i]-=mi;
if(c[i]!=0)flag = false;
}
System.out.println((flag)?"YES":"NO");
}
}
public static int lcm(int x, int y){
return x*y/gcd(x,y);
}
public static int gcd(int x, int y){
if(x < y)return gcd(y,x);
if(y==0)return x;
return gcd(y,x%y);
}
}
class Pair{
int a,b;
Pair(int a, int b){
this.a = a;
this.b = b;
}
} | Java | ["4\n6\n3 7 1 4 1 2\n3 7 3 6 3 2\n5\n1 1 1 1 1\n1 2 1 3 1\n2\n42 42\n42 42\n1\n7\n6"] | 1 second | ["YES\nNO\nYES\nNO"] | NoteThe first test case is described in the statement: we can perform a push operation with parameters $$$(l=3, r=5, k=2)$$$ to make $$$a$$$ equal to $$$b$$$.In the second test case, we would need at least two operations to make $$$a$$$ equal to $$$b$$$.In the third test case, arrays $$$a$$$ and $$$b$$$ are already equal.In the fourth test case, it's impossible to make $$$a$$$ equal to $$$b$$$, because the integer $$$k$$$ has to be positive. | Java 8 | standard input | [
"implementation"
] | 0e0ef011ebe7198b7189fce562b7d6c1 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 20$$$) — the number of test cases in the input. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 100\ 000$$$) — the number of elements in each array. The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 1000$$$). The third line of each test case contains $$$n$$$ integers $$$b_1, b_2, \ldots, b_n$$$ ($$$1 \le b_i \le 1000$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$10^5$$$. | 1,000 | For each test case, output one line containing "YES" if it's possible to make arrays $$$a$$$ and $$$b$$$ equal by performing at most once the described operation or "NO" if it's impossible. You can print each letter in any case (upper or lower). | standard output | |
PASSED | c8f6b230ca9b248383542ec02b0ca917 | train_000.jsonl | 1573914900 | You're given two arrays $$$a[1 \dots n]$$$ and $$$b[1 \dots n]$$$, both of the same length $$$n$$$.In order to perform a push operation, you have to choose three integers $$$l, r, k$$$ satisfying $$$1 \le l \le r \le n$$$ and $$$k > 0$$$. Then, you will add $$$k$$$ to elements $$$a_l, a_{l+1}, \ldots, a_r$$$.For example, if $$$a = [3, 7, 1, 4, 1, 2]$$$ and you choose $$$(l = 3, r = 5, k = 2)$$$, the array $$$a$$$ will become $$$[3, 7, \underline{3, 6, 3}, 2]$$$.You can do this operation at most once. Can you make array $$$a$$$ equal to array $$$b$$$?(We consider that $$$a = b$$$ if and only if, for every $$$1 \le i \le n$$$, $$$a_i = b_i$$$) | 256 megabytes | import java.util.Scanner;
public class TaskA {
private static boolean solve(int N, int[] a, int[] b) {
boolean diffStarted = false;
boolean diffEnded = false;
int diff = Integer.MIN_VALUE;
for (int i = 0; i < N; i++) {
if (a[i] == b[i]) {
if (diffStarted) diffEnded = true;
continue;
}
if (a[i] > b[i]) return false;
if (diffEnded) return false;
if (!diffStarted) {
diff = b[i] - a[i];
diffStarted = true;
continue;
}
if (diff != b[i] - a[i]) return false;
}
return true;
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int T = scanner.nextInt();
for (int t = 0; t < T; t++) {
int N = scanner.nextInt();
int[] a = new int[N];
int[] b = new int[N];
for (int i = 0; i < N; i++) a[i] = scanner.nextInt();
for (int i = 0; i < N; i++) b[i] = scanner.nextInt();
System.out.println(solve(N, a, b) ? "YES" : "NO");
}
}
}
| Java | ["4\n6\n3 7 1 4 1 2\n3 7 3 6 3 2\n5\n1 1 1 1 1\n1 2 1 3 1\n2\n42 42\n42 42\n1\n7\n6"] | 1 second | ["YES\nNO\nYES\nNO"] | NoteThe first test case is described in the statement: we can perform a push operation with parameters $$$(l=3, r=5, k=2)$$$ to make $$$a$$$ equal to $$$b$$$.In the second test case, we would need at least two operations to make $$$a$$$ equal to $$$b$$$.In the third test case, arrays $$$a$$$ and $$$b$$$ are already equal.In the fourth test case, it's impossible to make $$$a$$$ equal to $$$b$$$, because the integer $$$k$$$ has to be positive. | Java 8 | standard input | [
"implementation"
] | 0e0ef011ebe7198b7189fce562b7d6c1 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 20$$$) — the number of test cases in the input. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 100\ 000$$$) — the number of elements in each array. The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 1000$$$). The third line of each test case contains $$$n$$$ integers $$$b_1, b_2, \ldots, b_n$$$ ($$$1 \le b_i \le 1000$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$10^5$$$. | 1,000 | For each test case, output one line containing "YES" if it's possible to make arrays $$$a$$$ and $$$b$$$ equal by performing at most once the described operation or "NO" if it's impossible. You can print each letter in any case (upper or lower). | standard output | |
PASSED | 9fbe90ac295f482498e9308f84268fa3 | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import java.util.*;
public class Archer{
public static void main(String[] Args){
Scanner sc = new Scanner(System.in);
double a = sc.nextInt();
double b = sc.nextInt();
double c = sc.nextInt();
double d = sc.nextInt();
double ans = (a*d)/ (b*d - (b-a)*(d-c));
System.out.println(ans);
}
}
| Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output | |
PASSED | 490b5e41210c1ab7e9bf9c3415c93735 | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.StringTokenizer;
public class Archer {
public static void main(String[] args) {
MyScanner sc = new MyScanner();
int A = sc.nextInt();
int B = sc.nextInt();
int C = sc.nextInt();
int D = sc.nextInt();
double r = (double)A / B;
double z = (double)C / D;
System.out.println(r / (1 - (1 - r) * (1 - z)));
}
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
int nextInt() {
return Integer.parseInt(next());
}
int[] nextIntArray(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
String nextLine() {
String str = "";
try { str = br.readLine(); }
catch (IOException e) { e.printStackTrace(); }
return str;
}
}
} | Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output | |
PASSED | db6edcafb9a6792b76de6747b7518a34 | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.math.BigDecimal;
import java.math.MathContext;
import java.math.RoundingMode;
import java.util.Arrays;
import java.util.Scanner;
public class Main {
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringBuilder out = new StringBuilder();
int a = sc.nextInt();
int b = sc.nextInt();
int c = sc.nextInt();
int d = sc.nextInt();
double ans = 0;
double res = (a *1.0)/b;
double se = (c *1.0)/d;
double fe = (a *1.0)/b;
double th = (1-res) * (1 - se);
while(Math.abs(ans - res) > 10e-10 ){
ans = res;
res += th * (a *1.0)/b;
th *= (1-fe) * (1 - se);
}
System.out.println(res);
}
} | Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output | |
PASSED | 4536ca4018a0181c9584175865a15027 | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import java.io.*;
import java.util.*;
public final class archery
{
static BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
static FastScanner sc=new FastScanner(br);
static PrintWriter out=new PrintWriter(System.out);
public static void main(String args[]) throws Exception
{
double a=sc.nextDouble(),b=sc.nextDouble(),c=sc.nextDouble(),d=sc.nextDouble(),res=0;
for(int i=1;i<=10000;i++)
{
double val1=(Math.pow(1-(a/b),i-1))*Math.pow(1-(c/d),i-1)*(a/b);
res+=val1;
}
out.printf("%.12f\n",res);
out.close();
}
}
class FastScanner
{
BufferedReader in;
StringTokenizer st;
public FastScanner(BufferedReader in) {
this.in = in;
}
public String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public String next() throws Exception {
return nextToken().toString();
}
public int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
public long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
public double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
} | Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output | |
PASSED | 5aeffc9ecc9f9675d097837ff2a575a0 | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import java.math.*;
import java.util.*;
public class CF {
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
double SmallR = (double)in.nextInt()/in.nextInt();
double Zanoes = (double)in.nextInt()/in.nextInt();
System.out.print((SmallR) / (1 - (1- SmallR)*(1 - Zanoes)));
}
}
| Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output | |
PASSED | 4bded0ed566e27ee7b37c0801f2b6eec | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import java.io.*;
import java.util.*;
public class cf185B {
public static void main(String[] args) throws Exception {
// BufferedReader in = new BufferedReader(new FileReader("cf185B.in"));
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
String[] arr = in.readLine().split(" ");
int[] nums = new int[arr.length];
for(int i = 0; i < nums.length; i++) {
nums[i] = Integer.parseInt(arr[i]);
}
double p1 = (double) nums[0] / nums[1];
double p2 = (double) nums[2] / nums[3];
System.out.printf("%.11f%n", p1 / (1 - (1 - p1) * (1 - p2)));
}
} | Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output | |
PASSED | f2fb16cfd0cc88e5e5e83abfa2e50921 | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
double a, b, c, d;
a = sc.nextInt();
b = sc.nextInt();
c = sc.nextInt();
d = sc.nextInt();
System.out.print(a/b * (1/(a/b + c/d - a*c/b/d)));
}
}
| Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output | |
PASSED | 8d5b4e50dccad73971b43992f2f4e567 | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import java.util.*;
public class temp
{ //static {System.out.println("hello");}
public static void main(String args[])
{ Scanner scn=new Scanner(System.in);
int a=scn.nextInt();
int b=scn.nextInt();
int c=scn.nextInt();
int d=scn.nextInt();
double x=(a*1.0)/b;
double y=(c*1.0)/d;
System.out.println(x/(1-((1-x)*(1-y))));
}
} | Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output | |
PASSED | f9767ef58352d123b22fa5fa134d6570 | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import static java.lang.System.*;
import static java.lang.Math.*;
import java.lang.reflect.Array;
import java.util.*;
import java.util.Map.Entry;
public class B311 {
public static Scanner sc=new Scanner(in);
//public static Random sc=new Random();
final int mod=1000000007;
void run() throws RuntimeException{
double a=sc.nextInt(),b=sc.nextInt(),c=sc.nextInt(),d=sc.nextInt();
ln((a*d)/(b*c+a*d-a*c));
}
public static void main(String[] args) {
new B311().run();
}
//output lib
static final String br=System.getProperty("line.separator");
static final String[] asep=new String[]{""," ",br,br+br};
static String str(boolean o){
return o?"YES":"NO";
}
static <K,V> String str(Map<K, V> map){
StringBuilder sb=new StringBuilder();
boolean isFirst=true;
for(Entry<K,V> set:map.entrySet()){
if(!isFirst)sb.append(br);
sb.append(str(set.getKey())).append(":").append(str(set.getValue()));
isFirst=false;
}
return sb.toString();
}
static <E> String str(Collection<E> list){
StringBuilder sb=new StringBuilder();
boolean isFirst=true;
for(E e:list){
if(!isFirst)sb.append(" ");
sb.append(str(e));
isFirst=false;
}
return sb.toString();
}
static String str(Object o){
int depth=_getArrayDepth(o);
if(depth>0)return _strArray(o,depth);
return o.toString();
}
static int _getArrayDepth(Object o){
if(!o.getClass().isArray() || Array.getLength(o)==0) return 0;
return 1+_getArrayDepth(Array.get(o,0));
}
//depth ex A[10]…1 A[10][10]…2 exception A[0]…0 A[10][0]…1 A[0][0]…0
static String _strArray(Object o,int depth){
if(depth==0) return str(o);
StringBuilder sb=new StringBuilder();
for(int i=0,len=Array.getLength(o);i<len;i++){
if(i!=0)sb.append(asep[depth]);
sb.append(_strArray(Array.get(o,i),depth-1));
}
return sb.toString();
}
static void pr(Object... os){
boolean isFirst=true;
for(Object o:os){
if(!isFirst)out.print(" ");
out.print(o);
isFirst=false;
}
}
static void ln(){
out.println();
}
static void ln(Object... os){
for(Object o:os){
pr(o);ln();
}
}
}
| Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output | |
PASSED | e1f05f3d7599d499b6c2d0ef2702512e | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import java.util.*;
import java.io.*;
import java.awt.Point;
import java.math.BigDecimal;
import java.math.BigInteger;
import static java.lang.Math.*;
// Solution is at the bottom of code
public class B implements Runnable{
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
BufferedReader in;
OutputWriter out;
StringTokenizer tok = new StringTokenizer("");
public static void main(String[] args){
new Thread(null, new B(), "", 128 * (1L << 20)).start();
}
/////////////////////////////////////////////////////////////////////
void init() throws FileNotFoundException{
Locale.setDefault(Locale.US);
if (ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new OutputWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new OutputWriter("output.txt");
}
}
////////////////////////////////////////////////////////////////
long timeBegin, timeEnd;
void time(){
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
void debug(Object... objects){
if (ONLINE_JUDGE){
for (Object o: objects){
System.err.println(o.toString());
}
}
}
/////////////////////////////////////////////////////////////////////
public void run(){
try{
timeBegin = System.currentTimeMillis();
Locale.setDefault(Locale.US);
init();
solve();
out.close();
time();
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
/////////////////////////////////////////////////////////////////////
String delim = " ";
String readString() throws IOException{
while(!tok.hasMoreTokens()){
try{
tok = new StringTokenizer(in.readLine());
}catch (Exception e){
return null;
}
}
return tok.nextToken(delim);
}
String readLine() throws IOException{
return in.readLine();
}
/////////////////////////////////////////////////////////////////
final char NOT_A_SYMBOL = '\0';
char readChar() throws IOException{
int intValue = in.read();
if (intValue == -1){
return NOT_A_SYMBOL;
}
return (char) intValue;
}
char[] readCharArray() throws IOException{
return readLine().toCharArray();
}
/////////////////////////////////////////////////////////////////
int readInt() throws IOException {
return Integer.parseInt(readString());
}
int[] readIntArray(int size) throws IOException {
int[] array = new int[size];
for (int index = 0; index < size; ++index){
array[index] = readInt();
}
return array;
}
int[] readIntArrayWithDecrease(int size) throws IOException {
int[] array = readIntArray(size);
for (int i = 0; i < size; ++i) {
array[i]--;
}
return array;
}
///////////////////////////////////////////////////////////////////
long readLong() throws IOException{
return Long.parseLong(readString());
}
long[] readLongArray(int size) throws IOException{
long[] array = new long[size];
for (int index = 0; index < size; ++index){
array[index] = readLong();
}
return array;
}
////////////////////////////////////////////////////////////////////
double readDouble() throws IOException{
return Double.parseDouble(readString());
}
double[] readDoubleArray(int size) throws IOException{
double[] array = new double[size];
for (int index = 0; index < size; ++index){
array[index] = readDouble();
}
return array;
}
////////////////////////////////////////////////////////////////////
BigInteger readBigInteger() throws IOException {
return new BigInteger(readString());
}
BigDecimal readBigDecimal() throws IOException {
return new BigDecimal(readString());
}
/////////////////////////////////////////////////////////////////////
Point readPoint() throws IOException{
int x = readInt();
int y = readInt();
return new Point(x, y);
}
Point[] readPointArray(int size) throws IOException{
Point[] array = new Point[size];
for (int index = 0; index < size; ++index){
array[index] = readPoint();
}
return array;
}
/////////////////////////////////////////////////////////////////////
List<Integer>[] readGraph(int vertexNumber, int edgeNumber)
throws IOException{
@SuppressWarnings("unchecked")
List<Integer>[] graph = new List[vertexNumber];
for (int index = 0; index < vertexNumber; ++index){
graph[index] = new ArrayList<Integer>();
}
while (edgeNumber-- > 0){
int from = readInt() - 1;
int to = readInt() - 1;
graph[from].add(to);
graph[to].add(from);
}
return graph;
}
/////////////////////////////////////////////////////////////////////
static class IntIndexPair {
static Comparator<IntIndexPair> increaseComparator = new Comparator<B.IntIndexPair>() {
@Override
public int compare(IntIndexPair indexPair1, IntIndexPair indexPair2) {
int value1 = indexPair1.value;
int value2 = indexPair2.value;
if (value1 != value2) return value1 - value2;
int index1 = indexPair1.index;
int index2 = indexPair2.index;
return index1 - index2;
}
};
static Comparator<IntIndexPair> decreaseComparator = new Comparator<B.IntIndexPair>() {
@Override
public int compare(IntIndexPair indexPair1, IntIndexPair indexPair2) {
int value1 = indexPair1.value;
int value2 = indexPair2.value;
if (value1 != value2) return -(value1 - value2);
int index1 = indexPair1.index;
int index2 = indexPair2.index;
return index1 - index2;
}
};
int value, index;
public IntIndexPair(int value, int index) {
super();
this.value = value;
this.index = index;
}
public int getRealIndex() {
return index + 1;
}
}
IntIndexPair[] readIntIndexArray(int size) throws IOException {
IntIndexPair[] array = new IntIndexPair[size];
for (int index = 0; index < size; ++index) {
array[index] = new IntIndexPair(readInt(), index);
}
return array;
}
/////////////////////////////////////////////////////////////////////
static class OutputWriter extends PrintWriter{
final int DEFAULT_PRECISION = 12;
int precision;
String format, formatWithSpace;
{
precision = DEFAULT_PRECISION;
format = createFormat(precision);
formatWithSpace = format + " ";
}
public OutputWriter(OutputStream out) {
super(out);
}
public OutputWriter(String fileName) throws FileNotFoundException {
super(fileName);
}
public int getPrecision() {
return precision;
}
public void setPrecision(int precision) {
precision = max(0, precision);
this.precision = precision;
format = createFormat(precision);
formatWithSpace = format + " ";
}
private String createFormat(int precision){
return "%." + precision + "f";
}
@Override
public void print(double d){
printf(format, d);
}
public void printWithSpace(double d){
printf(formatWithSpace, d);
}
public void printAll(double...d){
for (int i = 0; i < d.length - 1; ++i){
printWithSpace(d[i]);
}
print(d[d.length - 1]);
}
@Override
public void println(double d){
printlnAll(d);
}
public void printlnAll(double... d){
printAll(d);
println();
}
}
/////////////////////////////////////////////////////////////////////
int[][] steps = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
int[][] steps8 = {
{-1, 0}, {1, 0}, {0, -1}, {0, 1},
{-1, -1}, {1, 1}, {1, -1}, {-1, 1}
};
boolean check(int index, int lim){
return (0 <= index && index < lim);
}
/////////////////////////////////////////////////////////////////////
boolean checkBit(int mask, int bitNumber){
return (mask & (1 << bitNumber)) != 0;
}
/////////////////////////////////////////////////////////////////////
void solve() throws IOException {
int a = readInt();
int b = readInt();
int c = readInt();
int d = readInt();
double ans = a * d;
ans /= (a * d + b * c - a * c);
out.println(ans);
}
}
| Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output | |
PASSED | 23c4ecc77bdd95a559a057eb102b54cc | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import java.util.Scanner;
public class Main2 {
public static void main(String args[]){
Scanner input = new Scanner(System.in);
double a = input.nextInt();
double b = input.nextInt();
double c = input.nextInt();
double d = input.nextInt();
System.out.println(sentence(a,b,c,d));
}
public static double sentence(double a,double b,double c,double d){
int turn = 0;
double sump = 0;
double probable = 1;
while(turn != 10000){
sump += probable*(a/b);
probable *= (1-a/b);
probable *= (1-c/d);
turn++;
}
return sump;
}
} | Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output | |
PASSED | f4941a16e5ffdaf64d23475e3a04bdd5 | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import java.util.Scanner;
public class Main {
private static Scanner sc = new Scanner(System.in);
public static void main(String[] args) {
double a = sc.nextDouble(), b = sc.nextDouble(), c = sc.nextDouble(), d = sc.nextDouble();
double ab = a/b;
double cd = c/d;
System.out.println(ab/(1-(1-ab)*(1-cd)));
}
}
| Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output | |
PASSED | 8ea513cf2142169996d59187a83d8644 | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import java.util.Locale;
import java.util.Scanner;
public class ArchersSolver {
private int a;
private int b;
private int c;
private int d;
public static void main(String[] args) {
ArchersSolver solver = new ArchersSolver();
solver.readData();
double solution = solver.solve();
solver.print(solution);
}
private void print(double value) {
System.out.printf(Locale.ENGLISH, "%.10f", value);
}
private void readData() {
Scanner scanner = new Scanner(System.in);
a = scanner.nextInt();
b = scanner.nextInt();
c = scanner.nextInt();
d = scanner.nextInt();
}
private double solve() {
return a * d / ((double) a * d + b * c - a * c);
}
}
| Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output | |
PASSED | 73aa64b0085fc4961004506da96d79f0 | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import static java.lang.Double.parseDouble;
import static java.lang.Integer.parseInt;
import static java.lang.Long.parseLong;
import static java.lang.System.exit;
import static java.util.Arrays.fill;
import java.io.*;
import java.util.*;
import java.math.*;
import java.lang.*;
import java.text.*;
public class Main {
static BufferedReader in;
static PrintWriter out;
static StringTokenizer tok;
final static double EPS = 1e-12;
final static int MOD = 1000000009;
static void solve() throws Exception {
int a = nextInt();
int b = nextInt();
int c = nextInt();
int d = nextInt();
double p1 = a/(double)b;
double q1 = 1 - p1;
double p2 = c/(double)d;
double q2 = 1 - p2;
double sum = p1;
double res = 0;
while (Math.abs(sum) > EPS) {
res += sum;
sum *= q1*q2;
}
out.println(res);
}
static long sqr(long x) {
return x*x;
}
static int nextInt() throws IOException {
return parseInt(next());
}
static long nextLong() throws IOException {
return parseLong(next());
}
static double nextDouble() throws IOException {
return parseDouble(next());
}
static BigInteger nextBigInteger() throws IOException {
return new BigInteger(next());
}
static String next() throws IOException {
while (tok == null || !tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
public static void main(String args[]) {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new OutputStreamWriter(System.out));
solve();
in.close();
out.close();
} catch (Throwable e) {
e.printStackTrace();
exit(1);
}
}
} | Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output | |
PASSED | 3f8bae68ae97364ab72c3990bb328712 | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import java.util.Scanner;
public class Probability {
public static void main(String args[]) {
Scanner scanner = new Scanner(System.in);
int a = scanner.nextInt();
int b = scanner.nextInt();
int c = scanner.nextInt();
int d = scanner.nextInt();
double r = (1.0 - ((a * 1.0) / b)) * (1.0 - ((c * 1.0) / d));
System.out.printf("%.12f", ((a * 1.0) / (b)) * (1.0 / (1.0 - r)));
}
}
| Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output | |
PASSED | ad6f395bb45ca53e2581420bab1715d1 | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import java.io.*;
import java.util.*;
import javax.swing.plaf.multi.MultiSeparatorUI;
public class Main{
static BufferedReader in;
static StringTokenizer stk;
static PrintWriter out;
static void initio() throws Exception{
in=new BufferedReader(new InputStreamReader(System.in));
out=new PrintWriter(System.out);
}
static void initiot() throws Exception{
in=new BufferedReader(new FileReader("test"));
out=new PrintWriter(new File("outtest"));
// out=new PrintWriter(System.out);
}
static int Int() throws Exception{
int ch,x,s=1;
for(ch=in.read();ch<'0'&&ch!=-1&&ch!='-'||ch>'9';ch=in.read());
if(ch==-1) return -1;
else if(ch=='-'){
s=-1;
ch=in.read();
}
for(x=0,ch-='0';ch>=0&&ch<=9;x=x*10+ch,ch=in.read()-'0');
return x*s;
}
static String next() throws Exception{
while(stk==null||!stk.hasMoreTokens())
stk=new StringTokenizer(in.readLine());
return stk.nextToken();
}
static int nextInt() throws Exception{
return Integer.parseInt(next());
}
public static void main(String[] args) throws Exception{
initio();
double a=Int(),b=Int(),c=Int(),d=Int();
out.println(a*d/(b*d-(b-a)*(d-c)));
out.close();
}
} | Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output | |
PASSED | fcff374ba070710ac2f24653d7551fd0 | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Scanner;
public class template
{
public static ArrayList<Integer> strToInts(String str, String token)
{
ArrayList<Integer> result = new ArrayList<>();
ArrayList<String> strs = new ArrayList<>(Arrays.asList(str.split(token)));
for (String string : strs)
{
result.add(Integer.parseInt(string));
}
return result;
}
public static void main(String[] args) throws IOException
{
// The input and output streams
BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); // system
//BufferedReader in = new BufferedReader(new FileReader("input.txt"));
// File
BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out));
ArrayList<Integer> params = strToInts(in.readLine(), " ");
double hitA = (double)params.get(0) / params.get(1);
double hitB = (double) params.get(2) / params.get(3);
double win = hitA;
double newRound = (1 - hitA) * (1-hitB);
int i = 0;
while (true)
{
double newWin = newRound* (hitA);
double newNewRound = newRound * (1 - hitA) * (1-hitB);
newRound = newNewRound;
if (newWin < 0.000000000001)
{
break;
}
else
i++;
win += newWin;
}
System.out.println(win);
}
}
| Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output | |
PASSED | 16e0016fbabc359a0793f2b58b33e34f | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Scanner;
public class template
{
public static ArrayList<Integer> strToInts(String str, String token)
{
ArrayList<Integer> result = new ArrayList<>();
ArrayList<String> strs = new ArrayList<>(Arrays.asList(str.split(token)));
for (String string : strs)
{
result.add(Integer.parseInt(string));
}
return result;
}
public static void main(String[] args) throws IOException
{
// The input and output streams
BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); // system
//BufferedReader in = new BufferedReader(new FileReader("input.txt"));
// File
BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out));
ArrayList<Integer> params = strToInts(in.readLine(), " ");
double hitA = (double)params.get(0) / params.get(1);
double hitB = (double) params.get(2) / params.get(3);
double win = hitA;
double newRound = (1 - hitA) * (1-hitB);
int i = 0;
while (true)
{
double newWin = newRound* (hitA);
double newNewRound = newRound * (1 - hitA) * (1-hitB);
newRound = newNewRound;
if (newWin < 0.0000000001)
{
break;
}
else
i++;
win += newWin;
}
System.out.println(win);
}
}
| Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output | |
PASSED | 00edf8a10cd7b7e5050a2e5ed684fec2 | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Scanner;
public class template
{
public static ArrayList<Integer> strToInts(String str, String token)
{
ArrayList<Integer> result = new ArrayList<>();
ArrayList<String> strs = new ArrayList<>(Arrays.asList(str.split(token)));
for (String string : strs)
{
result.add(Integer.parseInt(string));
}
return result;
}
public static void main(String[] args) throws IOException
{
// The input and output streams
BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); // system
//BufferedReader in = new BufferedReader(new FileReader("input.txt"));
// File
BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out));
ArrayList<Integer> params = strToInts(in.readLine(), " ");
double hitA = (double)params.get(0) / params.get(1);
double hitB = (double) params.get(2) / params.get(3);
double win = hitA;
double newRound = (1 - hitA) * (1-hitB);
int i = 0;
while (true)
{
double newWin = newRound* (hitA);
double newNewRound = newRound * (1 - hitA) * (1-hitB);
newRound = newNewRound;
if (i > 10000)
{
break;
}
else
i++;
win += newWin;
}
System.out.println(win);
}
}
| Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output | |
PASSED | caa8872934779935973337544d9f6996 | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import java.io.*;
import java.util.*;
public class B {
void run() throws IOException {
double s = (double) ni() / (double) ni(), z = (double) ni() / (double) ni();
double p = 1;
double ns = 1 - s;
double nz = 1 - z;
double tns = ns, tnz = nz;
for (int i = 0; i < 100000; i++) {
p += ns * nz;
ns *= tns;
nz *= tnz;
}
pw.print(p * s);
}
int[] na(int a_len) throws IOException {
int[] _a = new int[a_len];
for (int i = 0; i < a_len; i++)
_a[i] = ni();
return _a;
}
int[][] nm(int a_len, int a_hei) throws IOException {
int[][] _a = new int[a_len][a_hei];
for (int i = 0; i < a_len; i++)
for (int j = 0; j < a_hei; j++)
_a[i][j] = ni();
return _a;
}
String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
int ni() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
String nl() throws IOException {
return br.readLine();
}
void tr(String debug) {
if (!OJ)
pw.println(" " + debug);
}
static PrintWriter pw;
static BufferedReader br;
static StringTokenizer st;
static boolean OJ;
public static void main(String[] args) throws IOException {
long timeout = System.currentTimeMillis();
OJ = System.getProperty("ONLINE_JUDGE") != null;
pw = new PrintWriter(System.out);
br = new BufferedReader(OJ ? new InputStreamReader(System.in) : new FileReader(new File("B.txt")));
while (br.ready())
new B().run();
if (!OJ) {
pw.println();
pw.println(System.currentTimeMillis() - timeout);
}
br.close();
pw.close();
}
}
| Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output | |
PASSED | 30fab3d74a34c5c34772aa32aee0230a | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import java.util.Scanner;
public class BArcher {
public static void main(String[] args) {
Scanner k = new Scanner(System.in);
double a,b,c,d,r1,r2;
a=k.nextDouble();
b=k.nextDouble();
c=k.nextDouble();
d=k.nextDouble();
r1=a/b;
r2=c/d;
r1/=(1-((1-r1)*(1-r2)));
System.out.println(r1);
}
}
| Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output | |
PASSED | c1d4ad1d595bde58ddeacd9bf11b57d6 | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import java.io.IOException;
import java.io.OutputStreamWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.Writer;
import java.util.StringTokenizer;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author saket
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
Archer solver = new Archer();
solver.solve(1, in, out);
out.close();
}
}
class Archer {
public void solve(int testNumber, InputReader in, OutputWriter out) {
double a=in.readDouble();
double b=in.readDouble();
double c=in.readDouble();
double d=in.readDouble();
double small=a/b;
double za=(1-a/b)*(1-c/d);
double ans=small/(1-za);
out.printLine(ans);
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
| Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output | |
PASSED | 3f9e99f05b5cc8da0fb34d103e9ee774 | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class archer {
public static void main(String[] args) throws Exception {
BufferedReader r = new BufferedReader(new InputStreamReader(System.in));
PrintWriter w = new PrintWriter(System.out);
StringTokenizer st = new StringTokenizer(r.readLine());
double smallr = (double) Integer.parseInt(st.nextToken()) / Integer.parseInt(st.nextToken());
double zanoes = (double) Integer.parseInt(st.nextToken()) / Integer.parseInt(st.nextToken());
//answer is infinite sum of smallr + (1 - smallr) * (1 - zanoes) * smallr + smallr * (1 - zanoes) * smallr * (1 - zanoes) * smallr .....
double q = (1 - smallr) * (1 - zanoes);
//q is the ratio between terms
//smallr = a, start term
double answer = smallr/(1 - q);
System.out.println(answer);
}
}
| Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output | |
PASSED | 79cb2aea2300cf1457a23e0d07fbd156 | train_000.jsonl | 1369582200 | SmallR is an archer. SmallR is taking a match of archer with Zanoes. They try to shoot in the target in turns, and SmallR shoots first. The probability of shooting the target each time is for SmallR while for Zanoes. The one who shoots in the target first should be the winner.Output the probability that SmallR will win the match. | 256 megabytes | import java.io.*;
import java.math.BigInteger;
import java.util.*;
import java.util.Map.Entry;
public class Main {
public static void main(String[] args) throws IOException {
(new Main()).solve();
}
public Main() {
}
MyReader in = new MyReader();
PrintWriter out = new PrintWriter(System.out);
void solve() throws IOException {
//BufferedReader in = new BufferedReader(new
//InputStreamReader(System.in));
//Scanner in = new Scanner(System.in);
//Scanner in = new Scanner(new FileReader("input.txt"));
//PrintWriter out = new PrintWriter("output.txt");
double a = in.nextInt();
double b = in.nextInt();
double c = in.nextInt();
double d = in.nextInt();
double res = a * d / (b * d - (b - a) * (d - c));
out.println(res);
out.close();
}
class Unit {
public int num;
public int type;
public Unit(int num, int type) {
super();
this.num = num;
this.type = type;
}
@Override
public boolean equals(Object obj) {
Unit u = (Unit) obj;
return num == u.num && type == u.type;
}
}
class MyReader {
private BufferedReader in;
String[] parsed;
int index = 0;
public MyReader() {
in = new BufferedReader(new InputStreamReader(System.in));
}
public int nextInt() throws NumberFormatException, IOException {
if (parsed == null || parsed.length == index) {
read();
}
return Integer.parseInt(parsed[index++]);
}
public long nextLong() throws NumberFormatException, IOException {
if (parsed == null || parsed.length == index) {
read();
}
return Long.parseLong(parsed[index++]);
}
public double nextDouble() throws NumberFormatException, IOException {
if (parsed == null || parsed.length == index) {
read();
}
return Double.parseDouble(parsed[index++]);
}
public String nextString() throws IOException {
if (parsed == null || parsed.length == index) {
read();
}
return parsed[index++];
}
private void read() throws IOException {
parsed = in.readLine().split(" ");
index = 0;
}
public String readLine() throws IOException {
return in.readLine();
}
};
}; | Java | ["1 2 1 2"] | 2 seconds | ["0.666666666667"] | null | Java 7 | standard input | [
"probabilities",
"math"
] | 7b932b2d3ab65a353b18d81cf533a54e | A single line contains four integers . | 1,300 | Print a single real number, the probability that SmallR will win the match. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6. | standard output |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.