exec_outcome
stringclasses
1 value
code_uid
stringlengths
32
32
file_name
stringclasses
111 values
prob_desc_created_at
stringlengths
10
10
prob_desc_description
stringlengths
63
3.8k
prob_desc_memory_limit
stringclasses
18 values
source_code
stringlengths
117
65.5k
lang_cluster
stringclasses
1 value
prob_desc_sample_inputs
stringlengths
2
802
prob_desc_time_limit
stringclasses
27 values
prob_desc_sample_outputs
stringlengths
2
796
prob_desc_notes
stringlengths
4
3k
lang
stringclasses
5 values
prob_desc_input_from
stringclasses
3 values
tags
sequencelengths
0
11
src_uid
stringlengths
32
32
prob_desc_input_spec
stringlengths
28
2.37k
difficulty
int64
-1
3.5k
prob_desc_output_spec
stringlengths
17
1.47k
prob_desc_output_to
stringclasses
3 values
hidden_unit_tests
stringclasses
1 value
PASSED
129d326248a90064d051a0a1e90ec874
train_110.jsonl
1635604500
For an array $$$b$$$ of $$$n$$$ integers, the extreme value of this array is the minimum number of times (possibly, zero) the following operation has to be performed to make $$$b$$$ non-decreasing: Select an index $$$i$$$ such that $$$1 \le i \le |b|$$$, where $$$|b|$$$ is the current length of $$$b$$$. Replace $$$b_i$$$ with two elements $$$x$$$ and $$$y$$$ such that $$$x$$$ and $$$y$$$ both are positive integers and $$$x + y = b_i$$$. This way, the array $$$b$$$ changes and the next operation is performed on this modified array. For example, if $$$b = [2, 4, 3]$$$ and index $$$2$$$ gets selected, then the possible arrays after this operation are $$$[2, \underline{1}, \underline{3}, 3]$$$, $$$[2, \underline{2}, \underline{2}, 3]$$$, or $$$[2, \underline{3}, \underline{1}, 3]$$$. And consequently, for this array, this single operation is enough to make it non-decreasing: $$$[2, 4, 3] \rightarrow [2, \underline{2}, \underline{2}, 3]$$$.It's easy to see that every array of positive integers can be made non-decreasing this way.YouKn0wWho has an array $$$a$$$ of $$$n$$$ integers. Help him find the sum of extreme values of all nonempty subarrays of $$$a$$$ modulo $$$998\,244\,353$$$. If a subarray appears in $$$a$$$ multiple times, its extreme value should be counted the number of times it appears.An array $$$d$$$ is a subarray of an array $$$c$$$ if $$$d$$$ can be obtained from $$$c$$$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.HashMap; import java.util.StringTokenizer; public class A1603 { private static final int P = 998244353; private static final int M = 100000; private static final int SQ = 800; private static final int SQ2 = 400; private static int[] answer = new int[M + 1]; private static HashMap<Integer, Integer>[] g = new HashMap[M + 1]; private static int countAnswer(int n, int[] a) { if (answer[n] < 0) { if (n == 0) { answer[0] = 0; } else { answer[n] = (countAnswer(n - 1, a) + countG(n, a[n], a)) % P; } } return answer[n]; } private static int countG(int n, int last, int[] a) { if (!g[n].containsKey(last)) { if (n == 0) { g[n].put(last, 0); } else { long ans = (getMoves(a[n - 1], last) * 1l * n) % P; ans = (ans + countG(n - 1, getB1(a[n - 1], last), a)) % P; g[n].put(last, (int) (ans % P)); } } return g[n].get(last); } private static int getB1(int a, int b) { return a / ceil(a, b); } private static int getMoves(int a, int b) { return ceil(a, b) - 1; } private static int ceil(int a, int b) { return (a + b - 1) / b; } private static int getIndex(int num, int last) { if (last * 1l * last >= num) { return num / last; } return SQ2 + last; } private static int count(int[] a, int n) { // answer = new int[n]; // g = new HashMap[n]; // for (int i = 0; i < n; i++) { // answer[i] = -1; // g[i] = new HashMap<>(); // } // return countAnswer(n - 1, a); int ans = 0; int[][] g = new int[2][SQ + 1]; int active = 0; for (int i = 1; i < n; i++) { // compute g[] for (int j = 1; j <= SQ; j++) { g[active][j] = 0; } for (int j = 1; j <= SQ2; j++) { int last = a[i] / j; if (last == 0) { g[active][j] = 0; continue; } long res = (getMoves(a[i - 1], last) * 1l * i) % P; res = (res + g[active ^ 1][getIndex(a[i - 1], getB1(a[i - 1], last))]) % P; g[active][j] = (int) res; } for (int j = SQ2 + 1; j <= SQ; j++) { // last = (j - sq2), if [a[i] / [a[i] / (j - sq2)]] == j - sq2. int div = a[i] / (j - SQ2); if (div <= 0 || a[i] / div != j - SQ2) { g[active][j] = 0; continue; } int last = j - SQ2; long res = (getMoves(a[i - 1], last) * 1l * i) % P; res = (res + g[active ^ 1][getIndex(a[i - 1], getB1(a[i - 1], last))]) % P; g[active][j] = (int) res; } ans = (ans + g[active][1]) % P; active ^= 1; } return ans; } public static void main(String[] args) throws IOException { BufferedReader rd = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(System.out); int numTests = Integer.parseInt(rd.readLine()); for (int t = 0; t < numTests; t++) { int n = Integer.parseInt(rd.readLine()); StringTokenizer st = new StringTokenizer(rd.readLine()); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = Integer.parseInt(st.nextToken()); } pw.println(count(a, n)); } pw.flush(); pw.close(); rd.close(); } }
Java
["4\n3\n5 4 3\n4\n3 2 1 4\n1\n69\n8\n7264 40515 28226 92776 35285 21709 75124 48163"]
4 seconds
["5\n9\n0\n117"]
NoteLet $$$f(l, r)$$$ denote the extreme value of $$$[a_l, a_{l+1}, \ldots, a_r]$$$.In the first test case, $$$f(1, 3) = 3$$$, because YouKn0wWho can perform the following operations on the subarray $$$[5, 4, 3]$$$ (the newly inserted elements are underlined):$$$[5, 4, 3] \rightarrow [\underline{3}, \underline{2}, 4, 3] \rightarrow [3, 2, \underline{2}, \underline{2}, 3] \rightarrow [\underline{1}, \underline{2}, 2, 2, 2, 3]$$$; $$$f(1, 2) = 1$$$, because $$$[5, 4] \rightarrow [\underline{2}, \underline{3}, 4]$$$; $$$f(2, 3) = 1$$$, because $$$[4, 3] \rightarrow [\underline{1}, \underline{3}, 3]$$$; $$$f(1, 1) = f(2, 2) = f(3, 3) = 0$$$, because they are already non-decreasing. So the total sum of extreme values of all subarrays of $$$a = 3 + 1 + 1 + 0 + 0 + 0 = 5$$$.
Java 11
standard input
[ "dp", "greedy", "math", "number theory" ]
f760f108c66f695e1e51dc6470d29ce7
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^5$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$10^5$$$.
2,300
For each test case, print a single integer  — the sum of extreme values of all subarrays of $$$a$$$ modulo $$$998\,244\,353$$$.
standard output
PASSED
8503b883c5458421fae574d9b1acfe8c
train_110.jsonl
1635604500
For an array $$$b$$$ of $$$n$$$ integers, the extreme value of this array is the minimum number of times (possibly, zero) the following operation has to be performed to make $$$b$$$ non-decreasing: Select an index $$$i$$$ such that $$$1 \le i \le |b|$$$, where $$$|b|$$$ is the current length of $$$b$$$. Replace $$$b_i$$$ with two elements $$$x$$$ and $$$y$$$ such that $$$x$$$ and $$$y$$$ both are positive integers and $$$x + y = b_i$$$. This way, the array $$$b$$$ changes and the next operation is performed on this modified array. For example, if $$$b = [2, 4, 3]$$$ and index $$$2$$$ gets selected, then the possible arrays after this operation are $$$[2, \underline{1}, \underline{3}, 3]$$$, $$$[2, \underline{2}, \underline{2}, 3]$$$, or $$$[2, \underline{3}, \underline{1}, 3]$$$. And consequently, for this array, this single operation is enough to make it non-decreasing: $$$[2, 4, 3] \rightarrow [2, \underline{2}, \underline{2}, 3]$$$.It's easy to see that every array of positive integers can be made non-decreasing this way.YouKn0wWho has an array $$$a$$$ of $$$n$$$ integers. Help him find the sum of extreme values of all nonempty subarrays of $$$a$$$ modulo $$$998\,244\,353$$$. If a subarray appears in $$$a$$$ multiple times, its extreme value should be counted the number of times it appears.An array $$$d$$$ is a subarray of an array $$$c$$$ if $$$d$$$ can be obtained from $$$c$$$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintStream; import java.util.Arrays; import java.io.IOException; import java.lang.reflect.Field; import java.nio.charset.StandardCharsets; import java.io.UncheckedIOException; import java.io.Closeable; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) throws Exception { Thread thread = new Thread(null, new TaskAdapter(), "", 1 << 29); thread.start(); thread.join(); } static class TaskAdapter implements Runnable { @Override public void run() { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastInput in = new FastInput(inputStream); FastOutput out = new FastOutput(outputStream); CExtremeExtension solver = new CExtremeExtension(); int testCount = Integer.parseInt(in.next()); for (int i = 1; i <= testCount; i++) solver.solve(i, in, out); out.close(); } } static class CExtremeExtension { int mod = 998244353; int L = (int) 1e5; IntegerArrayList prevList = new IntegerArrayList(L); IntegerArrayList nextList = new IntegerArrayList(L); long[] prevWay = new long[L]; long[] nextWay = new long[L]; long[] prevCost = new long[L]; long[] nextCost = new long[L]; Debug debug = new Debug(false); public void process(int x, IntegerArrayList list) { list.clear(); for (int i = 1, r; i <= x; i = r + 1) { int v = x / i; r = x / v; assert r >= i; list.add(v); } list.reverse(); } public void solve(int testNumber, FastInput in, FastOutput out) { int n = in.ri(); int[] a = in.ri(n); prevList.clear(); // prevListMap.clear(); long sumOfCost = 0; for (int i = n - 1; i >= 0; i--) { process(a[i], nextList); debug.debug("i", i); debug.debug("nextList", nextList); int m = nextList.size(); for (int j = 0; j < m; j++) { nextWay[j] = 0; nextCost[j] = 0; } int[] prevListData = prevList.getData(); int prevSize = prevList.size(); int[] nextListData = nextList.getData(); int iter = 0; for (int j = 0; j < prevSize; j++) { int back = prevListData[j]; int block = (a[i] + back - 1) / back; int f = a[i] / block; while (nextListData[iter] < f) { iter++; } int findex = iter; nextWay[findex] += prevWay[j]; nextCost[findex] += prevCost[j] + prevWay[j] * (block - 1); } //add new end int findex = nextList.size() - 1; nextWay[findex]++; for (int j = 0; j < m; j++) { nextCost[j] %= mod; nextWay[j] %= mod; sumOfCost += nextCost[j]; } debug.run(() -> { debug.debug("nextWay", Arrays.copyOf(nextWay, m)); debug.debug("nextCost", Arrays.copyOf(nextCost, m)); }); { IntegerArrayList tmp = prevList; prevList = nextList; nextList = tmp; } // { // IntegerHashMap tmp = prevListMap; // prevListMap = nextListMap; // nextListMap = tmp; // } { long[] tmp = prevCost; prevCost = nextCost; nextCost = tmp; } { long[] tmp = prevWay; prevWay = nextWay; nextWay = tmp; } } sumOfCost = DigitUtils.mod(sumOfCost, mod); out.println(sumOfCost); } } static class SequenceUtils { public static void swap(int[] data, int i, int j) { int tmp = data[i]; data[i] = data[j]; data[j] = tmp; } public static void reverse(int[] data, int l, int r) { while (l < r) { swap(data, l, r); l++; r--; } } public static boolean equal(int[] a, int al, int ar, int[] b, int bl, int br) { if ((ar - al) != (br - bl)) { return false; } for (int i = al, j = bl; i <= ar; i++, j++) { if (a[i] != b[j]) { return false; } } return true; } } static class IntegerArrayList implements Cloneable { private int size; private int cap; private int[] data; private static final int[] EMPTY = new int[0]; public int[] getData() { return data; } public IntegerArrayList(int cap) { this.cap = cap; if (cap == 0) { data = EMPTY; } else { data = new int[cap]; } } public IntegerArrayList(int[] data) { this(0); addAll(data); } public IntegerArrayList(IntegerArrayList list) { this.size = list.size; this.cap = list.cap; this.data = Arrays.copyOf(list.data, size); } public IntegerArrayList() { this(0); } public void reverse(int l, int r) { SequenceUtils.reverse(data, l, r); } public void reverse() { reverse(0, size - 1); } public void ensureSpace(int req) { if (req > cap) { while (cap < req) { cap = Math.max(cap + 10, 2 * cap); } data = Arrays.copyOf(data, cap); } } public void add(int x) { ensureSpace(size + 1); data[size++] = x; } public void addAll(int[] x) { addAll(x, 0, x.length); } public void addAll(int[] x, int offset, int len) { ensureSpace(size + len); System.arraycopy(x, offset, data, size, len); size += len; } public void addAll(IntegerArrayList list) { addAll(list.data, 0, list.size); } public int size() { return size; } public int[] toArray() { return Arrays.copyOf(data, size); } public void clear() { size = 0; } public String toString() { return Arrays.toString(toArray()); } public boolean equals(Object obj) { if (!(obj instanceof IntegerArrayList)) { return false; } IntegerArrayList other = (IntegerArrayList) obj; return SequenceUtils.equal(data, 0, size - 1, other.data, 0, other.size - 1); } public int hashCode() { int h = 1; for (int i = 0; i < size; i++) { h = h * 31 + Integer.hashCode(data[i]); } return h; } public IntegerArrayList clone() { IntegerArrayList ans = new IntegerArrayList(); ans.addAll(this); return ans; } } static class DigitUtils { private DigitUtils() { } public static int mod(long x, int mod) { if (x < -mod || x >= mod) { x %= mod; } if (x < 0) { x += mod; } return (int) x; } } static class FastOutput implements AutoCloseable, Closeable, Appendable { private static final int THRESHOLD = 32 << 10; private OutputStream writer; private StringBuilder cache = new StringBuilder(THRESHOLD * 2); private static Field stringBuilderValueField; private char[] charBuf = new char[THRESHOLD * 2]; private byte[] byteBuf = new byte[THRESHOLD * 2]; static { try { stringBuilderValueField = StringBuilder.class.getSuperclass().getDeclaredField("value"); stringBuilderValueField.setAccessible(true); } catch (Exception e) { stringBuilderValueField = null; } stringBuilderValueField = null; } public FastOutput append(CharSequence csq) { cache.append(csq); return this; } public FastOutput append(CharSequence csq, int start, int end) { cache.append(csq, start, end); return this; } private void afterWrite() { if (cache.length() < THRESHOLD) { return; } flush(); } public FastOutput(OutputStream writer) { this.writer = writer; } public FastOutput append(char c) { cache.append(c); afterWrite(); return this; } public FastOutput append(long c) { cache.append(c); afterWrite(); return this; } public FastOutput println(long c) { return append(c).println(); } public FastOutput println() { return append('\n'); } public FastOutput flush() { try { if (stringBuilderValueField != null) { try { byte[] value = (byte[]) stringBuilderValueField.get(cache); writer.write(value, 0, cache.length()); } catch (Exception e) { stringBuilderValueField = null; } } if (stringBuilderValueField == null) { int n = cache.length(); if (n > byteBuf.length) { //slow writer.write(cache.toString().getBytes(StandardCharsets.UTF_8)); // writer.append(cache); } else { cache.getChars(0, n, charBuf, 0); for (int i = 0; i < n; i++) { byteBuf[i] = (byte) charBuf[i]; } writer.write(byteBuf, 0, n); } } writer.flush(); cache.setLength(0); } catch (IOException e) { throw new UncheckedIOException(e); } return this; } public void close() { flush(); try { writer.close(); } catch (IOException e) { throw new UncheckedIOException(e); } } public String toString() { return cache.toString(); } } static class Debug { private boolean offline; private PrintStream out = System.err; static int[] empty = new int[0]; public Debug(boolean enable) { offline = enable && System.getSecurityManager() == null; } public void run(Runnable task) { if (offline) { task.run(); } } public Debug debug(String name, int x) { if (offline) { debug(name, "" + x); } return this; } public Debug debug(String name, String x) { if (offline) { out.printf("%s=%s", name, x); out.println(); } return this; } public Debug debug(String name, Object x) { return debug(name, x, empty); } public Debug debug(String name, Object x, int... indexes) { if (offline) { if (x == null || !x.getClass().isArray()) { out.append(name); for (int i : indexes) { out.printf("[%d]", i); } out.append("=").append("" + x); out.println(); } else { indexes = Arrays.copyOf(indexes, indexes.length + 1); if (x instanceof byte[]) { byte[] arr = (byte[]) x; for (int i = 0; i < arr.length; i++) { indexes[indexes.length - 1] = i; debug(name, arr[i], indexes); } } else if (x instanceof short[]) { short[] arr = (short[]) x; for (int i = 0; i < arr.length; i++) { indexes[indexes.length - 1] = i; debug(name, arr[i], indexes); } } else if (x instanceof boolean[]) { boolean[] arr = (boolean[]) x; for (int i = 0; i < arr.length; i++) { indexes[indexes.length - 1] = i; debug(name, arr[i], indexes); } } else if (x instanceof char[]) { char[] arr = (char[]) x; for (int i = 0; i < arr.length; i++) { indexes[indexes.length - 1] = i; debug(name, arr[i], indexes); } } else if (x instanceof int[]) { int[] arr = (int[]) x; for (int i = 0; i < arr.length; i++) { indexes[indexes.length - 1] = i; debug(name, arr[i], indexes); } } else if (x instanceof float[]) { float[] arr = (float[]) x; for (int i = 0; i < arr.length; i++) { indexes[indexes.length - 1] = i; debug(name, arr[i], indexes); } } else if (x instanceof double[]) { double[] arr = (double[]) x; for (int i = 0; i < arr.length; i++) { indexes[indexes.length - 1] = i; debug(name, arr[i], indexes); } } else if (x instanceof long[]) { long[] arr = (long[]) x; for (int i = 0; i < arr.length; i++) { indexes[indexes.length - 1] = i; debug(name, arr[i], indexes); } } else { Object[] arr = (Object[]) x; for (int i = 0; i < arr.length; i++) { indexes[indexes.length - 1] = i; debug(name, arr[i], indexes); } } } } return this; } } static class FastInput { private final InputStream is; private StringBuilder defaultStringBuf = new StringBuilder(1 << 13); private byte[] buf = new byte[1 << 13]; private int bufLen; private int bufOffset; private int next; public FastInput(InputStream is) { this.is = is; } public void populate(int[] data) { for (int i = 0; i < data.length; i++) { data[i] = readInt(); } } private int read() { while (bufLen == bufOffset) { bufOffset = 0; try { bufLen = is.read(buf); } catch (IOException e) { bufLen = -1; } if (bufLen == -1) { return -1; } } return buf[bufOffset++]; } public void skipBlank() { while (next >= 0 && next <= 32) { next = read(); } } public String next() { return readString(); } public int ri() { return readInt(); } public int[] ri(int n) { int[] ans = new int[n]; populate(ans); return ans; } public int readInt() { boolean rev = false; skipBlank(); if (next == '+' || next == '-') { rev = next == '-'; next = read(); } int val = 0; while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } return rev ? val : -val; } public String readString(StringBuilder builder) { skipBlank(); while (next > 32) { builder.append((char) next); next = read(); } return builder.toString(); } public String readString() { defaultStringBuf.setLength(0); return readString(defaultStringBuf); } } }
Java
["4\n3\n5 4 3\n4\n3 2 1 4\n1\n69\n8\n7264 40515 28226 92776 35285 21709 75124 48163"]
4 seconds
["5\n9\n0\n117"]
NoteLet $$$f(l, r)$$$ denote the extreme value of $$$[a_l, a_{l+1}, \ldots, a_r]$$$.In the first test case, $$$f(1, 3) = 3$$$, because YouKn0wWho can perform the following operations on the subarray $$$[5, 4, 3]$$$ (the newly inserted elements are underlined):$$$[5, 4, 3] \rightarrow [\underline{3}, \underline{2}, 4, 3] \rightarrow [3, 2, \underline{2}, \underline{2}, 3] \rightarrow [\underline{1}, \underline{2}, 2, 2, 2, 3]$$$; $$$f(1, 2) = 1$$$, because $$$[5, 4] \rightarrow [\underline{2}, \underline{3}, 4]$$$; $$$f(2, 3) = 1$$$, because $$$[4, 3] \rightarrow [\underline{1}, \underline{3}, 3]$$$; $$$f(1, 1) = f(2, 2) = f(3, 3) = 0$$$, because they are already non-decreasing. So the total sum of extreme values of all subarrays of $$$a = 3 + 1 + 1 + 0 + 0 + 0 = 5$$$.
Java 11
standard input
[ "dp", "greedy", "math", "number theory" ]
f760f108c66f695e1e51dc6470d29ce7
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^5$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$10^5$$$.
2,300
For each test case, print a single integer  — the sum of extreme values of all subarrays of $$$a$$$ modulo $$$998\,244\,353$$$.
standard output
PASSED
87d3b5e6eca4cc9dd5ea2833c2f35558
train_110.jsonl
1635604500
For two positive integers $$$l$$$ and $$$r$$$ ($$$l \le r$$$) let $$$c(l, r)$$$ denote the number of integer pairs $$$(i, j)$$$ such that $$$l \le i \le j \le r$$$ and $$$\operatorname{gcd}(i, j) \ge l$$$. Here, $$$\operatorname{gcd}(i, j)$$$ is the greatest common divisor (GCD) of integers $$$i$$$ and $$$j$$$.YouKn0wWho has two integers $$$n$$$ and $$$k$$$ where $$$1 \le k \le n$$$. Let $$$f(n, k)$$$ denote the minimum of $$$\sum\limits_{i=1}^{k}{c(x_i+1,x_{i+1})}$$$ over all integer sequences $$$0=x_1 \lt x_2 \lt \ldots \lt x_{k} \lt x_{k+1}=n$$$.Help YouKn0wWho find $$$f(n, k)$$$.
1024 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.util.Arrays; import java.io.IOException; import java.lang.reflect.Field; import java.nio.charset.StandardCharsets; import java.io.UncheckedIOException; import java.io.Closeable; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) throws Exception { new TaskAdapter().run(); } static class TaskAdapter implements Runnable { @Override public void run() { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastInput in = new FastInput(inputStream); FastOutput out = new FastOutput(outputStream); DArtisticPartition solver = new DArtisticPartition(); int testCount = Integer.parseInt(in.next()); for (int i = 1; i <= testCount; i++) solver.solve(i, in, out); out.close(); } } static class DArtisticPartition { int K = 20; int N = (int) 1e5; long[][] dp = new long[K][N + 1]; int[][] pts = new int[N + 1][]; long[][] suffix = new long[N + 1][]; int[][] start = new int[N + 1][]; Cost cost; long inf = (long) 1e18; long[] p; public void preprocess() { IntegerArrayList ptBuf = new IntegerArrayList(N + 1); IntegerArrayList startBuf = new IntegerArrayList(N + 1); for (int i = 1; i <= N; i++) { ptBuf.clear(); startBuf.clear(); for (int j = 1, r; j <= i; j = r + 1) { int v = i / j; r = i / v; ptBuf.add(v); startBuf.add(j); } pts[i] = ptBuf.toArray(); start[i] = startBuf.toArray(); int m = pts[i].length; suffix[i] = new long[m]; long last = i + 1; long lastSum = 0; for (int j = m - 1; j >= 0; j--) { suffix[i][j] = lastSum + (last - start[i][j]) * p[pts[i][j]]; last = start[i][j]; lastSum = suffix[i][j]; } } } public void dac(int level, int l, int r, int L, int R) { if (l > r) { return; } int m = (l + r) >>> 1; int start = Math.min(m, R); cost.reset(start + 1, m); int bestChoice = -1; long bestCost = inf; for (int i = start; i >= L; i--) { cost.move(i + 1); long cand = cost.cost + dp[level - 1][i]; if (cand < bestCost) { bestCost = cand; bestChoice = i; } } dp[level][m] = bestCost; dac(level, l, m - 1, L, bestChoice); dac(level, m + 1, r, bestChoice, R); } public DArtisticPartition() { MultiplicativeFunctionSieve sieve = new MultiplicativeFunctionSieve(N); int[] euler = sieve.getEuler(); p = new long[N + 1]; p[0] = euler[0]; for (int i = 1; i <= N; i++) { p[i] = p[i - 1] + euler[i]; } preprocess(); cost = new Cost(); SequenceUtils.deepFill(dp, inf); dp[0][0] = 0; for (int i = 1; i < K; i++) { dac(i, 1, N, 0, N); } } public void solve(int testNumber, FastInput in, FastOutput out) { int n = in.ri(); int k = in.ri(); if (k >= K) { out.println(n); return; } long ans = dp[k][n]; out.println(ans); } class Cost { int r; int l; long cost; public void reset(int L, int R) { r = R; l = L; if (l > r) { cost = 0; return; } int high = BinarySearch.upperBound(start[r], 0, start[r].length - 1, l); assert high > 0; cost = 0; int last = r + 1; if (high < suffix[r].length) { cost += suffix[r][high]; last = start[r][high]; } cost += (last - l) * p[pts[r][high - 1]]; } public void move(int L) { while (l < L) { cost -= p[r / l]; l++; } while (l > L) { l--; cost += p[r / l]; } } } } static class SequenceUtils { public static void deepFill(Object array, long val) { if (array == null) { return; } if (!array.getClass().isArray()) { throw new IllegalArgumentException(); } if (array instanceof long[]) { long[] longArray = (long[]) array; Arrays.fill(longArray, val); } else { Object[] objArray = (Object[]) array; for (Object obj : objArray) { deepFill(obj, val); } } } public static boolean equal(int[] a, int al, int ar, int[] b, int bl, int br) { if ((ar - al) != (br - bl)) { return false; } for (int i = al, j = bl; i <= ar; i++, j++) { if (a[i] != b[j]) { return false; } } return true; } } static class BinarySearch { private BinarySearch() { } public static int lowerBound(int[] arr, int l, int r, int target) { while (l < r) { int mid = DigitUtils.floorAverage(l, r); if (arr[mid] >= target) { r = mid; } else { l = mid + 1; } } if (arr[l] < target) { l++; } return l; } public static int upperBound(int[] arr, int l, int r, int target) { return lowerBound(arr, l, r, target + 1); } } static class DigitUtils { private DigitUtils() { } public static int floorAverage(int x, int y) { return (x & y) + ((x ^ y) >> 1); } } static class FastOutput implements AutoCloseable, Closeable, Appendable { private static final int THRESHOLD = 32 << 10; private OutputStream writer; private StringBuilder cache = new StringBuilder(THRESHOLD * 2); private static Field stringBuilderValueField; private char[] charBuf = new char[THRESHOLD * 2]; private byte[] byteBuf = new byte[THRESHOLD * 2]; static { try { stringBuilderValueField = StringBuilder.class.getSuperclass().getDeclaredField("value"); stringBuilderValueField.setAccessible(true); } catch (Exception e) { stringBuilderValueField = null; } stringBuilderValueField = null; } public FastOutput append(CharSequence csq) { cache.append(csq); return this; } public FastOutput append(CharSequence csq, int start, int end) { cache.append(csq, start, end); return this; } private void afterWrite() { if (cache.length() < THRESHOLD) { return; } flush(); } public FastOutput(OutputStream writer) { this.writer = writer; } public FastOutput append(char c) { cache.append(c); afterWrite(); return this; } public FastOutput append(int c) { cache.append(c); afterWrite(); return this; } public FastOutput append(long c) { cache.append(c); afterWrite(); return this; } public FastOutput println(int c) { return append(c).println(); } public FastOutput println(long c) { return append(c).println(); } public FastOutput println() { return append('\n'); } public FastOutput flush() { try { if (stringBuilderValueField != null) { try { byte[] value = (byte[]) stringBuilderValueField.get(cache); writer.write(value, 0, cache.length()); } catch (Exception e) { stringBuilderValueField = null; } } if (stringBuilderValueField == null) { int n = cache.length(); if (n > byteBuf.length) { //slow writer.write(cache.toString().getBytes(StandardCharsets.UTF_8)); // writer.append(cache); } else { cache.getChars(0, n, charBuf, 0); for (int i = 0; i < n; i++) { byteBuf[i] = (byte) charBuf[i]; } writer.write(byteBuf, 0, n); } } writer.flush(); cache.setLength(0); } catch (IOException e) { throw new UncheckedIOException(e); } return this; } public void close() { flush(); try { writer.close(); } catch (IOException e) { throw new UncheckedIOException(e); } } public String toString() { return cache.toString(); } } static class MultiplicativeFunctionSieve { public int[] primes; public boolean[] isComp; public int primeLength; public int[] smallestPrimeFactor; public int[] expOfSmallestPrimeFactor; int limit; public int[] getEuler() { int[] euler = new int[limit + 1]; euler[1] = 1; for (int i = 2; i <= limit; i++) { if (!isComp[i]) { euler[i] = i - 1; } else { if (expOfSmallestPrimeFactor[i] == i) { euler[i] = i - i / smallestPrimeFactor[i]; } else { euler[i] = euler[expOfSmallestPrimeFactor[i]] * euler[i / expOfSmallestPrimeFactor[i]]; } } } return euler; } public MultiplicativeFunctionSieve(int limit) { this.limit = limit; isComp = new boolean[limit + 1]; primes = new int[limit + 1]; expOfSmallestPrimeFactor = new int[limit + 1]; smallestPrimeFactor = new int[limit + 1]; primeLength = 0; for (int i = 2; i <= limit; i++) { if (!isComp[i]) { primes[primeLength++] = i; expOfSmallestPrimeFactor[i] = smallestPrimeFactor[i] = i; } for (int j = 0, until = limit / i; j < primeLength && primes[j] <= until; j++) { int pi = primes[j] * i; smallestPrimeFactor[pi] = primes[j]; expOfSmallestPrimeFactor[pi] = smallestPrimeFactor[i] == primes[j] ? (expOfSmallestPrimeFactor[i] * expOfSmallestPrimeFactor[primes[j]]) : expOfSmallestPrimeFactor[primes[j]]; isComp[pi] = true; if (i % primes[j] == 0) { break; } } } } } static class FastInput { private final InputStream is; private StringBuilder defaultStringBuf = new StringBuilder(1 << 13); private byte[] buf = new byte[1 << 13]; private int bufLen; private int bufOffset; private int next; public FastInput(InputStream is) { this.is = is; } private int read() { while (bufLen == bufOffset) { bufOffset = 0; try { bufLen = is.read(buf); } catch (IOException e) { bufLen = -1; } if (bufLen == -1) { return -1; } } return buf[bufOffset++]; } public void skipBlank() { while (next >= 0 && next <= 32) { next = read(); } } public String next() { return readString(); } public int ri() { return readInt(); } public int readInt() { boolean rev = false; skipBlank(); if (next == '+' || next == '-') { rev = next == '-'; next = read(); } int val = 0; while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } return rev ? val : -val; } public String readString(StringBuilder builder) { skipBlank(); while (next > 32) { builder.append((char) next); next = read(); } return builder.toString(); } public String readString() { defaultStringBuf.setLength(0); return readString(defaultStringBuf); } } static class IntegerArrayList implements Cloneable { private int size; private int cap; private int[] data; private static final int[] EMPTY = new int[0]; public IntegerArrayList(int cap) { this.cap = cap; if (cap == 0) { data = EMPTY; } else { data = new int[cap]; } } public IntegerArrayList(int[] data) { this(0); addAll(data); } public IntegerArrayList(IntegerArrayList list) { this.size = list.size; this.cap = list.cap; this.data = Arrays.copyOf(list.data, size); } public IntegerArrayList() { this(0); } public void ensureSpace(int req) { if (req > cap) { while (cap < req) { cap = Math.max(cap + 10, 2 * cap); } data = Arrays.copyOf(data, cap); } } public void add(int x) { ensureSpace(size + 1); data[size++] = x; } public void addAll(int[] x) { addAll(x, 0, x.length); } public void addAll(int[] x, int offset, int len) { ensureSpace(size + len); System.arraycopy(x, offset, data, size, len); size += len; } public void addAll(IntegerArrayList list) { addAll(list.data, 0, list.size); } public int[] toArray() { return Arrays.copyOf(data, size); } public void clear() { size = 0; } public String toString() { return Arrays.toString(toArray()); } public boolean equals(Object obj) { if (!(obj instanceof IntegerArrayList)) { return false; } IntegerArrayList other = (IntegerArrayList) obj; return SequenceUtils.equal(data, 0, size - 1, other.data, 0, other.size - 1); } public int hashCode() { int h = 1; for (int i = 0; i < size; i++) { h = h * 31 + Integer.hashCode(data[i]); } return h; } public IntegerArrayList clone() { IntegerArrayList ans = new IntegerArrayList(); ans.addAll(this); return ans; } } }
Java
["4\n6 2\n4 4\n3 1\n10 3"]
3 seconds
["8\n4\n6\n11"]
NoteIn the first test case, YouKn0wWho can select the sequence $$$[0, 2, 6]$$$. So $$$f(6, 2) = c(1, 2) + c(3, 6) = 3 + 5 = 8$$$ which is the minimum possible.
Java 11
standard input
[ "divide and conquer", "dp", "number theory" ]
2e7d4deeeb700d7ad008875779d6f969
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3 \cdot 10^5$$$) — the number of test cases. The first and only line of each test case contains two integers $$$n$$$ and $$$k$$$ ($$$1 \le k \le n \le 10^5$$$).
3,000
For each test case, print a single integer — $$$f(n, k)$$$.
standard output