exec_outcome
stringclasses
1 value
code_uid
stringlengths
32
32
file_name
stringclasses
111 values
prob_desc_created_at
stringlengths
10
10
prob_desc_description
stringlengths
63
3.8k
prob_desc_memory_limit
stringclasses
18 values
source_code
stringlengths
117
65.5k
lang_cluster
stringclasses
1 value
prob_desc_sample_inputs
stringlengths
2
802
prob_desc_time_limit
stringclasses
27 values
prob_desc_sample_outputs
stringlengths
2
796
prob_desc_notes
stringlengths
4
3k
lang
stringclasses
5 values
prob_desc_input_from
stringclasses
3 values
tags
sequencelengths
0
11
src_uid
stringlengths
32
32
prob_desc_input_spec
stringlengths
28
2.37k
difficulty
int64
-1
3.5k
prob_desc_output_spec
stringlengths
17
1.47k
prob_desc_output_to
stringclasses
3 values
hidden_unit_tests
stringclasses
1 value
PASSED
deb4ed1ed77be1b1c17bc8765614f93a
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; public class ModerateModularMode { private static final int START_TEST_CASE = 1; public static void solveCase(FastIO io, int testCase) { final long X = io.nextLong(); final long Y = io.nextLong(); if (X < Y) { io.println(Y - (Y % X) / 2); } else if (X > Y) { io.println(Y * (X + 1)); } else { io.println(X); } } public static void solve(FastIO io) { final int T = io.nextInt(); for (int t = 0; t < T; ++t) { solveCase(io, START_TEST_CASE + t); } } public static class FastIO { private InputStream reader; private PrintWriter writer; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public FastIO(InputStream r, OutputStream w) { reader = r; writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(w))); } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = reader.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } public String nextString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } // TODO: read this byte-by-byte like the other read functions. public double nextDouble() { return Double.parseDouble(nextString()); } public int[] nextIntArray(int n) { return nextIntArray(n, 0); } public int[] nextIntArray(int n, int off) { int[] arr = new int[n + off]; for (int i = 0; i < n; i++) { arr[i + off] = nextInt(); } return arr; } public long[] nextLongArray(int n) { return nextLongArray(n, 0); } public long[] nextLongArray(int n, int off) { long[] arr = new long[n + off]; for (int i = 0; i < n; i++) { arr[i + off] = nextLong(); } return arr; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void println(Object... objects) { print(objects); writer.println(); } public void printArray(int[] arr) { for (int i = 0; i < arr.length; i++) { if (i != 0) { writer.print(' '); } writer.print(arr[i]); } } public void printArray(long[] arr) { for (int i = 0; i < arr.length; i++) { if (i != 0) { writer.print(' '); } writer.print(arr[i]); } } public void printlnArray(int[] arr) { printArray(arr); writer.println(); } public void printlnArray(long[] arr) { printArray(arr); writer.println(); } public void printf(String format, Object... args) { print(String.format(format, args)); } public void flush() { writer.flush(); } } public static void main(String[] args) { FastIO io = new FastIO(System.in, System.out); solve(io); io.flush(); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
884bed54d8161a23a58f531e8a07ba73
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; public class ModerateModularMode { private static final int START_TEST_CASE = 1; public static void solveCase(FastIO io, int testCase) { final long X = io.nextLong(); final long Y = io.nextLong(); if (X < Y) { io.println(Y - ((Y % X) >> 1)); } else if (X > Y) { io.println(Y * (X + 1)); } else { io.println(X); } } public static void solve(FastIO io) { final int T = io.nextInt(); for (int t = 0; t < T; ++t) { solveCase(io, START_TEST_CASE + t); } } public static class FastIO { private InputStream reader; private PrintWriter writer; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public FastIO(InputStream r, OutputStream w) { reader = r; writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(w))); } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = reader.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } public String nextString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } // TODO: read this byte-by-byte like the other read functions. public double nextDouble() { return Double.parseDouble(nextString()); } public int[] nextIntArray(int n) { return nextIntArray(n, 0); } public int[] nextIntArray(int n, int off) { int[] arr = new int[n + off]; for (int i = 0; i < n; i++) { arr[i + off] = nextInt(); } return arr; } public long[] nextLongArray(int n) { return nextLongArray(n, 0); } public long[] nextLongArray(int n, int off) { long[] arr = new long[n + off]; for (int i = 0; i < n; i++) { arr[i + off] = nextLong(); } return arr; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void println(Object... objects) { print(objects); writer.println(); } public void printArray(int[] arr) { for (int i = 0; i < arr.length; i++) { if (i != 0) { writer.print(' '); } writer.print(arr[i]); } } public void printArray(long[] arr) { for (int i = 0; i < arr.length; i++) { if (i != 0) { writer.print(' '); } writer.print(arr[i]); } } public void printlnArray(int[] arr) { printArray(arr); writer.println(); } public void printlnArray(long[] arr) { printArray(arr); writer.println(); } public void printf(String format, Object... args) { print(String.format(format, args)); } public void flush() { writer.flush(); } } public static void main(String[] args) { FastIO io = new FastIO(System.in, System.out); solve(io); io.flush(); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
4644f66fad063ab2dcfb5bcf8e8f2697
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; public class ModerateModularMode { private static final int START_TEST_CASE = 1; public static void solveCase(FastIO io, int testCase) { final long X = io.nextLong(); final long Y = io.nextLong(); if (X < Y) { io.println(Y - ((Y % X) >> 1)); } else if (X > Y) { io.println(X * Y + Y); } else { io.println(X); } } public static void solve(FastIO io) { final int T = io.nextInt(); for (int t = 0; t < T; ++t) { solveCase(io, START_TEST_CASE + t); } } public static class FastIO { private InputStream reader; private PrintWriter writer; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public FastIO(InputStream r, OutputStream w) { reader = r; writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(w))); } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = reader.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } public String nextString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } // TODO: read this byte-by-byte like the other read functions. public double nextDouble() { return Double.parseDouble(nextString()); } public int[] nextIntArray(int n) { return nextIntArray(n, 0); } public int[] nextIntArray(int n, int off) { int[] arr = new int[n + off]; for (int i = 0; i < n; i++) { arr[i + off] = nextInt(); } return arr; } public long[] nextLongArray(int n) { return nextLongArray(n, 0); } public long[] nextLongArray(int n, int off) { long[] arr = new long[n + off]; for (int i = 0; i < n; i++) { arr[i + off] = nextLong(); } return arr; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void println(Object... objects) { print(objects); writer.println(); } public void printArray(int[] arr) { for (int i = 0; i < arr.length; i++) { if (i != 0) { writer.print(' '); } writer.print(arr[i]); } } public void printArray(long[] arr) { for (int i = 0; i < arr.length; i++) { if (i != 0) { writer.print(' '); } writer.print(arr[i]); } } public void printlnArray(int[] arr) { printArray(arr); writer.println(); } public void printlnArray(long[] arr) { printArray(arr); writer.println(); } public void printf(String format, Object... args) { print(String.format(format, args)); } public void flush() { writer.flush(); } } public static void main(String[] args) { FastIO io = new FastIO(System.in, System.out); solve(io); io.flush(); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
1119c57dac20ee0ddfc261f676ad1be8
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; public class ModerateModularMode { private static final int START_TEST_CASE = 1; public static void solveCase(FastIO io, int testCase) { final long X = io.nextLong(); final long Y = io.nextLong(); if (X < Y) { io.println(Y - (Y % X) / 2); } else if (X > Y) { io.println(X * Y + Y); } else { io.println(X); } } public static void solve(FastIO io) { final int T = io.nextInt(); for (int t = 0; t < T; ++t) { solveCase(io, START_TEST_CASE + t); } } public static class FastIO { private InputStream reader; private PrintWriter writer; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public FastIO(InputStream r, OutputStream w) { reader = r; writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(w))); } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = reader.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } public String nextString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } // TODO: read this byte-by-byte like the other read functions. public double nextDouble() { return Double.parseDouble(nextString()); } public int[] nextIntArray(int n) { return nextIntArray(n, 0); } public int[] nextIntArray(int n, int off) { int[] arr = new int[n + off]; for (int i = 0; i < n; i++) { arr[i + off] = nextInt(); } return arr; } public long[] nextLongArray(int n) { return nextLongArray(n, 0); } public long[] nextLongArray(int n, int off) { long[] arr = new long[n + off]; for (int i = 0; i < n; i++) { arr[i + off] = nextLong(); } return arr; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void println(Object... objects) { print(objects); writer.println(); } public void printArray(int[] arr) { for (int i = 0; i < arr.length; i++) { if (i != 0) { writer.print(' '); } writer.print(arr[i]); } } public void printArray(long[] arr) { for (int i = 0; i < arr.length; i++) { if (i != 0) { writer.print(' '); } writer.print(arr[i]); } } public void printlnArray(int[] arr) { printArray(arr); writer.println(); } public void printlnArray(long[] arr) { printArray(arr); writer.println(); } public void printf(String format, Object... args) { print(String.format(format, args)); } public void flush() { writer.flush(); } } public static void main(String[] args) { FastIO io = new FastIO(System.in, System.out); solve(io); io.flush(); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
6ef706eb572655ca2a26ddb440c90415
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.*; import java.util.concurrent.LinkedBlockingDeque; import javax.print.attribute.IntegerSyntax; import javax.sql.rowset.spi.SyncResolver; import java.io.*; import java.nio.channels.NonReadableChannelException; import java.text.DateFormatSymbols; import static java.lang.System.*; public class CpTemp{ static FastScanner fs = null; static ArrayList<Integer> al[]; static HashMap<Long,Long> hm; static long fy; static long fx; static long ix; static long iy; static long prex[]; static long prey[]; public static void main(String[] args) { fs = new FastScanner(); PrintWriter out = new PrintWriter(System.out); int t= fs.nextInt(); outer: while (t-- > 0) { int n = fs.nextInt(); int m = fs.nextInt(); if (n>m) out.println(n+m); else { if (n == m){ out.println(n); }else{ n = m - (m%n); out.println((m+n)/2); } } } out.close(); } public static void solve(long n, ArrayList<Long>al){ for(long d = 2; d*d<=(n);d++){ if(n%d==0){ al.add(d); if(d!=(n/d)){ al.add(-1l); return; } } } } // 0 6 1 3 2 m = 7 public static boolean check(long t,int a[],int m) { int prev = -1; for(int i=0;i<a.length;i++){ if(i==0){ if(a[i]+t >= m){ prev = 0; }else{ prev = a[i]; } }else{ if(a[i]==prev){ continue; }else if(a[i]<prev){ if(prev - a[i] <= t){ continue; }else{ return false; } }else{ if(a[i]+t >= m && (a[i]+t)%m < prev){ prev = a[i]; }else if(a[i]+t >=m && (a[i]+t)%m >= prev ){ continue; }else{ prev = a[i]; } } } } return true; } public static int CeilIndex(int A[], int l, int r, int key) { while (r - l > 1) { int m = l + (r - l) / 2; if (A[m] >= key) r = m; else l = m; } return r; } public static int LongestIncreasingSubsequenceLength(int A[], int size) { // Add boundary case, when array size is one int[] tailTable = new int[size]; int len; // always points empty slot tailTable[0] = A[0]; len = 1; for (int i = 1; i < size; i++) { if (A[i] < tailTable[0]) // new smallest value tailTable[0] = A[i]; else if (A[i] > tailTable[len - 1]) // A[i] wants to extend largest subsequence tailTable[len++] = A[i]; else // A[i] wants to be current end candidate of an existing // subsequence. It will replace ceil value in tailTable tailTable[CeilIndex(tailTable, -1, len - 1, A[i])] = A[i]; } return len; } public static int ask(int st,int end){ if(st>=end) { return -1; } out.println("? "+(st+1)+" "+(end+1)); int g = fs.nextInt(); out.flush(); return g-1; } static long bit[]; // '1' index based array public static void update(long bit[],int i,int x){ for(;i<bit.length;i+=(i&(-i))){ bit[i] += x; } } public static long sum(int i){ long sum=0; for(;i>0 ;i -= (i&(-i))){ sum += bit[i]; } return sum; } static class Pair implements Comparable<Pair> { int x; int y; Pair(int x, int y) { this.x = x; this.y = y; } public int compareTo(Pair o){ return this.y-o.y; } } static class Pair1 implements Comparable<Pair1> { int x; int y; int z; Pair1(int x, int y,int z) { this.x = x; this.y = y; this.z = z; } public int compareTo(Pair1 o){ return this.z-o.z; } } static int power(int x, int y, int p) { if (y == 0) return 1; if (x == 0) return 0; int res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } static long power(long x, long y) { if (y == 0) return 1; if (x == 0) return 0; long res = 1; while (y > 0) { if (y % 2 == 1) res = (res * x); y = y >> 1; x = (x * x); } return res; } static void sort(long[] a) { ArrayList<Long> l = new ArrayList<>(); for (long i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long[] readlongArray(int n){ long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } long nextLong() { return Long.parseLong(next()); } } static boolean prime[]; static void sieveOfEratosthenes(int n) { prime = new boolean[n + 1]; for (int i = 0; i <= n; i++) prime[i] = true; for (int p = 2; p * p <= n; p++) { // If prime[p] is not changed, then it is a // prime if (prime[p] == true) { // Update all multiples of p for (int i = p * p; i <= n; i += p) prime[i] = false; } } } public static int log2(int x) { return (int) (Math.log(x) / Math.log(2)); } public static long gcd(long a, long b) { if (b == 0) { return a; } return gcd(b, a % b); } static long nCk(int n, int k) { long res = 1; for (int i = n - k + 1; i <= n; ++i) res *= i; for (int i = 2; i <= k; ++i) res /= i; return res; } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
c1216e8253bc2480db6d333b3860784e
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; public class Main { static int i, j, k, n, m, t, y, x, sum = 0; static long mod = 1000000007; static FastScanner fs = new FastScanner(); static PrintWriter out = new PrintWriter(System.out); static String str; static long ans; public static void main(String[] args) { t =fs.nextInt(); while(t-- >0){ long x = fs.nextLong(); long y = fs.nextLong(); if(x==y) out.println(x); else if(x>y){ out.println(x+y); } else{ long c = y%x; out.println(y-(c/2)); } } out.close(); } /** * Returns the gretaest index of closest element less than x in arr * returns -1 if all elemets are greater * */ public static int lowerBound(int x, List<Integer> arr, int l, int r){ if(arr.get(l)>=x) return -1; if(arr.get(r)<x) return r; int mid = (l+r)/2; if(arr.get(mid)<x && arr.get(mid+1)>x) return mid; if(arr.get(mid)>=x) return lowerBound(x,arr,l,mid-1); return lowerBound(x,arr,mid+1,r); } /** * Returns the lowest index of closest element greater than or equal to x in arr * returns -1 if all elements are lesser * */ public static int upperBound(int x, List<Integer> arr, int l, int r){ if(arr.get(r) <=x) return -1; if(arr.get(l)>x) return l; int mid = (l+r)/2; if(arr.get(mid)>x && arr.get(mid-1)<=x) return mid; if(arr.get(mid)<=x) return upperBound(x,arr,mid+1,r); return upperBound(x,arr,l,mid-1); } /** * Returns the index of element if present else -1. * */ public static int binSearch(int x, List<Integer> arr){ int y = Collections.binarySearch(arr, x); if(y<0) return -1; return y; } /** * Gets prime factorisation of a number in list of pairs. * x is the factor and y is the occurrence. * */ public static List<Pair> primeFactorization(int num){ List<Pair> ans = new ArrayList<>(); for(int i=2;i*i<=num;i++){ if(num % i ==0){ int count = 0; while(num%i==0){ count++; num=num/i; } ans.add(new Pair(i,count)); } } if(num!=1) ans.add(new Pair(num, 1)); return ans; } /*static long nck(int n , int k){ long a = fact[n]; long b = modInv(fact[k]); b*= modInv(fact[n-k]); b%=mod; return (a*b)%mod; } static void populateFact(){ fact[0]=1; fact[1] = 1; for(i=2;i<300005;i++){ fact[i]=i*fact[i-1]; fact[i]%=mod; } } */ static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } static long exp(long base, long pow) { if (pow == 0) return 1; long half = exp(base, pow / 2); if (pow % 2 == 0) return mul(half, half); return mul(half, mul(half, base)); } static long mul(long a, long b) { return ((a % mod) * (b % mod)) % mod; } static long add(long a, long b) { return ((a % mod) + (b % mod)) % mod; } static long modInv(long x) { return exp(x, mod - 2); } static void ruffleSort(int[] a) { //ruffle int n = a.length; Random r = new Random(); for (int i = 0; i < a.length; i++) { int oi = r.nextInt(n), temp = a[i]; a[i] = a[oi]; a[oi] = temp; } //then sort Arrays.sort(a); } static void ruffleSort(long[] a) { //ruffle int n = a.length; Random r = new Random(); for (int i = 0; i < a.length; i++) { int oi = r.nextInt(n); long temp = a[i]; a[i] = a[oi]; a[oi] = temp; } Arrays.sort(a); } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } static class Pair implements Comparable<Pair> { public int x, y; Pair(int x, int y) { this.x = x; this.y = y; } @Override public int compareTo(Pair o) { if (x == o.x) return Integer.compare(y, o.y); return Integer.compare(x, o.x); } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
9721d570fbfae785ad09a5ec5bdc05c7
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class CF1603_D1_B { public static void main(String[] args) { FastScanner scanner = new FastScanner(); int t = scanner.nextInt(); for (int i = 0; i < t; i++) { solve(scanner); } } private static void solve(FastScanner scanner) { int x = scanner.nextInt(); int y = scanner.nextInt(); if (x < y) { long div = y / x; long n = div * x + (y % x) / 2; System.out.println(n); // for (int i = 0; i < x; i++) { // if (i == y % x) { // System.out.println(x + i); // } // } } else if (x > y) { System.out.println(x + y); } else { System.out.println(x); } } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[] nextArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } Integer[] nextArray(int n, boolean object) { Integer[] arr = new Integer[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
e78ac9326c0d270abdd58d0988717b7b
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; public class Main { private static final MyWriter writer = new MyWriter(); private static final MyReader scan = new MyReader(); public static void main(String[] args) throws Exception { Main main = new Main(); int q = scan.nextInt(); while (q-- > 0) main.solve(); writer.close(); } void solve() throws Exception { int x = scan.nextInt(); int y = scan.nextInt(); if (x < y) { writer.println(y - (y % x / 2)); } else if(x > y) { writer.println(x + y); } else { writer.println(x); } } } class MyWriter implements Closeable { private BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(System.out)); public void print(Object object) throws IOException { writer.write(object.toString()); } public void println(Object object) throws IOException { writer.write(object.toString());writer.write(System.lineSeparator()); } public void close() throws IOException { writer.close(); } } class MyReader { private BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); private StringTokenizer tokenizer = new StringTokenizer(""); private String innerNextLine() { try { return reader.readLine(); } catch (IOException ex) { return null;}} public boolean hasNext() { while (!tokenizer.hasMoreTokens()) { String nextLine = innerNextLine();if (nextLine == null) return false;tokenizer = new StringTokenizer(nextLine); }return true; } public String nextLine() { tokenizer = new StringTokenizer("");return innerNextLine(); } public String next() { hasNext();return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
3d8196e03a545b0deb9738c57d45cd5c
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; public class Main{ public static void main(String[] args) throws IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int T = Integer.parseInt(br.readLine()); while(T-- > 0) { StringTokenizer st = new StringTokenizer(br.readLine()); int x = Integer.parseInt(st.nextToken()); int y = Integer.parseInt(st.nextToken()); if(x > y) System.out.println(x+y); else if(x==y) System.out.println(x); else { int t; if(y % x == 0) { t = (y/x-1)*x; } else t=y/x*x; System.out.println((y+t) / 2); } } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
41dfa5be05946b7713e8eef44a3eda97
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; public class modmode{ public static void main(String[] args) throws IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int T = Integer.parseInt(br.readLine()); while(T-- > 0){ StringTokenizer st = new StringTokenizer(br.readLine()); int x = Integer.parseInt(st.nextToken()); int y = Integer.parseInt(st.nextToken()); if(x == y){ System.out.println(x); continue; } else if(x > y){ long ans = x + y; System.out.println(ans); continue; } else{ x = y / x * x; long med = (x + y) / 2; System.out.println(med); } } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
f3f10ba1974300d572d4fa7276a8d41f
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
/* Challenge 1: Newbie to CM in 1year (Dec 2021 - Nov 2022) 🔥 5* Codechef Challenge 2: CM to IM in 1 year (Dec 2022 - Nov 2023) 🔥🔥 6* Codechef Challenge 3: IM to GM in 1 year (Dec 2023 - Nov 2024) 🔥🔥🔥 7* Codechef Goal: Become better in CP! Key: Consistency! */ import java.util.*; import java.io.*; import java.math.*; public class Coder { static StringBuffer str=new StringBuffer(); static long x,y; static void solve(){ long n=0; if(x==y) n=x; else if(x<y){ if(y%x==0) n=x; else n=y-y%x/2; } else n=x+y; str.append(n).append("\n"); } public static void main(String[] args) throws java.lang.Exception { BufferedReader bf; PrintWriter pw; boolean lenv=false; if(lenv){ bf = new BufferedReader( new FileReader("input.txt")); pw=new PrintWriter(new BufferedWriter(new FileWriter("output.txt"))); }else{ bf = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(new OutputStreamWriter(System.out)); } int q = Integer.parseInt(bf.readLine().trim()); while (q-- > 0) { String s[]=bf.readLine().trim().split("\\s+"); x=Long.parseLong(s[0]); y=Long.parseLong(s[1]); solve(); } pw.println(str); pw.flush(); // System.outin.print(str); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
0417c3fb5e71ac1d658facf1829a2199
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; public class Main { public static void main(String[] args) throws IOException { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); PrintWriter writer = new PrintWriter(System.out); int t = Integer.parseInt(reader.readLine()); while (t-- > 0) { String[] line = reader.readLine().split(" "); int x = Integer.parseInt(line[0]); int y = Integer.parseInt(line[1]); if (x == y) { writer.println(x); } else if (x > y) { writer.println(x + y); } else { writer.println(y - (y % x) / 2); } } reader.close(); writer.close(); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
ee1dab84bf66571d73237bee125c3025
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; public class solution { public static void main(String[] args) { FScanner sc = new FScanner(); //Arrays.fill(prime, true); //sieve(); int t=sc.nextInt(); while(t-->0) { long x=sc.nextInt(); long y=sc.nextInt(); long ans=0; if(x==2) ans=2; else if(x<y) { if(y%x==0) ans=x; else ans=y- (y%x)/2 ; } else if(x==y) ans=x; else ans=x+y; System.out.println(ans); } } public static boolean check(int k,int n,ArrayList<pair> arr) { int c=0; for(int i=0;i<n;i++) { if( k-1-arr.get(i).a<=c && arr.get(i).b>=c ) c++; // System.out.println(c); } if(c>=k) return true; else return false; } /* public static void sieve() { prime[0]=prime[1]=false; int n=1000000; for(int p = 2; p*p <=n; p++) { if(prime[p] == true) { for(int i = p*p; i <= n; i += p) prime[i] = false; } } */ } class pair { int a;int b; public pair(int f,int ind) { a=f; b=ind; } } class FScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer sb = new StringTokenizer(""); String next(){ while(!sb.hasMoreTokens()){ try{ sb = new StringTokenizer(br.readLine()); } catch(IOException e){ } } return sb.nextToken(); } String nextLine(){ try{ return br.readLine(); } catch(IOException e) { } return ""; } int nextInt(){ return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } int[] readArray(int n) { int a[] = new int[n]; for(int i=0;i<n;i++) a[i] = nextInt(); return a; } float nextFloat(){ return Float.parseFloat(next()); } double nextDouble(){ return Double.parseDouble(next()); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
a47b2f5ee8831bd36d7a94842b6bc151
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.BufferedReader; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.util.*; /** * # * * @author pttrung */ public class B_Round_752_Div1 { public static int MOD = 1000000007; public static void main(String[] args) throws FileNotFoundException { // PrintWriter out = new PrintWriter(new FileOutputStream(new File( // "output.txt"))); PrintWriter out = new PrintWriter(System.out); Scanner in = new Scanner(); int T = in.nextInt(); for (int t = 0; t < T; t++) { int x = in.nextInt(); int y = in.nextInt(); if (y % x == 0) { out.println(x); continue; } if (x > y) { out.println((x + y)); continue; } int a = (y / x); int b = (y % x); for (int i = 1; (long) i * (long) i <= a; i++) { if (a % i != 0) { continue; } int o = a / i; if (b % (i + 1) == 0) { out.println((x * (a / i) + (b / (i + 1)))); break; } if (b % (o + 1) == 0) { out.println((x * (a / o) + (b / (o + 1)))); break; } } } out.close(); } static int abs(int a) { return a < 0 ? -a : a; } public static int[] KMP(String val) { int i = 0; int j = -1; int[] result = new int[val.length() + 1]; result[0] = -1; while (i < val.length()) { while (j >= 0 && val.charAt(j) != val.charAt(i)) { j = result[j]; } j++; i++; result[i] = j; } return result; } public static boolean nextPer(int[] data) { int i = data.length - 1; while (i > 0 && data[i] < data[i - 1]) { i--; } if (i == 0) { return false; } int j = data.length - 1; while (data[j] < data[i - 1]) { j--; } int temp = data[i - 1]; data[i - 1] = data[j]; data[j] = temp; Arrays.sort(data, i, data.length); return true; } public static int digit(long n) { int result = 0; while (n > 0) { n /= 10; result++; } return result; } public static double dist(long a, long b, long x, long y) { double val = (b - a) * (b - a) + (x - y) * (x - y); val = Math.sqrt(val); double other = x * x + a * a; other = Math.sqrt(other); return val + other; } public static class Point { int x; int y; public Point(int start, int end) { this.x = start; this.y = end; } public String toString() { return x + " " + y; } } public static class FT { long[] data; FT(int n) { data = new long[n]; } public void update(int index, long value) { while (index < data.length) { data[index] += value; index += (index & (-index)); } } public long get(int index) { long result = 0; while (index > 0) { result += data[index]; index -= (index & (-index)); } return result; } } public static long gcd(long a, long b) { if (b == 0) { return a; } return gcd(b, a % b); } public static long pow(long a, int b) { if (b == 0) { return 1; } if (b == 1) { return a; } long val = pow(a, b / 2); if (b % 2 == 0) { return (val * val); } else { return (val * ((val * a))); } } static class Scanner { BufferedReader br; StringTokenizer st; public Scanner() throws FileNotFoundException { // System.setOut(new PrintStream(new BufferedOutputStream(System.out), true)); br = new BufferedReader(new InputStreamReader(System.in)); //br = new BufferedReader(new InputStreamReader(new FileInputStream(new File("input.txt")))); } public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { throw new RuntimeException(); } } return st.nextToken(); } public long nextLong() { return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { st = null; try { return br.readLine(); } catch (Exception e) { throw new RuntimeException(); } } public boolean endLine() { try { String next = br.readLine(); while (next != null && next.trim().isEmpty()) { next = br.readLine(); } if (next == null) { return true; } st = new StringTokenizer(next); return st.hasMoreTokens(); } catch (Exception e) { throw new RuntimeException(); } } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
7d9eb38f55db584696790c24cb294888
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.text.DecimalFormat; import java.util.*; public class Solution { static BufferedReader bf; static PrintWriter out; static Scanner sc; static StringTokenizer st; static long mod = (long)(1e9+7); static long mod2 = 998244353; static long fact[] = new long[1000001]; static long inverse[] = new long[1000001]; public static void main (String[] args)throws IOException { bf = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); sc = new Scanner(System.in); // fact[0] = 1; // inverse[0] = 1; // for(int i = 1;i<fact.length;i++){ // fact[i] = (fact[i-1] * i)%mod; // // inverse[i] = binaryExpo(fact[i], mod-2);a // } int t = nextInt(); while(t-->0){ solve(); } out.flush(); } public static void solve() throws IOException{ int x = nextInt(); int y = nextInt(); if(x < y){ out.println((y - (y % x)/2)); } else if(x == y){ out.println(x); } else{ out.println((x + y)); } } public static int height(List<List<Integer>>list,int cur,int parent){ List<Integer>temp = list.get(cur); int max = 0; for(int i = 0;i<temp.size();i++){ int next = temp.get(i); if(next != parent){ max = Math.max(max,height(list,next,cur)); } } return max+1; } public static void req(int i,int j){ out.println("? " + i + " " + j); out.flush(); } public static int maxy(int node, int l,int r,int tl,int tr,int[][]tree){ if(l>=tl && r <= tr)return tree[node][0]; if(r < tl || l > tr)return Integer.MIN_VALUE; int mid = (l + r)/2; return Math.max(maxy(node*2,l,mid,tl,tr,tree),maxy(node*2+1,mid+1,r,tl,tr,tree)); } public static int mini(int node,int l,int r,int tl,int tr,int[][]tree){ if(l >= tl && r <= tr)return tree[node][1]; if(r < tl || l > tr)return Integer.MAX_VALUE; int mid = (l + r)/2; return Math.min(mini(node*2 , l , mid ,tl ,tr,tree),mini(node*2 + 1, mid + 1, r, tl, tr, tree)); } public static void fillParent(int[][]parent,List<List<Integer>>list,int cur ,int p,int[]depths){ parent[cur][0] = p; List<Integer>temp = list.get(cur); for(int i = 0;i<temp.size();i++){ int next = temp.get(i); if(next != p){ depths[next] = depths[cur] + 1; fillParent(parent,list,next,cur,depths); } } } public static int lca(int[][]parent , int u, int v){ if(u == v)return u; for(int i = 18;i>=0;i--){ if(parent[u][i] != parent[v][i]){ u = parent[u][i]; v = parent[v][i]; } } return parent[u][0]; } public static int bringSame(int[][]parent,int[]depths,int u, int v){ if(depths[u] < depths[v]){ int temp = u; u = v; v = temp; } int k = depths[u] - depths[v]; for(int i = 0;i<=18;i++){ if((k & (1<<i)) != 0){ u = parent[u][i]; } } return u; } public static long nck(int n,int k){ return fact[n] * inverse[n-k] %mod * inverse[k]%mod; } public static void plus(int node,int low,int high,int tlow,int thigh,int[]tree){ if(low >= tlow && high <= thigh){ tree[node]++; return; } if(high < tlow || low > thigh)return; int mid = (low + high)/2; plus(node*2,low,mid,tlow,thigh,tree); plus(node*2 + 1 , mid + 1, high,tlow, thigh,tree); } public static boolean allEqual(int[]arr,int x){ for(int i = 0;i<arr.length;i++){ if(arr[i] != x)return false; } return true; } public static long helper(StringBuilder sb){ return Long.parseLong(sb.toString()); } public static int min(int node,int low,int high,int tlow,int thigh,int[][]tree){ if(low >= tlow&& high <= thigh)return tree[node][0]; if(high < tlow || low > thigh)return Integer.MAX_VALUE; int mid = (low + high)/2; // println(low+" "+high+" "+tlow+" "+thigh); return Math.min(min(node*2,low,mid,tlow,thigh,tree) ,min(node*2+1,mid+1,high,tlow,thigh,tree)); } public static int max(int node,int low,int high,int tlow,int thigh,int[][]tree){ if(low >= tlow && high <= thigh)return tree[node][1]; if(high < tlow || low > thigh)return Integer.MIN_VALUE; int mid = (low + high)/2; return Math.max(max(node*2,low,mid,tlow,thigh,tree) ,max(node*2+1,mid+1,high,tlow,thigh,tree)); } public static long[] help(List<List<Integer>>list,int[][]range,int cur){ List<Integer>temp = list.get(cur); if(temp.size() == 0)return new long[]{range[cur][1],1}; long sum = 0; long count = 0; for(int i = 0;i<temp.size();i++){ long []arr = help(list,range,temp.get(i)); sum += arr[0]; count += arr[1]; } if(sum < range[cur][0]){ count++; sum = range[cur][1]; } return new long[]{sum,count}; } public static long findSum(int node,int low, int high,int tlow,int thigh,long[]tree,long mod){ if(low >= tlow && high <= thigh)return tree[node]%mod; if(low > thigh || high < tlow)return 0; int mid = (low + high)/2; return((findSum(node*2,low,mid,tlow,thigh,tree,mod) % mod) + (findSum(node*2+1,mid+1,high,tlow,thigh,tree,mod)))%mod; } public static boolean allzero(long[]arr){ for(int i =0 ;i<arr.length;i++){ if(arr[i]!=0)return false; } return true; } public static long count(long[][]dp,int i,int[]arr,int drank,long sum){ if(i == arr.length)return 0; if(dp[i][drank]!=-1 && arr[i]+sum >=0)return dp[i][drank]; if(sum + arr[i] >= 0){ long count1 = 1 + count(dp,i+1,arr,drank+1,sum+arr[i]); long count2 = count(dp,i+1,arr,drank,sum); return dp[i][drank] = Math.max(count1,count2); } return dp[i][drank] = count(dp,i+1,arr,drank,sum); } public static void help(int[]arr,char[]signs,int l,int r){ if( l < r){ int mid = (l+r)/2; help(arr,signs,l,mid); help(arr,signs,mid+1,r); merge(arr,signs,l,mid,r); } } public static void merge(int[]arr,char[]signs,int l,int mid,int r){ int n1 = mid - l + 1; int n2 = r - mid; int[]a = new int[n1]; int []b = new int[n2]; char[]asigns = new char[n1]; char[]bsigns = new char[n2]; for(int i = 0;i<n1;i++){ a[i] = arr[i+l]; asigns[i] = signs[i+l]; } for(int i = 0;i<n2;i++){ b[i] = arr[i+mid+1]; bsigns[i] = signs[i+mid+1]; } int i = 0; int j = 0; int k = l; boolean opp = false; while(i<n1 && j<n2){ if(a[i] <= b[j]){ arr[k] = a[i]; if(opp){ if(asigns[i] == 'R'){ signs[k] = 'L'; } else{ signs[k] = 'R'; } } else{ signs[k] = asigns[i]; } i++; k++; } else{ arr[k] = b[j]; int times = n1 - i; if(times%2 == 1){ if(bsigns[j] == 'R'){ signs[k] = 'L'; } else{ signs[k] = 'R'; } } else{ signs[k] = bsigns[j]; } j++; opp = !opp; k++; } } while(i<n1){ arr[k] = a[i]; if(opp){ if(asigns[i] == 'R'){ signs[k] = 'L'; } else{ signs[k] = 'R'; } } else{ signs[k] = asigns[i]; } i++; k++; } while(j<n2){ arr[k] = b[j]; signs[k] = bsigns[j]; j++; k++; } } public static long binaryExpo(long base,long expo){ if(expo == 0)return 1; long val; if(expo%2 == 1){ val = (binaryExpo(base, expo-1)*base)%mod; } else{ val = binaryExpo(base, expo/2); val = (val*val)%mod; } return (val%mod); } public static boolean isSorted(int[]arr){ for(int i =1;i<arr.length;i++){ if(arr[i] < arr[i-1]){ return false; } } return true; } //function to find the topological sort of the a DAG public static boolean hasCycle(int[]indegree,List<List<Integer>>list,int n,List<Integer>topo){ Queue<Integer>q = new LinkedList<>(); for(int i =1;i<indegree.length;i++){ if(indegree[i] == 0){ q.add(i); topo.add(i); } } while(!q.isEmpty()){ int cur = q.poll(); List<Integer>l = list.get(cur); for(int i = 0;i<l.size();i++){ indegree[l.get(i)]--; if(indegree[l.get(i)] == 0){ q.add(l.get(i)); topo.add(l.get(i)); } } } if(topo.size() == n)return false; return true; } // function to find the parent of any given node with path compression in DSU public static int find(int val,int[]parent){ if(val == parent[val])return val; return parent[val] = find(parent[val],parent); } // function to connect two components public static void union(int[]rank,int[]parent,int u,int v){ int a = find(u,parent); int b= find(v,parent); if(a == b)return; if(rank[a] == rank[b]){ parent[b] = a; rank[a]++; } else{ if(rank[a] > rank[b]){ parent[b] = a; } else{ parent[a] = b; } } } // public static int findN(int n){ int num = 1; while(num < n){ num *=2; } return num; } // code for input public static void print(String s ){ System.out.print(s); } public static void print(int num ){ System.out.print(num); } public static void print(long num ){ System.out.print(num); } public static void println(String s){ System.out.println(s); } public static void println(int num){ System.out.println(num); } public static void println(long num){ System.out.println(num); } public static void println(){ System.out.println(); } public static int Int(String s){ return Integer.parseInt(s); } public static long Long(String s){ return Long.parseLong(s); } public static String[] nextStringArray()throws IOException{ return bf.readLine().split(" "); } public static String nextString()throws IOException{ return bf.readLine(); } public static long[] nextLongArray(int n)throws IOException{ String[]str = bf.readLine().split(" "); long[]arr = new long[n]; for(int i =0;i<n;i++){ arr[i] = Long.parseLong(str[i]); } return arr; } public static int[][] newIntMatrix(int r,int c)throws IOException{ int[][]arr = new int[r][c]; for(int i =0;i<r;i++){ String[]str = bf.readLine().split(" "); for(int j =0;j<c;j++){ arr[i][j] = Integer.parseInt(str[j]); } } return arr; } public static long[][] newLongMatrix(int r,int c)throws IOException{ long[][]arr = new long[r][c]; for(int i =0;i<r;i++){ String[]str = bf.readLine().split(" "); for(int j =0;j<c;j++){ arr[i][j] = Long.parseLong(str[j]); } } return arr; } static class pair{ int one; int two; pair(int one,int two){ this.one = one ; this.two =two; } } public static long gcd(long a,long b){ if(b == 0)return a; return gcd(b,a%b); } public static long lcm(long a,long b){ return (a*b)/(gcd(a,b)); } public static boolean isPalindrome(String s){ int i = 0; int j = s.length()-1; while(i<=j){ if(s.charAt(i) != s.charAt(j)){ return false; } i++; j--; } return true; } // these functions are to calculate the number of smaller elements after self public static void sort(int[]arr,int l,int r){ if(l < r){ int mid = (l+r)/2; sort(arr,l,mid); sort(arr,mid+1,r); smallerNumberAfterSelf(arr, l, mid, r); } } public static void smallerNumberAfterSelf(int[]arr,int l,int mid,int r){ int n1 = mid - l +1; int n2 = r - mid; int []a = new int[n1]; int[]b = new int[n2]; for(int i = 0;i<n1;i++){ a[i] = arr[l+i]; } for(int i =0;i<n2;i++){ b[i] = arr[mid+i+1]; } int i = 0; int j =0; int k = l; while(i<n1 && j < n2){ if(a[i] < b[j]){ arr[k++] = a[i++]; } else{ arr[k++] = b[j++]; } } while(i<n1){ arr[k++] = a[i++]; } while(j<n2){ arr[k++] = b[j++]; } } public static String next(){ while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(bf.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } static int nextInt() { return Integer.parseInt(next()); } static long nextLong() { return Long.parseLong(next()); } static double nextDouble() { return Double.parseDouble(next()); } static String nextLine(){ String str = ""; try { str = bf.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } static String interpolate(int n,List<Integer>items,List<Float>prices){ List<Integer>item = new ArrayList<>(); List<Float>price = new ArrayList<>(); for(int i =0 ;i<items.size();i++){ if(items.get(i)> 0){ item.add(items.get(i)); price.add(prices.get(i)); } } DecimalFormat df = new DecimalFormat("0.00"); if(item.size() == 1){ return df.format(price.get(0))+""; } for(int i = 0;i<item.size();i++){ if(n == item.get(i)){ return df.format(price.get(i))+""; } } for(int i = 0;i<item.size()-1;i++){ if(item.get(i) < n && n < item.get(i+1)){ float x1 = item.get(i); float x2 = item.get(i+1); float y1 = price.get(i); float y2 = price.get(i+1); float m = (y2 - y1)/(x2 - x1); float c = y1 - m * x1; float ans = m * n + c; return df.format(ans)+""; } } if(item.get(0) > n){ float x1 = item.get(0); float x2 = item.get(1); float y1 = price.get(0); float y2 = price.get(1); float m = (y2 - y1)/(x2 - x1); float c = y1 - m * x1; float ans = m * n + c; return df.format(ans)+""; } int size = item.size(); float x1 = item.get(size-2); float x2 = item.get(size-1); float y1 = price.get(size-2); float y2 = price.get(size-1); float m = (y2 - y1)/(x2 - x1); float c = y1 - m * x1; float ans = m * n + c; return df.format(ans)+""; } } // use some math tricks it might help // sometimes just try to think in straightforward plan in A and B problems don't always complecate the questions with thinking too much differently // always use long number to do 10^9+7 modulo // if a problem is related to binary string it could also be related to parenthesis // *****try to use binary search(it is a very beautiful thing it can work in some of the very unexpected problems ) in the question it might work****** // try sorting // try to think in opposite direction of question it might work in your way // if a problem is related to maths try to relate some of the continuous subarray with variables like - > a+b+c+d or a,b,c,d in general // if the question is to much related to left and/or right side of any element in an array then try monotonic stack it could work. // in range query sums try to do binary search it could work // analyse the time complexity of program thoroughly // anylyse the test cases properly // if we divide any number by 2 till it gets 1 then there will be (number - 1) operation required // try to do the opposite operation of what is given in the problem //think about the base cases properly //If a question is related to numbers try prime factorisation or something related to number theory // keep in mind unique strings //you can calculate the number of inversion in O(n log n) // in a matrix you could sometimes think about row and cols indenpendentaly. // Try to think in more constructive(means a way to look through various cases of a problem) way. // observe the problem carefully the answer could be hidden in the given test cases itself. (A, B , C); // when we have equations like (a+b = N) and we have to find the max of (a*b) then the values near to the N/2 must be chosen as (a and b); // give emphasis to the number of occurences of elements it might help. // if a number is even then we can find the pair for each and every number in that range whose bitwise AND is zero. // if a you find a problem related to the graph make a graph
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
9f5981138ed1aec54f5b5d522a98293a
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
/* I am dead inside Do you like NCT, sKz, BTS? 5 4 3 2 1 Moonwalk Imma knock it down like domino Is this what you want? Is this what you want? Let's ttalkbocky about that :() */ import static java.lang.Math.*; import java.util.*; import java.io.*; public class x1603B { public static void main(String omkar[]) throws Exception { BufferedReader infile = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(infile.readLine()); int T = Integer.parseInt(st.nextToken()); StringBuilder sb = new StringBuilder(); while(T-->0) { st = new StringTokenizer(infile.readLine()); long X = Integer.parseInt(st.nextToken()); long Y = Integer.parseInt(st.nextToken()); if(X > Y) { long res = X+Y; sb.append(res); } else if(X < Y) { long res = (Y%X)/2; res = Y-res; sb.append(res); } else sb.append(Y); sb.append("\n"); } System.out.print(sb); } } /* 3 121210 333 332 145510 168 204 */
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
e9612a817ac15ea867a79e7468c75589
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.rmi.MarshalException; import java.util.*; public class ModerateModular{ static long mod = 1000000007L; static MyScanner sc = new MyScanner(); static void solve() { long x = sc.nextLong(); long y = sc.nextLong(); if(x>y){ out.println(x+y); }else{ out.println(y-(y%x)/2); } } static class Pair implements Comparable<Pair>{ char c; int fre; Pair(char c,int f){ this.c= c; fre = f; } public int compareTo(Pair p){ return this.fre - p.fre; } } static void reverse(int arr[]){ int i = 0;int j = arr.length-1; while(i<j){ int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; i++; j--; } } static void reverse(long arr[]){ int i = 0;int j = arr.length-1; while(i<j){ long temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; i++; j--; } } static long pow(long a, long b) { if (b == 0) return 1; long res = pow(a, b / 2); res = (res * res) % 1_000_000_007; if (b % 2 == 1) { res = (res * a) % 1_000_000_007; } return res; } static int lis(int arr[],int n){ int lis[] = new int[n]; lis[0] = 1; for(int i = 1;i<n;i++){ lis[i] = 1; for(int j = 0;j<i;j++){ if(arr[i]>arr[j]){ lis[i] = Math.max(lis[i],lis[j]+1); } } } int max = Integer.MIN_VALUE; for(int i = 0;i<n;i++){ max = Math.max(lis[i],max); } return max; } static boolean isPali(String str){ int i = 0; int j = str.length()-1; while(i<j){ if(str.charAt(i)!=str.charAt(j)){ return false; } i++; j--; } return true; } static long gcd(long a,long b){ if(b==0) return a; return gcd(b,a%b); } static String reverse(String str){ char arr[] = str.toCharArray(); int i = 0; int j = arr.length-1; while(i<j){ char temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; i++; j--; } String st = new String(arr); return st; } static boolean isprime(int n){ if(n==1) return false; if(n==3 || n==2) return true; if(n%2==0 || n%3==0) return false; for(int i = 5;i*i<=n;i+= 6){ if(n%i== 0 || n%(i+2)==0){ return false; } } return true; } public static void main(String[] args) { out = new PrintWriter(new BufferedOutputStream(System.out)); int t = sc.nextInt(); // int t= 1; while(t-- >0){ solve(); // solve2(); // solve3(); } // Stop writing your solution here. ------------------------------------- out.close(); } //-----------PrintWriter for faster output--------------------------------- public static PrintWriter out; //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int[] readIntArray(int n){ int arr[] = new int[n]; for(int i = 0;i<n;i++){ arr[i] = Integer.parseInt(next()); } return arr; } int[] reverse(int arr[]){ int n= arr.length; int i = 0; int j = n-1; while(i<j){ int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; j--;i++; } return arr; } long[] readLongArray(int n){ long arr[] = new long[n]; for(int i = 0;i<n;i++){ arr[i] = Long.parseLong(next()); } return arr; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } private static void sort(int[] arr) { List<Integer> list = new ArrayList<>(); for (int i=0; i<arr.length; i++){ list.add(arr[i]); } Collections.sort(list); // collections.sort uses nlogn in backend for (int i = 0; i < arr.length; i++){ arr[i] = list.get(i); } } private static void sort(long[] arr) { List<Long> list = new ArrayList<>(); for (int i=0; i<arr.length; i++){ list.add(arr[i]); } Collections.sort(list); // collections.sort uses nlogn in backend for (int i = 0; i < arr.length; i++){ arr[i] = list.get(i); } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
8cf7525bc8e43930c4c144fe49f678f2
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.*; import java.lang.*; public class Main { public static void main(String[] args) { Scanner scn = new Scanner(System.in); int t = scn.nextInt(); while(t-->0){ int x = scn.nextInt(); int y = scn.nextInt(); if(x>y){ System.out.println(x+y); } else{ System.out.println(y-(y%x)/2); } } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
7ba6d28ab7fb66a082661a16dc205e70
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class Codechef { public static void main(String[] args) throws java.lang.Exception { FastReader in = new FastReader(System.in); StringBuilder sb = new StringBuilder(); int t = 1; t = in.nextInt(); while (t > 0) { --t; int x = in.nextInt(); int y = in.nextInt(); if(x == y) sb.append(x+"\n"); else if(x>y) sb.append((x+y)+"\n"); else { int rem = y%x; int count = (y/x)*x + rem/2; sb.append(count+"\n"); } } System.out.print(sb); } static long gcd(long a, long b) { if (a == 0) return b; else return gcd(b % a, a); } static long lcm(long a, long b) { return (a / gcd(a, b)) * b; } static void sort(long[] a) { ArrayList<Long> l = new ArrayList<>(); for (long i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } } class FastReader { byte[] buf = new byte[2048]; int index, total; InputStream in; FastReader(InputStream is) { in = is; } int scan() throws IOException { if (index >= total) { index = 0; total = in.read(buf); if (total <= 0) { return -1; } } return buf[index++]; } String next() throws IOException { int c; for (c = scan(); c <= 32; c = scan()) ; StringBuilder sb = new StringBuilder(); for (; c > 32; c = scan()) { sb.append((char) c); } return sb.toString(); } String nextLine() throws IOException { int c; for (c = scan(); c <= 32; c = scan()) ; StringBuilder sb = new StringBuilder(); for (; c != 10 && c != 13; c = scan()) { sb.append((char) c); } return sb.toString(); } char nextChar() throws IOException { int c; for (c = scan(); c <= 32; c = scan()) ; return (char) c; } int nextInt() throws IOException { int c, val = 0; for (c = scan(); c <= 32; c = scan()) ; boolean neg = c == '-'; if (c == '-' || c == '+') { c = scan(); } for (; c >= '0' && c <= '9'; c = scan()) { val = (val << 3) + (val << 1) + (c & 15); } return neg ? -val : val; } long nextLong() throws IOException { int c; long val = 0; for (c = scan(); c <= 32; c = scan()) ; boolean neg = c == '-'; if (c == '-' || c == '+') { c = scan(); } for (; c >= '0' && c <= '9'; c = scan()) { val = (val << 3) + (val << 1) + (c & 15); } return neg ? -val : val; } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
673fce6b512bd7cf30cdadbfa8452b04
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; public class aa { //--------------------------INPUT READER--------------------------------// static class fs { public BufferedReader br; StringTokenizer st = new StringTokenizer(""); public fs() { this(System.in); } public fs(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } String next() { while (!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int ni() { return Integer.parseInt(next()); } long nl() { return Long.parseLong(next()); } double nd() { return Double.parseDouble(next()); } String ns() { return next(); } int[] na(long nn) { int n = (int) nn; int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = ni(); return a; } long[] nal(long nn) { int n = (int) nn; long[] l = new long[n]; for(int i = 0; i < n; i++) l[i] = nl(); return l; } } //-----------------------------------------------------------------------// //---------------------------PRINTER-------------------------------------// static class Printer { static PrintWriter w; public Printer() {this(System.out);} public Printer(OutputStream os) { w = new PrintWriter(os); } public void p(int i) {w.println(i);}; public void p(long l) {w.println(l);}; public void p(double d) {w.println(d);}; public void p(String s) { w.println(s);}; public void pr(int i) {w.print(i);}; public void pr(long l) {w.print(l);}; public void pr(double d) {w.print(d);}; public void pr(String s) { w.print(s);}; public void pl() {w.println();}; public void close() {w.close();}; } //------------------------------------------------------------------------// //--------------------------VARIABLES------------------------------------// static fs sc = new fs(); static OutputStream outputStream = System.out; static Printer w = new Printer(outputStream); //-----------------------------------------------------------------------// //--------------------------ADMIN_MODE-----------------------------------// private static void ADMIN_MODE() throws IOException { if (System.getProperty("ONLINE_JUDGE") == null) { w = new Printer(new FileOutputStream("output.txt")); sc = new fs(new FileInputStream("input.txt")); } } //-----------------------------------------------------------------------// //----------------------------START--------------------------------------// public static void main(String[] args) throws IOException { ADMIN_MODE(); int t = sc.ni();while(t-->0) solve(); w.close(); } static void solve() throws IOException { long x = sc.ni(), y = sc.ni(); if(x>y) { w.p(x+y); return; } else if(x==y) { w.p(x); return; } long q = y/x; long reach = q*x; long n = (y+ reach)/2; w.p(n); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
802eddbfcfff33d7eb9a6e31f9c50073
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; public class Main { static PrintWriter pw; static Scanner sc; static long ceildiv(long x, long y) { return (x+y-1) / y; } static int mod(long x, int m) { return (int) ((x%m + m) % m); } static void put(Map<Integer, Integer> map, Integer p){if(map.containsKey(p)) map.replace(p, map.get(p)+1); else map.put(p, 1); } static void rem(Map<Integer, Integer> map, Integer p){ if(map.get(p)==1) map.remove(p); else map.replace(p, map.get(p)-1); } static int Int(boolean x){ return x ? 1 : 0; } static final int inf=(int)1e9, mod= inf + 7; static final long infL=inf*1l*inf; static final double eps=1e-9; public static long gcd(long x, long y) { return y==0? x: gcd(y, x%y); } public static void main(String[] args) throws Exception { sc = new Scanner(System.in); pw = new PrintWriter(System.out); int t = sc.nextInt(); while (t-- > 0) testCase(); pw.close(); } static void testCase() throws Exception{ int x = sc.nextInt(), y = sc.nextInt(); if(x > y){ pw.println((x+1) * 1l * y); return; } pw.println(y - (y%x)/2); } static void printArr(int[] arr) { for (int i = 0; i < arr.length; i++) pw.print(arr[i] + " "); pw.println(); } static void printArr(long[] arr) { for (int i = 0; i < arr.length; i++) pw.print(arr[i] + " "); pw.println(); } static void printArr(double[] arr) { for (int i = 0; i < arr.length; i++) pw.print(arr[i] + " "); pw.println(); } static void printArr(Integer[] arr) { for (int i = 0; i < arr.length; i++) pw.print(arr[i] + " "); pw.println(); } static void printIter(Iterable list) { for (Object o : list) pw.print(o + " "); pw.println(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public int[] nextDigits() throws IOException { String s = nextLine(); int[] arr = new int[s.length()]; for (int i = 0; i < arr.length; i++) arr[i] = s.charAt(i) - '0'; return arr; } public int[] nextArr(int n) throws IOException { int[] arr = new int[n]; for (int i = 0; i < arr.length; i++) arr[i] = nextInt(); return arr; } public Integer[] nextsort(int n) throws IOException { Integer[] arr = new Integer[n]; for (int i = 0; i < n; i++) arr[i] = nextInt(); return arr; } public Pair nextPair() throws IOException { return new Pair(nextInt(), nextInt()); } public long[] nextLongArr(int n) throws IOException { long[] arr = new long[n]; for (int i = 0; i < n; i++) arr[i] = nextLong(); return arr; } public Pair[] nextPairArr(int n) throws IOException { Pair[] arr = new Pair[n]; for (int i = 0; i < n; i++) arr[i] = nextPair(); return arr; } public boolean hasNext() throws IOException { return (st != null && st.hasMoreTokens()) || br.ready(); } } static class Pair implements Comparable<Pair> { int x; int y; public Pair(int x, int y) { this.x = x; this.y = y; } public Pair(Map.Entry<Integer, Integer> a) { x = a.getKey(); y = a.getValue(); } public int hashCode() { return (int) ((this.x*1l*100003 + this.y) % mod); } public int compareTo(Pair p) { if(x != p.x) return x - p.x; return y - p.y; } public boolean equals(Object obj) { if (obj == null) { return false; } if (this.getClass() != obj.getClass()) { return false; } Pair p = (Pair) obj; return this.x == p.x && this.y == p.y; } public Pair clone() { return new Pair(x, y); } public String toString() { return this.x + " " + this.y; } public void subtract(Pair p) { x -= p.x; y -= p.y; } public void add(Pair p) { x += p.x; y += p.y; } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
2dbb9f6893544eb4732a435e8d697c0b
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.*; import java.io.*; public class B1603 { public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); int t = sc.nextInt(); while (t-- > 0) { long x = sc.nextLong(); long y = sc.nextLong(); // long x = (int) (Math.random() * (10)) + 1; // long y = (int) (Math.random() * (10)) + 1; // x *= 2; // y *= 2; long n; if (x > y) { n = (x + y); } else if (x == y) { n = (x); } else { // long b = y / x; long a = (y - y / x * x) / (2); n = y / x * x + a; } // if (n % x != y % n) { // System.out.println(x + " " + y); // } // pw.println(n % x == y % n); pw.println(n); } pw.close(); } static class Scanner { BufferedReader br; StringTokenizer st; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader f) { br = new BufferedReader(f); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public int[] nextIntArr(int n) throws IOException { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = Integer.parseInt(next()); } return arr; } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
45171cf0de823a1d197641df4c131ed5
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.Scanner; public class B1603 { public static void main(String[] args) { Scanner in = new Scanner(System.in); StringBuilder out = new StringBuilder(); int T = in.nextInt(); for (int t=0; t<T; t++) { int x = in.nextInt(); int y = in.nextInt(); int n; if (x <= y) { n = y - (y%x)/2; } else { n = x+y; } out.append(n).append('\n'); } System.out.println(out); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
1d04f8bd5fcb599b21c803ff04352138
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.StringTokenizer; public class Main { public static void main(String[] args) throws Throwable { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int t = Integer.parseInt(st.nextToken()); for (int tc = 0; tc < t; ++tc) { st = new StringTokenizer(br.readLine()); int x = Integer.parseInt(st.nextToken()); int y = Integer.parseInt(st.nextToken()); System.out.println(solve(x, y)); } } static int solve(int x, int y) { if (x == y) { return x; } if (x > y) { return x + y; } return (y / x * x + y) / 2; } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
3ee2c883e974e6dc18b5eb8080f5b727
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
// package faltu; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; import java.util.Map.Entry; public class Main { public static int upperBound(long[] arr, long m, int l, int r) { while(l<=r) { int mid=(l+r)/2; if(arr[mid]<=m) l=mid+1; else r=mid-1; } return l; } public static int lowerBound(long[] a, long m, int l, int r) { while(l<=r) { int mid=(l+r)/2; if(a[mid]<m) l=mid+1; else r=mid-1; } return l; } public static long getClosest(long val1, long val2,long target) { if (target - val1 >= val2 - target) return val2; else return val1; } static void ruffleSort(long[] a) { int n=a.length; Random r=new Random(); for (int i=0; i<a.length; i++) { long oi=r.nextInt(n), temp=a[i]; a[i]=a[(int)oi]; a[(int)oi]=temp; } Arrays.sort(a); } static void ruffleSort(int[] a){ int n=a.length; Random r=new Random(); for (int i=0; i<a.length; i++) { int oi=r.nextInt(n), temp=a[i]; a[i]=a[oi]; a[oi]=temp; } Arrays.sort(a); } int ceilIndex(int input[], int T[], int end, int s){ int start = 0; int middle; int len = end; while(start <= end){ middle = (start + end)/2; if(middle < len && input[T[middle]] < s && s <= input[T[middle+1]]){ return middle+1; }else if(input[T[middle]] < s){ start = middle+1; }else{ end = middle-1; } } return -1; } static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } static long lcm(long a,long b) { return (a / gcd(a, b)) * b; } public static int[] reverse(int a[], int left, int right) { // Reverse the sub-array while (left < right) { int temp = a[left]; a[left++] = a[right]; a[right--] = temp; } return a; } static int lowerLimitBinarySearch(ArrayList<Long> v,long k) { int n =v.size(); int first = 0,second = n; while(first <second) { int mid = first + (second-first)/2; if(v.get(mid) > k) { second = mid; }else { first = mid+1; } } if(first < n && v.get(first) < k) { first++; } return first; //1 index } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } // *******----segement tree implement---***** // -------------START-------------------------- void buildTree (int[] arr,int[] tree,int start,int end,int treeNode) { if(start==end) { tree[treeNode]=arr[start]; return; } buildTree(arr,tree,start,end,2*treeNode); buildTree(arr,tree,start,end,2*treeNode+1); tree[treeNode]=tree[treeNode*2]+tree[2*treeNode+1]; } void updateTree(int[] arr,int[] tree,int start,int end,int treeNode,int idx,int value) { if(start==end) { arr[idx]=value; tree[treeNode]=value; return; } int mid=(start+end)/2; if(idx>mid) { updateTree(arr,tree,mid+1,end,2*treeNode+1,idx,value); } else { updateTree(arr,tree,start,mid,2*treeNode,idx,value); } tree[treeNode]=tree[2*treeNode]+tree[2*treeNode+1]; } // disjoint set implementation --start static void makeSet(int n) { parent=new int[n]; rank=new int[n]; for(int i=0;i<n;i++) { parent[i]=i; rank[i]=0; } } static void union(int u,int v) { u=findpar(u); v=findpar(v); if(rank[u]<rank[v])parent[u]=v; else if(rank[v]<rank[u])parent[v]=u; else { parent[v]=u; rank[u]++; } } private static int findpar(int node) { if(node==parent[node])return node; return parent[node]=findpar(parent[node]); } static int parent[]; static int rank[]; // *************end static void presumbit(int[][]prebitsum) { for(int i=1;i<=200000;i++) { int z=i; int j=0; while(z>0) { if((z&1)==1) { prebitsum[i][j]+=(prebitsum[i-1][j]+1); }else { prebitsum[i][j]=prebitsum[i-1][j]; } z=z>>1; j++; } } } static void countOfSetBit(long[]a) { for(int j=30;j>=0;j--) { int cnt=0; for(long i:a) { if((i&1<<j)==1)cnt++; } // printing the current no set bit in all array element System.out.println(cnt); } } public static int[] sort(int[] arr) { ArrayList<Integer> al = new ArrayList<>(); for(int i=0;i<arr.length;i++) al.add(arr[i]); Collections.sort(al); for(int i=0;i<arr.length;i++) arr[i]=al.get(i); return arr; } static ArrayList<String>powof2s; static void powof2S() { long i=1; while(i<(long)2e18) { powof2s.add(String.valueOf(i)); i*=2; } } static boolean coprime(int a, long l){ return (gcd(a, l) == 1); } static int[][] dirs8 = {{1,0},{-1,0},{0,1},{0,-1},{1,1},{1,-1},{-1,1},{-1,-1}}; static int[][] dirs4 = {{1,0},{-1,0},{0,1},{0,-1}}; static Long MOD=(long) (1e9+7); static int prebitsum[][]; static ArrayList<Integer>arr; static boolean[] vis; static ArrayList<ArrayList<Integer>>adj; static long[]a; static FastReader s = new FastReader(); public static void main(String[] args) throws IOException { // sieve(); // prebitsum=new int[2147483648][31]; // presumbit(prebitsum); // powof2S(); int tt = s.nextInt(); while(tt-->0) { solver(); } } private static void solver() { long x=s.nextLong(); long y=s.nextLong(); if(x==y) { System.out.println(x);return; } if(x>y) { System.out.println((x+y)); return; } else { long rem=y%x; long ans=((y/x)*x)+ rem/2; System.out.println(ans); } } public static int searchindex(long arr[], long t){ int index = Arrays.binarySearch(arr, t); return (index < 0) ? -1 : index; } static void pc2d(char[][]a) { int n=a.length; int m=a[0].length; for(int i=0;i<n;i++) { for(int j=0;j<m;j++) { System.out.print(a[i][j]+" "); } System.out.println(); } } static void pi2d(long[][] d) { int n=d.length; int m=d[0].length; for(int i=0;i<n;i++) { for(int j=0;j<m;j++) { System.out.print(d[i][j]+" "); } System.out.println(); } } static void DFSUtil(int v, boolean[] vis) { vis[v] = true; Iterator<Integer> it = adj.get(v).iterator(); while (it.hasNext()) { int n = it.next(); if (!vis[n]) DFSUtil(n, vis); } } static long DFS(int n) { vis = new boolean[n+1]; long cnt=0; for (int i = 1; i <= n; i++) { if (!vis[i]) { DFSUtil(i, vis); cnt++; } } return cnt; } public static String revStr(String str){ String input = str; StringBuilder input1 = new StringBuilder(); input1.append(input); input1.reverse(); return input1.toString(); } static long myPow(long n, long i){ if(i==0) return 1; if(i%2==0) return (myPow(n,i/2)%MOD * myPow(n,i/2)%MOD)%MOD; return (n%MOD* myPow(n,i-i)%MOD)%MOD; } static boolean isPalindrome(String str,int i,int j) { while (i < j) { if (str.charAt(i) != str.charAt(j)) return false; i++; j--; } return true; } static boolean sign(long num) { return num>0; } static boolean isSquare(long x){ if(x==1)return true; long y=(long) Math.sqrt(x); return y*y==x; } static long Power(long a,long b) { if(b == 0){ return 1; } long ans = Power(a,b/2); ans *= ans%MOD; if(b % 2!=0){ ans *= a%MOD; } return ans%MOD; } static boolean issafe(int i, int j, int r,int c, char ch) { if (i < 0 || j < 0 || i >= r || j >= c|| ch!= '1')return false; else return true; } static long power(long a, long b) { a %=MOD; long out = 1; while (b > 0) { if((b&1)!=0)out = out * a % MOD; a = a * a % MOD; b >>= 1; a*=a; } return out; } static long[] sieve; public static void sieve() { int nnn=(int) 1e6+1; long nn=(int) 1e6; sieve=new long[(int) nnn]; int[] freq=new int[(int) nnn]; sieve[0]=0; sieve[1]=1; for(int i=2;i<=nn;i++) { sieve[i]=1; freq[i]=1; } for(int i=2;i*i<=nn;i++) { if(sieve[i]==1) { for(int j=i*i;j<=nn;j+=i) { if(sieve[j]==1) { sieve[j]=0; } } } } } } class decrease implements Comparator<Long> { // Used for sorting in ascending order of // roll number public int compare(long a, long b) { return (int) (b - a); } @Override public int compare(Long o1, Long o2) { // TODO Auto-generated method stub return (int) (o2-o1); } } class pair{ double x; double y; // public pair(long x,long y) { // this.x=x; // this.y=y; // } public pair(double x,double y) { this.x=x; this.y=y; } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
0c54c63b774c9976ed720fbcc230dbc5
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.*; import java.io.*; // cd C:\Users\Lenovo\Desktop\New //ArrayList<Integer> a=new ArrayList<>(); //List<Integer> lis=new ArrayList<>(); //StringBuilder ans = new StringBuilder(); //HashMap<Integer,Integer> map=new HashMap<>(); public class cf { static FastReader in=new FastReader(); static final Random random=new Random(); static int mod=1000000007; //static long dp[]=new long[200002]; public static void main(String args[]) throws IOException { FastReader sc=new FastReader(); //Scanner s=new Scanner(System.in); int tt=sc.nextInt(); //int tt=1; while(tt-->0){ //PriorityQueue<Integer> p = new PriorityQueue<Integer>(Collections.reverseOrder()); int a=sc.nextInt(); int b=sc.nextInt(); if(a>b){ System.out.println(a+b); } else{ System.out.println(b-(b%a)/2); } } } static long comb(int n,int k){ return factorial(n) * pow(factorial(k), mod-2) % mod * pow(factorial(n-k), mod-2) % mod; } static long pow(long a, long b) { // long mod=1000000007; long res = 1; while (b != 0) { if ((b & 1) != 0) { res = (res * a) % mod; } a = (a * a) % mod; b /= 2; } return res; } static boolean powOfTwo(long n){ while(n%2==0){ n=n/2; } if(n!=1){ return false; } return true; } static int upper_bound(long arr[], long key) { int mid, N = arr.length; int low = 0; int high = N; // Till low is less than high while (low < high && low != N) { mid = low + (high - low) / 2; if (key >= arr[mid]) { low = mid + 1; } else { high = mid; } } if (low == N ) { return -1; } return low; } static boolean prime(int n){ for(int i=2;i<=Math.sqrt(n);i++){ if(n%i==0){ return false; } } return true; } static long factorial(int n){ long ret = 1; while(n > 0){ ret = ret * n % mod; n--; } return ret; } static long find(ArrayList<Long> arr,long n){ int l=0; int r=arr.size(); while(l+1<r){ int mid=(l+r)/2; if(arr.get(mid)<n){ l=mid; } else{ r=mid; } } return arr.get(l); } static void rotate(int ans[]){ int last=ans[0]; for(int i=0;i<ans.length-1;i++){ ans[i]=ans[i+1]; } ans[ans.length-1]=last; } static int countprimefactors(int n){ int ans=0; int z=(int)Math.sqrt(n); for(int i=2;i<=z;i++){ while(n%i==0){ ans++; n=n/i; } } if(n>1){ ans++; } return ans; } static String reverse(String s){ String ans=""; for(int i=s.length()-1;i>=0;i--){ ans+=s.charAt(i); } return ans; } static int msb(int x){ int ans=0; while(x!=0){ x=x/2; ans++; } return ans; } static void ruffleSort(int[] a) { int n=a.length; for (int i=0; i<n; i++) { int oi=random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static int gcd(int a,int b) { if(b==0) { return a; } return gcd(b,a%b); } /* Iterator<Map.Entry<Integer, Integer>> iterator = map.entrySet().iterator(); while(iterator.hasNext()){ Map.Entry<Integer, Integer> entry = iterator.next(); int value = entry.getValue(); if(value==1){ iterator.remove(); } else{ entry.setValue(value-1); } } */ static class Pair implements Comparable { int a,b; public String toString() { return a+" " + b; } public Pair(int x , int y) { a=x;b=y; } @Override public int compareTo(Object o) { Pair p = (Pair)o; if(a!=p.a){ return a-p.a; } else{ return b-p.b; } /*if(p.a!=a){ return a-p.a;//in } else{ return b-p.b;// }*/ } } /* public static boolean checkAP(List<Integer> lis){ for(int i=1;i<lis.size()-1;i++){ if(2*lis.get(i)!=lis.get(i-1)+lis.get(i+1)){ return false; } } return true; } public static int minBS(int[]arr,int val){ int l=-1; int r=arr.length; while(r>l+1){ int mid=(l+r)/2; if(arr[mid]>=val){ r=mid; } else{ l=mid; } } return r; } public static int maxBS(int[]arr,int val){ int l=-1; int r=arr.length; while(r>l+1){ int mid=(l+r)/2; if(arr[mid]<=val){ l=mid; } else{ r=mid; } } return l; } static int lcm(int a, int b) { return (a / gcd(a, b)) * b; }*/ static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
bf6ff0bc30d81d7762f43f0ad39dc80e
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
/* DHUOJ solution #554790 @ 2022-03-26 17:12:32.571 */ import java.util.Scanner; public class text1 { public static void main(String[] args) { Scanner reader=new Scanner(System.in); int N = reader.nextInt(); long x, y; long []a=new long[N]; for (int i = 0; i < N; i++) { x=reader.nextLong(); y=reader.nextLong(); if(x>y){ a[i] = x+y; } else a[i] = y-(y%x)/2; } for (int i = 0; i < N; i++) { System.out.println(a[i]); } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
57a8199747f27888cd1e5e4098ae2ca3
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
/* DHUOJ solution #554777 @ 2022-03-26 17:12:28.175 */ import java.util.Scanner; public class text1 { public static void main(String[] args) { Scanner reader=new Scanner(System.in); int N = reader.nextInt(); long x, y; long []a=new long[N]; for (int i = 0; i < N; i++) { x=reader.nextLong(); y=reader.nextLong(); if(x>y){ a[i] = x+y; } else a[i] = y-(y%x)/2; } for (int i = 0; i < N; i++) { System.out.println(a[i]); } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
bebb7fbfb129273b183def982a7df81a
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
/* DHUOJ solution #554776 @ 2022-03-26 17:12:28.165 */ import java.util.Scanner; public class text1 { public static void main(String[] args) { Scanner reader=new Scanner(System.in); int N = reader.nextInt(); long x, y; long []a=new long[N]; for (int i = 0; i < N; i++) { x=reader.nextLong(); y=reader.nextLong(); if(x>y){ a[i] = x+y; } else a[i] = y-(y%x)/2; } for (int i = 0; i < N; i++) { System.out.println(a[i]); } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
c1f86e5e61133678e8949f442e86add2
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; public class Solution { public static void main(String[] args) throws Exception { int tc = io.nextInt(); for (int i = 0; i < tc; i++) { solve(); } io.close(); } private static void solve() throws Exception { int x = io.nextInt(); int y = io.nextInt(); int res; if (x <= y) { res = (y - (y % x) / 2); } else { res = x + y; } io.println(res); } static void sort(long[] a) { ArrayList<Long> l = new ArrayList<>(a.length); for (long i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } //-----------PrintWriter for faster output--------------------------------- public static FastIO io = new FastIO(); //-----------MyScanner class for faster input---------- static class FastIO extends PrintWriter { private InputStream stream; private byte[] buf = new byte[1 << 16]; private int curChar, numChars; // standard input public FastIO() { this(System.in, System.out); } public FastIO(InputStream i, OutputStream o) { super(o); stream = i; } // file input public FastIO(String i, String o) throws IOException { super(new FileWriter(o)); stream = new FileInputStream(i); } // throws InputMismatchException() if previously detected end of file private int nextByte() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars == -1) return -1; // end of file } return buf[curChar++]; } // to read in entire lines, replace c <= ' ' // with a function that checks whether c is a line break public String next() { int c; do { c = nextByte(); } while (c <= ' '); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = nextByte(); } while (c > ' '); return res.toString(); } public String nextLine() { int c; do { c = nextByte(); } while (c < '\n'); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = nextByte(); } while (c > '\n'); return res.toString(); } public int nextInt() { int c; do { c = nextByte(); } while (c <= ' '); int sgn = 1; if (c == '-') { sgn = -1; c = nextByte(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res = 10 * res + c - '0'; c = nextByte(); } while (c > ' '); return res * sgn; } public long nextLong() { int c; do { c = nextByte(); } while (c <= ' '); int sgn = 1; if (c == '-') { sgn = -1; c = nextByte(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res = 10 * res + c - '0'; c = nextByte(); } while (c > ' '); return res * sgn; } int[] nextInts(int n) { int[] data = new int[n]; for (int i = 0; i < n; i++) { data[i] = io.nextInt(); } return data; } public double nextDouble() { return Double.parseDouble(next()); } } //-------------------------------------------------------- }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
317cd32c9282856529258fa1edbcef28
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class r752b { public static void main(String[] args) { FastScanner scan=new FastScanner(); PrintWriter out=new PrintWriter(System.out); //evenness property means they will never cross without intersecting int t=scan.nextInt(); for(int tt=0;tt<t;tt++) { int x=scan.nextInt(), y=scan.nextInt(); // for(int i=x+1;i<y;i++) { // out.println(i+": "+i%x+" "+y%i); // } int n; if(x>y) n=x+y; else if(y%x==0) { n=x; } else { int enda=y%x-1; n=y-1-(enda-1)/2; } out.println(n); } out.close(); } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e){e.printStackTrace();} } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try {st = new StringTokenizer(br.readLine());} catch (Exception e) {e.printStackTrace();} return st.nextToken(); } public int nextInt() {return Integer.parseInt(next());} public long nextLong() {return Long.parseLong(next());} public double nextDouble() {return Double.parseDouble(next());} public String nextLine() { String line = ""; if(st.hasMoreTokens()) line = st.nextToken(); else try {return br.readLine();}catch(IOException e){e.printStackTrace();} while(st.hasMoreTokens()) line += " "+st.nextToken(); return line; } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
8c016fb72f9c97d9f17710c17a408e06
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); DModerateModularMode solver = new DModerateModularMode(); int testCount = Integer.parseInt(in.next()); for (int i = 1; i <= testCount; i++) solver.solve(i, in, out); out.close(); } static class DModerateModularMode { public void solve(int testNumber, InputReader in, OutputWriter out) { long x = in.nextInt(); long y = in.nextInt(); if (y < x) { out.println(x + y); } else if (y % x == 0) { out.println(x); } else { out.println(y - (y % x) / 2); } } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void println(long i) { writer.println(i); } } static class InputReader { final private int BUFFER_SIZE = 1 << 16; private InputStream stream; private byte[] buf = new byte[BUFFER_SIZE]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String nextString() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { if (Character.isValidCodePoint(c)) { res.appendCodePoint(c); } c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return nextString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
90a5f0f6cc5c1b7fd69cd19114dfce82
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; public class D { public static void main(String args[]){ FScanner in = new FScanner(); PrintWriter out = new PrintWriter(System.out); int t = in.nextInt(); while(t-->0) { int x=in.nextInt(),y=in.nextInt(); if(x==y) out.println(x); else if(x>y) out.println((long)x+y); else { int rem=y%x; int new_num=y-rem; int avg=(new_num+y)/2; out.println(avg); } } out.close(); } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static boolean checkprime(int n1) { if(n1%2==0||n1%3==0) return false; else { for(int i=5;i*i<=n1;i+=6) { if(n1%i==0||n1%(i+2)==0) return false; } return true; } } static class FScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer sb = new StringTokenizer(""); String next(){ while(!sb.hasMoreTokens()){ try{ sb = new StringTokenizer(br.readLine()); } catch(IOException e){ } } return sb.nextToken(); } String nextLine(){ try{ return br.readLine(); } catch(IOException e) { } return ""; } int nextInt(){ return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } int[] readArray(int n) { int a[] = new int[n]; for(int i=0;i<n;i++) a[i] = nextInt(); return a; } float nextFloat(){ return Float.parseFloat(next()); } double nextDouble(){ return Double.parseDouble(next()); } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
8d627188ab383453727e6208e68a1ac0
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.*; import java.io.*; import java.math.BigInteger; public class code{ static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } public static int GCD(int a, int b) { if (b == 0) return a; return GCD(b, a % b); } //@SuppressWarnings("unchecked") public static void main(String[] arg) throws IOException{ //Reader in=new Reader(); PrintWriter out = new PrintWriter(System.out); Scanner in = new Scanner(System.in); int t=in.nextInt(); while(t-- > 0){ long x=in.nextLong(); long y=in.nextLong(); if(y>=x){ long res=y-(y%x)/2; out.println(res); } else{ long res=x+y; out.println((res)); } } out.flush(); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
ce09155f505af00d1d95b33840956db4
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; public final class Main { static PrintWriter out = new PrintWriter(System.out); static FastReader in = new FastReader(); static Pair[] moves = new Pair[]{new Pair(-1, 0), new Pair(0, 1), new Pair(1, 0), new Pair(0, -1)}; static int mod = (int) (1e9 + 7); static int mod2 = 998244353; public static void main(String[] args) { int tt = i(); while (tt-- > 0) { solve(); } out.flush(); } public static void solve() { long x = l(); long y = l(); if (x > y) { out.println(x + y); } else if (x == y) { out.println(x); } else { long k = y / x; long d = y - k * x; if (k == 1) { out.println(x + d / 2); } else { long h = x / 2; out.println(y - d / 2 - h); } } } static long[] pre(int[] a) { long[] pre = new long[a.length + 1]; pre[0] = 0; for (int i = 0; i < a.length; i++) { pre[i + 1] = pre[i] + a[i]; } return pre; } static void print(char A[]) { for (char c : A) { out.print(c); } out.println(); } static void print(boolean A[]) { for (boolean c : A) { out.print(c + " "); } out.println(); } static void print(int A[]) { for (int c : A) { out.print(c + " "); } out.println(); } static void print(long A[]) { for (long i : A) { out.print(i + " "); } out.println(); } static void print(List<Integer> A) { for (int a : A) { out.print(a + " "); } } static int i() { return in.nextInt(); } static long l() { return in.nextLong(); } static double d() { return in.nextDouble(); } static String s() { return in.nextLine(); } static int[][] inputWithIdx(int N) { int A[][] = new int[N][2]; for (int i = 0; i < N; i++) { A[i] = new int[]{i, in.nextInt()}; } return A; } static int[] input(int N) { int A[] = new int[N]; for (int i = 0; i < N; i++) { A[i] = in.nextInt(); } return A; } static long[] inputLong(int N) { long A[] = new long[N]; for (int i = 0; i < A.length; i++) { A[i] = in.nextLong(); } return A; } static int GCD(int a, int b) { if (b == 0) { return a; } else { return GCD(b, a % b); } } static long GCD(long a, long b) { if (b == 0) { return a; } else { return GCD(b, a % b); } } static long LCM(int a, int b) { return (long) a / GCD(a, b) * b; } static long LCM(long a, long b) { return a / GCD(a, b) * b; } static void shuffleAndSort(int[] arr) { for (int i = 0; i < arr.length; i++) { int rand = (int) (Math.random() * arr.length); int temp = arr[rand]; arr[rand] = arr[i]; arr[i] = temp; } Arrays.sort(arr); } static void shuffleAndSort(int[][] arr, Comparator<? super int[]> comparator) { for (int i = 0; i < arr.length; i++) { int rand = (int) (Math.random() * arr.length); int[] temp = arr[rand]; arr[rand] = arr[i]; arr[i] = temp; } Arrays.sort(arr, comparator); } static void shuffleAndSort(long[] arr) { for (int i = 0; i < arr.length; i++) { int rand = (int) (Math.random() * arr.length); long temp = arr[rand]; arr[rand] = arr[i]; arr[i] = temp; } Arrays.sort(arr); } static boolean isPerfectSquare(double number) { double sqrt = Math.sqrt(number); return ((sqrt - Math.floor(sqrt)) == 0); } static void swap(int A[], int a, int b) { int t = A[a]; A[a] = A[b]; A[b] = t; } static long pow(long a, long b, int mod) { long pow = 1; long x = a; while (b != 0) { if ((b & 1) != 0) { pow = (pow * x) % mod; } x = (x * x) % mod; b /= 2; } return pow; } static long pow(long a, long b) { long pow = 1; long x = a; while (b != 0) { if ((b & 1) != 0) { pow *= x; } x = x * x; b /= 2; } return pow; } static long modInverse(long x, int mod) { return pow(x, mod - 2, mod); } static boolean isPrime(long N) { if (N <= 1) { return false; } if (N <= 3) { return true; } if (N % 2 == 0 || N % 3 == 0) { return false; } for (int i = 5; i * i <= N; i = i + 6) { if (N % i == 0 || N % (i + 2) == 0) { return false; } } return true; } public static String reverse(String str) { if (str == null) { return null; } return new StringBuilder(str).reverse().toString(); } public static String repeat(char ch, int repeat) { if (repeat <= 0) { return ""; } final char[] buf = new char[repeat]; for (int i = repeat - 1; i >= 0; i--) { buf[i] = ch; } return new String(buf); } public static int[] manacher(String s) { char[] chars = s.toCharArray(); int n = s.length(); int[] d1 = new int[n]; for (int i = 0, l = 0, r = -1; i < n; i++) { int k = (i > r) ? 1 : Math.min(d1[l + r - i], r - i + 1); while (0 <= i - k && i + k < n && chars[i - k] == chars[i + k]) { k++; } d1[i] = k--; if (i + k > r) { l = i - k; r = i + k; } } return d1; } public static int[] kmp(String s) { int n = s.length(); int[] res = new int[n]; for (int i = 1; i < n; ++i) { int j = res[i - 1]; while (j > 0 && s.charAt(i) != s.charAt(j)) { j = res[j - 1]; } if (s.charAt(i) == s.charAt(j)) { ++j; } res[i] = j; } return res; } } class Pair { int i, j; Pair(int i, int j) { this.i = i; this.j = j; } @Override public boolean equals(Object o) { if (this == o) { return true; } if (o == null || getClass() != o.getClass()) { return false; } Pair pair = (Pair) o; return i == pair.i && j == pair.j; } @Override public int hashCode() { return Objects.hash(i, j); } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } class Node { int data, open, close; Node() { this(0, 0, 0); } Node(int data, int open, int close) { this.data = data; this.open = open; this.close = close; } } class ST { int n; Node[] st; ST(int n) { this.n = n; st = new Node[4 * Integer.highestOneBit(n)]; } void build(Node[] nodes) { build(0, 0, n - 1, nodes); } private void build(int id, int l, int r, Node[] nodes) { if (l == r) { st[id] = nodes[l]; return; } int mid = (l + r) >> 1; build((id << 1) + 1, l, mid, nodes); build((id << 1) + 2, mid + 1, r, nodes); st[id] = comb(st[(id << 1) + 1], st[(id << 1) + 2]); } void update(int i, Node node) { update(0, 0, n - 1, i, node); } private void update(int id, int l, int r, int i, Node node) { if (i < l || r < i) { return; } if (l == r) { st[id] = node; return; } int mid = (l + r) >> 1; update((id << 1) + 1, l, mid, i, node); update((id << 1) + 2, mid + 1, r, i, node); st[id] = comb(st[(id << 1) + 1], st[(id << 1) + 2]); } Node get(int x, int y) { return get(0, 0, n - 1, x, y); } private Node get(int id, int l, int r, int x, int y) { if (x > r || y < l) { return new Node(); } if (x <= l && r <= y) { return st[id]; } int mid = (l + r) >> 1; return comb(get((id << 1) + 1, l, mid, x, y), get((id << 1) + 2, mid + 1, r, x, y)); } Node comb(Node a, Node b) { if (a == null) { return b; } if (b == null) { return a; } int min = Math.min(a.open, b.close); return new Node(a.data + b.data + min * 2, a.open + b.open - min, a.close + b.close - min); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
be9c1cdab3812b7bfc825610f9c30e7a
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintStream; import java.util.Locale; import java.util.StringTokenizer; public class Solution implements Runnable { private PrintStream out; private BufferedReader in; private StringTokenizer st; public void solve() throws IOException { long time0 = System.currentTimeMillis(); int t = nextInt(); for (int test = 1; test <= t; test++) { int x = nextInt(); int y = nextInt(); long ans = solve(x, y); if ((ans % x) != (y % ans)) { throw new RuntimeException(); } out.println(ans); } System.err.println("time: " + (System.currentTimeMillis() - time0)); } private long solve(int x, int y) { if (x == y) { return x; } if (x > y) { return x + y; } int xx = (y / x) * x; int n = (xx + y) / 2; return n; } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public String next() throws IOException { while (!st.hasMoreTokens()) { String line = in.readLine(); if (line == null) { return null; } st = new StringTokenizer(line); } return st.nextToken(); } @Override public void run() { try { solve(); out.close(); } catch (Throwable e) { throw new RuntimeException(e); } } public Solution(String name) throws IOException { Locale.setDefault(Locale.US); if (name == null) { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintStream(new BufferedOutputStream(System.out)); } else { in = new BufferedReader(new InputStreamReader(new FileInputStream(name + ".in"))); out = new PrintStream(new BufferedOutputStream(new FileOutputStream(name + ".out"))); } st = new StringTokenizer(""); } public static void main(String[] args) throws IOException { new Thread(new Solution(null)).start(); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
cc3d7983d06f9ce96f1edc9c89c232ab
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class B { public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(in.readLine()); for (int ti = 0; ti < t; ti++) { String[] ss = in.readLine().split(" "); long x=Long.parseLong(ss[0]), y=Long.parseLong(ss[1]); if (y<x) { System.out.println(x+y); } else { // n=kx+b // y=l(kx+b)+b = (lk)x+(l+1)b // y mod x = (l+1)b // l=1 long l1b = y%x; long b=l1b/2; long n=(y-b); System.out.println(n); } } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
1ee1a46fb091fd3f5aaae8e506a4a69b
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.*; import java.lang.*; // StringBuilder uses java.lang public class mC { public static void main(String[] args) { Scanner sc = new Scanner(System.in); StringBuilder st = new StringBuilder(); int t = sc.nextInt(); for (int test = 0; test < t; test++) { int n = sc.nextInt(); int m = sc.nextInt(); if (n == m) { st.append(n+"\n"); } else if (n > m) { st.append(n+m+"\n"); } else { st.append(m-((m % n)/2) +"\n"); } } System.out.print(st.toString()); } public static int firstLargerAb(int val,ArrayList<Integer> ok,int left,int right) { if (Math.abs(ok.get(right))<=val) { return -1; } if (left==right) { return left; } else if (left+1==right) { if (val<Math.abs(ok.get(left))) { return left; } else { return right; } } else { int mid = (left+right)/2; if (Math.abs(ok.get(mid))>val) { return firstLargerAb(val,ok,left,mid); } else { return firstLargerAb(val,ok,mid+1,right); } } } public static int findNthInArray(int[] arr,int val,int start,int o) { if (o==0) { return start-1; } else if (arr[start] == val) { return findNthInArray(arr,val,start+1,o-1); } else { return findNthInArray(arr,val,start+1,o); } } public static ArrayList<Integer> dfs(int at,ArrayList<Integer> went,ArrayList<ArrayList<Integer>> connect) { for (int i=0;i<connect.get(at).size();i++) { if (!(went.contains(connect.get(at).get(i)))) { went.add(connect.get(at).get(i)); went=dfs(connect.get(at).get(i),went,connect); } } return went; } public static int[] bfs (int at, int[] went, ArrayList<ArrayList<Integer>> queue, int numNodes, ArrayList<ArrayList<Integer>> connect) { if (went[at]==0) { went[at]=queue.get(numNodes).get(1); for (int i=0;i<connect.get(at).size();i++) { if (went[connect.get(at).get(i)]==0) { ArrayList<Integer> temp = new ArrayList<>(); temp.add(connect.get(at).get(i)); temp.add(queue.get(numNodes).get(1)+1); queue.add(temp); } } } if (queue.size()==numNodes+1) { return went; } else { return bfs(queue.get(numNodes+1).get(0),went, queue, numNodes+1, connect); } } public static long fastPow(long base,long exp,long mod) { if (exp==0) { return 1; } else { if (exp % 2 == 1) { long z = fastPow(base,(exp-1)/2,mod); return ((((z*base) % mod) * z) % mod); } else { long z = fastPow(base,exp/2,mod); return ((z*z) % mod); } } } public static int fastPow(int base,long exp) { if (exp==0) { return 1; } else { if (exp % 2 == 1) { int z = fastPow(base,(exp-1)/2); return ((((z*base)) * z)); } else { int z = fastPow(base,exp/2); return ((z*z)); } } } public static int firstLarger(int val,ArrayList<Integer> ok,int left,int right) { if (ok.get(right)<=val) { return -1; } if (left==right) { return left; } else if (left+1==right) { if (val<ok.get(left)) { return left; } else { return right; } } else { int mid = (left+right)/2; if (ok.get(mid)>val) { return firstLarger(val,ok,left,mid); } else { return firstLarger(val,ok,mid+1,right); } } } public static int binSearchArr(long val,ArrayList<Integer> ok,long[] arr,int left,int right) { if (arr[ok.get(right)]<=val) { return -1; } if (left==right) { return left; } else if (left+1==right) { if (val<arr[ok.get(left)]) { return left; } else { return right; } } else { int mid = (left+right)/2; if (arr[ok.get(mid)]>val) { return binSearchArr(val,ok,arr,left,mid); } else { return binSearchArr(val,ok,arr,mid+1,right); } } } public static long gcd(long a, long b) { if (b>a) { return gcd(b,a); } if (b==0) { return a; } if (a%b==0) { return b; } else { return gcd(b,a%b); } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 8
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
eaab29cc1aae52bba0c8cc516af65889
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
//package CodeForces.CodeForcesRounds.src.main.java.aarkay.codeforcesrounds.round752; import java.io.*; import java.util.*; public class ModerateModularMode_B { public static void main(String[] args) { MyScanner sc = new MyScanner(); out = new PrintWriter(new BufferedOutputStream(System.out)); // Start writing your solution here. ------------------------------------- /* int n = sc.nextInt(); // read input as integer long k = sc.nextLong(); // read input as long double d = sc.nextDouble(); // read input as double String str = sc.next(); // read input as String String s = sc.nextLine(); // read whole line as String int result = 3*n; out.println(result); // print via PrintWriter */ int totalCases = sc.nextInt(); while(totalCases != 0) { int x = sc.nextInt(); int y = sc.nextInt(); out.println(findModerateModularForInput(x, y)); totalCases--; } // Stop writing your solution here. ------------------------------------- out.close(); } // private static long findModerateModularForInput(long x, long y) { // int i = 1, j = 1; // // long numerator = ((x * i) + y); // long denominator = (j + 1); // long n = (numerator / denominator); // while(true) { // for(;; i++) { // for(j=i;j>0;j-=1) { // numerator = ((x * i) + y); // denominator = (j + 1); // n = (numerator / denominator); // //System.out.println("i : " + i + " j : " + j + " n : " + n); // if((n % 1 == 0) && ((n % x) == (y % n))) { // //System.out.println("ANS to this "+"i : " + i + " j : " + j + " n : " + n); // return n; // } // } // } // } // } private static int findModerateModularForInput(int x, int y) { if(x == y) return x; else if(y < x) return x+y; else { int d = y%x; return (y-d/2); } } //-----------PrintWriter for faster output--------------------------------- public static PrintWriter out; public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } //-------------------------------------------------------- }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
d25a20ff237204c97f178b49c04848ec
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.*; import java.io.*; public class P1603B { public static void main(String[] args) { Scanner s = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); int t = s.nextInt(); while (t-- > 0) { long a = s.nextLong(); long b = s.nextLong(); if (a <= b) { if (b % a == 0) out.println(a); else out.println(b - (b % a) / 2); } else out.println(a + b); } out.flush(); s.close(); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
cd5a08b67a21f0ab289a48480de42a49
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.Scanner; import java.util.*; public class Solution { static int mod = (int) 1e9 + 7; static Scanner sc = new Scanner(System.in); static StringBuilder sb = new StringBuilder(); public static void main(String[] args) { int cases = Integer.parseInt(sc.next()); for (int i = 0; i < cases; i++) { solve(); } System.out.print(sb); } public static void solve() { long x = Long.parseLong(sc.next()); long y = Long.parseLong(sc.next()); long n = -1; if (x == y) { n = x; } else if (x < y) { n = y - (y % x) / 2; } else { n = x + y; } sb.append(n + "\n"); } public static int countbit(long n) { int count = 0; for (int i = 0; i < 64; i++) { if (((1L << i) & n) != 0) count++; } return count; } public static int firstbit(int n) { for (int i = 31; i >= 0; i--) { if (((1 << i) & n) != 0) return i; } return -1; } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
5d5039e1fa5a7fc349497503f6727318
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.Scanner; import java.util.*; public class Solution { static int mod = (int) 1e9 + 7; static Scanner sc = new Scanner(System.in); static StringBuilder sb = new StringBuilder(); public static void main(String[] args) { int cases = Integer.parseInt(sc.next()); for (int i = 0; i < cases; i++) { solve(); } System.out.print(sb); } public static void solve() { long x = Long.parseLong(sc.next()); long y = Long.parseLong(sc.next()); long n = -1; if (x == y) { n = x; } else if (x < y) { long p = y / x * x; n = (p + y) / 2; } else { n = x + y; } sb.append(n + "\n"); } public static int countbit(long n) { int count = 0; for (int i = 0; i < 64; i++) { if (((1L << i) & n) != 0) count++; } return count; } public static int firstbit(int n) { for (int i = 31; i >= 0; i--) { if (((1 << i) & n) != 0) return i; } return -1; } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
7b3e58cdc19309acfd9990ef8a1b1d0e
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.*; import java.io.*; public class pariNa { public static void main(String[] args) { Scanner sc=new Scanner(System.in); StringBuilder finalAnswer=new StringBuilder(); //finalAnswer.append().append('\n'); int t=sc.nextInt(); outer: while(t-->0){ // long n=sc.nextLong(); long a=sc.nextInt(); long b=sc.nextInt(); if(a==b || b%a==0) { // System.out.println(a); finalAnswer.append(a).append('\n'); } else if(a>b) { finalAnswer.append(a+b).append('\n'); // System.out.println(a+b); } else{ // System.out.println(18); finalAnswer.append(((b/a)*a)+((b%a)/2)).append('\n'); // System.out.println(a+((b-a)/2)); } } System.out.println(finalAnswer); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
5c29a00cf544f7d3c55475fed395936a
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class Main { void solve() { int a = in.nextInt(); int b = in.nextInt(); long res = 0L + a + b; if (a == b)res = a; if (a < b) { res = b - b % a / 2; } out.append(res + endl); println(res % a == b % res); } int gcd(int a, int b) { if (b == 0)return a; return gcd(b, a % b); } public static void main (String[] args) { // It happens - Syed Mizbahuddin Main sol = new Main(); int t = 1; t = in.nextInt(); while (t-- != 0) { sol.solve(); } System.out.print(out); } <T> void println(T[] s) { if (err == null)return; err.println(Arrays.toString(s)); } <T> void println(T s) { if (err == null)return; err.println(s); } void println(int s) { if (err == null)return; err.println(s); } void println(int[] a) { if (err == null)return; println(Arrays.toString(a)); } int[] array(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = in.nextInt(); } return a; } int[] array1(int n) { int[] a = new int[n + 1]; for (int i = 1; i <= n; i++) { a[i] = in.nextInt(); } return a; } int max(int[] a) { int max = a[0]; for (int i = 0; i < a.length; i++)max = Math.max(max, a[i]); return max; } int min(int[] a) { int min = a[0]; for (int i = 0; i < a.length; i++)min = Math.min(min, a[i]); return min; } int count(int[] a, int x) { int count = 0; for (int i = 0; i < a.length; i++)if (x == a[i])count++; return count; } void printArray(int[] a) { for (int ele : a)out.append(ele + " "); out.append("\n"); } static { try { System.setIn(new FileInputStream("input.txt")); System.setOut(new PrintStream(new FileOutputStream("output.txt"))); err = new PrintStream(new FileOutputStream("error.txt")); } catch (Exception e) {} } static FastReader in; static StringBuilder out; static PrintStream err; static String yes , no , endl; final int MAX; final int MIN; int mod ; Main() { in = new FastReader(); out = new StringBuilder(); MAX = Integer.MAX_VALUE; MIN = Integer.MIN_VALUE; mod = (int)1e9 + 7; yes = "YES\n"; no = "NO\n"; endl = "\n"; } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } class Pair implements Comparable<Pair> { int first , second; Pair(int first, int second) { this.first = first; this.second = second; } public int compareTo(Pair b) { return this.first - b.first; } public String toString() { String s = "{ " + Integer.toString(first) + " , " + Integer.toString(second) + " }"; return s; } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
7e715dbeaefaed643a95cd7fcbd902aa
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class Main { void solve() { int a = in.nextInt(); int b = in.nextInt(); long res = 0L + a + b; if (a == b)res = a; if (a < b) { res = b - b % a / 2; } out.append(res + endl); println(res % a == b % res); } int gcd(int a, int b) { if (b == 0)return a; return gcd(b, a % b); } public static void main (String[] args) { // It happens - Syed Mizbahuddin Main sol = new Main(); int t = 1; t = in.nextInt(); while (t-- != 0) { sol.solve(); } System.out.print(out); } <T> void println(T[] s) { if (err == null)return; err.println(Arrays.toString(s)); } <T> void println(T s) { if (err == null)return; err.println(s); } void println(int s) { if (err == null)return; err.println(s); } void println(int[] a) { if (err == null)return; println(Arrays.toString(a)); } int[] array(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = in.nextInt(); } return a; } int[] array1(int n) { int[] a = new int[n + 1]; for (int i = 1; i <= n; i++) { a[i] = in.nextInt(); } return a; } int max(int[] a) { int max = a[0]; for (int i = 0; i < a.length; i++)max = Math.max(max, a[i]); return max; } int min(int[] a) { int min = a[0]; for (int i = 0; i < a.length; i++)min = Math.min(min, a[i]); return min; } int count(int[] a, int x) { int count = 0; for (int i = 0; i < a.length; i++)if (x == a[i])count++; return count; } void printArray(int[] a) { for (int ele : a)out.append(ele + " "); out.append("\n"); } static { try { System.setIn(new FileInputStream("input.txt")); System.setOut(new PrintStream(new FileOutputStream("output.txt"))); err = new PrintStream(new FileOutputStream("error.txt")); } catch (Exception e) {} } static FastReader in; static StringBuilder out; static PrintStream err; static String yes , no , endl; final int MAX; final int MIN; int mod ; Main() { in = new FastReader(); out = new StringBuilder(); MAX = Integer.MAX_VALUE; MIN = Integer.MIN_VALUE; mod = (int)1e9 + 7; yes = "YES\n"; no = "NO\n"; endl = "\n"; } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } class Pair implements Comparable<Pair> { int first , second; Pair(int first, int second) { this.first = first; this.second = second; } public int compareTo(Pair b) { return this.first - b.first; } public String toString() { String s = "{ " + Integer.toString(first) + " , " + Integer.toString(second) + " }"; return s; } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
f373fd0bc525607224117eee0bf65728
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class Main { static int globalVariable = 123456789; static String author = "pl728 on codeforces"; public static void main(String[] args) { FastReader sc = new FastReader(); PrintWriter pw = new PrintWriter(System.out); MathUtils mathUtils = new MathUtils(); ArrayUtils arrayUtils = new ArrayUtils(); int tc = sc.ni(); while (tc-- != 0) { int x = sc.ni(); int y = sc.ni(); // n % x == y % n if(x == y) { System.out.println(x); continue; } if(x > y) { // find a number m greater than y such that m % x == 0 // return m + y long ans = x + y; System.out.println(ans); continue; } // if(y % x == 0) { // System.out.println(x + x/2); // continue; // } System.out.println(y - (y % x) / 2); } } static class FastReader { /** * Uses BufferedReader and StringTokenizer for quick java I/O * get next int, long, double, string * get int, long, double, string arrays, both primitive and wrapped object when array contains all elements * on one line, and we know the array size (n) * next: gets next space separated item * nextLine: returns entire line as space */ BufferedReader br; StringTokenizer st; public FastReader() { this.br = new BufferedReader(new InputStreamReader(System.in)); } public String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } // to parse something else: // T x = T.parseT(fastReader.next()); public int ni() { return Integer.parseInt(next()); } public String ns() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public String[] readStringArrayLine(int n) { String line = ""; try { line = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return line.split(" "); } public String[] readStringArrayLines(int n) { String[] result = new String[n]; for (int i = 0; i < n; i++) { result[i] = this.next(); } return result; } public int[] readIntArray(int n) { int[] result = new int[n]; for (int i = 0; i < n; i++) { result[i] = this.ni(); } return result; } public long[] readLongArray(int n) { long[] result = new long[n]; for (int i = 0; i < n; i++) { result[i] = this.nl(); } return result; } public Integer[] readIntArrayObject(int n) { Integer[] result = new Integer[n]; for (int i = 0; i < n; i++) { result[i] = this.ni(); } return result; } public long nl() { return Long.parseLong(next()); } public char[] readCharArray(int n) { return this.ns().toCharArray(); } } static class MathUtils { public MathUtils() { } public long gcdLong(long a, long b) { if (a % b == 0) return b; else return gcdLong(b, a % b); } public long lcmLong(long a, long b) { return a * b / gcdLong(a, b); } } static class ArrayUtils { public ArrayUtils() { } public static int[] reverse(int[] a) { int n = a.length; int[] b = new int[n]; int j = n; for (int i = 0; i < n; i++) { b[j - 1] = a[i]; j = j - 1; } return b; } public int sumIntArrayInt(int[] a) { int ans = 0; for (int i = 0; i < a.length; i++) { ans += a[i]; } return ans; } public long sumLongArrayLong(int[] a) { long ans = 0; for (int i = 0; i < a.length; i++) { ans += a[i]; } return ans; } } public static int lowercaseToIndex(char c) { return (int) c - 97; } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
89fc1c2518c0fd4fab42c27e8fa97c33
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; public class Codeforces{ static long mod = 1000000007L; // map.put(a[i],map.getOrDefault(a[i],0)+1); // map.putIfAbsent; static MyScanner sc = new MyScanner(); //<----------------------------------------------WRITE HERE-------------------------------------------> static void solve(){ long n = sc.nextInt(); long m = sc.nextLong(); long ans; if(n<=m) { if(m%n == 0) ans = n; else { ans = m-((m%n)/2); } } else ans = n+m; out.println(ans); } static long phi(long n) { long res = n; for(int i=2;i*i<=n;i++) { if(n%i == 0) { while(n%i == 0) n /= i; res -= res/i; } } if(n>1) { res -= res/n; } return res; } //<----------------------------------------------WRITE HERE-------------------------------------------> static void swap(int[] a,int i,int j) { int temp = a[i]; a[i] = a[j]; a[j] = temp; } static void priArr(int[] a) { for(int i=0;i<a.length;i++) { out.print(a[i] + " "); } out.println(); } static long gcd(long a,long b){ if(b==0) return a; return gcd(b,a%b); } static class Pair implements Comparable<Pair>{ Integer val; Integer ind; Pair(int v,int f){ val = v; ind = f; } public int compareTo(Pair p){ int s1 = this.ind-this.val; int s2 = p.ind-p.val; if(s1 != s2) return s1-s2; return this.val - p.val; } } public static void main(String[] args) { out = new PrintWriter(new BufferedOutputStream(System.out)); int t = sc.nextInt(); // int t= 1; while(t-- >0){ solve(); } // Stop writing your solution here. ------------------------------------- out.close(); } //-----------PrintWriter for faster output--------------------------------- public static PrintWriter out; //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int[] readIntArray(int n){ int arr[] = new int[n]; for(int i = 0;i<n;i++){ arr[i] = Integer.parseInt(next()); } return arr; } int[] reverse(int arr[]){ int n= arr.length; int i = 0; int j = n-1; while(i<j){ int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; j--;i++; } return arr; } long[] readLongArray(int n){ long arr[] = new long[n]; for(int i = 0;i<n;i++){ arr[i] = Long.parseLong(next()); } return arr; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } private static void sort(int[] arr) { List<Integer> list = new ArrayList<>(); for (int i=0; i<arr.length; i++){ list.add(arr[i]); } Collections.sort(list); // collections.sort uses nlogn in backend for (int i = 0; i < arr.length; i++){ arr[i] = list.get(i); } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
5d61b6e04b2a64e12015c5f1f45049ce
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.lang.*; import java.util.*; public class ComdeFormces { public static boolean gl; public static ArrayList<Integer> anss; public static int ans; public static void main(String[] args) throws Exception{ // TODO Auto-generated method stub // Reader.init(System.in); FastReader sc=new FastReader(); BufferedWriter log = new BufferedWriter(new OutputStreamWriter(System.out)); // OutputStream out = new BufferedOutputStream ( System.out ); int t=sc.nextInt(); int tc=1; while(t--!=0) { long n=sc.nextLong(); long m=sc.nextLong(); if(n<=m) { long nm=n*(m/n)+(m%n)/2; log.write(nm+"\n"); } else log.write((n+m)+"\n"); log.flush(); } } public static class Node{ int data; Node left,right; public Node(int data) { this.data=data; this.left=this.right=null; } } public static int dfs(ArrayList<ArrayList<Integer>> ar,int src, boolean vis[],int cnt[]) { vis[src]=true; for(int k:ar.get(src)) { if(!vis[k]) { cnt[src]+=dfs(ar,k,vis,cnt); } } cnt[src]+=1; return cnt[src]; } public static int eval(ArrayList<ArrayList<Integer>> ar,int cnt[],int src,boolean vis[]) { vis[src]=true; int vl=-1; int nd=-1; int ch[]= {-1,-1}; int p=0; for(int k:ar.get(src)) { if(!vis[k]) { ch[p++]=k; } } if(ch[0]==-1 && ch[1]==-1)return 0; int ans=0; for(int i=0;i<2;i++) { if(i==0) { if(ch[1]==-1) { ans+=cnt[ch[0]]-1; return ans; } else { ans=Math.max(ans, cnt[ch[1]]-1+eval(ar,cnt,ch[0],vis)); } } else { ans=Math.max(ans, cnt[ch[0]]-1+eval(ar,cnt,ch[1],vis)); } } return ans; } public static void build(long a[][],long b[]) { for(int i=0;i<b.length;i++) { a[i][0]=b[i]; } int jmp=2; while(jmp<=b.length) { for(int j=0;j<b.length;j++) { int ind=(int)(Math.log(jmp/2)/Math.log(2)); int ind2=(int)(Math.log(jmp)/Math.log(2)); if(j+jmp-1<b.length) { a[j][ind2]=Math.max(a[j][ind],a[j+(jmp/2)][ind]); } } jmp*=2; } // for(int i=0;i<a.length;i++) { // for(int j=0;j<33;j++) { // System.out.print(a[i][j]+" "); // } // System.out.println(); // } } public static long serst(long a[][],int i,int j) { int len=j-i+1; int hp=1; int tlen=len>>=1; // System.out.println(tlen); while(tlen!=0) { tlen>>=1; hp<<=1; } // System.out.println(hp); int ind=(int)(Math.log(hp)/Math.log(2)); int i2=j+1-hp; return Math.max(a[i][ind], a[i2][ind]); } static void update(int f[],int upd,int ind) { int vl=ind; while(vl<f.length) { f[vl]+=upd; int tp=~vl; tp++; tp&=vl; vl+=tp; } } static long ser(int f[],int ind) { int vl=ind; long sm=0; while(vl!=0) { sm+=f[vl]; int tp=~vl; tp++; tp&=vl; vl-=tp; } return sm; } static int find(int el,int p[]) { if(p[el]<0)return el; return p[el]=find(p[el],p); } static boolean union(int a,int b,int p[]) { int p1=find(a,p); int p2=find(b,p); if(p1>=0 && p1==p2)return false; else { if(p[p1]<p[p2]) { p[p1]+=p[p2]; p[p2]=p1; } else { p[p2]+=p[p1]; p[p1]=p2; } return true; } } public static void radixSort(int a[]) { int n=a.length; int res[]=new int[n]; int p=1; for(int i=0;i<=8;i++) { int cnt[]=new int[10]; for(int j=0;j<n;j++) { a[j]=res[j]; cnt[(a[j]/p)%10]++; } for(int j=1;j<=9;j++) { cnt[j]+=cnt[j-1]; } for(int j=n-1;j>=0;j--) { res[cnt[(a[j]/p)%10]-1]=a[j]; cnt[(a[j]/p)%10]--; } p*=10; } } static int bits(long n) { int ans=0; while(n!=0) { if((n&1)==1)ans++; n>>=1; } return ans; } public static int kadane(int a[]) { int sum=0,mx=Integer.MIN_VALUE; for(int i=0;i<a.length;i++) { sum+=a[i]; mx=Math.max(mx, sum); if(sum<0) sum=0; } return mx; } public static int m=(int)(1e9+7); public static int mul(int a, int b) { return ((a%m)*(b%m))%m; } public static long mul(long a, long b) { return ((a%md)*(b%md))%md; } public static int add(int a, int b) { return ((a%m)+(b%m))%m; } public static long add(long a, long b) { return ((a%m)+(b%m))%m; } //debug public static <E> void p(E[][] a,String s) { System.out.println(s); for(int i=0;i<a.length;i++) { for(int j=0;j<a[0].length;j++) { System.out.print(a[i][j]+" "); } System.out.println(); } } public static void p(int[] a,String s) { System.out.print(s+"="); for(int i=0;i<a.length;i++)System.out.print(a[i]+" "); System.out.println(); } public static void p(long[] a,String s) { System.out.print(s+"="); for(int i=0;i<a.length;i++)System.out.print(a[i]+" "); System.out.println(); } public static <E> void p(E a,String s){ System.out.println(s+"="+a); } public static <E> void p(ArrayList<E> a,String s){ System.out.println(s+"="+a); } public static <E> void p(LinkedList<E> a,String s){ System.out.println(s+"="+a); } public static <E> void p(HashSet<E> a,String s){ System.out.println(s+"="+a); } public static <E> void p(Stack<E> a,String s){ System.out.println(s+"="+a); } public static <E> void p(Queue<E> a,String s){ System.out.println(s+"="+a); } //utils static ArrayList<Integer> divisors(int n){ ArrayList<Integer> ar=new ArrayList<>(); for (int i=2; i<=Math.sqrt(n); i++){ if (n%i == 0){ if (n/i == i) { ar.add(i); } else { ar.add(i); ar.add(n/i); } } } return ar; } static ArrayList<Integer> prime(int n){ ArrayList<Integer> ar=new ArrayList<>(); int cnt=0; boolean pr=false; while(n%2==0) { ar.add(2); n/=2; } for(int i=3;i*i<=n;i+=2) { pr=false; while(n%i==0) { n/=i; ar.add(i); pr=true; } } if(n>2) ar.add(n); return ar; } static long gcd(long a,long b) { if(b==0)return a; else return gcd(b,a%b); } static int gcd(int a,int b) { if(b==0)return a; else return gcd(b,a%b); } static long factmod(long n,long mod,long img) { if(n==0)return 1; long ans=1; long temp=1; while(n--!=0) { if(temp!=img) { ans=((ans%mod)*((temp)%mod))%mod; } temp++; } return ans%mod; } static int ncr(int n, int r){ if(r>n-r)r=n-r; int ans=1; for(int i=0;i<r;i++){ ans*=(n-i); ans/=(i+1); } return ans; } public static class trip{ double a; int b; int c; public trip(double a,int b,int c) { this.a=a; this.b=b; this.c=c; } // public int compareTo(trip q) { // return this.b-q.b; // } } static void mergesort(long[] a,int start,int end) { if(start>=end)return ; int mid=start+(end-start)/2; mergesort(a,start,mid); mergesort(a,mid+1,end); merge(a,start,mid,end); } static void merge(long[] a, int start,int mid,int end) { int ptr1=start; int ptr2=mid+1; long b[]=new long[end-start+1]; int i=0; while(ptr1<=mid && ptr2<=end) { if(a[ptr1]<a[ptr2]) { b[i]=a[ptr1]; ptr1++; i++; } else { b[i]=a[ptr2]; ptr2++; i++; } } while(ptr1<=mid) { b[i]=a[ptr1]; ptr1++; i++; } while(ptr2<=end) { b[i]=a[ptr2]; ptr2++; i++; } for(int j=start;j<=end;j++) { a[j]=b[j-start]; } } public static class FastReader { BufferedReader b; StringTokenizer s; public FastReader() { b=new BufferedReader(new InputStreamReader(System.in)); } String next() { while(s==null ||!s.hasMoreElements()) { try { s=new StringTokenizer(b.readLine()); } catch(IOException e) { e.printStackTrace(); } } return s.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str=""; try { str=b.readLine(); } catch(IOException e) { e.printStackTrace(); } return str; } boolean hasNext() { if (s != null && s.hasMoreTokens()) { return true; } String tmp; try { b.mark(1000); tmp = b.readLine(); if (tmp == null) { return false; } b.reset(); } catch (IOException e) { return false; } return true; } } public static class pair{ int a; int b; public pair(int a,int b) { this.a=a; this.b=b; } // public int compareTo(pair b) { // return this.a-b.a; // // } // // public int compareToo(pair b) { // return this.b-b.b; // } @Override public String toString() { return "{"+this.a+" "+this.b+"}"; } } static long pow(long a, long pw) { long temp; if(pw==0)return 1; temp=pow(a,pw/2); if(pw%2==0)return temp*temp; return a*temp*temp; } public static int md=998244353; static long mpow(long a, long pw) { long temp; if(pw==0)return 1; temp=pow(a,pw/2)%md; if(pw%2==0)return mul(temp,temp); return mul(a,mul(temp,temp)); } static int pow(int a, int pw) { int temp; if(pw==0)return 1; temp=pow(a,pw/2); if(pw%2==0)return temp*temp; return a*temp*temp; } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
b8909a4c66fc14ee7334526aba74acd9
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; import static java.lang.Math.*; import static java.lang.Math.ceil; import static java.util.Arrays.sort; public class Round9 { public static void main(String[] args) { FastReader fastReader = new FastReader(); PrintWriter out = new PrintWriter(System.out); int t = fastReader.nextInt(); while (t-- > 0) { long a = fastReader.nextLong(); long b = fastReader.nextLong(); // if ( a == b) { out.println(Math.min(a, b)); } else { if (a > b) { out.println(a + b); } else { long div = b / a; long a1 = div * a; if (b % a == 0) { a1 -= a; } long mid = (Math.max(a1, a) + b) / 2; out.println(mid); } } } out.close(); } // constants static final int IBIG = 1000000007; static final int IMAX = 2147483647; static final long LMAX = 9223372036854775807L; static Random __r = new Random(); // math util static int minof(int a, int b, int c) { return min(a, min(b, c)); } static int minof(int... x) { if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); int min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min; } static long minof(long a, long b, long c) { return min(a, min(b, c)); } static long minof(long... x) { if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); long min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min; } static int maxof(int a, int b, int c) { return max(a, max(b, c)); } static int maxof(int... x) { if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); int max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max; } static long maxof(long a, long b, long c) { return max(a, max(b, c)); } static long maxof(long... x) { if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); long max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max; } static int powi(int a, int b) { if (a == 0) return 0; int ans = 1; while (b > 0) { if ((b & 1) > 0) ans *= a; a *= a; b >>= 1; } return ans; } static long powl(long a, int b) { if (a == 0) return 0; long ans = 1; while (b > 0) { if ((b & 1) > 0) ans *= a; a *= a; b >>= 1; } return ans; } static int fli(double d) { return (int) d; } static int cei(double d) { return (int) ceil(d); } static long fll(double d) { return (long) d; } static long cel(double d) { return (long) ceil(d); } static int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } static long gcd(long a, long b) { return b == 0 ? a : gcd(b, a % b); } static int[] exgcd(int a, int b) { if (b == 0) return new int[]{1, 0}; int[] y = exgcd(b, a % b); return new int[]{y[1], y[0] - y[1] * (a / b)}; } static long[] exgcd(long a, long b) { if (b == 0) return new long[]{1, 0}; long[] y = exgcd(b, a % b); return new long[]{y[1], y[0] - y[1] * (a / b)}; } static int randInt(int min, int max) { return __r.nextInt(max - min + 1) + min; } static long mix(long x) { x += 0x9e3779b97f4a7c15L; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9L; x = (x ^ (x >> 27)) * 0x94d049bb133111ebL; return x ^ (x >> 31); } public static boolean[] findPrimes(int limit) { assert limit >= 2; final boolean[] nonPrimes = new boolean[limit]; nonPrimes[0] = true; nonPrimes[1] = true; int sqrt = (int) Math.sqrt(limit); for (int i = 2; i <= sqrt; i++) { if (nonPrimes[i]) continue; for (int j = i; j < limit; j += i) { if (!nonPrimes[j] && i != j) nonPrimes[j] = true; } } return nonPrimes; } // array util static void reverse(int[] a) { for (int i = 0, n = a.length, half = n / 2; i < half; ++i) { int swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap; } } static void reverse(long[] a) { for (int i = 0, n = a.length, half = n / 2; i < half; ++i) { long swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap; } } static void reverse(double[] a) { for (int i = 0, n = a.length, half = n / 2; i < half; ++i) { double swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap; } } static void reverse(char[] a) { for (int i = 0, n = a.length, half = n / 2; i < half; ++i) { char swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap; } } static void shuffle(int[] a) { int n = a.length - 1; for (int i = 0; i < n; ++i) { int ind = randInt(i, n); int swap = a[i]; a[i] = a[ind]; a[ind] = swap; } } static void shuffle(long[] a) { int n = a.length - 1; for (int i = 0; i < n; ++i) { int ind = randInt(i, n); long swap = a[i]; a[i] = a[ind]; a[ind] = swap; } } static void shuffle(double[] a) { int n = a.length - 1; for (int i = 0; i < n; ++i) { int ind = randInt(i, n); double swap = a[i]; a[i] = a[ind]; a[ind] = swap; } } static void rsort(int[] a) { shuffle(a); sort(a); } static void rsort(long[] a) { shuffle(a); sort(a); } static void rsort(double[] a) { shuffle(a); sort(a); } static int[] copy(int[] a) { int[] ans = new int[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans; } static long[] copy(long[] a) { long[] ans = new long[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans; } static double[] copy(double[] a) { double[] ans = new double[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans; } static char[] copy(char[] a) { char[] ans = new char[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
06f878014d490f1fdae886992fbaab87
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.*; import java.io.*; public class Main{ static final Random random=new Random(); static long mod=1000000007L; static HashMap<String,Integer>map=new HashMap<>(); static class FastReader{ BufferedReader br; StringTokenizer st; public FastReader(){ br=new BufferedReader(new InputStreamReader(System.in)); } String next(){ while(st==null || !st.hasMoreTokens()){ try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt(){ return Integer.parseInt(next()); } long nextLong(){ return Long.parseLong(next()); } double nextDouble(){ return Double.parseDouble(next()); } String nextLine(){ String str=""; try { str=br.readLine().trim(); } catch (Exception e) { e.printStackTrace(); } return str; } int[] readIntArray(int n){ int[] res=new int[n]; for(int i=0;i<n;i++)res[i]=nextInt(); return res; } } static class FastWriter { private final BufferedWriter bw; public FastWriter() { this.bw = new BufferedWriter(new OutputStreamWriter(System.out)); } public void print(Object object) throws IOException { bw.append("" + object); } public void println(Object object) throws IOException { print(object); bw.append("\n"); } public void close() throws IOException { bw.close(); } } public static void main(String[] args) { try { FastReader in=new FastReader(); FastWriter out = new FastWriter(); int testCases=in.nextInt(); //int testCases=1; while(testCases-- > 0){ solve(in); } out.close(); } catch (Exception e) { return; } } public static void solve( FastReader in){ //int n=in.nextInt(); //int w=in.nextInt(); //int h=in.nextInt(); long n=in.nextLong(); //int k=in.nextInt(); long k=in.nextLong(); StringBuilder res=new StringBuilder(); if(n<=k){ long y=k-(k%n)/2; //a=n+a; res.append(""+(y)); } else{ long a=n+k; res.append(""+(a)); } System.out.println(res.toString()); } static int gcd(int a,int b){ if(b==0){ return a; } return gcd(b,a%b); } static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } static void debug(String x){ System.out.println(x); } static < E > void print(E res) { System.out.println(res); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
3cef847819a98d54efff61c65b71681f
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.Scanner; public class E1603B { public static void main(String[] args) { Scanner scn = new Scanner(System.in); int t = scn.nextInt(); StringBuilder sb = new StringBuilder(); while (t-- > 0) { int x = scn.nextInt(); int y = scn.nextInt(); long ans; if (x > y) { ans = x + y; } else { ans = y - (y % x) / 2; } sb.append(ans); sb.append("\n"); } System.out.println(sb); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
5140b854e52bcde862bb0b4f1a3a9976
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
/* _oo0oo_ o8888888o 88" . "88 (| -_- |) 0\ = /0 ___/`---'\___ .' \\| |// '. / \\||| : |||// \ / _||||| -:- |||||- \ | | \\\ - /// | | | \_| ''\---/'' |_/ | \ .-\__ '-' ___/-. / ___'. .' /--.--\ `. .'___ ."" '< `.___\_<|>_/___.' >' "". | | : `- \`.;`\ _ /`;.`/ - ` : | | \ \ `_. \_ __\ /__ _/ .-` / / =====`-.____`.___ \_____/___.-`___.-'===== `=---=' */ import java.util.*; import java.math.*; import java.io.*; import java.lang.Math.*; public class KickStart2020 { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } float nextFloat() { return Float.parseFloat(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static long lcm(long a, long b) { return a / gcd(a, b) * b; } public static class Pair implements Comparable<Pair> { public int index; public int value; public Pair(int index,int value) { this.index = index; this.value = value; } @Override public int compareTo(Pair other) { // multiplied to -3 as the author need descending sort order if(other.index < this.index) return 3; if(other.index > this.index) return -3; else return 0; } @Override public String toString() { return this.index + " " + this.value; } } static boolean isPrime(long d) { if (d == 3) return false; for (int i = 2; i <= (long) Math.sqrt(d); i++) { if (d % i == 0) return false; } return true; } static void decimalTob(int n, int k, Stack<Integer> ss) { int x = n % k; int y = n / k; ss.push(x); if(y > 0) { decimalTob(y, k, ss); } } static long powermod(long x, long y, long mod) { long ans = 1; x = x % mod; if (x == 0) return 0; int i = 1; while (y > 0) { if ((y & 1) != 0) ans = (ans * x) % mod; y = y >> 1; x = (x * x) % mod; } return ans; } static long power(long x, long y) { long res = 1; while (y > 0) { if ((y & 1) != 0) res = res * x; y = y >> 1; x = x * x; } return res; } public static void main(String[] args) throws Exception { FastReader sc = new FastReader(); PrintWriter out = new PrintWriter(System.out); int t = sc.nextInt(); outerloop: while(t-- > 0) { long a = sc.nextLong(); long b = sc.nextLong(); if(b % a == 0) { out.println(a); continue outerloop; } if(b < a) out.println(a + b); else { out.println(b - (b % a) / 2); } } out.close(); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
de3c1ccf3d933bacbe136c984ad2d388
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class Main { static AReader scan = new AReader(); static int gcd(int a,int b){ return b == 0 ? a : gcd(b,a%b); } static void solve() { int x = scan.nextInt(); int y = scan.nextInt(); if(y < x){ System.out.println(x + y); }else if(x == y){ System.out.println(x); }else{ if(y % x == 0) System.out.println(y); // y > x? else{ System.out.println(y - (y % x / 2)); } } } public static void main(String[] args) { int T = scan.nextInt(); while (T-- > 0) { solve(); } } } class AReader { private BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); private StringTokenizer tokenizer = new StringTokenizer(""); private String innerNextLine() { try { return reader.readLine(); } catch (IOException ex) { return null; } } public boolean hasNext() { while (!tokenizer.hasMoreTokens()) { String nextLine = innerNextLine(); if (nextLine == null) { return false; } tokenizer = new StringTokenizer(nextLine); } return true; } public String nextLine() { tokenizer = new StringTokenizer(""); return innerNextLine(); } public String next() { hasNext(); return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } } class Pair { int x,y; public Pair(int x, int y) { this.x = x; this.y = y; } } class Node{ int l,r; int val; int lazy; int cnt = 0,lnum,rnum; public Node(int l, int r) { this.l = l; this.r = r; } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
423e3510d7a3a57129405ffd84240bdc
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; public class B1603 { public static void main(String[] args) throws IOException, FileNotFoundException { // Scanner in = new Scanner(new File("test.in")); Kattio in = new Kattio(); int T = in.nextInt(); while(T > 0){ T--; long X = in.nextLong(); long Y = in.nextLong(); if(X > Y){ System.out.println(X + Y); } else { System.out.println(Y - (Y%X)/2); } } } static long gcd (long a, long b) { if (b == 0){ return a; } else { return gcd (b, a % b); } } static long lcm (long a, long b){ return a / gcd(a, b) * b; } static class Kattio extends PrintWriter { private BufferedReader r; private StringTokenizer st; // standard input public Kattio() { this(System.in, System.out); } public Kattio(InputStream i, OutputStream o) { super(o); r = new BufferedReader(new InputStreamReader(i)); } // USACO-style file input public Kattio(String problemName) throws IOException { super(problemName + ".out"); r = new BufferedReader(new FileReader(problemName + ".in")); } // returns null if no more input public String next() { try { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(r.readLine()); return st.nextToken(); } catch (Exception e) { } return null; } public int nextInt() { return Integer.parseInt(next()); } public double nextDouble() { return Double.parseDouble(next()); } public long nextLong() { return Long.parseLong(next()); } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
806227d219821db30e15ddb09e78657d
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class A1603 { public static void main(String[] args) throws IOException { BufferedReader rd = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(System.out); int numTests = Integer.parseInt(rd.readLine()); for (int t = 0; t < numTests; t++) { StringTokenizer st = new StringTokenizer(rd.readLine()); long x = Long.parseLong(st.nextToken()); long y = Long.parseLong(st.nextToken()); long ans; if (y % x == 0) { ans = x; } else { // find m s.t. (2m-1)x < y < (2m+1)y. if (y < x) { ans = x + y; } else { // find largest m s.t. (2m-1)x<y. long div = (y - 1) / x; long m = div; if (m % 2 == 0) { m--; } ans = (y + m * x) / 2; } } pw.println(ans); } pw.flush(); pw.close(); rd.close(); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
8d9fb773fabe54b09f59ba82bbb6661c
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; import static java.lang.Math.*; import static java.util.Arrays.*; public class cf1603b { public static void main(String[] args) throws IOException { int t = ri(); next: while (t --> 0) { int x = rni(), y = ni(); if (y < x) { prln(x + y); } else if (y % x == 0) { prln(x); } else { prln((y + ((y + x - 1) / x - 1) * x) / 2); } } close(); } @FunctionalInterface interface IntCondition { boolean check(int x); } static int maxst(int min, int max, IntCondition condition) { int ans = min - 1; for (int l = min, r = max, m; l <= r; ) { if (condition.check(m = l + (r - l) / 2)) l = (ans = m) + 1; else r = m - 1; } return ans; } static int minst(int min, int max, IntCondition condition) { int ans = max + 1; for (int l = min, r = max, m; l <= r; ) { if (condition.check(m = l + (r - l) / 2)) r = (ans = m) - 1; else l = m + 1; } return ans; } static BufferedReader __i = new BufferedReader(new InputStreamReader(System.in)); static PrintWriter __o = new PrintWriter(new OutputStreamWriter(System.out)); static StringTokenizer input; static Random __r = new Random(); // references // IBIG = 1e9 + 7 // IMAX ~= 2e9 // LMAX ~= 9e18 // constants static final int IBIG = 1000000007; static final int IMAX = 2147483647; static final long LMAX = 9223372036854775807L; // math util static int minof(int a, int b, int c) {return min(a, min(b, c));} static int minof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); int min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;} static long minof(long a, long b, long c) {return min(a, min(b, c));} static long minof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); long min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;} static int maxof(int a, int b, int c) {return max(a, max(b, c));} static int maxof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); int max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;} static long maxof(long a, long b, long c) {return max(a, max(b, c));} static long maxof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); long max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;} static int powi(int a, int b) {if (a == 0) return 0; int ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;} static long powl(long a, int b) {if (a == 0) return 0; long ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;} static int fli(double d) {return (int) d;} static int cei(double d) {return (int) ceil(d);} static long fll(double d) {return (long) d;} static long cel(double d) {return (long) ceil(d);} static int gcd(int a, int b) {return b == 0 ? a : gcd(b, a % b);} static long gcd(long a, long b) {return b == 0 ? a : gcd(b, a % b);} static int[] exgcd(int a, int b) {if (b == 0) return new int[] {1, 0}; int[] y = exgcd(b, a % b); return new int[] {y[1], y[0] - y[1] * (a / b)};} static long[] exgcd(long a, long b) {if (b == 0) return new long[] {1, 0}; long[] y = exgcd(b, a % b); return new long[] {y[1], y[0] - y[1] * (a / b)};} static int randInt(int min, int max) {return __r.nextInt(max - min + 1) + min;} static long mix(long x) {x += 0x9e3779b97f4a7c15L; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9L; x = (x ^ (x >> 27)) * 0x94d049bb133111ebL; return x ^ (x >> 31);} // array util static void reverse(int[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {int swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void reverse(long[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {long swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void reverse(double[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {double swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void reverse(char[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {char swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void shuffle(int[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); int swap = a[i]; a[i] = a[ind]; a[ind] = swap;}} static void shuffle(long[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); long swap = a[i]; a[i] = a[ind]; a[ind] = swap;}} static void shuffle(double[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); double swap = a[i]; a[i] = a[ind]; a[ind] = swap;}} static void rsort(int[] a) {shuffle(a); sort(a);} static void rsort(long[] a) {shuffle(a); sort(a);} static void rsort(double[] a) {shuffle(a); sort(a);} static int[] copy(int[] a) {int[] ans = new int[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} static long[] copy(long[] a) {long[] ans = new long[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} static double[] copy(double[] a) {double[] ans = new double[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} static char[] copy(char[] a) {char[] ans = new char[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} // input static void r() throws IOException {input = new StringTokenizer(rline());} static int ri() throws IOException {return Integer.parseInt(rline());} static long rl() throws IOException {return Long.parseLong(rline());} static double rd() throws IOException {return Double.parseDouble(rline());} static int[] ria(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni(); return a;} static void ria(int[] a) throws IOException {int n = a.length; r(); for (int i = 0; i < n; ++i) a[i] = ni();} static int[] riam1(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni() - 1; return a;} static void riam1(int[] a) throws IOException {int n = a.length; r(); for (int i = 0; i < n; ++i) a[i] = ni() - 1;} static long[] rla(int n) throws IOException {long[] a = new long[n]; r(); for (int i = 0; i < n; ++i) a[i] = nl(); return a;} static void rla(long[] a) throws IOException {int n = a.length; r(); for (int i = 0; i < n; ++i) a[i] = nl();} static double[] rda(int n) throws IOException {double[] a = new double[n]; r(); for (int i = 0; i < n; ++i) a[i] = nd(); return a;} static void rda(double[] a) throws IOException {int n = a.length; r(); for (int i = 0; i < n; ++i) a[i] = nd();} static char[] rcha() throws IOException {return rline().toCharArray();} static void rcha(char[] a) throws IOException {int n = a.length, i = 0; for (char c : rline().toCharArray()) a[i++] = c;} static String rline() throws IOException {return __i.readLine();} static String n() {return input.nextToken();} static int rni() throws IOException {r(); return ni();} static int ni() {return Integer.parseInt(n());} static long rnl() throws IOException {r(); return nl();} static long nl() {return Long.parseLong(n());} static double rnd() throws IOException {r(); return nd();} static double nd() {return Double.parseDouble(n());} // output static void pr(int i) {__o.print(i);} static void prln(int i) {__o.println(i);} static void pr(long l) {__o.print(l);} static void prln(long l) {__o.println(l);} static void pr(double d) {__o.print(d);} static void prln(double d) {__o.println(d);} static void pr(char c) {__o.print(c);} static void prln(char c) {__o.println(c);} static void pr(char[] s) {__o.print(new String(s));} static void prln(char[] s) {__o.println(new String(s));} static void pr(String s) {__o.print(s);} static void prln(String s) {__o.println(s);} static void pr(Object o) {__o.print(o);} static void prln(Object o) {__o.println(o);} static void prln() {__o.println();} static void pryes() {prln("yes");} static void pry() {prln("Yes");} static void prY() {prln("YES");} static void prno() {prln("no");} static void prn() {prln("No");} static void prN() {prln("NO");} static boolean pryesno(boolean b) {prln(b ? "yes" : "no"); return b;}; static boolean pryn(boolean b) {prln(b ? "Yes" : "No"); return b;} static boolean prYN(boolean b) {prln(b ? "YES" : "NO"); return b;} static void prln(int... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();} static void prln(long... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();} static void prln(double... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();} static <T> void prln(Collection<T> c) {int n = c.size() - 1; Iterator<T> iter = c.iterator(); for (int i = 0; i < n; pr(iter.next()), pr(' '), ++i); if (n >= 0) prln(iter.next()); else prln();} static void h() {prln("hlfd"); flush();} static void flush() {__o.flush();} static void close() {__o.close();} }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
9482ee31b654dd37467d7fedb905f780
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; public class mmm { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); StringTokenizer st = new StringTokenizer(br.readLine()); int t = Integer.parseInt(st.nextToken()); while (t-- > 0) { st = new StringTokenizer(br.readLine()); long x = Long.parseLong(st.nextToken()); long y = Long.parseLong(st.nextToken()); if (y % x == 0) { pw.println(x); } else if (x > y) { pw.println(x + y); } else { long ceil = y - 1; long xv = ceil % x; long yv = y % ceil; pw.println(ceil - (xv - yv) / 2); } } pw.close(); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
4cabc8aad5b88d0d7d2b5da583e72070
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
// import java.io.BufferedReader; // import java.io.InputStreamReader; // public class Main{ // static int m=(int)1e9+7; // public static void main(String[] args) throws Exception{ // BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); // int t=Integer.parseInt(br.readLine()); // while(t-->0){ // String[] in=br.readLine().split(" "); // int a=Integer.parseInt(in[0]); // int b=Integer.parseInt(in[1]); // int c=Integer.parseInt(in[2]); // // System.out.println(expo(b,c,m-1)); // System.out.println(expo(a,expo(b,c,m-1),m)); // } // } // static int expo(int a,int b,int c){ // if(a==0 && b==0) return 1; // long res=1; // long x=a; // while(b>0){ // if((b&1)==1){ // res=(x*res)%c; // } // x=(x*x)%c; // b=b>>1; // } // return (int)(res%c); // } // } import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.*; public class Main{ static long mod=(long)1e9+7; public static void main(String[] args) throws Exception{ BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int t=Integer.parseInt(br.readLine()); // long[] dp=new long[(int)(2*1e6+1)]; // dp[1]=0; // dp[2]=1; // for(int i=3;i<=(int)(2*1e6);i++){ // dp[i]=((i-1)*(dp[i-1]%mod+dp[i-2]%mod))%mod; // } while(t-->0){ // int n=Integer.parseInt(br.readLine()); String[] in=br.readLine().split(" "); long a=Long.parseLong(in[0]); long b=Long.parseLong(in[1]); // long c=(dp[(int)a])*(modular_inverse((dp[(int)b]*dp[(int)(a-b)])%mod))%mod; // System.out.println(a*b%mod); if(a<=b){ if(b%a==0) System.out.println(a); else{ long p=b-b%a; System.out.println((p+b)/2); } } else{ System.out.println(a+b); } } } static long n_of_factors(long[][] a){ long ans=1; for(int i=0;i<a.length;i++){ ans=ans*(a[i][1]+1)%mod; } return ans%mod; } static long sum_of_factors(long[][] a){ long ans=1; for(int i=0;i<a.length;i++){ long res=(((expo(a[i][0],a[i][1]+1)-1)%mod)*(modular_inverse(a[i][0]-1))%mod)%mod; ans=((res%mod)*(ans%mod))%mod; } return (ans%mod); } static long prod_of_divisors(long[][] a){ long ans=1; long d=1; for(int i=0;i<a.length;i++){ long res=expo(a[i][0],(a[i][1]*(a[i][1]+1)/2)); ans=((expo(ans,a[i][1]+1)%mod)*(expo(res,d)%mod))%mod; d=(d*(a[i][1]+1))%(mod-1); } return ans%mod; } static long expo(long a,long b){ long ans=1; a=a%mod; while(b>0){ if((b&1)==1){ ans=ans*a%mod; } a=a*a%mod; b>>=1; } return ans%mod; } static long modular_inverse(long a){ return expo(a,mod-2)%mod; } static long phin(long a){ if(isPrime(a)) return a-1; long res=a; for(int i=2;i*i<=(int)a;i++){ if(a%i==0){ while(a%i==0){ a=a/i; } res-=res/i; } } if(a>1){ res-=res/a; } return res; } static boolean isPrime(long a){ if(a<2) return false; for(int i=2;i*i<=(int)a;i++){ if(a%i==0) return false; } return true; } // } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
bf004dbdcb8b886e7db5656a33c598d1
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; public class Moderate_Modular_Mode { static FastScanner fs; static FastWriter fw; static boolean checkOnlineJudge = System.getProperty("ONLINE_JUDGE") == null; private static final int[][] kdir = new int[][]{{-1, 2}, {-2, 1}, {-2, -1}, {-1, -2}, {1, -2}, {2, -1}, {2, 1}, {1, 2}}; private static final int[][] dir = new int[][]{{-1, 0}, {1, 0}, {0, 1}, {0, -1}}; private static final int iMax = (int) (1e9 + 100), iMin = (int) (-1e9 - 100); private static final long lMax = (long) (1e18 + 100), lMin = (long) (-1e18 - 100); private static final int mod1 = (int) (1e9 + 7); private static final int mod2 = 998244353; public static void main(String[] args) throws IOException { fs = new FastScanner(); fw = new FastWriter(); int t = 1; t = fs.nextInt(); while (t-- > 0) { solve(); } fw.out.close(); } private static void solve() { long x = fs.nextLong(), y = fs.nextLong(); if (x == y) { fw.out.println(x); }else if (x > y) { long n = x + y; fw.out.println(n); } else if ((3 * x) > y) { long n = (x + y) / 2; fw.out.println(n); } else { long k1 = ceilDiv(y - (2 * x), x); if ((y - (2 * x)) % x == 0) k1++; long n = ((k1 * x) + y) / 2; fw.out.println(n); } } private static class UnionFind { private final int[] parent; private final int[] rank; UnionFind(int n) { parent = new int[n + 5]; rank = new int[n + 5]; for (int i = 0; i <= n; i++) { parent[i] = i; rank[i] = 0; } } private int find(int i) { if (parent[i] == i) return i; return parent[i] = find(parent[i]); } private void union(int a, int b) { a = find(a); b = find(b); if (a != b) { if (rank[a] < rank[b]) { int temp = a; a = b; b = temp; } parent[b] = a; if (rank[a] == rank[b]) rank[a]++; } } } private static class Calc_nCr { private final long[] fact; private final long[] invfact; private final int p; Calc_nCr(int n, int prime) { fact = new long[n + 5]; invfact = new long[n + 5]; p = prime; fact[0] = 1; for (int i = 1; i <= n; i++) { fact[i] = (i * fact[i - 1]) % p; } invfact[n] = pow(fact[n], p - 2, p); for (int i = n - 1; i >= 0; i--) { invfact[i] = (invfact[i + 1] * (i + 1)) % p; } } private long nCr(int n, int r) { if (r > n || n < 0 || r < 0) return 0; return (((fact[n] * invfact[r]) % p) * invfact[n - r]) % p; } } private static long gcd(long a, long b) { return (b == 0 ? a : gcd(b, a % b)); } private static long lcm(long a, long b) { return ((a * b) / gcd(a, b)); } private static long pow(long a, long b, int mod) { long result = 1; while (b > 0) { if ((b & 1L) == 1) { result = (result * a) % mod; } a = (a * a) % mod; b >>= 1; } return result; } private static long ceilDiv(long a, long b) { return ((a + b - 1) / b); } private static long getMin(long... args) { long min = lMax; for (long arg : args) min = Math.min(min, arg); return min; } private static long getMax(long... args) { long max = lMin; for (long arg : args) max = Math.max(max, arg); return max; } private static boolean isPalindrome(String s, int l, int r) { int i = l, j = r; while (j - i >= 1) { if (s.charAt(i) != s.charAt(j)) return false; i++; j--; } return true; } private static List<Integer> primes(int n) { boolean[] primeArr = new boolean[n + 5]; Arrays.fill(primeArr, true); for (int i = 2; (i * i) <= n; i++) { if (primeArr[i]) { for (int j = i * i; j <= n; j += i) { primeArr[j] = false; } } } List<Integer> primeList = new ArrayList<>(); for (int i = 2; i <= n; i++) { if (primeArr[i]) primeList.add(i); } return primeList; } private static int noOfSetBits(long x) { int cnt = 0; while (x != 0) { x = x & (x - 1); cnt++; } return cnt; } private static boolean isPerfectSquare(long num) { long sqrt = (long) Math.sqrt(num); return ((sqrt * sqrt) == num); } private static class Pair<U, V> { private final U first; private final V second; @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Pair<?, ?> pair = (Pair<?, ?>) o; return first.equals(pair.first) && second.equals(pair.second); } @Override public int hashCode() { return Objects.hash(first, second); } @Override public String toString() { return "(" + first + ", " + second + ")"; } private Pair(U ff, V ss) { this.first = ff; this.second = ss; } } private static void randomizeIntArr(int[] arr, int n) { Random r = new Random(); for (int i = (n - 1); i > 0; i--) { int j = r.nextInt(i + 1); swapInIntArr(arr, i, j); } } private static void randomizeLongArr(long[] arr, int n) { Random r = new Random(); for (int i = (n - 1); i > 0; i--) { int j = r.nextInt(i + 1); swapInLongArr(arr, i, j); } } private static void swapInIntArr(int[] arr, int a, int b) { int temp = arr[a]; arr[a] = arr[b]; arr[b] = temp; } private static void swapInLongArr(long[] arr, int a, int b) { long temp = arr[a]; arr[a] = arr[b]; arr[b] = temp; } private static int[] readIntArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) arr[i] = fs.nextInt(); return arr; } private static long[] readLongArray(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) arr[i] = fs.nextLong(); return arr; } private static List<Integer> readIntList(int n) { List<Integer> list = new ArrayList<>(); for (int i = 0; i < n; i++) list.add(fs.nextInt()); return list; } private static List<Long> readLongList(int n) { List<Long> list = new ArrayList<>(); for (int i = 0; i < n; i++) list.add(fs.nextLong()); return list; } private static class FastScanner { BufferedReader br; StringTokenizer st; FastScanner() throws IOException { if (checkOnlineJudge) this.br = new BufferedReader(new FileReader("src/input.txt")); else this.br = new BufferedReader(new InputStreamReader(System.in)); this.st = new StringTokenizer(""); } public String next() { while (!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException err) { err.printStackTrace(); } } return st.nextToken(); } public String nextLine() { if (st.hasMoreTokens()) { return st.nextToken("").trim(); } try { return br.readLine().trim(); } catch (IOException err) { err.printStackTrace(); } return ""; } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } } private static class FastWriter { PrintWriter out; FastWriter() throws IOException { if (checkOnlineJudge) out = new PrintWriter(new FileWriter("src/output.txt")); else out = new PrintWriter(System.out); } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
46f0841e1a025918827b614443887e3b
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.StringTokenizer; public class Main { public static void main(String[] args) throws Throwable { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int t = Integer.parseInt(st.nextToken()); for (int tc = 0; tc < t; ++tc) { st = new StringTokenizer(br.readLine()); int x = Integer.parseInt(st.nextToken()); int y = Integer.parseInt(st.nextToken()); System.out.println(solve(x, y)); } } static int solve(int x, int y) { if (x == y) { return x; } if (x > y) { return x + y; } return (y / x * x + y) / 2; } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
fa4edf8a9388da9ac28d5b8f3b8ba28b
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.*; import java.io.*; public class A { static class fast { BufferedReader br; StringTokenizer st; public fast() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static void ruffleSort(int[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); int temp = a[i]; a[i] = a[r]; a[r] = temp; } Arrays.sort(a); } public static void main(String[] args)throws IOException { if (System.getProperty("ONLINE_JUDGE") == null) { try { System.setIn(new FileInputStream(new File("i.txt"))); System.setOut(new PrintStream(new File("o.txt"))); } catch (Exception e) {} } fast f = new fast(); int t = f.nextInt(); StringBuilder sb = new StringBuilder(); while (t-- > 0) { long x = f.nextInt(); long y = f.nextInt(); if (x == y)sb.append(x).append('\n'); else if (x > y)sb.append(x + y).append('\n'); else { long m = y / x; long X = x * m; sb.append((X + y) / 2).append('\n'); } } System.out.println(sb); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
157127eadd7a971b0d103d401aa759a3
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.*; //import java.lang.*; import java.io.*; public class Solution { static long[] fac; static int m = (int)1e9+7; static int c = 1; // static int[] x = {1,-1,0,0}; // static int[] y = {0,0,1,-1}; // static int cycle_node; public static void main(String[] args) throws IOException { Reader.init(System.in); BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out)); // Do not delete this // //Uncomment this before using nCrModPFermat // fac = new long[200000 + 1]; // fac[0] = 1; // // for (int i = 1; i <= 200000; i++) // fac[i] = (fac[i - 1] * i % 1000000007); // long[] fact = factorial((int)1e6); int te = Reader.nextInt(); // int te = 1; while(te-->0) { long a = Reader.nextLong(); long b = Reader.nextLong(); if(a>b){ output.write(a+b+"\n"); } else if(b%a==0){ output.write(a+"\n"); } else{ if(b<a*2){ output.write(b-(b-a)/2+"\n"); } else { long n = b - b % a - (a - b % a) / 2; output.write(n + "\n"); } } } output.close(); } // Recursive function to return (x ^ n) % m static long modexp(long x, long n) { if (n == 0) { return 1; } else if (n % 2 == 0) { return modexp((x * x) % m, n / 2); } else { return (x * modexp((x * x) % m, (n - 1) / 2) % m); } } // Function to return the fraction modulo mod static long getFractionModulo(long a, long b) { long c = gcd(a, b); a = a / c; b = b / c; // (b ^ m-2) % m long d = modexp(b, m - 2); // Final answer long ans = ((a % m) * (d % m)) % m; return ans; } public static boolean isP(String n){ StringBuilder s1 = new StringBuilder(n); StringBuilder s2 = new StringBuilder(n); s2.reverse(); for(int i = 0;i<s1.length();i++){ if(s1.charAt(i)!=s2.charAt(i)) return false; } return true; } public static long[] factorial(int n){ long[] factorials = new long[n+1]; factorials[0] = 1; factorials[1] = 1; for(int i = 2;i<=n;i++){ factorials[i] = (factorials[i-1]*i)%1000000007; } return factorials; } public static long numOfBits(long n){ long ans = 0; while(n>0){ n = n & (n-1); ans++; } return ans; } public static long ceilOfFraction(long x, long y){ // ceil using integer division: ceil(x/y) = (x+y-1)/y // using double may go out of range. return (x+y-1)/y; } public static long power(long x, long y, long p) { long res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } // Returns n^(-1) mod p public static long modInverse(long n, long p) { return power(n, p - 2, p); } // Returns nCr % p using Fermat's // little theorem. public static long nCrModPFermat(int n, int r, int p) { if (n<r) return 0; if (r == 0) return 1; // Fill factorial array so that we // can find all factorial of r, n // and n-r return (fac[n] * modInverse(fac[r], p) % p * modInverse(fac[n - r], p) % p) % p; } public static long ncr(long n, long r) { long p = 1, k = 1; if (n - r < r) { r = n - r; } if (r != 0) { while (r > 0) { p *= n; k *= r; long m = gcd(p, k); p /= m; k /= m; n--; r--; } } else { p = 1; } return p; } public static boolean isPrime(long n){ if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; (long) i * i <= n; i = i + 6){ if (n % i == 0 || n % (i + 2) == 0) { return false; } } return true; } public static int powOf2JustSmallerThanN(int n) { n |= n >> 1; n |= n >> 2; n |= n >> 4; n |= n >> 8; n |= n >> 16; return n ^ (n >> 1); } public static long merge(int[] arr, int[] aux, int low, int mid, int high) { int k = low, i = low, j = mid + 1; long inversionCount = 0; // while there are elements in the left and right runs while (i <= mid && j <= high) { if (arr[i] <= arr[j]) { aux[k++] = arr[i++]; } else { aux[k++] = arr[j++]; inversionCount += (mid - i + 1); // NOTE } } // copy remaining elements while (i <= mid) { aux[k++] = arr[i++]; } /* no need to copy the second half (since the remaining items are already in their correct position in the temporary array) */ // copy back to the original array to reflect sorted order for (i = low; i <= high; i++) { arr[i] = aux[i]; } return inversionCount; } public static long mergesort(int[] arr, int[] aux, int low, int high) { if (high <= low) { // if run size <= 1 return 0; } int mid = (low + ((high - low) >> 1)); long inversionCount = 0; // recursively split runs into two halves until run size <= 1, // then merges them and return up the call chain // split/merge left half inversionCount += mergesort(arr, aux, low, mid); // split/merge right half inversionCount += mergesort(arr, aux, mid + 1, high); // merge the two half runs inversionCount += merge(arr, aux, low, mid, high); return inversionCount; } public static void reverseArray(int[] arr,int start, int end) { int temp; while (start < end) { temp = arr[start]; arr[start] = arr[end]; arr[end] = temp; start++; end--; } } public static long gcd(long a, long b){ if(a==0){ return b; } return gcd(b%a,a); } public static long lcm(long a, long b){ if(a>b) return a/gcd(b,a) * b; return b/gcd(a,b) * a; } public static long largeExponentMod(long x,long y,long mod){ // computing (x^y) % mod x%=mod; long ans = 1; while(y>0){ if((y&1)==1){ ans = (ans*x)%mod; } x = (x*x)%mod; y = y >> 1; } return ans; } public static boolean[] numOfPrimesInRange(long L, long R){ boolean[] isPrime = new boolean[(int) (R-L+1)]; Arrays.fill(isPrime,true); long lim = (long) Math.sqrt(R); for (long i = 2; i <= lim; i++){ for (long j = Math.max(i * i, (L + i - 1) / i * i); j <= R; j += i){ isPrime[(int) (j - L)] = false; } } if (L == 1) isPrime[0] = false; return isPrime; } public static ArrayList<Long> primeFactors(long n){ ArrayList<Long> factorization = new ArrayList<>(); if(n%2==0){ factorization.add(2L); } while(n%2==0){ n/=2; } if(n%3==0){ factorization.add(3L); } while(n%3==0){ n/=3; } if(n%5==0){ factorization.add(5L); } while(n%5==0){ // factorization.add(5L); n/=5; } int[] increments = {4, 2, 4, 2, 4, 6, 2, 6}; int i = 0; for (long d = 7; d * d <= n; d += increments[i++]) { if(n%d==0){ factorization.add(d); } while (n % d == 0) { // factorization.add(d); n /= d; } if (i == 8) i = 0; } if (n > 1) factorization.add(n); return factorization; } } class DSU { int[] size, parent; int n; public DSU(int n){ this.n = n; size = new int[n]; parent = new int[n]; for(int i = 0;i<n;i++){ parent[i] = i; size[i] = 1; } } public int find(int u){ if(parent[u]==u){ return u; } return parent[u] = find(parent[u]); } public void merge(int u, int v){ u = find(u); v = find(v); if(u!=v){ if(size[u]>size[v]){ parent[v] = u; size[u] += size[v]; } else{ parent[u] = v; size[v] += size[u]; } } } } class Reader { static BufferedReader reader; static StringTokenizer tokenizer; /** call this method to initialize reader for InputStream */ static void init(InputStream input) { reader = new BufferedReader( new InputStreamReader(input) ); tokenizer = new StringTokenizer(""); } /** get next word */ static String next() throws IOException { while ( ! tokenizer.hasMoreTokens() ) { //TODO add check for eof if necessary tokenizer = new StringTokenizer( reader.readLine() ); } return tokenizer.nextToken(); } static String nextLine() throws IOException { return reader.readLine(); } static int nextInt() throws IOException { return Integer.parseInt( next() ); } static long nextLong() throws IOException{ return Long.parseLong(next() ); } static double nextDouble() throws IOException { return Double.parseDouble( next() ); } } class SegTree{ int n; // array size // Max size of tree public int[] tree; public SegTree(int n){ this.n = n; tree = new int[4*n]; } // function to build the tree void update(int pos, int val, int s, int e, int treeIdx){ if(pos < s || pos > e){ return; } if(s == e){ tree[treeIdx] = val; return; } int mid = s + (e - s) / 2; update(pos, val, s, mid, 2 * treeIdx); update(pos, val, mid + 1, e, 2 * treeIdx + 1); tree[treeIdx] = tree[2 * treeIdx] + tree[2 * treeIdx + 1]; } void update(int pos, int val){ update(pos, val, 1, n, 1); } int query(int qs, int qe, int s, int e, int treeIdx){ if(qs <= s && qe >= e){ return tree[treeIdx]; } if(qs > e || qe < s){ return 0; } int mid = s + (e - s) / 2; int subQuery1 = query(qs, qe, s, mid, 2 * treeIdx); int subQuery2 = query(qs, qe, mid + 1, e, 2 * treeIdx + 1); int res = subQuery1 + subQuery2; return res; } int query(int l, int r){ return query(l, r, 1, n, 1); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
17f32c65d42739c27b30761960f36ff2
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
/* *** author: cypher70 */ import java.io.*; import java.util.*; public class sol { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[] readArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } } static class pair<E, T, K> { E val1; T val2; K val3; public pair(E d1, T d2, K d3) { val1 = d1; val2 = d2; val3 = d3; } } static String reverse(String s) { StringBuilder rev = new StringBuilder(); for (int i = s.length()-1; i >= 0; i--) { rev.append(s.charAt(i)); } return rev.toString(); } static void reverse(int[] arr, int l, int r) { while (l < r) { int h = arr[l]; arr[l] = arr[r]; arr[r] = h; l++; r--; } } static void debug(int[] arr) { for (int e: arr) { System.out.print(e + " "); } System.out.println(); } static void sort(int[] arr, int l, int r) { ArrayList<Integer> a = new ArrayList<>(); for (int i = l; i <= r; i++) { a.add(arr[i]); } Collections.sort(a); for (int i = l; i <= r; i++) { arr[i] = a.get(i-l); } } /* ------------------------------- Implementation Begins ------------------------------ */ public static void main(String[] args) { FastReader fr = new FastReader(); int t = fr.nextInt(); while (t-->0) { long a = fr.nextLong(); long b = fr.nextLong(); if (b >= a && (b % a == 0 || a == b)) { System.out.println(b); } else if (b > a) { a *= (b / a); System.out.println((a + b) / 2); } else { System.out.println(a + b); } } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
21fb0cdb66385081008b983967b8d337
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.*; import java.io.*; public class Main { // when can't think of anything -->> // 1. In sorting questions try to think about all possibilities like starting from start, end, middle. // 2. Two pointers, brute force. // 3. In graph query questions try to solve it reversely or try to process all the queries in a single parse. // 4. If order does not matter then just sort the data if constraints allow. It'll never harm. // 5. In greedy problems if you are just overwhelmed by the possibilities and stuck, try to code whatever you come up with. // 6. Try to solve it from back or reversely. // 7. When can't prove something take help of contradiction. public static void main(String[] args) throws Exception { FastReader sc = new FastReader(); PrintWriter writer = new PrintWriter(System.out); int t = sc.nextInt(); while(t-->0) { long a = sc.nextLong(); long b = sc.nextLong(); if(b>a)writer.println((long)(b-0.5*(b%a))); else if(a==b)writer.println(a); else writer.println(a+b); } writer.flush(); writer.close(); } private static int findVal(String a, String b, int n) { int diff1 = 0; for(int i = 0; i < n; i++) { if(a.charAt(i) != b.charAt(i))diff1++; } return diff1; } private static long power (long a, long n, long p) { long res = 1; while(n!=0) { if(n%2==1) { res=(res*a)%p; n--; }else { a= (a*a)%p; n/=2; } } return res; } private static boolean isPrime(int c) { for (int i = 2; i*i <= c; i++) { if(c%i==0)return false; } return true; } private static int find(int a , int arr[]) { if(arr[a] != a) return arr[a] = find(arr[a], arr); return arr[a]; } private static void union(int a, int b, int arr[]) { int aa = find(a,arr); int bb = find(b, arr); arr[aa] = bb; } private static int gcd(int a, int b) { if(a==0)return b; return gcd(b%a, a); } public static int[] readIntArray(int size, FastReader s) { int[] array = new int[size]; for (int i = 0; i < size; i++) { array[i] = s.nextInt(); } return array; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } class Pair implements Comparable<Pair>{ int a; int b; Pair(int a, int b){ this.a = a; this.b = b; } @Override public boolean equals(Object obj) { if(this == obj) return true; if(obj == null || obj.getClass()!= this.getClass()) return false; Pair pair = (Pair) obj; return (pair.a == this.a && pair.b == this.b); } @Override public int hashCode() { return Objects.hash(a,b); } @Override public int compareTo(Pair o) { if(this.a == o.a) { return Integer.compare(this.b, o.b); }else { return Integer.compare(this.a, o.a); } } @Override public String toString() { return this.a + " " + this.b; } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
35011f1afe4f207b5977d59b8cac6c7c
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.sql.Statement; import java.text.DecimalFormat; import java.util.*; public class Main { static class Pair { long val,ind; public Pair(long val,long ind) { this.val=val; this.ind=ind; } public String toString() { return val +" "+ind; } } static final int INF = 1 << 30; static final long INFL = 1L << 60; static final long NINF = INFL * -1; static final long mod = (long) 1e9 + 7; static final long mod2 = 998244353; static DecimalFormat df = new DecimalFormat("0.00000000000000"); public static final double PI = 3.141592653589793d, eps = 1e-9; public static void main(String[] args) throws IOException { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public static void solve(int testNumber, InputReader in, OutputWriter out) { int t1=in.readInt(); while (t1-->0) { long a=in.nextLong(); long b=in.nextLong(); if(a<=b) { out.printLine(b-((b%a)/2)); } else { out.printLine(a+b); } } } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int arraySize) { int[] array = new int[arraySize]; for (int i = 0; i < arraySize; i++) { array[i] = readInt(); } return array; } private int skip() { int b; while ((b = read()) != -1 && isSpaceChar(b)) ; return b; } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = read(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while (p < n && !(isSpaceChar(b))) { buf[p++] = (char) b; b = read(); } return n == p ? buf : Arrays.copyOf(buf, p); } public String readString() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { if (Character.isValidCodePoint(c)) { res.appendCodePoint(c); } c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isNewLine(int c) { return c == '\n'; } public String nextLine() { int c = read(); StringBuilder result = new StringBuilder(); do { result.appendCodePoint(c); c = read(); } while (!isNewLine(c)); return result.toString(); } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sign = 1; if (c == '-') { sign = -1; c = read(); } long result = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } result *= 10; result += c & 15; c = read(); } while (!isSpaceChar(c)); return result * sign; } public long[] nextLongArray(int arraySize) { long array[] = new long[arraySize]; for (int i = 0; i < arraySize; i++) { array[i] = nextLong(); } return array; } public double nextDouble() { double ret = 0, div = 1; byte c = (byte) read(); while (c <= ' ') { c = (byte) read(); } boolean neg = (c == '-'); if (neg) { c = (byte) read(); } do { ret = ret * 10 + c - '0'; } while ((c = (byte) read()) >= '0' && c <= '9'); if (c == '.') { while ((c = (byte) read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) { return -ret; } return ret; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static class CP { static boolean isPrime(long n) { if (n <= 1) return false; if (n == 2 || n == 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; (long) i * i <= n; i += 6) { if (n % i == 0 || n % (i + 2) == 0) return false; } return true; } public static int log2(int N) { int result = (int) (Math.log(N) / Math.log(2)); return result; } public static long pow(long a, long n, long mod) { // a %= mod; long ret = 1; int x = 63 - Long.numberOfLeadingZeros(n); for (; x >= 0; x--) { ret = ret * ret % mod; if (n << 63 - x < 0) ret = ret * a % mod; } return ret; } public static boolean isComposite(long n) { if (n < 2) return true; if (n == 2 || n == 3) return false; if (n % 2 == 0 || n % 3 == 0) return true; for (long i = 6L; i * i <= n; i += 6) if (n % (i - 1) == 0 || n % (i + 1) == 0) return true; return false; } static int ifnotPrime(int[] prime, int x) { return (prime[x / 64] & (1 << ((x >> 1) & 31))); } static int log2(long n) { return (int) (Math.log10(n) / Math.log10(2)); } static void makeComposite(int[] prime, int x) { prime[x / 64] |= (1 << ((x >> 1) & 31)); } public static String swap(String a, int i, int j) { char temp; char[] charArray = a.toCharArray(); temp = charArray[i]; charArray[i] = charArray[j]; charArray[j] = temp; return String.valueOf(charArray); } static void reverse(long arr[]){ int l = 0, r = arr.length-1; while(l<r){ long temp = arr[l]; arr[l] = arr[r]; arr[r] = temp; l++; r--; } } static void reverse(int arr[]){ int l = 0, r = arr.length-1; while(l<r){ int temp = arr[l]; arr[l] = arr[r]; arr[r] = temp; l++; r--; } } public static int[] sieveEratosthenes(int n) { if (n <= 32) { int[] primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}; for (int i = 0; i < primes.length; i++) { if (n < primes[i]) { return Arrays.copyOf(primes, i); } } return primes; } int u = n + 32; double lu = Math.log(u); int[] ret = new int[(int) (u / lu + u / lu / lu * 1.5)]; ret[0] = 2; int pos = 1; int[] isnp = new int[(n + 1) / 32 / 2 + 1]; int sup = (n + 1) / 32 / 2 + 1; int[] tprimes = {3, 5, 7, 11, 13, 17, 19, 23, 29, 31}; for (int tp : tprimes) { ret[pos++] = tp; int[] ptn = new int[tp]; for (int i = (tp - 3) / 2; i < tp << 5; i += tp) ptn[i >> 5] |= 1 << (i & 31); for (int j = 0; j < sup; j += tp) { for (int i = 0; i < tp && i + j < sup; i++) { isnp[j + i] |= ptn[i]; } } } // 3,5,7 // 2x+3=n int[] magic = {0, 1, 23, 2, 29, 24, 19, 3, 30, 27, 25, 11, 20, 8, 4, 13, 31, 22, 28, 18, 26, 10, 7, 12, 21, 17, 9, 6, 16, 5, 15, 14}; int h = n / 2; for (int i = 0; i < sup; i++) { for (int j = ~isnp[i]; j != 0; j &= j - 1) { int pp = i << 5 | magic[(j & -j) * 0x076be629 >>> 27]; int p = 2 * pp + 3; if (p > n) break; ret[pos++] = p; if ((long) p * p > n) continue; for (int q = (p * p - 3) / 2; q <= h; q += p) isnp[q >> 5] |= 1 << q; } } return Arrays.copyOf(ret, pos); } static int digit(long s) { int brute = 0; while (s > 0) { s /= 10; brute++; } return brute; } public static int[] primefacs(int n, int[] primes) { int[] ret = new int[15]; int rp = 0; for (int p : primes) { if (p * p > n) break; int i; for (i = 0; n % p == 0; n /= p, i++) ; if (i > 0) ret[rp++] = p; } if (n != 1) ret[rp++] = n; return Arrays.copyOf(ret, rp); } static ArrayList<Integer> bitWiseSieve(int n) { ArrayList<Integer> al = new ArrayList<>(); int prime[] = new int[n / 64 + 1]; for (int i = 3; i * i <= n; i += 2) { if (ifnotPrime(prime, i) == 0) for (int j = i * i, k = i << 1; j < n; j += k) makeComposite(prime, j); } al.add(2); for (int i = 3; i <= n; i += 2) if (ifnotPrime(prime, i) == 0) al.add(i); return al; } public static long[] sort(long arr[]) { List<Long> list = new ArrayList<>(); for (long n : arr) { list.add(n); } Collections.sort(list); for (int i = 0; i < arr.length; i++) { arr[i] = list.get(i); } return arr; } public static long[] revsort(long[] arr) { List<Long> list = new ArrayList<>(); for (long n : arr) { list.add(n); } Collections.sort(list, Collections.reverseOrder()); for (int i = 0; i < arr.length; i++) { arr[i] = list.get(i); } return arr; } public static int[] revsort(int[] arr) { List<Integer> list = new ArrayList<>(); for (int n : arr) { list.add(n); } Collections.sort(list, Collections.reverseOrder()); for (int i = 0; i < arr.length; i++) { arr[i] = list.get(i); } return arr; } public static ArrayList<Integer> reverse( ArrayList<Integer> data, int left, int right) { // Reverse the sub-array while (left < right) { int temp = data.get(left); data.set(left++, data.get(right)); data.set(right--, temp); } // Return the updated array return data; } static ArrayList<Integer> sieve(long size) { ArrayList<Integer> pr = new ArrayList<Integer>(); boolean prime[] = new boolean[(int) size]; for (int i = 2; i < prime.length; i++) prime[i] = true; for (int i = 2; i * i < prime.length; i++) { if (prime[i]) { for (int j = i * i; j < prime.length; j += i) { prime[j] = false; } } } for (int i = 2; i < prime.length; i++) if (prime[i]) pr.add(i); return pr; } static ArrayList<Integer> segmented_sieve(int l, int r, ArrayList<Integer> primes) { ArrayList<Integer> al = new ArrayList<>(); if (l == 1) ++l; int max = r - l + 1; int arr[] = new int[max]; for (int p : primes) { if (p * p <= r) { int i = (l / p) * p; if (i < l) i += p; for (; i <= r; i += p) { if (i != p) { arr[i - l] = 1; } } } } for (int i = 0; i < max; ++i) { if (arr[i] == 0) { al.add(l + i); } } return al; } static boolean isfPrime(long n, int iteration) { if (n == 0 || n == 1) return false; if (n == 2) return true; if (n % 2 == 0) return false; Random rand = new Random(); for (int i = 0; i < iteration; i++) { long r = Math.abs(rand.nextLong()); long a = r % (n - 1) + 1; if (modPow(a, n - 1, n) != 1) return false; } return true; } static long modPow(long a, long b, long c) { long res = 1; for (int i = 0; i < b; i++) { res *= a; res %= c; } return res % c; } private static long binPower(long a, long l, long mod) { long res = 0; while (l > 0) { if ((l & 1) == 1) { res = mulmod(res, a, mod); l >>= 1; } a = mulmod(a, a, mod); } return res; } private static long mulmod(long a, long b, long c) { long x = 0, y = a % c; while (b > 0) { if (b % 2 == 1) { x = (x + y) % c; } y = (y * 2L) % c; b /= 2; } return x % c; } static long binary_Expo(long a, long b) { long res = 1; while (b != 0) { if ((b & 1) == 1) { res *= a; --b; } a *= a; b /= 2; } return res; } static void swap(int a, int b) { int tp = b; b = a; a = tp; } static long Modular_Expo(long a, long b, long mod) { long res = 1; while (b != 0) { if ((b & 1) == 1) { res = (res * a) % mod; --b; } a = (a * a) % mod; b /= 2; } return res % mod; } static int i_gcd(int a, int b) { while (true) { if (b == 0) return a; int c = a; a = b; b = c % b; } } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static long ceil_div(long a, long b) { return (a + b - 1) / b; } static int getIthBitFromInt(int bits, int i) { return (bits >> (i - 1)) & 1; } private static TreeMap<Long, Long> primeFactorize(long n) { TreeMap<Long, Long> pf = new TreeMap<>(Collections.reverseOrder()); long cnt = 0; long total = 1; for (long i = 2; (long) i * i <= n; ++i) { if (n % i == 0) { cnt = 0; while (n % i == 0) { ++cnt; n /= i; } pf.put(cnt, i); //total*=(cnt+1); } } if (n > 1) { pf.put(1L, n); //total*=2; } return pf; } //less than or equal private static int lower_bound(List<Integer> list, int val) { int ans = -1, lo = 0, hi = list.size() - 1; while (lo <= hi) { int mid = (lo + hi) / 2; if (list.get(mid) <= val) { ans = mid; lo = mid + 1; } else { hi = mid - 1; } } return ans; } private static int lower_bound(int[] arr, int val) { int ans = -1, lo = 0, hi = arr.length - 1; while (lo <= hi) { int mid = (lo + hi) / 2; if (arr[mid] <= val) { ans = mid; lo = mid + 1; } else { hi = mid - 1; } } return ans; } private static int lower_bound(long[] arr, long val) { int ans = -1, lo = 0, hi = arr.length - 1; while (lo <= hi) { int mid = (lo + hi) / 2; if (arr[mid] <= val) { ans = mid; lo = mid + 1; } else { hi = mid - 1; } } return ans; } // greater than or equal private static int upper_bound(List<Integer> list, int val) { int ans = list.size(), lo = 0, hi = ans - 1; while (lo <= hi) { int mid = (lo + hi) / 2; if (list.get(mid) >= val) { ans = mid; hi = mid - 1; } else { lo = mid + 1; } } return ans; } private static int upper_bound(int[] arr, int val) { int ans = arr.length, lo = 0, hi = ans - 1; while (lo <= hi) { int mid = (lo + hi) / 2; if (arr[mid] >= val) { ans = mid; hi = mid - 1; } else { lo = mid + 1; } } return ans; } private static int upper_bound(long[] arr, long val) { int ans = arr.length, lo = 0, hi = ans - 1; while (lo <= hi) { int mid = (lo + hi) / 2; if (arr[mid] >= val) { ans = mid; hi = mid - 1; } else { lo = mid + 1; } } return ans; } // ==================== LIS & LNDS ================================ private static int[] LIS(long arr[], int n) { List<Long> list = new ArrayList<>(); int[] cnt=new int[n]; for (int i = 0; i < n; i++) { int idx = find1(list, arr[i]); if (idx < list.size()) list.set(idx, arr[i]); else list.add(arr[i]); cnt[i]=list.size(); } return cnt; } private static int find1(List<Long> list, long val) { int ret = list.size(), i = 0, j = list.size() - 1; while (i <= j) { int mid = (i + j) / 2; if (list.get(mid)>=val) { ret = mid; j = mid - 1; } else { i = mid + 1; } } return ret; } private static int LNDS(int[] arr, int n) { List<Integer> list = new ArrayList<>(); for (int i = 0; i < n; i++) { int idx = find2(list, arr[i]); if (idx < list.size()) list.set(idx, arr[i]); else list.add(arr[i]); } return list.size(); } private static int find2(List<Integer> list, int val) { int ret = list.size(), i = 0, j = list.size() - 1; while (i <= j) { int mid = (i + j) / 2; if (list.get(mid) <= val) { i = mid + 1; } else { ret = mid; j = mid - 1; } } return ret; } private static long nCr(long n, long r,long mod) { if (n - r > r) r = n - r; long ans = 1L; for (long i = r + 1; i <= n; i++) ans = (ans%mod*i%mod)%mod; for (long i = 2; i <= n - r; i++) ans /= i; return ans%mod; } private static boolean isPalindrome(String str) { int i = 0, j = str.length() - 1; while (i < j) if (str.charAt(i++) != str.charAt(j--)) return false; return true; } private static String reverseString(String str) { StringBuilder sb = new StringBuilder(str); return sb.reverse().toString(); } private static String sortString(String str) { int[] arr = new int[256]; for (char ch : str.toCharArray()) arr[ch]++; StringBuilder sb = new StringBuilder(); for (int i = 0; i < 256; i++) while (arr[i]-- > 0) sb.append((char) i); return sb.toString(); } static boolean isSquarefactor(int x, int factor, int target) { int s = (int) Math.round(Math.sqrt(x)); return factor * s * s == target; } static boolean isSquare(int x) { int s = (int) Math.round(Math.sqrt(x)); return x * x == s; } static int bs(ArrayList<Integer> al, int val) { int l = 0, h = al.size() - 1, mid = 0, ans = -1; while (l <= h) { mid = (l + h) >> 1; if (al.get(mid) == val) { return mid; } else if (al.get(mid) > val) { h = mid - 1; } else { l = mid + 1; } } return ans; } static void sort(int a[]) // heap sort { PriorityQueue<Integer> q = new PriorityQueue<>(); for (int i = 0; i < a.length; i++) q.add(a[i]); for (int i = 0; i < a.length; i++) a[i] = q.poll(); } static void shuffle(int[] in) { for (int i = 0; i < in.length; i++) { int idx = (int) (Math.random() * in.length); fast_swap(in, idx, i); } } public static int[] radixSort2(int[] a) { int n = a.length; int[] c0 = new int[0x101]; int[] c1 = new int[0x101]; int[] c2 = new int[0x101]; int[] c3 = new int[0x101]; for (int v : a) { c0[(v & 0xff) + 1]++; c1[(v >>> 8 & 0xff) + 1]++; c2[(v >>> 16 & 0xff) + 1]++; c3[(v >>> 24 ^ 0x80) + 1]++; } for (int i = 0; i < 0xff; i++) { c0[i + 1] += c0[i]; c1[i + 1] += c1[i]; c2[i + 1] += c2[i]; c3[i + 1] += c3[i]; } int[] t = new int[n]; for (int v : a) t[c0[v & 0xff]++] = v; for (int v : t) a[c1[v >>> 8 & 0xff]++] = v; for (int v : a) t[c2[v >>> 16 & 0xff]++] = v; for (int v : t) a[c3[v >>> 24 ^ 0x80]++] = v; return a; } static int[] computeLps(String pat) { int len = 0, i = 1, m = pat.length(); int lps[] = new int[m]; lps[0] = 0; while (i < m) { if (pat.charAt(i) == pat.charAt(len)) { ++len; lps[i] = len; ++i; } else { if (len != 0) { len = lps[len - 1]; } else { lps[i] = len; ++i; } } } return lps; } static ArrayList<Integer> kmp(String s, String pat) { ArrayList<Integer> al = new ArrayList<>(); int n = s.length(), m = pat.length(); int lps[] = computeLps(pat); int i = 0, j = 0; while (i < n) { if (s.charAt(i) == pat.charAt(j)) { i++; j++; if (j == m) { al.add(i - j); j = lps[j - 1]; } } else { if (j != 0) { j = lps[j - 1]; } else { i++; } } } return al; } static void reverse_ruffle_sort(int a[]) { shuffle(a); Arrays.sort(a); for (int l = 0, r = a.length - 1; l < r; ++l, --r) fast_swap(a, l, r); } static void ruffle_sort(int a[]) { shuffle(a); Arrays.sort(a); } static int getMax(int arr[], int n) { int mx = arr[0]; for (int i = 1; i < n; i++) if (arr[i] > mx) mx = arr[i]; return mx; } static ArrayList<Long> primeFactors(long n) { ArrayList<Long> al = new ArrayList<>(); al.add(1L); while (n % 2 == 0) { if (!al.contains(2L)) { al.add(2L); } n /= 2L; } for (long i = 3; (long) i * i <= n; i += 2) { while ((n % i == 0)) { if (!al.contains((long) i)) { al.add((long) i); } n /= i; } } if (n > 2) { if (!al.contains(n)) { al.add(n); } } return al; } public static long totFactors(long n) { long cnt = 0, tot = 1; while (n % 2 == 0) { n /= 2; ++cnt; } tot *= (cnt + 1); for (int i = 3; i <= Math.sqrt(n); i += 2) { cnt = 0; while (n % i == 0) { n /= i; ++cnt; } tot *= (cnt + 1); } if (n > 2) { tot *= 2; } return tot; } static int[] z_function(String s) { int n = s.length(), z[] = new int[n]; for (int i = 1, l = 0, r = 0; i < n; ++i) { if (i <= r) z[i] = Math.min(z[i - l], r - i + 1); while (i + z[i] < n && s.charAt(z[i]) == s.charAt(i + z[i])) ++z[i]; if (i + z[i] - 1 > r) { l = i; r = i + z[i] - 1; } } return z; } static void fast_swap(int[] a, int idx1, int idx2) { if (a[idx1] == a[idx2]) return; a[idx1] ^= a[idx2]; a[idx2] ^= a[idx1]; a[idx1] ^= a[idx2]; } static void fast_swap(long[] a, int idx1, int idx2) { if (a[idx1] == a[idx2]) return; a[idx1] ^= a[idx2]; a[idx2] ^= a[idx1]; a[idx1] ^= a[idx2]; } public static void fast_sort(long[] array) { ArrayList<Long> copy = new ArrayList<>(); for (long i : array) copy.add(i); Collections.sort(copy); for (int i = 0; i < array.length; i++) array[i] = copy.get(i); } static int factorsCount(int n) { boolean hash[] = new boolean[n + 1]; Arrays.fill(hash, true); for (int p = 2; p * p < n; p++) if (hash[p] == true) for (int i = p * 2; i < n; i += p) hash[i] = false; int total = 1; for (int p = 2; p <= n; p++) { if (hash[p]) { int count = 0; if (n % p == 0) { while (n % p == 0) { n = n / p; count++; } total = total * (count + 1); } } } return total; } static long binomialCoeff(long n, long k) { long res = 1; if (k > n - k) k = n - k; for (int i = 0; i < k; ++i) { res = (res * (n - i)); res /= (i + 1); } return res; } static long nck(long fact[], long inv[], long n, long k) { if (k > n) return 0; long res = fact[(int) n]%mod; res = (int) ((res%mod* inv[(int) k]%mod))%mod; res = (int) ((res%mod*inv[(int) (n - k)]%mod))%mod; return res % mod; } public static long fact(long x) { long fact = 1; for (int i = 2; i <= x; ++i) { fact = fact * i; } return fact; } public static ArrayList<Long> getFact(long x) { ArrayList<Long> facts = new ArrayList<>(); for (long i = 2; i * i <= x; ++i) { if (x % i == 0) { facts.add(i); if (i != x / i) { facts.add(x / i); } } } return facts; } static void matrix_ex(long n, long[][] A, long[][] I) { while (n > 0) { if (n % 2 == 0) { Multiply(A, A); n /= 2; } else { Multiply(I, A); n--; } } } static void Multiply(long[][] A, long[][] B) { int n = A.length, m = A[0].length, p = B[0].length; long[][] C = new long[n][p]; for (int i = 0; i < n; i++) { for (int j = 0; j < p; j++) { for (int k = 0; k < m; k++) { C[i][j] += ((A[i][k] % mod) * (B[k][j] % mod)) % mod; C[i][j] = C[i][j] % mod; } } } for (int i = 0; i < n; i++) { for (int j = 0; j < p; j++) { A[i][j] = C[i][j]; } } } public static HashMap<Character, Integer> sortMapDesc(HashMap<Character, Integer> map) { List<Map.Entry<Character, Integer>> list = new LinkedList<>(map.entrySet()); Collections.sort(list, (o1, o2) -> o2.getValue() - o1.getValue()); HashMap<Character, Integer> temp = new LinkedHashMap<>(); for (Map.Entry<Character, Integer> i : list) { temp.put(i.getKey(), i.getValue()); } return temp; } public static HashMap<Integer, Integer> sortMapAsc(HashMap<Integer, Integer> map) { List<Map.Entry<Integer, Integer>> list = new LinkedList<>(map.entrySet()); Collections.sort(list, (o1, o2) -> o1.getValue() - o2.getValue()); HashMap<Integer, Integer> temp = new LinkedHashMap<>(); for (Map.Entry<Integer, Integer> i : list) { temp.put(i.getKey(), i.getValue()); } return temp; } public static long lcm(long l, long l2) { long val = gcd(l, l2); return (l * l2) / val; } public static int isSubsequence(String s, String t) { int n = s.length(); int m = t.length(); if (m > n) { return Integer.MAX_VALUE; } int i = 0, j = 0, skip = 0; while (i < n && j < m) { if (s.charAt(i) == t.charAt(j)) { --skip; ++j; } ++skip; ++i; } while (i < n) { ++i; ++skip; } if (j != m) { skip = Integer.MAX_VALUE; } return skip; } public static long[][] combination(int l, int r) { long[][] pascal = new long[l + 1][r + 1]; pascal[0][0] = 1; for (int i = 1; i <= l; ++i) { pascal[i][0] = 1; for (int j = 1; j <= r; ++j) { pascal[i][j] = pascal[i - 1][j - 1] + pascal[i - 1][j]; } } return pascal; } public static long gcd(long... array) { long ret = array[0]; for (int i = 1; i < array.length; ++i) ret = gcd(ret, array[i]); return ret; } public static long lcm(int... array) { long ret = array[0]; for (int i = 1; i < array.length; ++i) ret = lcm(ret, array[i]); return ret; } public static int min(int a, int b) { return a < b ? a : b; } public static int min(int... array) { int ret = array[0]; for (int i = 1; i < array.length; ++i) ret = min(ret, array[i]); return ret; } public static long min(long a, long b) { return a < b ? a : b; } public static long min(long... array) { long ret = array[0]; for (int i = 1; i < array.length; ++i) ret = min(ret, array[i]); return ret; } public static int max(int a, int b) { return a > b ? a : b; } public static int max(int... array) { int ret = array[0]; for (int i = 1; i < array.length; ++i) ret = max(ret, array[i]); return ret; } public static long max(long a, long b) { return a > b ? a : b; } public static long max(long... array) { long ret = array[0]; for (int i = 1; i < array.length; ++i) ret = max(ret, array[i]); return ret; } public static long sum(int... array) { long ret = 0; for (int i : array) ret += i; return ret; } public static long sum(long... array) { long ret = 0; for (long i : array) ret += i; return ret; } public static long[] facts(int n) { long[] fact=new long[1005]; fact[0]=1; fact[1]=1; for(int i=2;i<n;i++) { fact[i]=(long)(i*fact[i-1])%mod; } return fact; } public static long[] inv(long[] fact,int n) { long[] inv=new long[n]; inv[n-1]= CP.Modular_Expo(fact[n-1],mod-2,mod)%mod; for(int i=n-2;i>=0;--i) { inv[i]=(inv[i+1]*(i+1))%mod; } return inv; } public static int modinv(long x, long mod) { return (int) (CP.Modular_Expo(x, mod - 2, mod) % mod); } public static int lcs(String s, String t) { int n = s.length(), m = t.length(); int dp[][] = new int[n + 1][m + 1]; for (int i = 0; i <= n; ++i) { for (int j = 0; j <= m; ++j) { if (i == 0 || j == 0) { dp[i][j] = 0; } else if (s.charAt(i - 1) == t.charAt(j - 1)) { dp[i][j] = dp[i - 1][j - 1] + 1; } else { dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]); } } } return dp[n][m]; } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(int[] array) { for (int i = 0; i < array.length; i++) { if (i != 0) { writer.print(' '); } writer.print(array[i]); } } public void printLine(int[] array) { print(array); writer.println(); } public void close() { writer.close(); } public void printLine(long i) { writer.println(i); } public void printLine(int i) { writer.println(i); } public void printLine(char c) { writer.println(c); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } void flush() { writer.flush(); } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
12f7420368410d609b1a054f1a72465c
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; public class Mod { public static void main(String[] args) throws Exception { FastIO in = new FastIO(); int t = in.nextInt(); for (int tc=0; tc<t; tc++) { long x = in.nextLong(); long y = in.nextLong(); if (x>y) { System.out.println(x+y); } else { if (x==y) System.out.println(x); else { System.out.println(y-(y%x)/2); } } } } static class FastIO { BufferedReader br; StringTokenizer st; PrintWriter pr; public FastIO() throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); } public String next() throws IOException { while (st == null || !st.hasMoreElements()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } public int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(next()); } public long nextLong() throws NumberFormatException, IOException { return Long.parseLong(next()); } public double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(next()); } public String nextLine() throws IOException { String str = br.readLine(); return str; } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
44f6d1f65f3fb5715078cbc5ebb0a2a5
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
/* Rating: 1367 Date: 17-01-2022 Time: 16-37-01 Author: Kartik Papney Linkedin: https://www.linkedin.com/in/kartik-papney-4951161a6/ Leetcode: https://leetcode.com/kartikpapney/ Codechef: https://www.codechef.com/users/kartikpapney */ import java.util.*; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class B_Moderate_Modular_Mode { public static void s() { // (x+y)%x = y%(x+y) int x = sc.nextInt(), y = sc.nextInt(); if(x > y) { p.writeln(x + y); } else { p.writeln(y - ((y%x)/2)); } } public static void main(String[] args) { int t = 1; t = sc.nextInt(); while (t-- != 0) { s(); } p.print(); } static final Integer MOD = (int) 1e9 + 7; static final FastReader sc = new FastReader(); static final Print p = new Print(); static class Functions { static void sort(int[] a) { ArrayList<Integer> l = new ArrayList<>(); for (int i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } static void sort(long[] a) { ArrayList<Long> l = new ArrayList<>(); for (long i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } static int max(int[] a) { int max = Integer.MIN_VALUE; for (int val : a) max = Math.max(val, max); return max; } static int min(int[] a) { int min = Integer.MAX_VALUE; for (int val : a) min = Math.min(val, min); return min; } static long min(long[] a) { long min = Long.MAX_VALUE; for (long val : a) min = Math.min(val, min); return min; } static long max(long[] a) { long max = Long.MIN_VALUE; for (long val : a) max = Math.max(val, max); return max; } static long sum(long[] a) { long sum = 0; for (long val : a) sum += val; return sum; } static int sum(int[] a) { int sum = 0; for (int val : a) sum += val; return sum; } public static long mod_add(long a, long b) { return (a % MOD + b % MOD + MOD) % MOD; } public static long pow(long a, long b) { long res = 1; while (b > 0) { if ((b & 1) != 0) res = mod_mul(res, a); a = mod_mul(a, a); b >>= 1; } return res; } public static long mod_mul(long a, long b) { long res = 0; a %= MOD; while (b > 0) { if ((b & 1) > 0) { res = mod_add(res, a); } a = (2 * a) % MOD; b >>= 1; } return res; } public static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } public static long factorial(long n) { long res = 1; for (int i = 1; i <= n; i++) { res = (i % MOD * res % MOD) % MOD; } return res; } public static int count(int[] arr, int x) { int count = 0; for (int val : arr) if (val == x) count++; return count; } public static ArrayList<Integer> generatePrimes(int n) { boolean[] primes = new boolean[n]; for (int i = 2; i < primes.length; i++) primes[i] = true; for (int i = 2; i < primes.length; i++) { if (primes[i]) { for (int j = i * i; j < primes.length; j += i) { primes[j] = false; } } } ArrayList<Integer> arr = new ArrayList<>(); for (int i = 0; i < primes.length; i++) { if (primes[i]) arr.add(i); } return arr; } } static class Print { StringBuffer strb = new StringBuffer(); public void write(Object str) { strb.append(str); } public void writes(Object str) { char c = ' '; strb.append(str).append(c); } public void writeln(Object str) { char c = '\n'; strb.append(str).append(c); } public void writeln() { char c = '\n'; strb.append(c); } public void writes(int[] arr) { for (int val : arr) { write(val); write(' '); } } public void writes(long[] arr) { for (long val : arr) { write(val); write(' '); } } public void writeln(int[] arr) { for (int val : arr) { writeln(val); } } public void print() { System.out.print(strb); } public void println() { System.out.println(strb); } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long[] readLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } double[] readArrayDouble(int n) { double[] a = new double[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } String nextLine() { String str = new String(); try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
d4fc930596b3edb7305f52c2b66652ac
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.Scanner; import java.util.Arrays; import java.util.Comparator; import java.util.*; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Scanner; import java.util.StringTokenizer; public class Main{ static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[]args){ FastReader at = new FastReader(); int t = at.nextInt(); while(t-->0){ long x = at.nextLong(); long y = at.nextLong(); if(x == y){ System.out.println(x); } else if(x > y){ System.out.println(x+y); } else{ long temp = y; temp -= (y%x)/2; System.out.println(temp); } } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
6fc822a057e93ec9497ef9a48b6388bd
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.*; import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; public class b { public static void main(String[] args) { // in.nextInt() // out.println() InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); long t=in.nextLong(); while(t-- > 0) { long x=in.nextLong(); long y=in.nextLong(); if(x>y)out.println(x+y); else if(x==y)out.println(x); else { long z=y-(y%x)/2; out.println(z); } } out.close(); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
278d62c15fbd6df4e4af37322eb00650
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; public class B { static PrintWriter out=new PrintWriter((System.out)); static Reader sc=new Reader(); public static void main(String args[])throws IOException { int t=sc.nextInt(); for (int i = 1;i <= t;i++) { solve(); } out.close(); } public static void solve() { long x = sc.nextInt(); long y = sc.nextInt(); long n; if (x > y) { n = x + y; } else { n = (y + (y/x) * x) / 2; } out.println(n); } static class Reader { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); public String next() { while(!st.hasMoreTokens()) { try { st=new StringTokenizer(br.readLine()); } catch(Exception e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { try { return br.readLine(); } catch(Exception e) { e.printStackTrace(); } return null; } public boolean hasNext() { String next=null; try { next=br.readLine(); } catch(Exception e) { } if(next==null) { return false; } st=new StringTokenizer(next); return true; } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
a232a42db914a0d1c0e7c9fe201ae1b9
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; import static java.lang.Math.*; public class B{ static void print(long x, long y) { for (int i = 1; i <= y; i++) { out.print(i%x + " "); } out.println(); for (int i = 1; i <= y; i++) { out.print(y%i + " "); } out.println(); } public static void main(String[] args) throws IOException{ // br = new BufferedReader(new FileReader(".in")); // out = new PrintWriter(new FileWriter(".out")); // new Thread(null, new (), "fisa balls", 1<<28).start(); int t = readInt(); while(t-->0) { long x= readLong(), y = readLong(); if (x==y) out.println(x); else if (x>=y) { out.println(x + y); } else if (y%x==0) out.println(x); else { // Answer is < y // Answer exists after y/2 // Stupid guess, ternary search on min(i%x,y%i) // for the last "stretch" of things long l = max(y/2+1, y-y%x); long r = y; long i = (l+r)/2; //out.println(i%x + " " + y%i); out.println(i); } } out.close(); } static BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); static StringTokenizer st = new StringTokenizer(""); static String read() throws IOException{ while (!st.hasMoreElements()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public static int readInt() throws IOException{return Integer.parseInt(read());} public static long readLong() throws IOException{return Long.parseLong(read());} }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
15ca6c2075b72bcb253fc47fab63dd2a
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.*; import java.io.*; import java.text.*; public class CF_1603_B{ //SOLUTION BEGIN void pre() throws Exception{} void solve(int TC) throws Exception{ long X = nl(), Y = nl(); long N = f(X, Y); hold(N%X == Y%N); pn(N); } long f(long X, long Y){ if(X == Y)return X; else if(X > Y)return X+Y; else if(Y%X == 0)return X; else { long f = Y-Y%X; return (f+Y)/2; } } //SOLUTION END void hold(boolean b)throws Exception{if(!b)throw new Exception("Hold right there, Sparky!");} void exit(boolean b){if(!b)System.exit(0);} static void dbg(Object... o){System.err.println(Arrays.deepToString(o));} final long IINF = (long)1e17; final int INF = (int)1e9+2; DecimalFormat df = new DecimalFormat("0.00000000000"); double PI = 3.141592653589793238462643383279502884197169399, eps = 1e-8; static boolean multipleTC = true, memory = true, fileIO = false; FastReader in;PrintWriter out; void run() throws Exception{ long ct = System.currentTimeMillis(); if (fileIO) { in = new FastReader(""); out = new PrintWriter(""); } else { in = new FastReader(); out = new PrintWriter(System.out); } //Solution Credits: Taranpreet Singh int T = multipleTC? ni():1; pre(); for (int t = 1; t <= T; t++) solve(t); out.flush(); out.close(); System.err.println(System.currentTimeMillis() - ct); } public static void main(String[] args) throws Exception{ if(memory)new Thread(null, new Runnable() {public void run(){try{new CF_1603_B().run();}catch(Exception e){e.printStackTrace();System.exit(1);}}}, "1", 1 << 28).start(); else new CF_1603_B().run(); } int[][] make(int n, int e, int[] from, int[] to, boolean f){ int[][] g = new int[n][];int[]cnt = new int[n]; for(int i = 0; i< e; i++){ cnt[from[i]]++; if(f)cnt[to[i]]++; } for(int i = 0; i< n; i++)g[i] = new int[cnt[i]]; for(int i = 0; i< e; i++){ g[from[i]][--cnt[from[i]]] = to[i]; if(f)g[to[i]][--cnt[to[i]]] = from[i]; } return g; } int[][][] makeS(int n, int e, int[] from, int[] to, boolean f){ int[][][] g = new int[n][][];int[]cnt = new int[n]; for(int i = 0; i< e; i++){ cnt[from[i]]++; if(f)cnt[to[i]]++; } for(int i = 0; i< n; i++)g[i] = new int[cnt[i]][]; for(int i = 0; i< e; i++){ g[from[i]][--cnt[from[i]]] = new int[]{to[i], i, 0}; if(f)g[to[i]][--cnt[to[i]]] = new int[]{from[i], i, 1}; } return g; } int find(int[] set, int u){return set[u] = (set[u] == u?u:find(set, set[u]));} int digit(long s){int ans = 0;while(s>0){s/=10;ans++;}return ans;} long gcd(long a, long b){return (b==0)?a:gcd(b,a%b);} int gcd(int a, int b){return (b==0)?a:gcd(b,a%b);} int bit(long n){return (n==0)?0:(1+bit(n&(n-1)));} void p(Object... o){for(Object oo:o)out.print(oo+" ");} void pn(Object... o){for(int i = 0; i< o.length; i++)out.print(o[i]+(i+1 < o.length?" ":"\n"));} void pni(Object... o){for(Object oo:o)out.print(oo+" ");out.println();out.flush();} String n()throws Exception{return in.next();} String nln()throws Exception{return in.nextLine();} int ni()throws Exception{return Integer.parseInt(in.next());} long nl()throws Exception{return Long.parseLong(in.next());} double nd()throws Exception{return Double.parseDouble(in.next());} class FastReader{ BufferedReader br; StringTokenizer st; public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws Exception{ br = new BufferedReader(new FileReader(s)); } String next() throws Exception{ while (st == null || !st.hasMoreElements()){ try{ st = new StringTokenizer(br.readLine()); }catch (IOException e){ throw new Exception(e.toString()); } } return st.nextToken(); } String nextLine() throws Exception{ String str; try{ str = br.readLine(); }catch (IOException e){ throw new Exception(e.toString()); } return str; } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
be8618b1ccd01cb4ceab3cd00f28888e
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.util.*; public class weird_algrithm { static BufferedWriter output = new BufferedWriter( new OutputStreamWriter(System.out)); static BufferedReader sc = new BufferedReader(new InputStreamReader(System.in)); static int mod = 1000000007; static String toReturn = ""; static int steps = Integer.MAX_VALUE; static int maxlen = 1000005; /*MATHEMATICS FUNCTIONS START HERE MATHS MATHS MATHS MATHS*/ static long gcd(long a, long b) { if(b == 0) return a; else return gcd(b, a % b); } static long powerMod(long x, long y, int mod) { if(y == 0) return 1; long temp = powerMod(x, y / 2, mod); temp = ((temp % mod) * (temp % mod)) % mod; if(y % 2 == 0) return temp; else return ((x % mod) * (temp % mod)) % mod; } static long modInverse(long n, int p) { return powerMod(n, p - 2, p); } static long nCr(int n, int r, int mod, long [] fact, long [] ifact) { return ((fact[n] % mod) * ((ifact[r] * ifact[n - r]) % mod)) % mod; } static boolean isPrime(long a) { if(a == 1) return false; else if(a == 2 || a == 3 || a== 5) return true; else if(a % 2 == 0 || a % 3 == 0) return false; for(int i = 5; i * i <= a; i = i + 6) { if(a % i == 0 || a % (i + 2) == 0) return false; } return true; } static int [] seive(int a) { int [] toReturn = new int [a + 1]; for(int i = 0; i < a; i++) toReturn[i] = 1; toReturn[0] = 0; toReturn[1] = 0; toReturn[2] = 1; for(int i = 2; i * i <= a; i++) { if(toReturn[i] == 0) continue; for(int j = 2 * i; j <= a; j += i) toReturn[j] = 0; } return toReturn; } static long [] fact(int a) { long [] arr = new long[a + 1]; arr[0] = 1; for(int i = 1; i < a + 1; i++) { arr[i] = (arr[i - 1] * i) % mod; } return arr; } static int divisors(int n, HashMap<Integer, Integer> map) { int max = 1; for(int i = 1; i * i <= n; i++) { if(n % i == 0) { if(map.containsKey(i)) { max = Math.max(max, i); }else map.put(i, 1); if(n / i == i) continue; if(map.containsKey(n / i)) { max = Math.max(max, n / i); }else map.put(n / i, 1); } } return max; } static int euler(int n) { int ans = n; for(int i = 2; i * i <= n; i++) { if(n % i == 0) { while(n % i == 0) { n /= i; } ans -= ans / i; } } if(n > 1) ans -= ans / n; return ans; } /*MATHS MATHS MATHS MATHS MATHEMATICS FUNCTIONS END HERE */ /*SWAP FUNCTION START HERE SWAP SWAP SWAP SWAP */ static void swap(int i, int j, long[] arr) { long temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } static void swap(int i, int j, int[] arr) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } static void swap(int i, int j, String [] arr) { String temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } static void swap(int i, int j, char [] arr) { char temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } /*SWAP SWAP SWAP SWAP SWAP FUNCTION END HERE*/ /*BINARY SEARCH METHODS START HERE * BINARY SEARCH * BINARY SEARCH * BINARY SEARCH * BINARY SEARCH */ static boolean BinaryCheck(long test, long [] arr, long health) { for(int i = 0; i <= arr.length - 1; i++) { if(i == arr.length - 1) health -= test; else if(arr[i + 1] - arr[i] > test) { health = health - test; }else { health = health - (arr[i + 1] - arr[i]); } if(health <= 0) return true; } return false; } static long binarySearchModified(long start1, long n, ArrayList<Long> arr, int a, long r) { long start = start1, end = n, ans = -1; while(start < end) { long mid = (start + end) / 2; //System.out.println(mid); if(arr.get((int)mid) + arr.get(a) <= r && mid != start1) { ans = mid; start = mid + 1; }else{ end = mid; } } //System.out.println(); return ans; } static int upper(int start, int end, ArrayList<Integer> pairs, long val) { while(start < end) { int mid = (start + end) / 2; if(pairs.get(mid) <= val) start = mid + 1; else end = mid; } return start; } static int lower(int start, int end, ArrayList<Long> arr, long val) { while(start < end) { int mid = (start + end) / 2; if(arr.get(mid) >= val) end = mid; else start = mid + 1; } return start; } /*BINARY SEARCH * BINARY SEARCH * BINARY SEARCH * BINARY SEARCH * BINARY SEARCH BINARY SEARCH METHODS END HERE*/ /*RECURSIVE FUNCTION START HERE * RECURSIVE * RECURSIVE * RECURSIVE * RECURSIVE */ static int recurse(int x, int y, int n, int steps1, Integer [][] dp) { if(x > n || y > n) return 0; if(dp[x][y] != null) { return dp[x][y]; } else if(x == n || y == n) { return steps1; } return dp[x][y] = Math.max(recurse(x + y, y, n, steps1 + 1, dp), recurse(x, x + y, n, steps1 + 1, dp)); } /*RECURSIVE * RECURSIVE * RECURSIVE * RECURSIVE * RECURSIVE RECURSIVE FUNCTION END HERE*/ /*GRAPH FUNCTIONS START HERE * GRAPH * GRAPH * GRAPH * GRAPH * */ static class edge{ int from, to; long weight; public edge(int x, int y, long weight2) { this.from = x; this.to = y; this.weight = weight2; } } static class sort implements Comparator<pair>{ @Override public int compare(pair o1, pair o2) { // TODO Auto-generated method stub return (int)o1.a - (int)o2.a; } } static void addEdge(ArrayList<ArrayList<edge>> graph, int from, int to, long weight) { edge temp = new edge(from, to, weight); edge temp1 = new edge(to, from, weight); graph.get(from).add(temp); //graph.get(to).add(temp1); } static int ans = 0; static void topoSort(ArrayList<ArrayList<Integer>> graph, int vertex, boolean [] visited, ArrayList<Integer> toReturn) { if(visited[vertex]) return; visited[vertex] = true; for(int i = 0; i < graph.get(vertex).size(); i++) { if(!visited[graph.get(vertex).get(i)]) topoSort(graph, graph.get(vertex).get(i), visited, toReturn); } toReturn.add(vertex); } static boolean isCyclicDirected(ArrayList<ArrayList<Integer>> graph, int vertex, boolean [] visited, boolean [] reStack) { if(reStack[vertex]) return true; if(visited[vertex]) return false; reStack[vertex] = true; visited[vertex] = true; for(int i = 0; i < graph.get(vertex).size(); i++) { if(isCyclicDirected(graph, graph.get(vertex).get(i), visited, reStack)) return true; } reStack[vertex] = false; return false; } static int e = 0; static long mst(PriorityQueue<edge> pq, int nodes) { long weight = 0; int [] size = new int[nodes + 1]; Arrays.fill(size, 1); while(!pq.isEmpty()) { edge temp = pq.poll(); int x = parent(parent, temp.to); int y = parent(parent, temp.from); if(x != y) { //System.out.println(temp.weight); union(x, y, rank, parent, size); weight += temp.weight; e++; } } return weight; } static void floyd(long [][] dist) { // to find min distance between two nodes for(int k = 0; k < dist.length; k++) { for(int i = 0; i < dist.length; i++) { for(int j = 0; j < dist.length; j++) { if(dist[i][j] > dist[i][k] + dist[k][j]) { dist[i][j] = dist[i][k] + dist[k][j]; } } } } } static void dijkstra(ArrayList<ArrayList<edge>> graph, long [] dist, int src) { for(int i = 0; i < dist.length; i++) dist[i] = Long.MAX_VALUE / 2; dist[src] = 0; boolean visited[] = new boolean[dist.length]; PriorityQueue<pair> pq = new PriorityQueue<>(new sort()); pq.add(new pair(src, 0)); while(!pq.isEmpty()) { pair temp = pq.poll(); int index = (int)temp.a; for(int i = 0; i < graph.get(index).size(); i++) { if(dist[graph.get(index).get(i).to] > dist[index] + graph.get(index).get(i).weight) { dist[graph.get(index).get(i).to] = dist[index] + graph.get(index).get(i).weight; pq.add(new pair(graph.get(index).get(i).to, graph.get(index).get(i).weight)); } } } } static int parent1 = -1; static boolean ford(ArrayList<ArrayList<edge>> graph1, ArrayList<edge> graph, long [] dist, int src, int [] parent) { for(int i = 0; i < dist.length; i++) dist[i] = Long.MIN_VALUE / 2; dist[src] = 0; boolean hasNeg = false; for(int i = 0; i < dist.length - 1; i++) { for(int j = 0; j < graph.size(); j++) { int from = graph.get(j).from; int to = graph.get(j).to; long weight = graph.get(j).weight; if(dist[to] < dist[from] + weight) { dist[to] = dist[from] + weight; parent[to] = from; } } } for(int i = 0; i < graph.size(); i++) { int from = graph.get(i).from; int to = graph.get(i).to; long weight = graph.get(i).weight; if(dist[to] < dist[from] + weight) { parent1 = from; hasNeg = true; /* * dfs(graph1, parent1, new boolean[dist.length], dist.length - 1); * //System.out.println(ans); dfs(graph1, 0, new boolean[dist.length], parent1); */ //System.out.println(ans); if(ans == 2) break; else ans = 0; } } return hasNeg; } /*GRAPH FUNCTIONS END HERE * GRAPH * GRAPH * GRAPH * GRAPH */ /*disjoint Set START HERE * disjoint Set * disjoint Set * disjoint Set * disjoint Set */ static int [] rank; static int [] parent; static int parent(int [] parent, int x) { if(parent[x] == x) return x; else return parent[x] = parent(parent, parent[x]); } static boolean union(int x, int y, int [] rank, int [] parent, int [] setSize) { if(parent(parent, x) == parent(parent, y)) { return true; } if (rank[x] > rank[y]) { parent[y] = x; setSize[x] += setSize[y]; } else { parent[x] = y; setSize[y] += setSize[x]; if (rank[x] == rank[y]) rank[y]++; } return false; } /*disjoint Set END HERE * disjoint Set * disjoint Set * disjoint Set * disjoint Set */ /*INPUT START HERE * INPUT * INPUT * INPUT * INPUT * INPUT */ static int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(sc.readLine()); } static long nextLong() throws NumberFormatException, IOException { return Long.parseLong(sc.readLine()); } static long [] inputLongArr() throws NumberFormatException, IOException{ String [] s = sc.readLine().split(" "); long [] toReturn = new long[s.length]; for(int i = 0; i < s.length; i++) { toReturn[i] = Long.parseLong(s[i]); } return toReturn; } static int max = 0; static int [] inputIntArr() throws NumberFormatException, IOException{ String [] s = sc.readLine().split(" "); //System.out.println(s.length); int [] toReturn = new int[s.length]; for(int i = 0; i < s.length; i++) { toReturn[i] = Integer.parseInt(s[i]); } return toReturn; } /*INPUT * INPUT * INPUT * INPUT * INPUT * INPUT END HERE */ static long [] preCompute(int level) { long [] toReturn = new long[level]; toReturn[0] = 1; toReturn[1] = 16; for(int i = 2; i < level; i++) { toReturn[i] = ((toReturn[i - 1] % mod) * (toReturn[i - 1] % mod)) % mod; } return toReturn; } static class pair{ long a; long b; long d; public pair(long in, long y) { this.a = in; this.b = y; this.d = 0; } } static int [] nextGreaterBack(char [] s) { Stack<Integer> stack = new Stack<>(); int [] toReturn = new int[s.length]; for(int i = 0; i < s.length; i++) { if(!stack.isEmpty() && s[stack.peek()] >= s[i]) { stack.pop(); } if(stack.isEmpty()) { stack.push(i); toReturn[i] = -1; }else { toReturn[i] = stack.peek(); stack.push(i); } } return toReturn; } static int [] nextGreaterFront(char [] s) { Stack<Integer> stack = new Stack<>(); int [] toReturn = new int[s.length]; for(int i = s.length - 1; i >= 0; i--) { if(!stack.isEmpty() && s[stack.peek()] >= s[i]) { stack.pop(); } if(stack.isEmpty()) { stack.push(i); toReturn[i] = -1; }else { toReturn[i] = stack.peek(); stack.push(i); } } return toReturn; } static int [] lps(String s) { int [] lps = new int[s.length()]; lps[0] = 0; int j = 0; for(int i = 1; i < lps.length; i++) { j = lps[i - 1]; while(j > 0 && s.charAt(i) != s.charAt(j)) j = lps[j - 1]; if(s.charAt(i) == s.charAt(j)) { lps[i] = j + 1; } } return lps; } static int [][] vectors = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}}; static String dir = "DRUL"; static boolean check(int i, int j, boolean [][] visited) { if(i >= visited.length || j >= visited[0].length) return false; if(i < 0 || j < 0) return false; return true; } static void selectionSort(long arr[], long [] arr1, ArrayList<ArrayList<Integer>> ans) { int n = arr.length; for (int i = 0; i < n-1; i++) { int min_idx = i; for (int j = i+1; j < n; j++) if (arr[j] < arr[min_idx]) min_idx = j; else if(arr[j] == arr[min_idx]) { if(arr1[j] < arr1[min_idx]) min_idx = j; } if(i == min_idx) { continue; } ArrayList<Integer> p = new ArrayList<Integer>(); p.add(min_idx + 1); p.add(i + 1); ans.add(new ArrayList<Integer>(p)); swap(i, min_idx, arr); swap(i, min_idx, arr1); } } static int saved = Integer.MAX_VALUE; static String ans1 = ""; public static boolean isValid(int x, int y, String [] mat) { if(x >= mat.length || x < 0) return false; if(y >= mat[0].length() || y < 0) return false; return true; } public static void recurse3(ArrayList<Character> arr, int index, String s, int max, ArrayList<String> toReturn) { if(s.length() == max) { toReturn.add(s); return; } if(index == arr.size()) return; recurse3(arr, index + 1, s + arr.get(index), max, toReturn); recurse3(arr, index + 1, s, max, toReturn); } /* if(arr[i] > q) return Math.max(f(i + 1, q - 1) + 1, f(i + 1, q); else return f(i + 1, q) + 1 */ static void dfsDP(ArrayList<ArrayList<Integer>> graph, int src, int [] dp1, int [] dp2, int parent) { int sum1 = 0; int sum2 = 0; for(int x : graph.get(src)) { if(x == parent) continue; dfsDP(graph, x, dp1, dp2, src); sum1 += Math.min(dp1[x], dp2[x]); sum2 += dp1[x]; } dp1[src] = 1 + sum1; dp2[src] = sum2; System.out.println(src + " " + dp1[src] + " " + dp2[src]); } static int balanced = 0; static void dfs(ArrayList<ArrayList<ArrayList<Long>>> graph, long src, int [] dist, long sum1, long sum2, long parent, ArrayList<Long> arr, int index) { index = 0;//binarySearch(index, arr.size() - 1, arr, sum1); if(index < arr.size() && arr.get(index) <= sum1) { dist[(int)src] = index + 1; } else dist[(int)src] = index; for(ArrayList<Long> x : graph.get((int)src)) { if(x.get(0) == parent) continue; if(arr.size() != 0) arr.add(arr.get(arr.size() - 1) + x.get(2)); else arr.add(x.get(2)); dfs(graph, x.get(0), dist, sum1 + x.get(1), sum2, src, arr, index); arr.remove(arr.size() - 1); } } static int compare(String s1, String s2) { Queue<Character> q1 = new LinkedList<>(); Queue<Character> q2 = new LinkedList<Character>(); for(int i = 0; i < s1.length(); i++) { q1.add(s1.charAt(i)); q2.add(s2.charAt(i)); } int k = 0; while(k < s1.length()) { if(q1.equals(q2)) { break; } q2.add(q2.poll()); k++; } return k; } static long pro = 0; public static int len(ArrayList<ArrayList<Integer>> graph, int src, boolean [] visited ) { visited[src] = true; int max = 0; for(int x : graph.get(src)) { if(!visited[x]) { visited[x] = true; int len = len(graph, x, visited) + 1; //System.out.println(len); pro = Math.max(max * (len - 1), pro); max = Math.max(len, max); } } return max; } public static void recurse(int l, int [] ans) { if(l < 0) return; int r = (int)Math.sqrt(l * 2); int s = r * r; r = s - l; recurse(r - 1, ans); while(r <= l) { ans[r] = l; ans[l] = r; r++; l--; } } static boolean isSmaller(String str1, String str2) { // Calculate lengths of both string int n1 = str1.length(), n2 = str2.length(); if (n1 < n2) return true; if (n2 < n1) return false; for (int i = 0; i < n1; i++) if (str1.charAt(i) < str2.charAt(i)) return true; else if (str1.charAt(i) > str2.charAt(i)) return false; return false; } // Function for find difference of larger numbers static String findDiff(String str1, String str2) { // Before proceeding further, make sure str1 // is not smaller if (isSmaller(str1, str2)) { String t = str1; str1 = str2; str2 = t; } // Take an empty string for storing result String str = ""; // Calculate length of both string int n1 = str1.length(), n2 = str2.length(); // Reverse both of strings str1 = new StringBuilder(str1).reverse().toString(); str2 = new StringBuilder(str2).reverse().toString(); int carry = 0; // Run loop till small string length // and subtract digit of str1 to str2 for (int i = 0; i < n2; i++) { // Do school mathematics, compute difference of // current digits int sub = ((int)(str1.charAt(i) - '0') - (int)(str2.charAt(i) - '0') - carry); // If subtraction is less than zero // we add then we add 10 into sub and // take carry as 1 for calculating next step if (sub < 0) { sub = sub + 10; carry = 1; } else carry = 0; str += (char)(sub + '0'); } // subtract remaining digits of larger number for (int i = n2; i < n1; i++) { int sub = ((int)(str1.charAt(i) - '0') - carry); // if the sub value is -ve, then make it // positive if (sub < 0) { sub = sub + 10; carry = 1; } else carry = 0; str += (char)(sub + '0'); } // reverse resultant string return new StringBuilder(str).reverse().toString(); } static void solve() throws IOException { long [] in = inputLongArr(); if(in[0] > in[1]) { output.write(in[0] + in[1] + "\n"); }else if(in[0] == in[1]) { output.write(in[0] + "\n"); }else { long p = in[1] - in[1] % in[0]; long t = p + (in[1] - p) / 2; output.write(t + "\n"); } } public static void main(String[] args) throws IOException { // TODO Auto-generated method stub int t = Integer.parseInt(sc.readLine()); for(int i = 0; i < t; i++) solve(); output.flush(); } } class TreeNode { int val; int start; int end; public TreeNode(int val, int x, int y) { this.val = val; this.start = x; this.end = y; } public String toString() { return Integer.toString(this.val); } } /* 1 10 6 10 7 9 11 99 45 20 88 31 */
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
502fca1b034ad3f6ecca7fda608c3de9
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.StringTokenizer; /** * Accomplished using the EduTools plugin by JetBrains https://plugins.jetbrains.com/plugin/10081-edutools * * To modify the template, go to Preferences -> Editor -> File and Code Templates -> Other */ public class Main { private static int avg(int x, int y) { return Math.min(x,y) + (Math.max(x,y)-Math.min(x,y))/2; } public static void main(String[] args) { int t = fs.nextInt(); while (t-- > 0) { int x = fs.nextInt(), y = fs.nextInt(); int N; if (x <= y) { boolean averageWorks = y < 3*x; if (averageWorks) { // the "easy" case // because avg%x equals y%avg // this is the case for x = 10, y = 12 // where avg = 11 and 12%11 = 11%10 // but it is NOT the case for x = 4, y = 12 // where avg = 8 and 12%8 is NOT 8%4 // the average "works" if avg is not too much bigger // than x // because if it is not too much bigger, // we have avg%x = (y-x)/2 // specifically avg = x + (y-x)/2 < 2x // iff (y-x)/2 < x // iff y < 3x N = avg(x,y); } else { // can be proven N = y-avg(x,y)%x; } } else { // x > y N = x + y; // since then y%(x+y) = y // and (x+y)%x = y%x = y (last equality due to y < x) } o.println(N); } o.flush(); } static FastScanner fs = new FastScanner(); static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } static PrintWriter o = new PrintWriter(new OutputStreamWriter(System.out)); }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
e1d2a3bb009a295ee331f10386a438bc
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; public class cp { static int mod=(int)1e9+7; // static Reader sc=new Reader(); static FastReader sc=new FastReader(System.in); static int[] sp; static int size=(int)1e6; static int[] arInt; static long[] arLong; public static void main(String[] args) throws IOException { long tc=sc.nextLong(); // Scanner sc=new Scanner(System.in); // int tc=1; // print_int(pre); // primeSet=new HashSet<>(); // primeCnt=new int[(int)1e9]; // sieveOfEratosthenes((int)1e9); while(tc-->0) { long x=sc.nextLong(); long y=sc.nextLong(); if(x>y) { out.println(x+y); } else { long ans=y-(y%x)/2; out.println(ans); } } // System.out.flush(); out.flush(); out.close(); System.gc(); } /* ...SOLUTION ENDS HERE...........SOLUTION ENDS HERE... */ // static boolean util(long a[],long b[],long mid,long k) { long cnt=0; for (int i = 0; i < b.length; i++) { cnt+=Math.max(0, a[i]*mid-b[i]); if(cnt>k) return false; } return true; } static void mapping(int a[]) { Pair[] temp=new Pair[a.length]; for (int i = 0; i < temp.length; i++) { temp[i]=new Pair(a[i], i); } Arrays.sort(temp); int k=0; for (int i = 0; i < temp.length; i++) { a[temp[i].y]=k++; } } static boolean palin(String s) { for(int i=0;i<s.length()/2;i++) if(s.charAt(i)!=s.charAt(s.length()-i-1)) return false; return true; } static class temp implements Comparable<temp>{ int x; int y; int sec; public temp(int x,int y,int l) { // TODO Auto-generated constructor stub this.x=x; this.y=y; this.sec=l; } @Override public int compareTo(cp.temp o) { // TODO Auto-generated method stub return this.sec-o.sec; } } static class Node{ int x; int y; ArrayList<Integer> edges; public Node(int x,int y) { // TODO Auto-generated constructor stub this.x=x; this.y=y; this.edges=new ArrayList<>(); } } static int lis(int arr[],int n) { int ans=0; int dp[]=new int[n+1]; Arrays.fill(dp, int_max); dp[0]=int_min; for(int i=0;i<n;i++) { int j=UpperBound(dp,arr[i]); if(dp[j-1]<=arr[i] && arr[i]<dp[j]) dp[j]=arr[i]; } for(int i=0;i<=n;i++) { if(dp[i]<int_max) ans=i; } return ans; } static long get(long n) { return n*(n+1)/2L; } static boolean go(ArrayList<Pair> caves,int k) { for(Pair each:caves) { if(k<=each.x) return false; k+=each.y; } return true; } static String revString(String s) { char arr[]=s.toCharArray(); int n=s.length(); for(int i=0;i<n/2;i++) { char temp=arr[i]; arr[i]=arr[n-i-1]; arr[n-i-1]=temp; } return String.valueOf(arr); } // Fuction return the number of set bits in n static int SetBits(int n) { int cnt=0; while(n>0) { if((n&1)==1) { cnt++; } n=n>>1; } return cnt; } static boolean isPowerOfTwo(int n) { return (int)(Math.ceil((Math.log(n) / Math.log(2)))) == (int)(Math.floor(((Math.log(n) / Math.log(2))))); } static void arrInt(int n) throws IOException { arInt=new int[n]; for (int i = 0; i < arInt.length; i++) { arInt[i]=sc.nextInt(); } } static void arrLong(int n) throws IOException { arLong=new long[n]; for (int i = 0; i < arLong.length; i++) { arLong[i]=sc.nextLong(); } } static ArrayList<Integer> add(int id,int c) { ArrayList<Integer> newArr=new ArrayList<>(); for(int i=0;i<id;i++) newArr.add(arInt[i]); newArr.add(c); for(int i=id;i<arInt.length;i++) { newArr.add(arInt[i]); } return newArr; } // function to find first index >= y static int upper(ArrayList<Integer> arr, int n, int x) { int l = 0, h = n - 1; while (h-l>1) { int mid = (l + h) / 2; if (arr.get(mid) <= x) l=mid+1; else { h=mid; } } if(arr.get(l)>x) { return l; } if(arr.get(h)>x) return h; return -1; } static int upper(ArrayList<Long> arr, int n, long x) { int l = 0, h = n - 1; while (h-l>1) { int mid = (l + h) / 2; if (arr.get(mid) <= x) l=mid+1; else { h=mid; } } if(arr.get(l)>x) { return l; } if(arr.get(h)>x) return h; return -1; } static int lower(ArrayList<Integer> arr, int n, int x) { int l = 0, h = n - 1; while (h-l>1) { int mid = (l + h) / 2; if (arr.get(mid) < x) l=mid+1; else { h=mid; } } if(arr.get(l)>=x) { return l; } if(arr.get(h)>=x) return h; return -1; } static int N = 501; // Array to store inverse of 1 to N static long[] factorialNumInverse = new long[N + 1]; // Array to precompute inverse of 1! to N! static long[] naturalNumInverse = new long[N + 1]; // Array to store factorial of first N numbers static long[] fact = new long[N + 1]; // Function to precompute inverse of numbers public static void InverseofNumber(int p) { naturalNumInverse[0] = naturalNumInverse[1] = 1; for(int i = 2; i <= N; i++) naturalNumInverse[i] = naturalNumInverse[p % i] * (long)(p - p / i) % p; } // Function to precompute inverse of factorials public static void InverseofFactorial(int p) { factorialNumInverse[0] = factorialNumInverse[1] = 1; // Precompute inverse of natural numbers for(int i = 2; i <= N; i++) factorialNumInverse[i] = (naturalNumInverse[i] * factorialNumInverse[i - 1]) % p; } // Function to calculate factorial of 1 to N public static void factorial(int p) { fact[0] = 1; // Precompute factorials for(int i = 1; i <= N; i++) { fact[i] = (fact[i - 1] * (long)i) % p; } } // Function to return nCr % p in O(1) time public static long Binomial(int N, int R, int p) { // n C r = n!*inverse(r!)*inverse((n-r)!) long ans = ((fact[N] * factorialNumInverse[R]) % p * factorialNumInverse[N - R]) % p; return ans; } static String tr(String s) { int now = 0; while (now + 1 < s.length() && s.charAt(now)== '0') ++now; return s.substring(now); } static ArrayList<Integer> ans; static void dfs(int node,Graph gg,int cnt,int k,ArrayList<Integer> temp) { if(cnt==k) return; for(Integer each:gg.list[node]) { if(each==0) { temp.add(each); ans=new ArrayList<>(temp); temp.remove(temp.size()-1); continue; } temp.add(each); dfs(each,gg,cnt+1,k,temp); temp.remove(temp.size()-1); } return; } static boolean isPrime(long n) { // Corner cases if (n <= 1) return false; if (n <= 3) return true; // This is checked so that we can skip // middle five numbers in below loop if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static ArrayList<Integer> commDiv(int a, int b) { // find gcd of a, b int n = gcd(a, b); // Count divisors of n. ArrayList<Integer> Div=new ArrayList<>(); for (int i = 1; i <= Math.sqrt(n); i++) { // if 'i' is factor of n if (n % i == 0) { // check if divisors are equal if (n / i == i) Div.add(i); else { Div.add(i); Div.add(n/i); } } } return Div; } static HashSet<Integer> factors(int x) { HashSet<Integer> a=new HashSet<Integer>(); for(int i=2;i*i<=x;i++) { if(x%i==0) { a.add(i); a.add(x/i); } } return a; } static void primeFactors(int n,HashSet<Integer> factors) { // Print the number of 2s that divide n while (n%2==0) { factors.add(2); n /= 2; } // n must be odd at this point. So we can // skip one element (Note i = i +2) for (int i = 3; i <= Math.sqrt(n); i+= 2) { // While i divides n, print i and divide n while (n%i == 0) { factors.add(i); n /= i; } } // This condition is to handle the case when // n is a prime number greater than 2 if (n > 2) factors.add(n); } // static class Node // { // int vertex; // HashSet<Node> adj; // int deg; // Node(int ver) // { // vertex=ver; // deg=0; // adj=new HashSet<Node>(); // } // @Override // public String toString() // { // return vertex+" "; // } // } static class Tuple{ int a; int b; int c; public Tuple(int a,int b,int c) { this.a=a; this.b=b; this.c=c; } } //function to find prime factors of n static HashMap<Long,Long> findFactors(long n2) { HashMap<Long,Long> ans=new HashMap<>(); if(n2%2==0) { ans.put(2L, 0L); // cnt++; while((n2&1)==0) { n2=n2>>1; ans.put(2L, ans.get(2L)+1); // } } for(long i=3;i*i<=n2;i+=2) { if(n2%i==0) { ans.put((long)i, 0L); // cnt++; while(n2%i==0) { n2=n2/i; ans.put((long)i, ans.get((long)i)+1); } } } if(n2!=1) { ans.put(n2, ans.getOrDefault(n2, (long) 0)+1); } return ans; } //fenwick tree implementaion static class fwt { int n; long BITree[]; fwt(int n) { this.n=n; BITree=new long[n+1]; } fwt(int arr[], int n) { this.n=n; BITree=new long[n+1]; for(int i = 0; i < n; i++) updateBIT(n, i, arr[i]); } long getSum(int index) { long sum = 0; index = index + 1; while(index>0) { sum += BITree[index]; index -= index & (-index); } return sum; } void updateBIT(int n, int index,int val) { index = index + 1; while(index <= n) { BITree[index] += val; index += index & (-index); } } long sum(int l, int r) { return getSum(r) - getSum(l - 1); } void print() { for(int i=0;i<n;i++) out.print(getSum(i)+" "); out.println(); } } static class sparseTable{ int n; long[][]dp; int log2[]; int P; void buildTable(long[] arr) { n=arr.length; P=(int)Math.floor(Math.log(n)/Math.log(2)); log2=new int[n+1]; log2[0]=log2[1]=0; for(int i=2;i<=n;i++) { log2[i]=log2[i/2]+1; } dp=new long[P+1][n]; for(int i=0;i<n;i++) { dp[0][i]=arr[i]; } for(int p=1;p<=P;p++) { for(int i=0;i+(1<<p)<=n;i++) { long left=dp[p-1][i]; long right=dp[p-1][i+(1<<(p-1))]; dp[p][i]=gcd(left, right); } } } long maxQuery(int l,int r) { int len=r-l+1; int p=(int)Math.floor(log2[len]); long left=dp[p][l]; long right=dp[p][r-(1<<p)+1]; return gcd(left, right); } } //Function to find number of set bits static int setBitNumber(long n) { if (n == 0) return 0; int msb = 0; n = n / 2; while (n != 0) { n = n / 2; msb++; } return msb; } static int getFirstSetBitPos(long n) { return (int)((Math.log10(n & -n)) / Math.log10(2)) + 1; } static ArrayList<Integer> primes; static HashSet<Integer> primeSet; static boolean prime[]; static int primeCnt[]; static void sieveOfEratosthenes(int n) { prime= new boolean[n + 1]; for (int i = 2; i <= n; i++) prime[i] = true; for (int p = 2; p * p <= n; p++) { // If prime[p] is not changed, then it is a // prime if (prime[p] == true) { // Update all multiples of p for (int i = p * p; i <= n; i += p) prime[i] = false; } } // Print all prime numbers for (int i = 2; i <= n; i++) { if (prime[i] == true) primeCnt[i]=primeCnt[i-1]+1; } } static long mod(long a, long b) { long c = a % b; return (c < 0) ? c + b : c; } static void swap(long arr[],int i,int j) { long temp=arr[i]; arr[i]=arr[j]; arr[j]=temp; } static boolean util(int a,int b,int c) { if(b>a)util(b, a, c); while(c>=a) { c-=a; if(c%b==0) return true; } return (c%b==0); } static void flag(boolean flag) { out.println(flag ? "YES" : "NO"); out.flush(); } static void print(int a[]) { int n=a.length; for(int i=0;i<n;i++) { out.print(a[i]+" "); } out.println(); out.flush(); } static void print(long a[]) { int n=a.length; for(int i=0;i<n;i++) { out.print(a[i]+" "); } out.println(); out.flush(); } static void print_int(ArrayList<Integer> al) { int si=al.size(); for(int i=0;i<si;i++) { out.print(al.get(i)+" "); } out.println(); out.flush(); } static void print_long(ArrayList<Long> al) { int si=al.size(); for(int i=0;i<si;i++) { out.print(al.get(i)+" "); } out.println(); out.flush(); } static void printYesNo(boolean condition) { if (condition) { out.println("YES"); } else { out.println("NO"); } } static int LowerBound(int a[], int x) { // x is the target value or key int l=-1,r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]>=x) r=m; else l=m; } return r; } static int lowerIndex(int arr[], int n, int x) { int l = 0, h = n - 1; while (l<=h) { int mid = (l + h) / 2; if (arr[mid] >= x) h = mid -1 ; else l = mid + 1; } return l; } // function to find last index <= y static int upperIndex(int arr[], int n, int y) { int l = 0, h = n - 1; while (l <= h) { int mid = (l + h) / 2; if (arr[mid] <= y) l = mid + 1; else h = mid - 1; } return h; } static int upperIndex(long arr[], int n, long y) { int l = 0, h = n - 1; while (l <= h) { int mid = (l + h) / 2; if (arr[mid] <= y) l = mid + 1; else h = mid - 1; } return h; } static int UpperBound(int a[], int x) {// x is the key or target value int l=-1,r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]<=x) l=m; else r=m; } return l+1; } static int UpperBound(long a[], long x) {// x is the key or target value int l=-1,r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]<=x) l=m; else r=m; } return l+1; } static class DisjointUnionSets { int[] rank, parent; int n; // Constructor public DisjointUnionSets(int n) { rank = new int[n]; parent = new int[n]; this.n = n; makeSet(); } // Creates n sets with single item in each void makeSet() { for (int i = 0; i < n; i++) parent[i] = i; } int find(int x) { if (parent[x] != x) { parent[x] = find(parent[x]); } return parent[x]; } // Unites the set that includes x and the set // that includes x void union(int x, int y) { int xRoot = find(x), yRoot = find(y); if (xRoot == yRoot) return; if (rank[xRoot] < rank[yRoot]) parent[xRoot] = yRoot; else if (rank[yRoot] < rank[xRoot]) parent[yRoot] = xRoot; else // if ranks are the same { parent[yRoot] = xRoot; rank[xRoot] = rank[xRoot] + 1; } // if(xRoot!=yRoot) // parent[y]=x; } int connectedComponents() { int cnt=0; for(int i=0;i<n;i++) { if(parent[i]==i) cnt++; } return cnt; } } static class Graph { int v; ArrayList<Integer> list[]; Graph(int v) { this.v=v; list=new ArrayList[v+1]; for(int i=1;i<=v;i++) list[i]=new ArrayList<Integer>(); } void addEdge(int a, int b) { this.list[a].add(b); } } // static class GraphMap{ // Map<String,ArrayList<String>> graph; // GraphMap() { // // TODO Auto-generated constructor stub // graph=new HashMap<String,ArrayList<String>>(); // // } // void addEdge(String a,String b) // { // if(graph.containsKey(a)) // this.graph.get(a).add(b); // else { // this.graph.put(a, new ArrayList<>()); // this.graph.get(a).add(b); // } // } // } // static void dfsMap(GraphMap g,HashSet<String> vis,String src,int ok) // { // vis.add(src); // // if(g.graph.get(src)!=null) // { // for(String each:g.graph.get(src)) // { // if(!vis.contains(each)) // { // dfsMap(g, vis, each, ok+1); // } // } // } // // cnt=Math.max(cnt, ok); // } static double sum[]; static long cnt; // static void DFS(Graph g, boolean[] visited, int u) // { // visited[u]=true; // // for(int i=0;i<g.list[u].size();i++) // { // int v=g.list[u].get(i); // // if(!visited[v]) // { // cnt1=cnt1*2; // DFS(g, visited, v); // // } // // } // // // } static class Pair implements Comparable<Pair> { int x; int y; Pair(int x,int y) { this.x=x; this.y=y; } @Override public int compareTo(Pair o) { // TODO Auto-generated method stub return this.x-o.x; } } static long sum_array(int a[]) { int n=a.length; long sum=0; for(int i=0;i<n;i++) sum+=a[i]; return sum; } static long sum_array(long a[]) { int n=a.length; long sum=0; for(int i=0;i<n;i++) sum+=a[i]; return sum; } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static void sort(long[] a) { ArrayList<Long> l=new ArrayList<>(); for (long i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static void reverse_array(int a[]) { int n=a.length; int i,t; for (i = 0; i < n / 2; i++) { t = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = t; } } static void reverse_array(long a[]) { int n=a.length; int i; long t; for (i = 0; i < n / 2; i++) { t = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = t; } } // static long modInverse(long a, long m) // { // long g = gcd(a, m); // // return power(a, m - 2, m); // // } static long power(long x, long y) { long res = 1; x = x % mod; if (x == 0) return 0; while (y > 0) { if ((y & 1) != 0) res = (res * x) % mod; y = y >> 1; // y = y/2 x = (x * x) % mod; } return res; } static int power(int x, int y) { int res = 1; x = x % mod; if (x == 0) return 0; while (y > 0) { if ((y & 1) != 0) res = (res * x) % mod; y = y >> 1; // y = y/2 x = (x * x) % mod; } return res; } static long gcd(long a, long b) { if (a == 0) return b; //cnt+=a/b; return gcd(b%a,a); } static int gcd(int a, int b) { if (a == 0) return b; return gcd(b%a, a); } static class FastReader{ byte[] buf = new byte[2048]; int index, total; InputStream in; FastReader(InputStream is) { in = is; } int scan() throws IOException { if (index >= total) { index = 0; total = in.read(buf); if (total <= 0) { return -1; } } return buf[index++]; } String next() throws IOException { int c; for (c = scan(); c <= 32; c = scan()); StringBuilder sb = new StringBuilder(); for (; c > 32; c = scan()) { sb.append((char) c); } return sb.toString(); } int nextInt() throws IOException { int c, val = 0; for (c = scan(); c <= 32; c = scan()); boolean neg = c == '-'; if (c == '-' || c == '+') { c = scan(); } for (; c >= '0' && c <= '9'; c = scan()) { val = (val << 3) + (val << 1) + (c & 15); } return neg ? -val : val; } long nextLong() throws IOException { int c; long val = 0; for (c = scan(); c <= 32; c = scan()); boolean neg = c == '-'; if (c == '-' || c == '+') { c = scan(); } for (; c >= '0' && c <= '9'; c = scan()) { val = (val << 3) + (val << 1) + (c & 15); } return neg ? -val : val; } } static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } static PrintWriter out=new PrintWriter(System.out); static int int_max=Integer.MAX_VALUE; static int int_min=Integer.MIN_VALUE; static long long_max=Long.MAX_VALUE; static long long_min=Long.MIN_VALUE; }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
fc737c85772ef4f5b9754578f3db999f
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.*; import java.io.*; import java.math.BigInteger; public class Main { private static FS sc = new FS(); private static class FS { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) {} return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } } private static class extra { static int[] intArr(int size) { int[] a = new int[size]; for(int i = 0; i < size; i++) a[i] = sc.nextInt(); return a; } static long[] longArr(int size) { Scanner scc = new Scanner(System.in); long[] a = new long[size]; for(int i = 0; i < size; i++) a[i] = sc.nextLong(); return a; } static long intSum(int[] a) { long sum = 0; for(int i = 0; i < a.length; i++) { sum += a[i]; } return sum; } static long longSum(long[] a) { long sum = 0; for(int i = 0; i < a.length; i++) { sum += a[i]; } return sum; } static LinkedList[] graphD(int vertices, int edges) { LinkedList<Integer>[] temp = new LinkedList[vertices+1]; for(int i = 0; i <= vertices; i++) temp[i] = new LinkedList<>(); for(int i = 0; i < edges; i++) { int x = sc.nextInt(); int y = sc.nextInt(); temp[x].add(y); } return temp; } static LinkedList[] graphUD(int vertices, int edges) { LinkedList<Integer>[] temp = new LinkedList[vertices+1]; for(int i = 0; i <= vertices; i++) temp[i] = new LinkedList<>(); for(int i = 0; i < edges; i++) { int x = sc.nextInt(); int y = sc.nextInt(); temp[x].add(y); temp[y].add(x); } return temp; } static void printG(LinkedList[] temp) { for(LinkedList<Integer> aa:temp) System.out.println(aa); } static long cal(long val, long pow, long mod) { if(pow == 0) return 1; long res = cal(val, pow/2, mod); long ret = (res*res)%mod; if(pow%2 == 0) return ret; return (val*ret)%mod; } static long gcd(long a, long b) { return b == 0 ? a:gcd(b, a%b); } } static int mod = (int) 1e9 + 7; // static LinkedList<Integer>[] temp, idx; static long inf = (long) Long.MAX_VALUE; // static long inf = Long.MAX_VALUE; // static int max; // static StringBuilder out; public static void main(String[] args) { int t = sc.nextInt(); // int t = 1; StringBuilder ret = new StringBuilder(); while(t-- > 0) { int x = sc.nextInt(), y = sc.nextInt(); if(x > y) { long sum = x + y; ret.append(sum + "\n"); } else { long sum = y - (y%x)/2; ret.append(sum + "\n"); } } System.out.println(ret); } } //0110 -> 1000 //1010
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
c4c320954676a1c37d40d6a14acfefe7
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); BModerateModularMode solver = new BModerateModularMode(); int testCount = Integer.parseInt(in.next()); for (int i = 1; i <= testCount; i++) solver.solve(i, in, out); out.close(); } static class BModerateModularMode { public void solve(int testNumber, InputReader in, OutputWriter out) { int x = in.nextInt(); int y = in.nextInt(); if (x <= y) { out.println(y - y % x / 2); } else { out.println(x + y); } } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String nextString() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { if (Character.isValidCodePoint(c)) { res.appendCodePoint(c); } c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return nextString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void println(int i) { writer.println(i); } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
1f352024e7bfa3cf0346eec33ee91a88
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; public class B1603 { /** * @param args the command line arguments */ public static void main(String[] args) throws IOException { // TODO code application logic here // Test later BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); int T = Integer.parseInt(f.readLine()); for(int i = 0; i < T; i++) { // Let Q = 1 StringTokenizer st = new StringTokenizer(f.readLine()); int x = Integer.parseInt(st.nextToken()); int y = Integer.parseInt(st.nextToken()); int a = y/x; int b = (y%x)/2; int n = x*a + b; if(y < x) { n = x + y; } System.out.println(n); } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
4b5c14de30c9e734595f0c5d479b479a
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; public class Contest1604D { static class InputReader { BufferedReader reader; StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } String next() { // reads in the next string while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { // reads in the next int return Integer.parseInt(next()); } public long nextLong() { // reads in the next long return Long.parseLong(next()); } public double nextDouble() { // reads in the next double return Double.parseDouble(next()); } } static InputReader r = new InputReader(System.in); static PrintWriter pw = new PrintWriter(System.out); public static void main(String[] args) { //DOES BINARY SEARCH WORK ALWAYS LOOK FOR MONOTONIC STUFF //LOOK FOR INT OVERFLOW //LOOK FOR SCOPE ERROR //Add negatives //SORT BOTH ARRAYS //CHECK THE LAST ONE THAT IS OUT LOOP //SORT BY BOTH VALUES //DON'T ADD STRINGS,USE STRING BUILDER int t = r.nextInt(); while (t > 0) { t--; long x = r.nextLong(); long y = r.nextLong(); long ans = 0; pw.println(x > y? x*y+y:y-(y%x)/2); } pw.close(); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
91ea5b4717c21ee666a9d327d2239c7c
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.IOException; import java.lang.reflect.Field; import java.nio.charset.StandardCharsets; import java.io.UncheckedIOException; import java.io.Closeable; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) throws Exception { Thread thread = new Thread(null, new TaskAdapter(), "", 1 << 29); thread.start(); thread.join(); } static class TaskAdapter implements Runnable { @Override public void run() { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastInput in = new FastInput(inputStream); FastOutput out = new FastOutput(outputStream); BModerateModularMode solver = new BModerateModularMode(); int testCount = Integer.parseInt(in.next()); for (int i = 1; i <= testCount; i++) solver.solve(i, in, out); out.close(); } } static class BModerateModularMode { public void solve(int testNumber, FastInput in, FastOutput out) { int x = in.ri(); int y = in.ri(); if (x == y) { out.println(x); return; } if (x < y) { int m = (x + y) / 2; int mod = m % x; out.println(y - mod); return; } out.println(x + y); } } static class FastInput { private final InputStream is; private StringBuilder defaultStringBuf = new StringBuilder(1 << 13); private byte[] buf = new byte[1 << 13]; private int bufLen; private int bufOffset; private int next; public FastInput(InputStream is) { this.is = is; } private int read() { while (bufLen == bufOffset) { bufOffset = 0; try { bufLen = is.read(buf); } catch (IOException e) { bufLen = -1; } if (bufLen == -1) { return -1; } } return buf[bufOffset++]; } public void skipBlank() { while (next >= 0 && next <= 32) { next = read(); } } public String next() { return readString(); } public int ri() { return readInt(); } public int readInt() { boolean rev = false; skipBlank(); if (next == '+' || next == '-') { rev = next == '-'; next = read(); } int val = 0; while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } return rev ? val : -val; } public String readString(StringBuilder builder) { skipBlank(); while (next > 32) { builder.append((char) next); next = read(); } return builder.toString(); } public String readString() { defaultStringBuf.setLength(0); return readString(defaultStringBuf); } } static class FastOutput implements AutoCloseable, Closeable, Appendable { private static final int THRESHOLD = 32 << 10; private OutputStream writer; private StringBuilder cache = new StringBuilder(THRESHOLD * 2); private static Field stringBuilderValueField; private char[] charBuf = new char[THRESHOLD * 2]; private byte[] byteBuf = new byte[THRESHOLD * 2]; static { try { stringBuilderValueField = StringBuilder.class.getSuperclass().getDeclaredField("value"); stringBuilderValueField.setAccessible(true); } catch (Exception e) { stringBuilderValueField = null; } stringBuilderValueField = null; } public FastOutput append(CharSequence csq) { cache.append(csq); return this; } public FastOutput append(CharSequence csq, int start, int end) { cache.append(csq, start, end); return this; } private void afterWrite() { if (cache.length() < THRESHOLD) { return; } flush(); } public FastOutput(OutputStream writer) { this.writer = writer; } public FastOutput append(char c) { cache.append(c); afterWrite(); return this; } public FastOutput append(int c) { cache.append(c); afterWrite(); return this; } public FastOutput println(int c) { return append(c).println(); } public FastOutput println() { return append('\n'); } public FastOutput flush() { try { if (stringBuilderValueField != null) { try { byte[] value = (byte[]) stringBuilderValueField.get(cache); writer.write(value, 0, cache.length()); } catch (Exception e) { stringBuilderValueField = null; } } if (stringBuilderValueField == null) { int n = cache.length(); if (n > byteBuf.length) { //slow writer.write(cache.toString().getBytes(StandardCharsets.UTF_8)); // writer.append(cache); } else { cache.getChars(0, n, charBuf, 0); for (int i = 0; i < n; i++) { byteBuf[i] = (byte) charBuf[i]; } writer.write(byteBuf, 0, n); } } writer.flush(); cache.setLength(0); } catch (IOException e) { throw new UncheckedIOException(e); } return this; } public void close() { flush(); try { writer.close(); } catch (IOException e) { throw new UncheckedIOException(e); } } public String toString() { return cache.toString(); } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
250db33f83318283fd9890238afee598
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.*; import java.io.*; import java.awt.Point; public class Main{ static int mod = (int) (Math.pow(10, 9)+7); static final int dx[] = { -1, 0, 1, 0 }, dy[] = { 0, -1, 0, 1 }; static final int[] dx8 = { -1, -1, -1, 0, 0, 1, 1, 1 }, dy8 = { -1, 0, 1, -1, 1, -1, 0, 1 }; static final int[] dx9 = { -1, -1, -1, 0, 0, 0, 1, 1, 1 }, dy9 = { -1, 0, 1, -1, 0, 1, -1, 0, 1 }; static final int inf = Integer.MAX_VALUE / 2; static final long infL = Long.MAX_VALUE / 3; static final double infD = Double.MAX_VALUE / 3; static final double eps = 1e-10; static final double pi = Math.PI; static List<Integer> primeNumbers = new ArrayList<>(); public static void main(String[] args) throws IOException{ MyScanner sc = new MyScanner(); //changes in this line of code out = new PrintWriter(new BufferedOutputStream(System.out)); // out = new PrintWriter(new BufferedWriter(new FileWriter("output.out"))); //will this work on codeforces? //WRITE YOUR CODE IN HERE int test = sc.nextInt(); while(test -- > 0){ int f = sc.nextInt(); int s = sc.nextInt(); if(f > s){ out.println(f+s); }else if(f == s){ out.println(f); }else{ //think if(s%f == 0){ out.println(f); continue; } //now think for this one int mod = s%f; out.println(s-(mod/2)); } } out.close(); } //------------------------------------------------------------------- //------------------------------------------------------------------- //------------------------------------------------------------------- //------------------------------------------------------------------- //------------------------------------------------------------------- //fast java implementation for sure public static class Graph{ public int V; public ArrayList<ArrayList<Integer>> edges; Graph(int V){ this.V = V; edges = new ArrayList<>(V+1); for(int i= 0; i <= V; i++){ edges.add(new ArrayList<>()); } } ///single sided this for sure public void addEdge(int from , int to){ edges.get(from).add(to); } } public static class DisjointUnionSets { int[] rank, parent; int n; // Constructor public DisjointUnionSets(int n) { rank = new int[n]; parent = new int[n]; this.n = n; makeSet(); } // Creates n sets with single item in each void makeSet() { for (int i = 0; i < n; i++) { // Initially, all elements are in // their own set. parent[i] = i; } } // Returns representative of x's set int find(int x) { // Finds the representative of the set // that x is an element of if (parent[x] != x) { // if x is not the parent of itself // Then x is not the representative of // his set, parent[x] = find(parent[x]); // so we recursively call Find on its parent // and move i's node directly under the // representative of this set } return parent[x]; } // Unites the set that includes x and the set // that includes x void union(int x, int y) { // Find representatives of two sets int xRoot = find(x), yRoot = find(y); // Elements are in the same set, no need // to unite anything. if (xRoot == yRoot) return; // If x's rank is less than y's rank if (rank[xRoot] < rank[yRoot]) // Then move x under y so that depth // of tree remains less parent[xRoot] = yRoot; // Else if y's rank is less than x's rank else if (rank[yRoot] < rank[xRoot]) // Then move y under x so that depth of // tree remains less parent[yRoot] = xRoot; else // if ranks are the same { // Then move y under x (doesn't matter // which one goes where) parent[yRoot] = xRoot; // And increment the result tree's // rank by 1 rank[xRoot] = rank[xRoot] + 1; } } } //with mod public static long power(long x, long y) { long res = 1L; // Initialize result while (y > 0) { // If y is odd, multiply x with result if ((y & 1) != 0){ x %= mod; res %= mod; res = (res * x)%mod; } // y must be even now y = y >> 1; // y = y/2 x%= mod; x = (x * x)%mod; // Change x to x^2 } // 550193677 return res%mod; } //without mod public static long power2(long x, long y) { long res = 1L; // Initialize result while (y > 0) { // If y is odd, multiply x with result if ((y & 1) != 0){ res = (res * x); } // y must be even now y = y >> 1; // y = y/ x = (x * x); } // 550193677 return res; } public static class segmentTree{ public long[] arr; public long[] tree; public long[] lazy; segmentTree(long[] array){ int n = array.length; arr = new long[n]; for(int i= 0; i < n; i++) arr[i] = array[i]; tree = new long[4*n + 1]; lazy = new long[4*n + 1]; } public void build(int[]arr, int s, int e, int[] tree, int index){ if(s == e){ tree[index] = arr[s]; return; } //otherwise divide in two parts and fill both sides simply int mid = (s+e)/2; build(arr, s, mid, tree, 2*index); build(arr, mid+1, e, tree, 2*index+1); //who will build the current position dude tree[index] = Math.min(tree[2*index], tree[2*index+1]); } public int query(int sr, int er, int sc, int ec, int index, int[] tree){ if(lazy[index] != 0){ tree[index] += lazy[index]; if(sc != ec){ lazy[2*index+1] += lazy[index]; lazy[2*index] += lazy[index]; } lazy[index] = 0; } //no overlap if(sr > ec || sc > er) return Integer.MAX_VALUE; //found the index baby if(sr <= sc && ec <= er) return tree[index]; //finding the index on both sides hehehehhe int mid = (sc + ec)/2; int left = query(sr, er, sc, mid, 2*index, tree); int right = query(sr, er, mid+1, ec, 2*index + 1, tree); return Integer.min(left, right); } //now we will do point update implementation //it should be simple then we expected for sure public void update(int index, int indexr, int increment, int[] tree, int s, int e){ if(lazy[index] != 0){ tree[index] += lazy[index]; if(s != e){ lazy[2*index+1] = lazy[index]; lazy[2*index] = lazy[index]; } lazy[index] = 0; } //no overlap if(indexr < s || indexr > e) return; //found the required index if(s == e){ tree[index] += increment; return; } //search for the index on both sides int mid = (s+e)/2; update(2*index, indexr, increment, tree, s, mid); update(2*index+1, indexr, increment, tree, mid+1, e); //now update the current range simply tree[index] = Math.min(tree[2*index+1], tree[2*index]); } public void rangeUpdate(int[] tree , int index, int s, int e, int sr, int er, int increment){ //if not at all in the same range if(e < sr || er < s) return; //complete then also move forward if(s == e){ tree[index] += increment; return; } //otherwise move in both subparts int mid = (s+e)/2; rangeUpdate(tree, 2*index, s, mid, sr, er, increment); rangeUpdate(tree, 2*index + 1, mid+1, e, sr, er, increment); //update current range too na //i always forget this step for some reasons hehehe, idiot tree[index] = Math.min(tree[2*index], tree[2*index + 1]); } public void rangeUpdateLazy(int[] tree, int index, int s, int e, int sr, int er, int increment){ //update lazy values //resolve lazy value before going down if(lazy[index] != 0){ tree[index] += lazy[index]; if(s != e){ lazy[2*index+1] += lazy[index]; lazy[2*index] += lazy[index]; } lazy[index] = 0; } //no overlap case if(sr > e || s > er) return; //complete overlap if(sr <= s && er >= e){ tree[index] += increment; if(s != e){ lazy[2*index+1] += increment; lazy[2*index] += increment; } return; } //otherwise go on both left and right side and do your shit int mid = (s + e)/2; rangeUpdateLazy(tree, 2*index, s, mid, sr, er, increment); rangeUpdateLazy(tree, 2*index + 1, mid+1, e, sr, er, increment); tree[index] = Math.min(tree[2*index+1], tree[2*index]); return; } } //prime sieve public static void primeSieve(int n){ BitSet bitset = new BitSet(n+1); for(long i = 0; i < n ; i++){ if (i == 0 || i == 1) { bitset.set((int) i); continue; } if(bitset.get((int) i)) continue; primeNumbers.add((int)i); for(long j = i; j <= n ; j+= i) bitset.set((int)j); } } //number of divisors public static int countDivisors(long number){ if(number == 1) return 1; List<Integer> primeFactors = new ArrayList<>(); int index = 0; long curr = primeNumbers.get(index); while(curr * curr <= number){ while(number % curr == 0){ number = number/curr; primeFactors.add((int) curr); } index++; curr = primeNumbers.get(index); } if(number != 1) primeFactors.add((int) number); int current = primeFactors.get(0); int totalDivisors = 1; int currentCount = 2; for (int i = 1; i < primeFactors.size(); i++) { if (primeFactors.get(i) == current) { currentCount++; } else { totalDivisors *= currentCount; currentCount = 2; current = primeFactors.get(i); } } totalDivisors *= currentCount; return totalDivisors; } //now adding next permutation function to java hehe public static boolean next_permutation(int[] p) { for (int a = p.length - 2; a >= 0; --a) if (p[a] < p[a + 1]) for (int b = p.length - 1;; --b) if (p[b] > p[a]) { int t = p[a]; p[a] = p[b]; p[b] = t; for (++a, b = p.length - 1; a < b; ++a, --b) { t = p[a]; p[a] = p[b]; p[b] = t; } return true; } return false; } //finding the value of NCR in O(RlogN) time and O(1) space public static long getNcR(int n, int r) { long p = 1, k = 1; if (n - r < r) r = n - r; if (r != 0) { while (r > 0) { p *= n; k *= r; long m = __gcd(p, k); p /= m; k /= m; n--; r--; } } else { p = 1; } return p; } public static void sort(long[] a) { ArrayList<Long> l=new ArrayList<>(); for (long i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } //for ncr calculator public static long __gcd(long n1, long n2) { long gcd = 1; for (int i = 1; i <= n1 && i <= n2; ++i) { // Checks if i is factor of both integers if (n1 % i == 0 && n2 % i == 0) { gcd = i; } } return gcd; } //is vowel function public static boolean isVowel(char c) { return (c=='a' || c=='A' || c=='e' || c=='E' || c=='i' || c=='I' || c=='o' || c=='O' || c=='u' || c=='U'); } //two add two big numbers with some mod public static int add(int a, int b) { a+=b; if (a>=mod) return a-mod; return a; } //two sub two numbers public static int sub(int a, int b) { a-=b; if (a<0) a+=mod; else if (a>=mod) a-=mod; return a; } //to sort the array with better method public static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } //for calculating binomialCoeff public static int binomialCoeff(int n, int k) { int C[] = new int[k + 1]; // nC0 is 1 C[0] = 1; for (int i = 1; i <= n; i++) { // Compute next row of pascal // triangle using the previous row for (int j = Math.min(i, k); j > 0; j--) C[j] = C[j] + C[j - 1]; } return C[k]; } //Pair with int int public static class Pair{ public int a; public int b; Pair(int a , int b){ this.a = a; this.b = b; } @Override public String toString(){ return a + " -> " + b; } } //Triplet with int int int public static class Triplet{ public int a; public int b; public int c; Triplet(int a , int b, int c){ this.a = a; this.b = b; this.c = c; } @Override public String toString(){ return a + " -> " + b; } } //Shortcut function public static long lcm(long a , long b){ return a * (b/gcd(a,b)); } //let's make one for calculating lcm basically public static int lcm(int a , int b){ return (a * b)/gcd(a,b); } //int version for gcd public static int gcd(int a, int b){ if(b == 0) return a; return gcd(b , a%b); } //long version for gcd public static long gcd(long a, long b){ if(b == 0) return a; return gcd(b , a%b); } //swapping two elements in an array public static void swap(int[] arr, int left , int right){ int temp = arr[left]; arr[left] = arr[right]; arr[right] = temp; } // //for char array public static void swap(char[] arr, int left , int right){ char temp = arr[left]; arr[left] = arr[right]; arr[right] = temp; } //reversing an array public static void reverse(int[] arr){ int left = 0; int right = arr.length-1; while(left <= right){ swap(arr, left,right); left++; right--; } } //-----------PrintWriter for faster output--------------------------------- public static PrintWriter out; //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } // public MyScanner() throws FileNotFoundException { // br = new BufferedReader(new FileReader("input.in")); // } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } //-------------------------------------------------------- }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
7e3c2bfd168c472721bb212610fb92ca
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.*; import java.io.*; /** * * @author M1ME * */ public class D { public static void main(String[] args) { Scanner sc = new Scanner(System.in); StringBuilder st = new StringBuilder(); int t = sc.nextInt(); for (int test = 0; test < t; test++) { int n = sc.nextInt(); int m = sc.nextInt(); if (n == m) st.append(n + "\n"); else if (n > m) st.append(n + m + "\n"); else st.append(m - ((m % n) / 2) + "\n"); } System.out.print(st.toString()); } static void sort(int[] a) { ArrayList<Integer> al = new ArrayList<>(); for (int i : a) al.add(i); Collections.sort(al); for (int i = 0; i < a.length; i++) a[i] = al.get(i); } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
e02701f0a359735b7f205347c4327bd3
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.*; import java.util.*; import java.lang.*; public class Main { public static void main(String[] args) throws Exception { int T = r.readInt(); for (int t = 0; t < T; t++) { long x = r.readLong(), y = r.readLong(); long n; if (y % x == 0) { n = y; } else if (x > y) { n = x + y; } else { n = y - (y % x) / 2; } System.out.println(n); } } //749999999 static public InputReader r = new InputReader(System.in); static public OutputWriter w = new OutputWriter(System.out); static public class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int[] readIntArray(int n) { int[] array = new int[n]; for (int i = 0; i < n; i++) { array[i] = this.readInt(); } return array; } public long[] readLongArray(int n) { long[] array = new long[n]; for (int i = 0; i < n; i++) { array[i] = this.readLong(); } return array; } public long readLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static public class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
db05b104c568a0b592bac460fef875c1
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class SolutionB extends Thread { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } private static final FastReader scanner = new FastReader(); private static final PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) { new Thread(null, new SolutionB(), "Main", 1 << 28).start(); } public void run() { int t = scanner.nextInt(); for (int i = 0; i < t; i++) { solve(); } out.close(); } private static void solve() { int x = scanner.nextInt(); int y = scanner.nextInt(); if (y % x == 0) { out.println(x); return; } if (y < x) { out.println(x + y); return; } int n = y-1 - (((y-1) % x) - 1) / 2; out.println(n); } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
77deff7a0b2d3edc1baaba1527013527
train_110.jsonl
1635604500
YouKn0wWho has two even integers $$$x$$$ and $$$y$$$. Help him to find an integer $$$n$$$ such that $$$1 \le n \le 2 \cdot 10^{18}$$$ and $$$n \bmod x = y \bmod n$$$. Here, $$$a \bmod b$$$ denotes the remainder of $$$a$$$ after division by $$$b$$$. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
256 megabytes
import java.util.*; import java.io.*; public class _752 { public static void main(String[] args) { MyScanner sc = new MyScanner(); PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); int t = sc.nextInt(); while (t-- > 0) { long x = sc.nextLong(); long y = sc.nextLong(); if (x == y) { out.println(x); } else if (y < x) { out.println(x + y); } else if (y % x != 0) { long mult = (y / x) * x; out.println((y + mult) / 2); } else { out.println(y); } } out.close(); } static void sort(int[] a) { ArrayList<Integer> q = new ArrayList<>(); for (int i : a) q.add(i); Collections.sort(q); for (int i = 0; i < a.length; i++) a[i] = q.get(i); } static void sort(long[] a) { ArrayList<Long> q = new ArrayList<>(); for (long i : a) q.add(i); Collections.sort(q); for (int i = 0; i < a.length; i++) a[i] = q.get(i); } //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["4\n4 8\n4 2\n420 420\n69420 42068"]
1 second
["4\n10\n420\n9969128"]
NoteIn the first test case, $$$4 \bmod 4 = 8 \bmod 4 = 0$$$.In the second test case, $$$10 \bmod 4 = 2 \bmod 10 = 2$$$.In the third test case, $$$420 \bmod 420 = 420 \bmod 420 = 0$$$.
Java 11
standard input
[ "constructive algorithms", "math", "number theory" ]
a24aac9152417527d43b9b422e3d2303
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$2 \le x, y \le 10^9$$$, both are even).
1,600
For each test case, print a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{18}$$$) that satisfies the condition mentioned in the statement. If there are multiple such integers, output any. It can be shown that such an integer always exists under the given constraints.
standard output
PASSED
7809ae91430638183c4caae3704debf1
train_110.jsonl
1635604500
It was October 18, 2017. Shohag, a melancholic soul, made a strong determination that he will pursue Competitive Programming seriously, by heart, because he found it fascinating. Fast forward to 4 years, he is happy that he took this road. He is now creating a contest on Codeforces. He found an astounding problem but has no idea how to solve this. Help him to solve the final problem of the round.You are given three integers $$$n$$$, $$$k$$$ and $$$x$$$. Find the number, modulo $$$998\,244\,353$$$, of integer sequences $$$a_1, a_2, \ldots, a_n$$$ such that the following conditions are satisfied: $$$0 \le a_i \lt 2^k$$$ for each integer $$$i$$$ from $$$1$$$ to $$$n$$$. There is no non-empty subsequence in $$$a$$$ such that the bitwise XOR of the elements of the subsequence is $$$x$$$. A sequence $$$b$$$ is a subsequence of a sequence $$$c$$$ if $$$b$$$ can be obtained from $$$c$$$ by deletion of several (possibly, zero or all) elements.
512 megabytes
import java.util.*; import java.io.*; public class cf { static long modulo(long a, long b, long c) { long x=1; long y=a; while(b > 0){ if(b%2 == 1){ x=(x*y)%c; } y = (y*y)%c; // squaring the base b /= 2; } return x%c; } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); long m = 998244353; while (t-- > 0) { String[] ss = br.readLine().split(" "); long n = Long.parseLong(ss[0]), k = Long.parseLong(ss[1]), x = Long.parseLong(ss[2]); if (x == 0) { if (n > k) { System.out.println(0); } else { long power = modulo(2, k, m); long prod = 1; long exp = 1; for (int i = 0; i < n; i++) { prod = prod * (power - exp) % m; exp = 2 * exp % m; } if (prod < 0) { prod += m; } System.out.println(prod); } } else { long coeff = 1; long sum = 0; long term = modulo(2, (k - 1) * (n + 1), m); long pow = modulo(2, k - 1, m); long inv = modulo(499122177, n + 1, m); for (int i = 0; i < k; i++) { sum = (sum + term * coeff) % m; term = term * inv % m; coeff = coeff * (1 - pow) % m; pow = pow * 499122177 % m; } if (sum < 0) { sum += m; } System.out.println(sum); } } } }
Java
["6\n2 2 0\n2 1 1\n3 2 3\n69 69 69\n2017 10 18\n5 7 0"]
4 seconds
["6\n1\n15\n699496932\n892852568\n713939942"]
NoteIn the first test case, the valid sequences are $$$[1, 2]$$$, $$$[1, 3]$$$, $$$[2, 1]$$$, $$$[2, 3]$$$, $$$[3, 1]$$$ and $$$[3, 2]$$$.In the second test case, the only valid sequence is $$$[0, 0]$$$.
Java 11
standard input
[ "combinatorics", "dp", "implementation", "math" ]
aa08245d8959ed3901eb23f5b97b1b7e
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains three space-separated integers $$$n$$$, $$$k$$$, and $$$x$$$ ($$$1 \le n \le 10^9$$$, $$$0 \le k \le 10^7$$$, $$$0 \le x \lt 2^{\operatorname{min}(20, k)}$$$). It is guaranteed that the sum of $$$k$$$ over all test cases does not exceed $$$5 \cdot 10^7$$$.
2,700
For each test case, print a single integer — the answer to the problem.
standard output
PASSED
f072421ed23a809d10c93fd19596e013
train_110.jsonl
1635604500
It was October 18, 2017. Shohag, a melancholic soul, made a strong determination that he will pursue Competitive Programming seriously, by heart, because he found it fascinating. Fast forward to 4 years, he is happy that he took this road. He is now creating a contest on Codeforces. He found an astounding problem but has no idea how to solve this. Help him to solve the final problem of the round.You are given three integers $$$n$$$, $$$k$$$ and $$$x$$$. Find the number, modulo $$$998\,244\,353$$$, of integer sequences $$$a_1, a_2, \ldots, a_n$$$ such that the following conditions are satisfied: $$$0 \le a_i \lt 2^k$$$ for each integer $$$i$$$ from $$$1$$$ to $$$n$$$. There is no non-empty subsequence in $$$a$$$ such that the bitwise XOR of the elements of the subsequence is $$$x$$$. A sequence $$$b$$$ is a subsequence of a sequence $$$c$$$ if $$$b$$$ can be obtained from $$$c$$$ by deletion of several (possibly, zero or all) elements.
512 megabytes
import java.util.*; import java.io.*; public class cf { static long modulo(long a, long b, long c) { long x=1; long y=a; while(b > 0){ if(b%2 == 1){ x=(x*y)%c; } y = (y*y)%c; // squaring the base b /= 2; } return x%c; } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); long m = 998244353; while (t-- > 0) { String[] ss = br.readLine().split(" "); long n = Long.parseLong(ss[0]), k = Long.parseLong(ss[1]), x = Long.parseLong(ss[2]); if (x == 0) { if (n > k) { System.out.println(0); } else { long power = modulo(2, k, m); long prod = 1; long exp = 1; for (int i = 0; i < n; i++) { prod = prod * (power - exp) % m; exp = 2 * exp % m; } if (prod < 0) { prod += m; } System.out.println(prod); } } else { long coeff = 1; long sum = 0; long term = modulo(2, (k - 1) * (n + 1), m); long pow = modulo(2, k - 1, m); long inv = modulo(499122177, n + 1, m); for (int i = 0; i < k; i++) { sum = (sum + term * coeff) % m; term = term * inv % m; coeff = coeff * (1 - pow) % m; pow = pow * 499122177 % m; } if (sum < 0) { sum += m; } System.out.println(sum); } } } }
Java
["6\n2 2 0\n2 1 1\n3 2 3\n69 69 69\n2017 10 18\n5 7 0"]
4 seconds
["6\n1\n15\n699496932\n892852568\n713939942"]
NoteIn the first test case, the valid sequences are $$$[1, 2]$$$, $$$[1, 3]$$$, $$$[2, 1]$$$, $$$[2, 3]$$$, $$$[3, 1]$$$ and $$$[3, 2]$$$.In the second test case, the only valid sequence is $$$[0, 0]$$$.
Java 8
standard input
[ "combinatorics", "dp", "implementation", "math" ]
aa08245d8959ed3901eb23f5b97b1b7e
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^5$$$)  — the number of test cases. The first and only line of each test case contains three space-separated integers $$$n$$$, $$$k$$$, and $$$x$$$ ($$$1 \le n \le 10^9$$$, $$$0 \le k \le 10^7$$$, $$$0 \le x \lt 2^{\operatorname{min}(20, k)}$$$). It is guaranteed that the sum of $$$k$$$ over all test cases does not exceed $$$5 \cdot 10^7$$$.
2,700
For each test case, print a single integer — the answer to the problem.
standard output
PASSED
1f990f607164dbf7e048339be901f4e2
train_110.jsonl
1635604500
For an array $$$b$$$ of $$$n$$$ integers, the extreme value of this array is the minimum number of times (possibly, zero) the following operation has to be performed to make $$$b$$$ non-decreasing: Select an index $$$i$$$ such that $$$1 \le i \le |b|$$$, where $$$|b|$$$ is the current length of $$$b$$$. Replace $$$b_i$$$ with two elements $$$x$$$ and $$$y$$$ such that $$$x$$$ and $$$y$$$ both are positive integers and $$$x + y = b_i$$$. This way, the array $$$b$$$ changes and the next operation is performed on this modified array. For example, if $$$b = [2, 4, 3]$$$ and index $$$2$$$ gets selected, then the possible arrays after this operation are $$$[2, \underline{1}, \underline{3}, 3]$$$, $$$[2, \underline{2}, \underline{2}, 3]$$$, or $$$[2, \underline{3}, \underline{1}, 3]$$$. And consequently, for this array, this single operation is enough to make it non-decreasing: $$$[2, 4, 3] \rightarrow [2, \underline{2}, \underline{2}, 3]$$$.It's easy to see that every array of positive integers can be made non-decreasing this way.YouKn0wWho has an array $$$a$$$ of $$$n$$$ integers. Help him find the sum of extreme values of all nonempty subarrays of $$$a$$$ modulo $$$998\,244\,353$$$. If a subarray appears in $$$a$$$ multiple times, its extreme value should be counted the number of times it appears.An array $$$d$$$ is a subarray of an array $$$c$$$ if $$$d$$$ can be obtained from $$$c$$$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
256 megabytes
import java.util.*; import java.util.function.*; import java.io.*; // you can compare with output.txt and expected out public class Round752Div1C { MyPrintWriter out; MyScanner in; // final static long FIXED_RANDOM; // static { // FIXED_RANDOM = System.currentTimeMillis(); // } final static String IMPOSSIBLE = "IMPOSSIBLE"; final static String POSSIBLE = "POSSIBLE"; final static String YES = "YES"; final static String NO = "NO"; private void initIO(boolean isFileIO) { if (System.getProperty("ONLINE_JUDGE") == null && isFileIO) { try{ in = new MyScanner(new FileInputStream("input.txt")); out = new MyPrintWriter(new FileOutputStream("output.txt")); } catch(FileNotFoundException e){ e.printStackTrace(); } } else{ in = new MyScanner(System.in); out = new MyPrintWriter(new BufferedOutputStream(System.out)); } } public static void main(String[] args){ // Scanner in = new Scanner(new BufferedReader(new InputStreamReader(System.in))); // the code for the deep recursion (more than 100k or 3~400k or so) // Thread t = new Thread(null, new RoundEdu130F(), "threadName", 1<<28); // t.start(); // t.join(); Round752Div1C sol = new Round752Div1C(); sol.run(); } private void run() { boolean isDebug = false; boolean isFileIO = true; boolean hasMultipleTests = true; initIO(isFileIO); final int MAX = 100_000; cnt = new long[2][MAX+1]; int t = hasMultipleTests? in.nextInt() : 1; for (int i = 1; i <= t; ++i) { if(isDebug){ out.printf("Test %d\n", i); } getInput(); solve(); printOutput(); } in.close(); out.close(); } // use suitable one between matrix(2, n), matrix(n, 2), transposedMatrix(2, n) for graph edges, pairs, ... int n; int[] a; void getInput() { n = in.nextInt(); a = in.nextIntArray(n); } void printOutput() { out.printlnAns(ans); } long[][] cnt; final long MOD = 998244353; long ans; void solve(){ // f(l, r) = extreme value for a[l..r] // we should leave a[r] as is // a[r-1] <= a[r] -> leave it // a[r-1] > a[r] -> then what? we should make x as large as possible, while using not so many operations // a[r-1] -> (a[r]-1)/(k+1), (a[r]-1)/(k+1), ..., a[r]/(k+1) // if a[r-1] = a[r]*k + r, then k-r floor values and r ceil values // ex: 100, 23 // 20, 20, 20, 20, 20 // 5 4 3 // 5 2 2 3 -- 1 // 1 2 2 2 2 3 -- 2 // for each i, we have to split it, based on b[i+1] value // count how many b[i+1] values are possible, and give it to i-1 // there are sqrt(a[i]) different values for a[i]/k ArrayList<Integer> curr = new ArrayList<>(); // HashMap<Integer, Long> cnt = new HashMap<>(); ans = 0; for(int i=n-1; i>=0; i--) { // HashMap<Integer, Long> next = new HashMap<>(); ArrayList<Integer> next = new ArrayList<>(); int bit = i & 1; int last = 0; for(int val: curr) { long multitude = cnt[bit][val]; if(a[i] <= val) cnt[bit^1][a[i]] += multitude; else { int k = a[i]/val; if(a[i] % val > 0) k++; int newVal = a[i]/k; cnt[bit^1][newVal] += multitude; if(last != newVal) { last = newVal; next.add(last); } ans += multitude*(k-1)*(i+1) % MOD; // there are i+1 subarrays that can include this } } if(last != a[i]) { last = a[i]; next.add(last); } cnt[bit^1][a[i]]++; for(int val: curr) cnt[bit][val] = 0; curr = next; // for(var entry: cnt.entrySet()) { // int val = entry.getKey(); // long multitude = entry.getValue(); // // if(a[i] <= val) { // next.merge(a[i], multitude, (x, y) -> (x+y)); // } // else { // a[i] > val // int k = a[i] / val; // if(a[i] % val > 0) // k++; // int newVal = a[i]/k; // next.merge(newVal, multitude, (x, y) -> (x+y)); // ans += multitude*(k-1)*(i+1) % MOD; // there are i+1 subarrays that can include this // } // } // next.merge(a[i], 1L, (x, y) -> (x+y)); // cnt = next; } ans %= MOD; for(int val: curr) cnt[1][val] = 0; } // Optional<T> solve() // return Optional.empty(); static class Pair implements Comparable<Pair>{ final static long FIXED_RANDOM = System.currentTimeMillis(); int first, second; public Pair(int first, int second) { this.first = first; this.second = second; } @Override public int hashCode() { // http://xorshift.di.unimi.it/splitmix64.c long x = first; x <<= 32; x += second; x += FIXED_RANDOM; x += 0x9e3779b97f4a7c15l; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9l; x = (x ^ (x >> 27)) * 0x94d049bb133111ebl; return (int)(x ^ (x >> 31)); } @Override public boolean equals(Object obj) { // if (this == obj) // return true; // if (obj == null) // return false; // if (getClass() != obj.getClass()) // return false; Pair other = (Pair) obj; return first == other.first && second == other.second; } @Override public String toString() { return "[" + first + "," + second + "]"; } @Override public int compareTo(Pair o) { int cmp = Integer.compare(first, o.first); return cmp != 0? cmp: Integer.compare(second, o.second); } } public static class MyScanner { BufferedReader br; StringTokenizer st; // 32768? public MyScanner(InputStream is, int bufferSize) { br = new BufferedReader(new InputStreamReader(is), bufferSize); } public MyScanner(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); // br = new BufferedReader(new InputStreamReader(System.in)); // br = new BufferedReader(new InputStreamReader(new FileInputStream("input.txt"))); } public void close() { try { br.close(); } catch (IOException e) { e.printStackTrace(); } } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[][] nextMatrix(int n, int m) { return nextMatrix(n, m, 0); } int[][] nextMatrix(int n, int m, int offset) { int[][] mat = new int[n][m]; for(int i=0; i<n; i++) { for(int j=0; j<m; j++) { mat[i][j] = nextInt()+offset; } } return mat; } int[][] nextTransposedMatrix(int n, int m){ return nextTransposedMatrix(n, m, 0); } int[][] nextTransposedMatrix(int n, int m, int offset){ int[][] mat = new int[m][n]; for(int i=0; i<n; i++) { for(int j=0; j<m; j++) { mat[j][i] = nextInt()+offset; } } return mat; } int[] nextIntArray(int len) { return nextIntArray(len, 0); } int[] nextIntArray(int len, int offset){ int[] a = new int[len]; for(int j=0; j<len; j++) a[j] = nextInt()+offset; return a; } long[] nextLongArray(int len) { return nextLongArray(len, 0); } long[] nextLongArray(int len, int offset){ long[] a = new long[len]; for(int j=0; j<len; j++) a[j] = nextLong()+offset; return a; } String[] nextStringArray(int len) { String[] s = new String[len]; for(int i=0; i<len; i++) s[i] = next(); return s; } } public static class MyPrintWriter extends PrintWriter{ public MyPrintWriter(OutputStream os) { super(os); } // public <T> void printlnAns(Optional<T> ans) { // if(ans.isEmpty()) // println(-1); // else // printlnAns(ans.get()); // } public void printlnAns(OptionalInt ans) { println(ans.orElse(-1)); } public void printlnAns(long ans) { println(ans); } public void printlnAns(int ans) { println(ans); } public void printlnAns(boolean[] ans) { for(boolean b: ans) printlnAns(b); } public void printlnAns(boolean ans) { if(ans) println(YES); else println(NO); } public void printAns(long[] arr){ if(arr != null && arr.length > 0){ print(arr[0]); for(int i=1; i<arr.length; i++){ print(" "); print(arr[i]); } } } public void printlnAns(long[] arr){ printAns(arr); println(); } public void printAns(int[] arr){ if(arr != null && arr.length > 0){ print(arr[0]); for(int i=1; i<arr.length; i++){ print(" "); print(arr[i]); } } } public void printlnAns(int[] arr){ printAns(arr); println(); } public <T> void printAns(ArrayList<T> arr){ if(arr != null && arr.size() > 0){ print(arr.get(0)); for(int i=1; i<arr.size(); i++){ print(" "); print(arr.get(i)); } } } public <T> void printlnAns(ArrayList<T> arr){ printAns(arr); println(); } public void printAns(int[] arr, int add){ if(arr != null && arr.length > 0){ print(arr[0]+add); for(int i=1; i<arr.length; i++){ print(" "); print(arr[i]+add); } } } public void printlnAns(int[] arr, int add){ printAns(arr, add); println(); } public void printAns(ArrayList<Integer> arr, int add) { if(arr != null && arr.size() > 0){ print(arr.get(0)+add); for(int i=1; i<arr.size(); i++){ print(" "); print(arr.get(i)+add); } } } public void printlnAns(ArrayList<Integer> arr, int add){ printAns(arr, add); println(); } public void printlnAnsSplit(long[] arr, int split){ if(arr != null){ for(int i=0; i<arr.length; i+=split){ print(arr[i]); for(int j=i+1; j<i+split; j++){ print(" "); print(arr[j]); } println(); } } } public void printlnAnsSplit(int[] arr, int split){ if(arr != null){ for(int i=0; i<arr.length; i+=split){ print(arr[i]); for(int j=i+1; j<i+split; j++){ print(" "); print(arr[j]); } println(); } } } public <T> void printlnAnsSplit(ArrayList<T> arr, int split){ if(arr != null && !arr.isEmpty()){ for(int i=0; i<arr.size(); i+=split){ print(arr.get(i)); for(int j=i+1; j<i+split; j++){ print(" "); print(arr.get(j)); } println(); } } } } static private void permutateAndSort(long[] a) { int n = a.length; Random R = new Random(System.currentTimeMillis()); for(int i=0; i<n; i++) { int t = R.nextInt(n-i); long temp = a[n-1-i]; a[n-1-i] = a[t]; a[t] = temp; } Arrays.sort(a); } static private void permutateAndSort(int[] a) { int n = a.length; Random R = new Random(System.currentTimeMillis()); for(int i=0; i<n; i++) { int t = R.nextInt(n-i); int temp = a[n-1-i]; a[n-1-i] = a[t]; a[t] = temp; } Arrays.sort(a); } static private int[][] constructChildren(int n, int[] parent, int parentRoot){ int[][] childrens = new int[n][]; int[] numChildren = new int[n]; for(int i=0; i<parent.length; i++) { if(parent[i] != parentRoot) numChildren[parent[i]]++; } for(int i=0; i<n; i++) { childrens[i] = new int[numChildren[i]]; } int[] idx = new int[n]; for(int i=0; i<parent.length; i++) { if(parent[i] != parentRoot) childrens[parent[i]][idx[parent[i]]++] = i; } return childrens; } static private int[][][] constructDirectedNeighborhood(int n, int[][] e){ int[] inDegree = new int[n]; int[] outDegree = new int[n]; for(int i=0; i<e.length; i++) { int u = e[i][0]; int v = e[i][1]; outDegree[u]++; inDegree[v]++; } int[][] inNeighbors = new int[n][]; int[][] outNeighbors = new int[n][]; for(int i=0; i<n; i++) { inNeighbors[i] = new int[inDegree[i]]; outNeighbors[i] = new int[outDegree[i]]; } for(int i=0; i<e.length; i++) { int u = e[i][0]; int v = e[i][1]; outNeighbors[u][--outDegree[u]] = v; inNeighbors[v][--inDegree[v]] = u; } return new int[][][] {inNeighbors, outNeighbors}; } static private int[][] constructNeighborhood(int n, int[][] e) { int[] degree = new int[n]; for(int i=0; i<e.length; i++) { int u = e[i][0]; int v = e[i][1]; degree[u]++; degree[v]++; } int[][] neighbors = new int[n][]; for(int i=0; i<n; i++) neighbors[i] = new int[degree[i]]; for(int i=0; i<e.length; i++) { int u = e[i][0]; int v = e[i][1]; neighbors[u][--degree[u]] = v; neighbors[v][--degree[v]] = u; } return neighbors; } static private void drawGraph(int[][] e) { makeDotUndirected(e); try { final Process process = new ProcessBuilder("dot", "-Tpng", "graph.dot") .redirectOutput(new File("graph.png")) .start(); } catch (IOException e1) { // TODO Auto-generated catch block e1.printStackTrace(); } } static private void makeDotUndirected(int[][] e) { MyPrintWriter out2 = null; try { out2 = new MyPrintWriter(new FileOutputStream("graph.dot")); } catch (FileNotFoundException e1) { // TODO Auto-generated catch block e1.printStackTrace(); } out2.println("strict graph {"); for(int i=0; i<e.length; i++){ out2.println(e[i][0] + "--" + e[i][1] + ";"); } out2.println("}"); out2.close(); } static private void makeDotDirected(int[][] e) { MyPrintWriter out2 = null; try { out2 = new MyPrintWriter(new FileOutputStream("graph.dot")); } catch (FileNotFoundException e1) { // TODO Auto-generated catch block e1.printStackTrace(); } out2.println("strict digraph {"); for(int i=0; i<e.length; i++){ out2.println(e[i][0] + "->" + e[i][1] + ";"); } out2.println("}"); out2.close(); } }
Java
["4\n3\n5 4 3\n4\n3 2 1 4\n1\n69\n8\n7264 40515 28226 92776 35285 21709 75124 48163"]
4 seconds
["5\n9\n0\n117"]
NoteLet $$$f(l, r)$$$ denote the extreme value of $$$[a_l, a_{l+1}, \ldots, a_r]$$$.In the first test case, $$$f(1, 3) = 3$$$, because YouKn0wWho can perform the following operations on the subarray $$$[5, 4, 3]$$$ (the newly inserted elements are underlined):$$$[5, 4, 3] \rightarrow [\underline{3}, \underline{2}, 4, 3] \rightarrow [3, 2, \underline{2}, \underline{2}, 3] \rightarrow [\underline{1}, \underline{2}, 2, 2, 2, 3]$$$; $$$f(1, 2) = 1$$$, because $$$[5, 4] \rightarrow [\underline{2}, \underline{3}, 4]$$$; $$$f(2, 3) = 1$$$, because $$$[4, 3] \rightarrow [\underline{1}, \underline{3}, 3]$$$; $$$f(1, 1) = f(2, 2) = f(3, 3) = 0$$$, because they are already non-decreasing. So the total sum of extreme values of all subarrays of $$$a = 3 + 1 + 1 + 0 + 0 + 0 = 5$$$.
Java 17
standard input
[ "dp", "greedy", "math", "number theory" ]
f760f108c66f695e1e51dc6470d29ce7
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^5$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$10^5$$$.
2,300
For each test case, print a single integer  — the sum of extreme values of all subarrays of $$$a$$$ modulo $$$998\,244\,353$$$.
standard output
PASSED
2ac5f964e36134178e7ac8a639ea914b
train_110.jsonl
1635604500
For an array $$$b$$$ of $$$n$$$ integers, the extreme value of this array is the minimum number of times (possibly, zero) the following operation has to be performed to make $$$b$$$ non-decreasing: Select an index $$$i$$$ such that $$$1 \le i \le |b|$$$, where $$$|b|$$$ is the current length of $$$b$$$. Replace $$$b_i$$$ with two elements $$$x$$$ and $$$y$$$ such that $$$x$$$ and $$$y$$$ both are positive integers and $$$x + y = b_i$$$. This way, the array $$$b$$$ changes and the next operation is performed on this modified array. For example, if $$$b = [2, 4, 3]$$$ and index $$$2$$$ gets selected, then the possible arrays after this operation are $$$[2, \underline{1}, \underline{3}, 3]$$$, $$$[2, \underline{2}, \underline{2}, 3]$$$, or $$$[2, \underline{3}, \underline{1}, 3]$$$. And consequently, for this array, this single operation is enough to make it non-decreasing: $$$[2, 4, 3] \rightarrow [2, \underline{2}, \underline{2}, 3]$$$.It's easy to see that every array of positive integers can be made non-decreasing this way.YouKn0wWho has an array $$$a$$$ of $$$n$$$ integers. Help him find the sum of extreme values of all nonempty subarrays of $$$a$$$ modulo $$$998\,244\,353$$$. If a subarray appears in $$$a$$$ multiple times, its extreme value should be counted the number of times it appears.An array $$$d$$$ is a subarray of an array $$$c$$$ if $$$d$$$ can be obtained from $$$c$$$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
256 megabytes
/* I am dead inside Do you like NCT, sKz, BTS? 5 4 3 2 1 Moonwalk Imma knock it down like domino Is this what you want? Is this what you want? Let's ttalkbocky about that :() */ import static java.lang.Math.*; import java.util.*; import java.io.*; public class x1603C { static final long MOD = 998244353L; static final int MAX = 100000; public static void main(String omkar[]) throws Exception { FastScanner infile = new FastScanner(); int T = infile.nextInt(); StringBuilder sb = new StringBuilder(); long[] dp = new long[MAX+1]; long[] next = new long[MAX+1]; int[] keys = new int[1000]; int[] nextKeys = new int[1000]; int size = 0; for(int q=1; q <= T; q++) { int N = infile.nextInt(); int[] arr = infile.nextInts(N); dp[arr[N-1]] = 1L; keys[0] = arr[N-1]; size = 1; long res = 0L; for(int t=N-2; t >= 0; t--) { int nextSize = 0; int curr = -1; for(int i=0; i < size; i++) { int prev = keys[i]; int sections = (arr[t]+prev-1)/prev; int val = arr[t]/sections; if(curr != val) { nextKeys[nextSize++] = val; next[val] = 0L; curr = val; } next[val] += dp[prev]; if(next[val] >= MOD) next[val] -= MOD; long temp = (dp[prev]*(sections-1)*(t+1))%MOD; res += temp; } if(curr == arr[t]) { next[curr]++; if(next[curr] >= MOD) next[curr] -= MOD; } else { next[arr[t]] = 1L; nextKeys[nextSize++] = arr[t]; } for(int i=0; i < nextSize; i++) { keys[i] = nextKeys[i]; dp[keys[i]] = next[keys[i]]; } size = nextSize; } res %= MOD; sb.append(res).append('\n'); } System.out.print(sb); } } /* 23 8 -> 7 8 8 8 24 8 -> 8 8 8 8 25 8 -> 6 6 6 7 8 2 3 5 4 3 2 4 3 */ class FastScanner { //I don't understand how this works lmao private int BS = 1 << 16; private char NC = (char) 0; private byte[] buf = new byte[BS]; private int bId = 0, size = 0; private char c = NC; private double cnt = 1; private BufferedInputStream in; public FastScanner() { in = new BufferedInputStream(System.in, BS); } public FastScanner(String s) { try { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } catch (Exception e) { in = new BufferedInputStream(System.in, BS); } } private char getChar() { while (bId == size) { try { size = in.read(buf); } catch (Exception e) { return NC; } if (size == -1) return NC; bId = 0; } return (char) buf[bId++]; } public int nextInt() { return (int) nextLong(); } public int[] nextInts(int N) { int[] res = new int[N]; for (int i = 0; i < N; i++) { res[i] = (int) nextLong(); } return res; } public long[] nextLongs(int N) { long[] res = new long[N]; for (int i = 0; i < N; i++) { res[i] = nextLong(); } return res; } public long nextLong() { cnt = 1; boolean neg = false; if (c == NC) c = getChar(); for (; (c < '0' || c > '9'); c = getChar()) { if (c == '-') neg = true; } long res = 0; for (; c >= '0' && c <= '9'; c = getChar()) { res = (res << 3) + (res << 1) + c - '0'; cnt *= 10; } return neg ? -res : res; } public double nextDouble() { double cur = nextLong(); return c != '.' ? cur : cur + nextLong() / cnt; } public double[] nextDoubles(int N) { double[] res = new double[N]; for (int i = 0; i < N; i++) { res[i] = nextDouble(); } return res; } public String next() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c > 32) { res.append(c); c = getChar(); } return res.toString(); } public String nextLine() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c != '\n') { res.append(c); c = getChar(); } return res.toString(); } public boolean hasNext() { if (c > 32) return true; while (true) { c = getChar(); if (c == NC) return false; else if (c > 32) return true; } } }
Java
["4\n3\n5 4 3\n4\n3 2 1 4\n1\n69\n8\n7264 40515 28226 92776 35285 21709 75124 48163"]
4 seconds
["5\n9\n0\n117"]
NoteLet $$$f(l, r)$$$ denote the extreme value of $$$[a_l, a_{l+1}, \ldots, a_r]$$$.In the first test case, $$$f(1, 3) = 3$$$, because YouKn0wWho can perform the following operations on the subarray $$$[5, 4, 3]$$$ (the newly inserted elements are underlined):$$$[5, 4, 3] \rightarrow [\underline{3}, \underline{2}, 4, 3] \rightarrow [3, 2, \underline{2}, \underline{2}, 3] \rightarrow [\underline{1}, \underline{2}, 2, 2, 2, 3]$$$; $$$f(1, 2) = 1$$$, because $$$[5, 4] \rightarrow [\underline{2}, \underline{3}, 4]$$$; $$$f(2, 3) = 1$$$, because $$$[4, 3] \rightarrow [\underline{1}, \underline{3}, 3]$$$; $$$f(1, 1) = f(2, 2) = f(3, 3) = 0$$$, because they are already non-decreasing. So the total sum of extreme values of all subarrays of $$$a = 3 + 1 + 1 + 0 + 0 + 0 = 5$$$.
Java 8
standard input
[ "dp", "greedy", "math", "number theory" ]
f760f108c66f695e1e51dc6470d29ce7
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^5$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$10^5$$$.
2,300
For each test case, print a single integer  — the sum of extreme values of all subarrays of $$$a$$$ modulo $$$998\,244\,353$$$.
standard output
PASSED
2911159c53600fcfe3addef979c406b5
train_110.jsonl
1635604500
For an array $$$b$$$ of $$$n$$$ integers, the extreme value of this array is the minimum number of times (possibly, zero) the following operation has to be performed to make $$$b$$$ non-decreasing: Select an index $$$i$$$ such that $$$1 \le i \le |b|$$$, where $$$|b|$$$ is the current length of $$$b$$$. Replace $$$b_i$$$ with two elements $$$x$$$ and $$$y$$$ such that $$$x$$$ and $$$y$$$ both are positive integers and $$$x + y = b_i$$$. This way, the array $$$b$$$ changes and the next operation is performed on this modified array. For example, if $$$b = [2, 4, 3]$$$ and index $$$2$$$ gets selected, then the possible arrays after this operation are $$$[2, \underline{1}, \underline{3}, 3]$$$, $$$[2, \underline{2}, \underline{2}, 3]$$$, or $$$[2, \underline{3}, \underline{1}, 3]$$$. And consequently, for this array, this single operation is enough to make it non-decreasing: $$$[2, 4, 3] \rightarrow [2, \underline{2}, \underline{2}, 3]$$$.It's easy to see that every array of positive integers can be made non-decreasing this way.YouKn0wWho has an array $$$a$$$ of $$$n$$$ integers. Help him find the sum of extreme values of all nonempty subarrays of $$$a$$$ modulo $$$998\,244\,353$$$. If a subarray appears in $$$a$$$ multiple times, its extreme value should be counted the number of times it appears.An array $$$d$$$ is a subarray of an array $$$c$$$ if $$$d$$$ can be obtained from $$$c$$$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
256 megabytes
/* I am dead inside Do you like NCT, sKz, BTS? 5 4 3 2 1 Moonwalk Imma knock it down like domino Is this what you want? Is this what you want? Let's ttalkbocky about that :() */ import static java.lang.Math.*; import java.util.*; import java.io.*; public class x1603C { static final long MOD = 998244353L; static final int MAX = 100000; public static void main(String omkar[]) throws Exception { FastScanner infile = new FastScanner(); int T = infile.nextInt(); StringBuilder sb = new StringBuilder(); long[] dp = new long[MAX+1]; long[] next = new long[MAX+1]; int[] keys = new int[1000]; int[] nextKeys = new int[1000]; int size = 0; for(int q=1; q <= T; q++) { int N = infile.nextInt(); int[] arr = infile.nextInts(N); dp[arr[N-1]] = 1L; keys[0] = arr[N-1]; size = 1; long res = 0L; for(int t=N-2; t >= 0; t--) { int nextSize = 0; int curr = -1; for(int i=0; i < size; i++) { int prev = keys[i]; int sections = (arr[t]+prev-1)/prev; int val = arr[t]/sections; if(curr != val) { nextKeys[nextSize++] = val; next[val] = 0L; curr = val; } next[val] += dp[prev]; if(next[val] >= MOD) next[val] -= MOD; long temp = (dp[prev]*(sections-1)*(t+1))%MOD; res += temp; if(res >= MOD) res -= MOD; } if(curr == arr[t]) { next[curr]++; if(next[curr] >= MOD) next[curr] -= MOD; } else { next[arr[t]] = 1L; nextKeys[nextSize++] = arr[t]; } for(int i=0; i < nextSize; i++) { keys[i] = nextKeys[i]; dp[keys[i]] = next[keys[i]]; } size = nextSize; } sb.append(res).append('\n'); } System.out.print(sb); } } /* 23 8 -> 7 8 8 8 24 8 -> 8 8 8 8 25 8 -> 6 6 6 7 8 2 3 5 4 3 2 4 3 */ class FastScanner { //I don't understand how this works lmao private int BS = 1 << 16; private char NC = (char) 0; private byte[] buf = new byte[BS]; private int bId = 0, size = 0; private char c = NC; private double cnt = 1; private BufferedInputStream in; public FastScanner() { in = new BufferedInputStream(System.in, BS); } public FastScanner(String s) { try { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } catch (Exception e) { in = new BufferedInputStream(System.in, BS); } } private char getChar() { while (bId == size) { try { size = in.read(buf); } catch (Exception e) { return NC; } if (size == -1) return NC; bId = 0; } return (char) buf[bId++]; } public int nextInt() { return (int) nextLong(); } public int[] nextInts(int N) { int[] res = new int[N]; for (int i = 0; i < N; i++) { res[i] = (int) nextLong(); } return res; } public long[] nextLongs(int N) { long[] res = new long[N]; for (int i = 0; i < N; i++) { res[i] = nextLong(); } return res; } public long nextLong() { cnt = 1; boolean neg = false; if (c == NC) c = getChar(); for (; (c < '0' || c > '9'); c = getChar()) { if (c == '-') neg = true; } long res = 0; for (; c >= '0' && c <= '9'; c = getChar()) { res = (res << 3) + (res << 1) + c - '0'; cnt *= 10; } return neg ? -res : res; } public double nextDouble() { double cur = nextLong(); return c != '.' ? cur : cur + nextLong() / cnt; } public double[] nextDoubles(int N) { double[] res = new double[N]; for (int i = 0; i < N; i++) { res[i] = nextDouble(); } return res; } public String next() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c > 32) { res.append(c); c = getChar(); } return res.toString(); } public String nextLine() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c != '\n') { res.append(c); c = getChar(); } return res.toString(); } public boolean hasNext() { if (c > 32) return true; while (true) { c = getChar(); if (c == NC) return false; else if (c > 32) return true; } } }
Java
["4\n3\n5 4 3\n4\n3 2 1 4\n1\n69\n8\n7264 40515 28226 92776 35285 21709 75124 48163"]
4 seconds
["5\n9\n0\n117"]
NoteLet $$$f(l, r)$$$ denote the extreme value of $$$[a_l, a_{l+1}, \ldots, a_r]$$$.In the first test case, $$$f(1, 3) = 3$$$, because YouKn0wWho can perform the following operations on the subarray $$$[5, 4, 3]$$$ (the newly inserted elements are underlined):$$$[5, 4, 3] \rightarrow [\underline{3}, \underline{2}, 4, 3] \rightarrow [3, 2, \underline{2}, \underline{2}, 3] \rightarrow [\underline{1}, \underline{2}, 2, 2, 2, 3]$$$; $$$f(1, 2) = 1$$$, because $$$[5, 4] \rightarrow [\underline{2}, \underline{3}, 4]$$$; $$$f(2, 3) = 1$$$, because $$$[4, 3] \rightarrow [\underline{1}, \underline{3}, 3]$$$; $$$f(1, 1) = f(2, 2) = f(3, 3) = 0$$$, because they are already non-decreasing. So the total sum of extreme values of all subarrays of $$$a = 3 + 1 + 1 + 0 + 0 + 0 = 5$$$.
Java 8
standard input
[ "dp", "greedy", "math", "number theory" ]
f760f108c66f695e1e51dc6470d29ce7
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^5$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$10^5$$$.
2,300
For each test case, print a single integer  — the sum of extreme values of all subarrays of $$$a$$$ modulo $$$998\,244\,353$$$.
standard output
PASSED
ad00fefef3a9287f6120ef0809b44d17
train_110.jsonl
1635604500
For an array $$$b$$$ of $$$n$$$ integers, the extreme value of this array is the minimum number of times (possibly, zero) the following operation has to be performed to make $$$b$$$ non-decreasing: Select an index $$$i$$$ such that $$$1 \le i \le |b|$$$, where $$$|b|$$$ is the current length of $$$b$$$. Replace $$$b_i$$$ with two elements $$$x$$$ and $$$y$$$ such that $$$x$$$ and $$$y$$$ both are positive integers and $$$x + y = b_i$$$. This way, the array $$$b$$$ changes and the next operation is performed on this modified array. For example, if $$$b = [2, 4, 3]$$$ and index $$$2$$$ gets selected, then the possible arrays after this operation are $$$[2, \underline{1}, \underline{3}, 3]$$$, $$$[2, \underline{2}, \underline{2}, 3]$$$, or $$$[2, \underline{3}, \underline{1}, 3]$$$. And consequently, for this array, this single operation is enough to make it non-decreasing: $$$[2, 4, 3] \rightarrow [2, \underline{2}, \underline{2}, 3]$$$.It's easy to see that every array of positive integers can be made non-decreasing this way.YouKn0wWho has an array $$$a$$$ of $$$n$$$ integers. Help him find the sum of extreme values of all nonempty subarrays of $$$a$$$ modulo $$$998\,244\,353$$$. If a subarray appears in $$$a$$$ multiple times, its extreme value should be counted the number of times it appears.An array $$$d$$$ is a subarray of an array $$$c$$$ if $$$d$$$ can be obtained from $$$c$$$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
256 megabytes
/* I am dead inside Do you like NCT, sKz, BTS? 5 4 3 2 1 Moonwalk Imma knock it down like domino Is this what you want? Is this what you want? Let's ttalkbocky about that :() */ import static java.lang.Math.*; import java.util.*; import java.io.*; public class x1603C { static final long MOD = 998244353L; static final int MAX = 100000; public static void main(String omkar[]) throws Exception { FastScanner infile = new FastScanner(); int T = infile.nextInt(); StringBuilder sb = new StringBuilder(); long[] dp = new long[MAX+1]; long[] next = new long[MAX+1]; int[] keys = new int[1000]; int[] nextKeys = new int[1000]; int size = 0; for(int q=1; q <= T; q++) { int N = infile.nextInt(); int[] arr = infile.nextInts(N); dp[arr[N-1]] = 1L; keys[0] = arr[N-1]; size = 1; long res = 0L; for(int t=N-2; t >= 0; t--) { int nextSize = 0; int curr = -1; for(int i=0; i < size; i++) { int prev = keys[i]; int sections = (arr[t]+prev-1)/prev; int val = arr[t]/sections; if(curr != val) { nextKeys[nextSize++] = val; next[val] = 0L; curr = val; } next[val] += dp[prev]; if(next[val] >= MOD) next[val] -= MOD; long temp = (dp[prev]*(sections-1)*(t+1))%MOD; res += temp; if(res >= MOD) res -= MOD; } if(curr == arr[t]) { next[curr]++; if(next[curr] >= MOD) next[curr] -= MOD; } else { next[arr[t]] = 1L; nextKeys[nextSize++] = arr[t]; } for(int i=0; i < nextSize; i++) keys[i] = nextKeys[i]; size = nextSize; for(int i=0; i < size; i++) dp[keys[i]] = next[keys[i]]; } sb.append(res+"\n"); } System.out.print(sb); } } /* 23 8 -> 7 8 8 8 24 8 -> 8 8 8 8 25 8 -> 6 6 6 7 8 2 3 5 4 3 2 4 3 */ class FastScanner { //I don't understand how this works lmao private int BS = 1 << 16; private char NC = (char) 0; private byte[] buf = new byte[BS]; private int bId = 0, size = 0; private char c = NC; private double cnt = 1; private BufferedInputStream in; public FastScanner() { in = new BufferedInputStream(System.in, BS); } public FastScanner(String s) { try { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } catch (Exception e) { in = new BufferedInputStream(System.in, BS); } } private char getChar() { while (bId == size) { try { size = in.read(buf); } catch (Exception e) { return NC; } if (size == -1) return NC; bId = 0; } return (char) buf[bId++]; } public int nextInt() { return (int) nextLong(); } public int[] nextInts(int N) { int[] res = new int[N]; for (int i = 0; i < N; i++) { res[i] = (int) nextLong(); } return res; } public long[] nextLongs(int N) { long[] res = new long[N]; for (int i = 0; i < N; i++) { res[i] = nextLong(); } return res; } public long nextLong() { cnt = 1; boolean neg = false; if (c == NC) c = getChar(); for (; (c < '0' || c > '9'); c = getChar()) { if (c == '-') neg = true; } long res = 0; for (; c >= '0' && c <= '9'; c = getChar()) { res = (res << 3) + (res << 1) + c - '0'; cnt *= 10; } return neg ? -res : res; } public double nextDouble() { double cur = nextLong(); return c != '.' ? cur : cur + nextLong() / cnt; } public double[] nextDoubles(int N) { double[] res = new double[N]; for (int i = 0; i < N; i++) { res[i] = nextDouble(); } return res; } public String next() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c > 32) { res.append(c); c = getChar(); } return res.toString(); } public String nextLine() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c != '\n') { res.append(c); c = getChar(); } return res.toString(); } public boolean hasNext() { if (c > 32) return true; while (true) { c = getChar(); if (c == NC) return false; else if (c > 32) return true; } } }
Java
["4\n3\n5 4 3\n4\n3 2 1 4\n1\n69\n8\n7264 40515 28226 92776 35285 21709 75124 48163"]
4 seconds
["5\n9\n0\n117"]
NoteLet $$$f(l, r)$$$ denote the extreme value of $$$[a_l, a_{l+1}, \ldots, a_r]$$$.In the first test case, $$$f(1, 3) = 3$$$, because YouKn0wWho can perform the following operations on the subarray $$$[5, 4, 3]$$$ (the newly inserted elements are underlined):$$$[5, 4, 3] \rightarrow [\underline{3}, \underline{2}, 4, 3] \rightarrow [3, 2, \underline{2}, \underline{2}, 3] \rightarrow [\underline{1}, \underline{2}, 2, 2, 2, 3]$$$; $$$f(1, 2) = 1$$$, because $$$[5, 4] \rightarrow [\underline{2}, \underline{3}, 4]$$$; $$$f(2, 3) = 1$$$, because $$$[4, 3] \rightarrow [\underline{1}, \underline{3}, 3]$$$; $$$f(1, 1) = f(2, 2) = f(3, 3) = 0$$$, because they are already non-decreasing. So the total sum of extreme values of all subarrays of $$$a = 3 + 1 + 1 + 0 + 0 + 0 = 5$$$.
Java 8
standard input
[ "dp", "greedy", "math", "number theory" ]
f760f108c66f695e1e51dc6470d29ce7
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^5$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$10^5$$$.
2,300
For each test case, print a single integer  — the sum of extreme values of all subarrays of $$$a$$$ modulo $$$998\,244\,353$$$.
standard output
PASSED
5c421b108e3624cffc70fc259f49b3be
train_110.jsonl
1635604500
For an array $$$b$$$ of $$$n$$$ integers, the extreme value of this array is the minimum number of times (possibly, zero) the following operation has to be performed to make $$$b$$$ non-decreasing: Select an index $$$i$$$ such that $$$1 \le i \le |b|$$$, where $$$|b|$$$ is the current length of $$$b$$$. Replace $$$b_i$$$ with two elements $$$x$$$ and $$$y$$$ such that $$$x$$$ and $$$y$$$ both are positive integers and $$$x + y = b_i$$$. This way, the array $$$b$$$ changes and the next operation is performed on this modified array. For example, if $$$b = [2, 4, 3]$$$ and index $$$2$$$ gets selected, then the possible arrays after this operation are $$$[2, \underline{1}, \underline{3}, 3]$$$, $$$[2, \underline{2}, \underline{2}, 3]$$$, or $$$[2, \underline{3}, \underline{1}, 3]$$$. And consequently, for this array, this single operation is enough to make it non-decreasing: $$$[2, 4, 3] \rightarrow [2, \underline{2}, \underline{2}, 3]$$$.It's easy to see that every array of positive integers can be made non-decreasing this way.YouKn0wWho has an array $$$a$$$ of $$$n$$$ integers. Help him find the sum of extreme values of all nonempty subarrays of $$$a$$$ modulo $$$998\,244\,353$$$. If a subarray appears in $$$a$$$ multiple times, its extreme value should be counted the number of times it appears.An array $$$d$$$ is a subarray of an array $$$c$$$ if $$$d$$$ can be obtained from $$$c$$$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
256 megabytes
/* I am dead inside Do you like NCT, sKz, BTS? 5 4 3 2 1 Moonwalk Imma knock it down like domino Is this what you want? Is this what you want? Let's ttalkbocky about that :() */ import static java.lang.Math.*; import java.util.*; import java.io.*; public class x1603C { static final long MOD = 998244353L; static final int MAX = 100000; public static void main(String omkar[]) throws Exception { FastScanner infile = new FastScanner(); int T = infile.nextInt(); StringBuilder sb = new StringBuilder(); long[] dp = new long[MAX+1]; long[] next = new long[MAX+1]; int[] keys = new int[1000]; int[] nextKeys = new int[1000]; int size = 0; for(int q=1; q <= T; q++) { int N = infile.nextInt(); int[] arr = infile.nextInts(N); dp[arr[N-1]] = 1L; keys[0] = arr[N-1]; size = 1; long res = 0L; for(int t=N-2; t >= 0; t--) { int nextSize = 0; int curr = -1; for(int i=0; i < size; i++) { int prev = keys[i]; int sections = (arr[t]+prev-1)/prev; int val = arr[t]/sections; if(curr != val) { nextKeys[nextSize++] = val; next[val] = 0L; curr = val; } next[val] += dp[prev]; if(next[val] >= MOD) next[val] -= MOD; long temp = (dp[prev]*(sections-1))%MOD; temp = (temp*(t+1))%MOD; res += temp; if(res >= MOD) res -= MOD; } if(curr == arr[t]) { next[curr]++; if(next[curr] >= MOD) next[curr] -= MOD; } else { next[arr[t]] = 1L; nextKeys[nextSize++] = arr[t]; } for(int i=0; i < nextSize; i++) keys[i] = nextKeys[i]; size = nextSize; for(int i=0; i < size; i++) dp[keys[i]] = next[keys[i]]; } sb.append(res+"\n"); } System.out.print(sb); } } /* 23 8 -> 7 8 8 8 24 8 -> 8 8 8 8 25 8 -> 6 6 6 7 8 2 3 5 4 3 2 4 3 */ class FastScanner { //I don't understand how this works lmao private int BS = 1 << 16; private char NC = (char) 0; private byte[] buf = new byte[BS]; private int bId = 0, size = 0; private char c = NC; private double cnt = 1; private BufferedInputStream in; public FastScanner() { in = new BufferedInputStream(System.in, BS); } public FastScanner(String s) { try { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } catch (Exception e) { in = new BufferedInputStream(System.in, BS); } } private char getChar() { while (bId == size) { try { size = in.read(buf); } catch (Exception e) { return NC; } if (size == -1) return NC; bId = 0; } return (char) buf[bId++]; } public int nextInt() { return (int) nextLong(); } public int[] nextInts(int N) { int[] res = new int[N]; for (int i = 0; i < N; i++) { res[i] = (int) nextLong(); } return res; } public long[] nextLongs(int N) { long[] res = new long[N]; for (int i = 0; i < N; i++) { res[i] = nextLong(); } return res; } public long nextLong() { cnt = 1; boolean neg = false; if (c == NC) c = getChar(); for (; (c < '0' || c > '9'); c = getChar()) { if (c == '-') neg = true; } long res = 0; for (; c >= '0' && c <= '9'; c = getChar()) { res = (res << 3) + (res << 1) + c - '0'; cnt *= 10; } return neg ? -res : res; } public double nextDouble() { double cur = nextLong(); return c != '.' ? cur : cur + nextLong() / cnt; } public double[] nextDoubles(int N) { double[] res = new double[N]; for (int i = 0; i < N; i++) { res[i] = nextDouble(); } return res; } public String next() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c > 32) { res.append(c); c = getChar(); } return res.toString(); } public String nextLine() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c != '\n') { res.append(c); c = getChar(); } return res.toString(); } public boolean hasNext() { if (c > 32) return true; while (true) { c = getChar(); if (c == NC) return false; else if (c > 32) return true; } } }
Java
["4\n3\n5 4 3\n4\n3 2 1 4\n1\n69\n8\n7264 40515 28226 92776 35285 21709 75124 48163"]
4 seconds
["5\n9\n0\n117"]
NoteLet $$$f(l, r)$$$ denote the extreme value of $$$[a_l, a_{l+1}, \ldots, a_r]$$$.In the first test case, $$$f(1, 3) = 3$$$, because YouKn0wWho can perform the following operations on the subarray $$$[5, 4, 3]$$$ (the newly inserted elements are underlined):$$$[5, 4, 3] \rightarrow [\underline{3}, \underline{2}, 4, 3] \rightarrow [3, 2, \underline{2}, \underline{2}, 3] \rightarrow [\underline{1}, \underline{2}, 2, 2, 2, 3]$$$; $$$f(1, 2) = 1$$$, because $$$[5, 4] \rightarrow [\underline{2}, \underline{3}, 4]$$$; $$$f(2, 3) = 1$$$, because $$$[4, 3] \rightarrow [\underline{1}, \underline{3}, 3]$$$; $$$f(1, 1) = f(2, 2) = f(3, 3) = 0$$$, because they are already non-decreasing. So the total sum of extreme values of all subarrays of $$$a = 3 + 1 + 1 + 0 + 0 + 0 = 5$$$.
Java 8
standard input
[ "dp", "greedy", "math", "number theory" ]
f760f108c66f695e1e51dc6470d29ce7
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^5$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$10^5$$$.
2,300
For each test case, print a single integer  — the sum of extreme values of all subarrays of $$$a$$$ modulo $$$998\,244\,353$$$.
standard output
PASSED
fc8fd4e9a408022498efc7db7d6acfd4
train_110.jsonl
1635604500
For an array $$$b$$$ of $$$n$$$ integers, the extreme value of this array is the minimum number of times (possibly, zero) the following operation has to be performed to make $$$b$$$ non-decreasing: Select an index $$$i$$$ such that $$$1 \le i \le |b|$$$, where $$$|b|$$$ is the current length of $$$b$$$. Replace $$$b_i$$$ with two elements $$$x$$$ and $$$y$$$ such that $$$x$$$ and $$$y$$$ both are positive integers and $$$x + y = b_i$$$. This way, the array $$$b$$$ changes and the next operation is performed on this modified array. For example, if $$$b = [2, 4, 3]$$$ and index $$$2$$$ gets selected, then the possible arrays after this operation are $$$[2, \underline{1}, \underline{3}, 3]$$$, $$$[2, \underline{2}, \underline{2}, 3]$$$, or $$$[2, \underline{3}, \underline{1}, 3]$$$. And consequently, for this array, this single operation is enough to make it non-decreasing: $$$[2, 4, 3] \rightarrow [2, \underline{2}, \underline{2}, 3]$$$.It's easy to see that every array of positive integers can be made non-decreasing this way.YouKn0wWho has an array $$$a$$$ of $$$n$$$ integers. Help him find the sum of extreme values of all nonempty subarrays of $$$a$$$ modulo $$$998\,244\,353$$$. If a subarray appears in $$$a$$$ multiple times, its extreme value should be counted the number of times it appears.An array $$$d$$$ is a subarray of an array $$$c$$$ if $$$d$$$ can be obtained from $$$c$$$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
256 megabytes
/* I am dead inside Do you like NCT, sKz, BTS? 5 4 3 2 1 Moonwalk Imma knock it down like domino Is this what you want? Is this what you want? Let's ttalkbocky about that :() */ import static java.lang.Math.*; import java.util.*; import java.io.*; public class x1603C { static final long MOD = 998244353L; static final int MAX = 100000; public static void main(String omkar[]) throws Exception { FastScanner infile = new FastScanner(); int T = infile.nextInt(); StringBuilder sb = new StringBuilder(); long[] dp = new long[MAX+1]; long[] next = new long[MAX+1]; for(int q=1; q <= T; q++) { int N = infile.nextInt(); int[] arr = infile.nextInts(N); dp[arr[N-1]] = 1L; ArrayDeque<Integer> keys = new ArrayDeque<Integer>(); keys.add(arr[N-1]); long res = 0L; for(int t=N-2; t >= 0; t--) { ArrayDeque<Integer> nextKeys = new ArrayDeque<Integer>(); int curr = -1; for(int prev: keys) { int sections = (arr[t]+prev-1)/prev; int val = arr[t]/sections; if(curr != val) { nextKeys.add(val); next[val] = 0L; curr = val; } next[val] += dp[prev]; if(next[val] >= MOD) next[val] -= MOD; long temp = (dp[prev]*(sections-1))%MOD; temp = (temp*(t+1))%MOD; res += temp; if(res >= MOD) res -= MOD; } if(curr == arr[t]) { next[curr]++; if(next[curr] >= MOD) next[curr] -= MOD; } else { next[arr[t]] = 1L; nextKeys.add(arr[t]); } for(int x: nextKeys) dp[x] = next[x]; keys = nextKeys; } sb.append(res+"\n"); } System.out.print(sb); } } /* 23 8 -> 7 8 8 8 24 8 -> 8 8 8 8 25 8 -> 6 6 6 7 8 2 3 5 4 3 2 4 3 */ class FastScanner { //I don't understand how this works lmao private int BS = 1 << 16; private char NC = (char) 0; private byte[] buf = new byte[BS]; private int bId = 0, size = 0; private char c = NC; private double cnt = 1; private BufferedInputStream in; public FastScanner() { in = new BufferedInputStream(System.in, BS); } public FastScanner(String s) { try { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } catch (Exception e) { in = new BufferedInputStream(System.in, BS); } } private char getChar() { while (bId == size) { try { size = in.read(buf); } catch (Exception e) { return NC; } if (size == -1) return NC; bId = 0; } return (char) buf[bId++]; } public int nextInt() { return (int) nextLong(); } public int[] nextInts(int N) { int[] res = new int[N]; for (int i = 0; i < N; i++) { res[i] = (int) nextLong(); } return res; } public long[] nextLongs(int N) { long[] res = new long[N]; for (int i = 0; i < N; i++) { res[i] = nextLong(); } return res; } public long nextLong() { cnt = 1; boolean neg = false; if (c == NC) c = getChar(); for (; (c < '0' || c > '9'); c = getChar()) { if (c == '-') neg = true; } long res = 0; for (; c >= '0' && c <= '9'; c = getChar()) { res = (res << 3) + (res << 1) + c - '0'; cnt *= 10; } return neg ? -res : res; } public double nextDouble() { double cur = nextLong(); return c != '.' ? cur : cur + nextLong() / cnt; } public double[] nextDoubles(int N) { double[] res = new double[N]; for (int i = 0; i < N; i++) { res[i] = nextDouble(); } return res; } public String next() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c > 32) { res.append(c); c = getChar(); } return res.toString(); } public String nextLine() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c != '\n') { res.append(c); c = getChar(); } return res.toString(); } public boolean hasNext() { if (c > 32) return true; while (true) { c = getChar(); if (c == NC) return false; else if (c > 32) return true; } } }
Java
["4\n3\n5 4 3\n4\n3 2 1 4\n1\n69\n8\n7264 40515 28226 92776 35285 21709 75124 48163"]
4 seconds
["5\n9\n0\n117"]
NoteLet $$$f(l, r)$$$ denote the extreme value of $$$[a_l, a_{l+1}, \ldots, a_r]$$$.In the first test case, $$$f(1, 3) = 3$$$, because YouKn0wWho can perform the following operations on the subarray $$$[5, 4, 3]$$$ (the newly inserted elements are underlined):$$$[5, 4, 3] \rightarrow [\underline{3}, \underline{2}, 4, 3] \rightarrow [3, 2, \underline{2}, \underline{2}, 3] \rightarrow [\underline{1}, \underline{2}, 2, 2, 2, 3]$$$; $$$f(1, 2) = 1$$$, because $$$[5, 4] \rightarrow [\underline{2}, \underline{3}, 4]$$$; $$$f(2, 3) = 1$$$, because $$$[4, 3] \rightarrow [\underline{1}, \underline{3}, 3]$$$; $$$f(1, 1) = f(2, 2) = f(3, 3) = 0$$$, because they are already non-decreasing. So the total sum of extreme values of all subarrays of $$$a = 3 + 1 + 1 + 0 + 0 + 0 = 5$$$.
Java 8
standard input
[ "dp", "greedy", "math", "number theory" ]
f760f108c66f695e1e51dc6470d29ce7
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^5$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$10^5$$$.
2,300
For each test case, print a single integer  — the sum of extreme values of all subarrays of $$$a$$$ modulo $$$998\,244\,353$$$.
standard output
PASSED
96997eebe21c0d81d9d7c8705f970334
train_110.jsonl
1635604500
For an array $$$b$$$ of $$$n$$$ integers, the extreme value of this array is the minimum number of times (possibly, zero) the following operation has to be performed to make $$$b$$$ non-decreasing: Select an index $$$i$$$ such that $$$1 \le i \le |b|$$$, where $$$|b|$$$ is the current length of $$$b$$$. Replace $$$b_i$$$ with two elements $$$x$$$ and $$$y$$$ such that $$$x$$$ and $$$y$$$ both are positive integers and $$$x + y = b_i$$$. This way, the array $$$b$$$ changes and the next operation is performed on this modified array. For example, if $$$b = [2, 4, 3]$$$ and index $$$2$$$ gets selected, then the possible arrays after this operation are $$$[2, \underline{1}, \underline{3}, 3]$$$, $$$[2, \underline{2}, \underline{2}, 3]$$$, or $$$[2, \underline{3}, \underline{1}, 3]$$$. And consequently, for this array, this single operation is enough to make it non-decreasing: $$$[2, 4, 3] \rightarrow [2, \underline{2}, \underline{2}, 3]$$$.It's easy to see that every array of positive integers can be made non-decreasing this way.YouKn0wWho has an array $$$a$$$ of $$$n$$$ integers. Help him find the sum of extreme values of all nonempty subarrays of $$$a$$$ modulo $$$998\,244\,353$$$. If a subarray appears in $$$a$$$ multiple times, its extreme value should be counted the number of times it appears.An array $$$d$$$ is a subarray of an array $$$c$$$ if $$$d$$$ can be obtained from $$$c$$$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
256 megabytes
import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintStream; import java.util.Locale; import java.util.StringTokenizer; public class Solution2 implements Runnable { public static final long MOD = 998244353; private PrintStream out; private BufferedReader in; private StringTokenizer st; public void solve() throws IOException { long time0 = System.currentTimeMillis(); int t = nextInt(); for (int test = 1; test <= t; test++) { int n = nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } int answer = solve(n, a); out.println(answer); } System.err.println("time: " + (System.currentTimeMillis() - time0)); } private int solve(int n, int[] a) { int[] h0 = new int[n]; int[] h1 = new int[n]; int[] w = new int[n]; long sum = 0; long ans = 0; for (int i = 0; i < n; i++) { h0[i] = a[i]; h1[i] = a[i]; w[i] = 0; for (int j = i - 1; j >= 0; j--) { if (h1[j] <= h0[j + 1]) { break; } sum = (((sum - 1L * w[j] * (j + 1)) % MOD) + MOD) % MOD; int r = (a[j] + h0[j + 1] - 1) / h0[j + 1]; h0[j] = a[j] / r; h1[j] = (a[j] + r - 1) / r; w[j] = r - 1; sum = (sum + 1L * w[j] * (j + 1)) % MOD; } ans = (ans + sum) % MOD; } return (int) ans; } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public String next() throws IOException { while (!st.hasMoreTokens()) { String line = in.readLine(); if (line == null) { return null; } st = new StringTokenizer(line); } return st.nextToken(); } @Override public void run() { try { solve(); out.close(); } catch (Throwable e) { throw new RuntimeException(e); } } public Solution2(String name) throws IOException { Locale.setDefault(Locale.US); if (name == null) { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintStream(new BufferedOutputStream(System.out)); } else { in = new BufferedReader(new InputStreamReader(new FileInputStream(name + ".in"))); out = new PrintStream(new BufferedOutputStream(new FileOutputStream(name + ".out"))); } st = new StringTokenizer(""); } public static void main(String[] args) throws IOException { new Thread(new Solution2(null)).start(); } }
Java
["4\n3\n5 4 3\n4\n3 2 1 4\n1\n69\n8\n7264 40515 28226 92776 35285 21709 75124 48163"]
4 seconds
["5\n9\n0\n117"]
NoteLet $$$f(l, r)$$$ denote the extreme value of $$$[a_l, a_{l+1}, \ldots, a_r]$$$.In the first test case, $$$f(1, 3) = 3$$$, because YouKn0wWho can perform the following operations on the subarray $$$[5, 4, 3]$$$ (the newly inserted elements are underlined):$$$[5, 4, 3] \rightarrow [\underline{3}, \underline{2}, 4, 3] \rightarrow [3, 2, \underline{2}, \underline{2}, 3] \rightarrow [\underline{1}, \underline{2}, 2, 2, 2, 3]$$$; $$$f(1, 2) = 1$$$, because $$$[5, 4] \rightarrow [\underline{2}, \underline{3}, 4]$$$; $$$f(2, 3) = 1$$$, because $$$[4, 3] \rightarrow [\underline{1}, \underline{3}, 3]$$$; $$$f(1, 1) = f(2, 2) = f(3, 3) = 0$$$, because they are already non-decreasing. So the total sum of extreme values of all subarrays of $$$a = 3 + 1 + 1 + 0 + 0 + 0 = 5$$$.
Java 8
standard input
[ "dp", "greedy", "math", "number theory" ]
f760f108c66f695e1e51dc6470d29ce7
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^5$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$10^5$$$.
2,300
For each test case, print a single integer  — the sum of extreme values of all subarrays of $$$a$$$ modulo $$$998\,244\,353$$$.
standard output
PASSED
cc5868d32c3bff7889016d1636516bd6
train_110.jsonl
1635604500
For an array $$$b$$$ of $$$n$$$ integers, the extreme value of this array is the minimum number of times (possibly, zero) the following operation has to be performed to make $$$b$$$ non-decreasing: Select an index $$$i$$$ such that $$$1 \le i \le |b|$$$, where $$$|b|$$$ is the current length of $$$b$$$. Replace $$$b_i$$$ with two elements $$$x$$$ and $$$y$$$ such that $$$x$$$ and $$$y$$$ both are positive integers and $$$x + y = b_i$$$. This way, the array $$$b$$$ changes and the next operation is performed on this modified array. For example, if $$$b = [2, 4, 3]$$$ and index $$$2$$$ gets selected, then the possible arrays after this operation are $$$[2, \underline{1}, \underline{3}, 3]$$$, $$$[2, \underline{2}, \underline{2}, 3]$$$, or $$$[2, \underline{3}, \underline{1}, 3]$$$. And consequently, for this array, this single operation is enough to make it non-decreasing: $$$[2, 4, 3] \rightarrow [2, \underline{2}, \underline{2}, 3]$$$.It's easy to see that every array of positive integers can be made non-decreasing this way.YouKn0wWho has an array $$$a$$$ of $$$n$$$ integers. Help him find the sum of extreme values of all nonempty subarrays of $$$a$$$ modulo $$$998\,244\,353$$$. If a subarray appears in $$$a$$$ multiple times, its extreme value should be counted the number of times it appears.An array $$$d$$$ is a subarray of an array $$$c$$$ if $$$d$$$ can be obtained from $$$c$$$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
256 megabytes
import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintStream; import java.util.Locale; import java.util.StringTokenizer; public class Solution implements Runnable { public static final long MOD = 998244353; private PrintStream out; private BufferedReader in; private StringTokenizer st; public void solve() throws IOException { long time0 = System.currentTimeMillis(); int t = nextInt(); for (int test = 1; test <= t; test++) { int n = nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } int answer = solve(n, a); out.println(answer); } System.err.println("time: " + (System.currentTimeMillis() - time0)); } private int solve(int n, int[] a) { int[] h0 = new int[n]; int[] h1 = new int[n]; int[] w = new int[n]; long sum = 0; long ans = 0; for (int i = 0; i < n; i++) { h0[i] = a[i]; h1[i] = a[i]; w[i] = 0; for (int j = i - 1; j >= 0; j--) { if (h1[j] <= h0[j + 1]) { break; } sum = (((sum - 1L * w[j] * (j + 1)) % MOD) + MOD) % MOD; int l = w[j] + 1; int r = (a[j] + h0[j + 1] - 1) / h0[j + 1]; while (l + 1 < r) { int m = (l + r) / 2; int hh1 = (a[j] + m - 1) / m; if (hh1 <= h0[j + 1]) { r = m; } else { l = m; } } h0[j] = a[j] / r; h1[j] = (a[j] + r - 1) / r; w[j] = r - 1; sum = (sum + 1L * w[j] * (j + 1)) % MOD; } ans = (ans + sum) % MOD; } return (int) ans; } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public String next() throws IOException { while (!st.hasMoreTokens()) { String line = in.readLine(); if (line == null) { return null; } st = new StringTokenizer(line); } return st.nextToken(); } @Override public void run() { try { solve(); out.close(); } catch (Throwable e) { throw new RuntimeException(e); } } public Solution(String name) throws IOException { Locale.setDefault(Locale.US); if (name == null) { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintStream(new BufferedOutputStream(System.out)); } else { in = new BufferedReader(new InputStreamReader(new FileInputStream(name + ".in"))); out = new PrintStream(new BufferedOutputStream(new FileOutputStream(name + ".out"))); } st = new StringTokenizer(""); } public static void main(String[] args) throws IOException { new Thread(new Solution(null)).start(); } }
Java
["4\n3\n5 4 3\n4\n3 2 1 4\n1\n69\n8\n7264 40515 28226 92776 35285 21709 75124 48163"]
4 seconds
["5\n9\n0\n117"]
NoteLet $$$f(l, r)$$$ denote the extreme value of $$$[a_l, a_{l+1}, \ldots, a_r]$$$.In the first test case, $$$f(1, 3) = 3$$$, because YouKn0wWho can perform the following operations on the subarray $$$[5, 4, 3]$$$ (the newly inserted elements are underlined):$$$[5, 4, 3] \rightarrow [\underline{3}, \underline{2}, 4, 3] \rightarrow [3, 2, \underline{2}, \underline{2}, 3] \rightarrow [\underline{1}, \underline{2}, 2, 2, 2, 3]$$$; $$$f(1, 2) = 1$$$, because $$$[5, 4] \rightarrow [\underline{2}, \underline{3}, 4]$$$; $$$f(2, 3) = 1$$$, because $$$[4, 3] \rightarrow [\underline{1}, \underline{3}, 3]$$$; $$$f(1, 1) = f(2, 2) = f(3, 3) = 0$$$, because they are already non-decreasing. So the total sum of extreme values of all subarrays of $$$a = 3 + 1 + 1 + 0 + 0 + 0 = 5$$$.
Java 8
standard input
[ "dp", "greedy", "math", "number theory" ]
f760f108c66f695e1e51dc6470d29ce7
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^5$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$10^5$$$.
2,300
For each test case, print a single integer  — the sum of extreme values of all subarrays of $$$a$$$ modulo $$$998\,244\,353$$$.
standard output
PASSED
bb8ea2dad5c6df70f083973ed8074bc2
train_110.jsonl
1635604500
For an array $$$b$$$ of $$$n$$$ integers, the extreme value of this array is the minimum number of times (possibly, zero) the following operation has to be performed to make $$$b$$$ non-decreasing: Select an index $$$i$$$ such that $$$1 \le i \le |b|$$$, where $$$|b|$$$ is the current length of $$$b$$$. Replace $$$b_i$$$ with two elements $$$x$$$ and $$$y$$$ such that $$$x$$$ and $$$y$$$ both are positive integers and $$$x + y = b_i$$$. This way, the array $$$b$$$ changes and the next operation is performed on this modified array. For example, if $$$b = [2, 4, 3]$$$ and index $$$2$$$ gets selected, then the possible arrays after this operation are $$$[2, \underline{1}, \underline{3}, 3]$$$, $$$[2, \underline{2}, \underline{2}, 3]$$$, or $$$[2, \underline{3}, \underline{1}, 3]$$$. And consequently, for this array, this single operation is enough to make it non-decreasing: $$$[2, 4, 3] \rightarrow [2, \underline{2}, \underline{2}, 3]$$$.It's easy to see that every array of positive integers can be made non-decreasing this way.YouKn0wWho has an array $$$a$$$ of $$$n$$$ integers. Help him find the sum of extreme values of all nonempty subarrays of $$$a$$$ modulo $$$998\,244\,353$$$. If a subarray appears in $$$a$$$ multiple times, its extreme value should be counted the number of times it appears.An array $$$d$$$ is a subarray of an array $$$c$$$ if $$$d$$$ can be obtained from $$$c$$$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
256 megabytes
import java.util.*; import java.lang.*; // StringBuilder uses java.lang public class mC { public static void main(String[] args) { Scanner sc = new Scanner(System.in); StringBuilder st = new StringBuilder(); int t = sc.nextInt(); long MOD = 998244353; for (int test = 0; test < t; test++) { int n = sc.nextInt(); long[] inputList = new long[n]; long[] numDiv = new long[n]; // number of divisions to make, not num of resulting numbers long indexProdSum = 0; long ans = 0; for (int i = 0; i < n; i++) { inputList[i] = sc.nextInt(); boolean cont = true; for (int j = i-1; (j>=0 && cont); j--) { long maxAt = inputList[j+1] / (numDiv[j+1]+1); long minForcedDivs = (inputList[j]-1) / maxAt; // ceiling minus one if (minForcedDivs > numDiv[j]) { indexProdSum += (minForcedDivs - numDiv[j]) * (j+1); indexProdSum %= MOD; numDiv[j] = minForcedDivs; } else { cont = false; } } ans += indexProdSum; ans %= MOD; } st.append(ans+"\n"); } System.out.print(st.toString()); } public static int firstLargerAb(int val,ArrayList<Integer> ok,int left,int right) { if (Math.abs(ok.get(right))<=val) { return -1; } if (left==right) { return left; } else if (left+1==right) { if (val<Math.abs(ok.get(left))) { return left; } else { return right; } } else { int mid = (left+right)/2; if (Math.abs(ok.get(mid))>val) { return firstLargerAb(val,ok,left,mid); } else { return firstLargerAb(val,ok,mid+1,right); } } } public static int findNthInArray(int[] arr,int val,int start,int o) { if (o==0) { return start-1; } else if (arr[start] == val) { return findNthInArray(arr,val,start+1,o-1); } else { return findNthInArray(arr,val,start+1,o); } } public static ArrayList<Integer> dfs(int at,ArrayList<Integer> went,ArrayList<ArrayList<Integer>> connect) { for (int i=0;i<connect.get(at).size();i++) { if (!(went.contains(connect.get(at).get(i)))) { went.add(connect.get(at).get(i)); went=dfs(connect.get(at).get(i),went,connect); } } return went; } public static int[] bfs (int at, int[] went, ArrayList<ArrayList<Integer>> queue, int numNodes, ArrayList<ArrayList<Integer>> connect) { if (went[at]==0) { went[at]=queue.get(numNodes).get(1); for (int i=0;i<connect.get(at).size();i++) { if (went[connect.get(at).get(i)]==0) { ArrayList<Integer> temp = new ArrayList<>(); temp.add(connect.get(at).get(i)); temp.add(queue.get(numNodes).get(1)+1); queue.add(temp); } } } if (queue.size()==numNodes+1) { return went; } else { return bfs(queue.get(numNodes+1).get(0),went, queue, numNodes+1, connect); } } public static long fastPow(long base,long exp,long mod) { if (exp==0) { return 1; } else { if (exp % 2 == 1) { long z = fastPow(base,(exp-1)/2,mod); return ((((z*base) % mod) * z) % mod); } else { long z = fastPow(base,exp/2,mod); return ((z*z) % mod); } } } public static int fastPow(int base,long exp) { if (exp==0) { return 1; } else { if (exp % 2 == 1) { int z = fastPow(base,(exp-1)/2); return ((((z*base)) * z)); } else { int z = fastPow(base,exp/2); return ((z*z)); } } } public static int firstLarger(int val,ArrayList<Integer> ok,int left,int right) { if (ok.get(right)<=val) { return -1; } if (left==right) { return left; } else if (left+1==right) { if (val<ok.get(left)) { return left; } else { return right; } } else { int mid = (left+right)/2; if (ok.get(mid)>val) { return firstLarger(val,ok,left,mid); } else { return firstLarger(val,ok,mid+1,right); } } } public static int binSearchArr(long val,ArrayList<Integer> ok,long[] arr,int left,int right) { if (arr[ok.get(right)]<=val) { return -1; } if (left==right) { return left; } else if (left+1==right) { if (val<arr[ok.get(left)]) { return left; } else { return right; } } else { int mid = (left+right)/2; if (arr[ok.get(mid)]>val) { return binSearchArr(val,ok,arr,left,mid); } else { return binSearchArr(val,ok,arr,mid+1,right); } } } public static long gcd(long a, long b) { if (b>a) { return gcd(b,a); } if (b==0) { return a; } if (a%b==0) { return b; } else { return gcd(b,a%b); } } }
Java
["4\n3\n5 4 3\n4\n3 2 1 4\n1\n69\n8\n7264 40515 28226 92776 35285 21709 75124 48163"]
4 seconds
["5\n9\n0\n117"]
NoteLet $$$f(l, r)$$$ denote the extreme value of $$$[a_l, a_{l+1}, \ldots, a_r]$$$.In the first test case, $$$f(1, 3) = 3$$$, because YouKn0wWho can perform the following operations on the subarray $$$[5, 4, 3]$$$ (the newly inserted elements are underlined):$$$[5, 4, 3] \rightarrow [\underline{3}, \underline{2}, 4, 3] \rightarrow [3, 2, \underline{2}, \underline{2}, 3] \rightarrow [\underline{1}, \underline{2}, 2, 2, 2, 3]$$$; $$$f(1, 2) = 1$$$, because $$$[5, 4] \rightarrow [\underline{2}, \underline{3}, 4]$$$; $$$f(2, 3) = 1$$$, because $$$[4, 3] \rightarrow [\underline{1}, \underline{3}, 3]$$$; $$$f(1, 1) = f(2, 2) = f(3, 3) = 0$$$, because they are already non-decreasing. So the total sum of extreme values of all subarrays of $$$a = 3 + 1 + 1 + 0 + 0 + 0 = 5$$$.
Java 8
standard input
[ "dp", "greedy", "math", "number theory" ]
f760f108c66f695e1e51dc6470d29ce7
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^5$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$10^5$$$.
2,300
For each test case, print a single integer  — the sum of extreme values of all subarrays of $$$a$$$ modulo $$$998\,244\,353$$$.
standard output
PASSED
b551f4d142944d349118fe09171cabce
train_110.jsonl
1635604500
For an array $$$b$$$ of $$$n$$$ integers, the extreme value of this array is the minimum number of times (possibly, zero) the following operation has to be performed to make $$$b$$$ non-decreasing: Select an index $$$i$$$ such that $$$1 \le i \le |b|$$$, where $$$|b|$$$ is the current length of $$$b$$$. Replace $$$b_i$$$ with two elements $$$x$$$ and $$$y$$$ such that $$$x$$$ and $$$y$$$ both are positive integers and $$$x + y = b_i$$$. This way, the array $$$b$$$ changes and the next operation is performed on this modified array. For example, if $$$b = [2, 4, 3]$$$ and index $$$2$$$ gets selected, then the possible arrays after this operation are $$$[2, \underline{1}, \underline{3}, 3]$$$, $$$[2, \underline{2}, \underline{2}, 3]$$$, or $$$[2, \underline{3}, \underline{1}, 3]$$$. And consequently, for this array, this single operation is enough to make it non-decreasing: $$$[2, 4, 3] \rightarrow [2, \underline{2}, \underline{2}, 3]$$$.It's easy to see that every array of positive integers can be made non-decreasing this way.YouKn0wWho has an array $$$a$$$ of $$$n$$$ integers. Help him find the sum of extreme values of all nonempty subarrays of $$$a$$$ modulo $$$998\,244\,353$$$. If a subarray appears in $$$a$$$ multiple times, its extreme value should be counted the number of times it appears.An array $$$d$$$ is a subarray of an array $$$c$$$ if $$$d$$$ can be obtained from $$$c$$$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
256 megabytes
import java.util.*; import java.io.*; public class _1604_E { static final long MOD = 998244353; public static void main(String[] args) throws IOException { Reader in = new Reader(); PrintWriter out = new PrintWriter(System.out); int t = in.nextInt(); while(t-- > 0) { int n = in.nextInt(); int[] a = new int[n]; for(int i = 0; i < n; i++) { a[i] = in.nextInt(); } int[][] dp = new int[2][100005]; ArrayList<Integer>[] keys = new ArrayList[2]; keys[0] = new ArrayList<Integer>(); keys[1] = new ArrayList<Integer>(); dp[0][a[n - 1]] = 1; keys[0].add(a[n - 1]); long res = 0; int cur = 0; for(int i = n - 1; i > 0; i--) { dp[1 - cur][a[i - 1]] += 1; keys[1 - cur].add(a[i - 1]); int prev = a[i - 1]; for(int key : keys[cur]) { int ceil = a[i - 1] / key; if(a[i - 1] % key != 0) ceil++; int min = a[i - 1] / ceil; dp[1 - cur][min] += dp[cur][key]; res = modadd(res, modmult(modmult(dp[cur][key], ceil - 1), i)); if(min != prev) { keys[1 - cur].add(min); prev = min; } dp[cur][key] = 0; } keys[cur].clear(); cur = 1 - cur; } out.println(res); } in.close(); out.close(); } static long modadd(long a, long b) { return (a + b + MOD) % MOD; } static long modmult(long a, long b) { return a * b % MOD; } static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') { if (cnt != 0) { break; } else { continue; } } buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') { c = read(); } boolean neg = (c == '-'); if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') { c = read(); } boolean neg = (c == '-'); if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') { c = read(); } boolean neg = (c == '-'); if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) { return -ret; } return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) { buffer[0] = -1; } } private byte read() throws IOException { if (bufferPointer == bytesRead) { fillBuffer(); } return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) { return; } din.close(); } } }
Java
["4\n3\n5 4 3\n4\n3 2 1 4\n1\n69\n8\n7264 40515 28226 92776 35285 21709 75124 48163"]
4 seconds
["5\n9\n0\n117"]
NoteLet $$$f(l, r)$$$ denote the extreme value of $$$[a_l, a_{l+1}, \ldots, a_r]$$$.In the first test case, $$$f(1, 3) = 3$$$, because YouKn0wWho can perform the following operations on the subarray $$$[5, 4, 3]$$$ (the newly inserted elements are underlined):$$$[5, 4, 3] \rightarrow [\underline{3}, \underline{2}, 4, 3] \rightarrow [3, 2, \underline{2}, \underline{2}, 3] \rightarrow [\underline{1}, \underline{2}, 2, 2, 2, 3]$$$; $$$f(1, 2) = 1$$$, because $$$[5, 4] \rightarrow [\underline{2}, \underline{3}, 4]$$$; $$$f(2, 3) = 1$$$, because $$$[4, 3] \rightarrow [\underline{1}, \underline{3}, 3]$$$; $$$f(1, 1) = f(2, 2) = f(3, 3) = 0$$$, because they are already non-decreasing. So the total sum of extreme values of all subarrays of $$$a = 3 + 1 + 1 + 0 + 0 + 0 = 5$$$.
Java 11
standard input
[ "dp", "greedy", "math", "number theory" ]
f760f108c66f695e1e51dc6470d29ce7
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^5$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$10^5$$$.
2,300
For each test case, print a single integer  — the sum of extreme values of all subarrays of $$$a$$$ modulo $$$998\,244\,353$$$.
standard output
PASSED
6c49059084d6c1d4b898f727b94acadd
train_110.jsonl
1635604500
For an array $$$b$$$ of $$$n$$$ integers, the extreme value of this array is the minimum number of times (possibly, zero) the following operation has to be performed to make $$$b$$$ non-decreasing: Select an index $$$i$$$ such that $$$1 \le i \le |b|$$$, where $$$|b|$$$ is the current length of $$$b$$$. Replace $$$b_i$$$ with two elements $$$x$$$ and $$$y$$$ such that $$$x$$$ and $$$y$$$ both are positive integers and $$$x + y = b_i$$$. This way, the array $$$b$$$ changes and the next operation is performed on this modified array. For example, if $$$b = [2, 4, 3]$$$ and index $$$2$$$ gets selected, then the possible arrays after this operation are $$$[2, \underline{1}, \underline{3}, 3]$$$, $$$[2, \underline{2}, \underline{2}, 3]$$$, or $$$[2, \underline{3}, \underline{1}, 3]$$$. And consequently, for this array, this single operation is enough to make it non-decreasing: $$$[2, 4, 3] \rightarrow [2, \underline{2}, \underline{2}, 3]$$$.It's easy to see that every array of positive integers can be made non-decreasing this way.YouKn0wWho has an array $$$a$$$ of $$$n$$$ integers. Help him find the sum of extreme values of all nonempty subarrays of $$$a$$$ modulo $$$998\,244\,353$$$. If a subarray appears in $$$a$$$ multiple times, its extreme value should be counted the number of times it appears.An array $$$d$$$ is a subarray of an array $$$c$$$ if $$$d$$$ can be obtained from $$$c$$$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
256 megabytes
import java.util.*; import java.io.*; public class _1604_E { static final long MOD = 998244353; public static void main(String[] args) throws IOException { Reader in = new Reader(); PrintWriter out = new PrintWriter(System.out); int t = in.nextInt(); while(t-- > 0) { int n = in.nextInt(); int[] a = new int[n]; for(int i = 0; i < n; i++) { a[i] = in.nextInt(); } int[][] dp = new int[2][100005]; ArrayList<Integer>[] keys = new ArrayList[2]; keys[0] = new ArrayList<Integer>(); keys[1] = new ArrayList<Integer>(); dp[0][a[n - 1]] = 1; keys[0].add(a[n - 1]); long res = 0; int cur = 0; for(int i = n - 1; i > 0; i--) { int prev = -1; for(int key : keys[cur]) { int ceil = a[i - 1] / key; if(a[i - 1] % key != 0) ceil++; int min = a[i - 1] / ceil; dp[1 - cur][min] += dp[cur][key]; res = modadd(res, modmult(modmult(dp[cur][key], ceil - 1), i)); if(min != prev) { keys[1 - cur].add(min); prev = min; } dp[cur][key] = 0; } dp[1 - cur][a[i - 1]] += 1; keys[1 - cur].add(a[i - 1]); keys[cur].clear(); cur = 1 - cur; } out.println(res); } in.close(); out.close(); } static long modadd(long a, long b) { return (a + b + MOD) % MOD; } static long modmult(long a, long b) { return a * b % MOD; } static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') { if (cnt != 0) { break; } else { continue; } } buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') { c = read(); } boolean neg = (c == '-'); if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') { c = read(); } boolean neg = (c == '-'); if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') { c = read(); } boolean neg = (c == '-'); if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) { return -ret; } return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) { buffer[0] = -1; } } private byte read() throws IOException { if (bufferPointer == bytesRead) { fillBuffer(); } return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) { return; } din.close(); } } }
Java
["4\n3\n5 4 3\n4\n3 2 1 4\n1\n69\n8\n7264 40515 28226 92776 35285 21709 75124 48163"]
4 seconds
["5\n9\n0\n117"]
NoteLet $$$f(l, r)$$$ denote the extreme value of $$$[a_l, a_{l+1}, \ldots, a_r]$$$.In the first test case, $$$f(1, 3) = 3$$$, because YouKn0wWho can perform the following operations on the subarray $$$[5, 4, 3]$$$ (the newly inserted elements are underlined):$$$[5, 4, 3] \rightarrow [\underline{3}, \underline{2}, 4, 3] \rightarrow [3, 2, \underline{2}, \underline{2}, 3] \rightarrow [\underline{1}, \underline{2}, 2, 2, 2, 3]$$$; $$$f(1, 2) = 1$$$, because $$$[5, 4] \rightarrow [\underline{2}, \underline{3}, 4]$$$; $$$f(2, 3) = 1$$$, because $$$[4, 3] \rightarrow [\underline{1}, \underline{3}, 3]$$$; $$$f(1, 1) = f(2, 2) = f(3, 3) = 0$$$, because they are already non-decreasing. So the total sum of extreme values of all subarrays of $$$a = 3 + 1 + 1 + 0 + 0 + 0 = 5$$$.
Java 11
standard input
[ "dp", "greedy", "math", "number theory" ]
f760f108c66f695e1e51dc6470d29ce7
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^5$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$10^5$$$.
2,300
For each test case, print a single integer  — the sum of extreme values of all subarrays of $$$a$$$ modulo $$$998\,244\,353$$$.
standard output
PASSED
3cf08b4eb1ae0e355dcf885437d5a9d3
train_110.jsonl
1635604500
For an array $$$b$$$ of $$$n$$$ integers, the extreme value of this array is the minimum number of times (possibly, zero) the following operation has to be performed to make $$$b$$$ non-decreasing: Select an index $$$i$$$ such that $$$1 \le i \le |b|$$$, where $$$|b|$$$ is the current length of $$$b$$$. Replace $$$b_i$$$ with two elements $$$x$$$ and $$$y$$$ such that $$$x$$$ and $$$y$$$ both are positive integers and $$$x + y = b_i$$$. This way, the array $$$b$$$ changes and the next operation is performed on this modified array. For example, if $$$b = [2, 4, 3]$$$ and index $$$2$$$ gets selected, then the possible arrays after this operation are $$$[2, \underline{1}, \underline{3}, 3]$$$, $$$[2, \underline{2}, \underline{2}, 3]$$$, or $$$[2, \underline{3}, \underline{1}, 3]$$$. And consequently, for this array, this single operation is enough to make it non-decreasing: $$$[2, 4, 3] \rightarrow [2, \underline{2}, \underline{2}, 3]$$$.It's easy to see that every array of positive integers can be made non-decreasing this way.YouKn0wWho has an array $$$a$$$ of $$$n$$$ integers. Help him find the sum of extreme values of all nonempty subarrays of $$$a$$$ modulo $$$998\,244\,353$$$. If a subarray appears in $$$a$$$ multiple times, its extreme value should be counted the number of times it appears.An array $$$d$$$ is a subarray of an array $$$c$$$ if $$$d$$$ can be obtained from $$$c$$$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
256 megabytes
import java.io.*; import java.math.BigInteger; import java.util.*; public class Main { static int MOD = 998244353; // After writing solution, quick scan for: // array out of bounds // special cases e.g. n=1? // npe, particularly in maps // // Big numbers arithmetic bugs: // int overflow // sorting, or taking max, after MOD void solve() throws IOException { int T = ri(); // We need to initialize these only once... int AMAX = 100000; long[] rightCounts = new long[AMAX+1]; long[] currCounts = new long[AMAX+1]; for (int Ti = 0; Ti < T; Ti++) { int n = ri(); int[] a = ril(n); // dp[i][x] is the number of subarrays starting at i, where after the procedure, the // first element becomes x. // // Let split := number of splits needed to turn a[i] into x. // Then the answer is the sum of contributions over all (i, x) pairs of dp[i][x] * split. // How to compute dp[i][x]? // It's pretty difficult to compute dp[i][x] using dp[i][x+e] for e in [0..?] since // it's hard to tell what that ? should be. // It's easier to "compute the other way". That is, let's loop over dp[i+1][x]. Now, // with fixed x as the value to the right, we can add that contribution to // dp[i][y] where y = floor(a[i] / ceil(a[i] / x)). (see below). Set<Integer> rightNonzero = new HashSet<>(); Set<Integer> currNonzero = new HashSet<>(); rightCounts[a[n-1]]++; rightNonzero.add(a[n-1]); long ans = 0; for (int i = n-2; i >= 0; i--) { // Add all the contributions of i+1 to i. for (int x : rightNonzero) { // x is the value to the right long count = rightCounts[x]; // number of subarrays [i+1..] with the value x. int y = a[i] / ((a[i] + x - 1) / x); // y is the value i become int splits = (a[i] + x - 1) / x; // splits is the new number of elems when i become x. currCounts[y] += count; currNonzero.add(y); ans += (i+1) * count * (splits - 1); // Clear in preparation for swap rightCounts[x] = 0; } currCounts[a[i]]++; currNonzero.add(a[i]); // Swap around the memory we're re-using. long[] temp = rightCounts; // This is empty rightCounts = currCounts; currCounts = temp; Set<Integer> temp2 = rightNonzero; rightNonzero = currNonzero; currNonzero = temp2; currNonzero.clear(); ans %= MOD; } // Clear out rightCounts in preparation for next test case for (int x : rightNonzero) rightCounts[x] = 0; pw.println(ans); } } // IMPORTANT // DID YOU CHECK THE COMMON MISTAKES ABOVE? // Finds the extreme value for subarray a[i..j]. int solve(int[] a, int l, int r) { if (l >= r) return 0; int ans = 0; int upper = a[r]; for (int i = r-1; i >= l; i--) { if (a[i] <= upper) { upper = a[i]; continue; } // Want a[i] / k <= upper (k sections) // So we want k >= a[i] / upper int k = (a[i] + upper - 1) / upper; ans += k-1; upper = a[i] / k; } return ans; } // Template code below BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(System.out); public static void main(String[] args) throws IOException { Main m = new Main(); m.solve(); m.close(); } void close() throws IOException { pw.flush(); pw.close(); br.close(); } int ri() throws IOException { return Integer.parseInt(br.readLine().trim()); } long rl() throws IOException { return Long.parseLong(br.readLine().trim()); } int[] ril(int n) throws IOException { int[] nums = new int[n]; int c = 0; for (int i = 0; i < n; i++) { int sign = 1; c = br.read(); int x = 0; if (c == '-') { sign = -1; c = br.read(); } while (c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = br.read(); } nums[i] = x * sign; } while (c != '\n' && c != -1) c = br.read(); return nums; } long[] rll(int n) throws IOException { long[] nums = new long[n]; int c = 0; for (int i = 0; i < n; i++) { int sign = 1; c = br.read(); long x = 0; if (c == '-') { sign = -1; c = br.read(); } while (c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = br.read(); } nums[i] = x * sign; } while (c != '\n' && c != -1) c = br.read(); return nums; } int[] rkil() throws IOException { int sign = 1; int c = br.read(); int x = 0; if (c == '-') { sign = -1; c = br.read(); } while (c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = br.read(); } return ril(x); } long[] rkll() throws IOException { int sign = 1; int c = br.read(); int x = 0; if (c == '-') { sign = -1; c = br.read(); } while (c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = br.read(); } return rll(x); } char[] rs() throws IOException { return br.readLine().toCharArray(); } void sort(int[] A) { Random r = new Random(); for (int i = A.length-1; i > 0; i--) { int j = r.nextInt(i+1); int temp = A[i]; A[i] = A[j]; A[j] = temp; } Arrays.sort(A); } void printDouble(double d) { pw.printf("%.16f", d); } }
Java
["4\n3\n5 4 3\n4\n3 2 1 4\n1\n69\n8\n7264 40515 28226 92776 35285 21709 75124 48163"]
4 seconds
["5\n9\n0\n117"]
NoteLet $$$f(l, r)$$$ denote the extreme value of $$$[a_l, a_{l+1}, \ldots, a_r]$$$.In the first test case, $$$f(1, 3) = 3$$$, because YouKn0wWho can perform the following operations on the subarray $$$[5, 4, 3]$$$ (the newly inserted elements are underlined):$$$[5, 4, 3] \rightarrow [\underline{3}, \underline{2}, 4, 3] \rightarrow [3, 2, \underline{2}, \underline{2}, 3] \rightarrow [\underline{1}, \underline{2}, 2, 2, 2, 3]$$$; $$$f(1, 2) = 1$$$, because $$$[5, 4] \rightarrow [\underline{2}, \underline{3}, 4]$$$; $$$f(2, 3) = 1$$$, because $$$[4, 3] \rightarrow [\underline{1}, \underline{3}, 3]$$$; $$$f(1, 1) = f(2, 2) = f(3, 3) = 0$$$, because they are already non-decreasing. So the total sum of extreme values of all subarrays of $$$a = 3 + 1 + 1 + 0 + 0 + 0 = 5$$$.
Java 11
standard input
[ "dp", "greedy", "math", "number theory" ]
f760f108c66f695e1e51dc6470d29ce7
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^5$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$10^5$$$.
2,300
For each test case, print a single integer  — the sum of extreme values of all subarrays of $$$a$$$ modulo $$$998\,244\,353$$$.
standard output
PASSED
aaafa80b40639f180ce3323d3b24df0d
train_110.jsonl
1635604500
For an array $$$b$$$ of $$$n$$$ integers, the extreme value of this array is the minimum number of times (possibly, zero) the following operation has to be performed to make $$$b$$$ non-decreasing: Select an index $$$i$$$ such that $$$1 \le i \le |b|$$$, where $$$|b|$$$ is the current length of $$$b$$$. Replace $$$b_i$$$ with two elements $$$x$$$ and $$$y$$$ such that $$$x$$$ and $$$y$$$ both are positive integers and $$$x + y = b_i$$$. This way, the array $$$b$$$ changes and the next operation is performed on this modified array. For example, if $$$b = [2, 4, 3]$$$ and index $$$2$$$ gets selected, then the possible arrays after this operation are $$$[2, \underline{1}, \underline{3}, 3]$$$, $$$[2, \underline{2}, \underline{2}, 3]$$$, or $$$[2, \underline{3}, \underline{1}, 3]$$$. And consequently, for this array, this single operation is enough to make it non-decreasing: $$$[2, 4, 3] \rightarrow [2, \underline{2}, \underline{2}, 3]$$$.It's easy to see that every array of positive integers can be made non-decreasing this way.YouKn0wWho has an array $$$a$$$ of $$$n$$$ integers. Help him find the sum of extreme values of all nonempty subarrays of $$$a$$$ modulo $$$998\,244\,353$$$. If a subarray appears in $$$a$$$ multiple times, its extreme value should be counted the number of times it appears.An array $$$d$$$ is a subarray of an array $$$c$$$ if $$$d$$$ can be obtained from $$$c$$$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.HashMap; import java.util.StringTokenizer; public class A1603 { private static final int P = 998244353; private static final int M = 100000; private static final int SQ = 800; private static final int SQ2 = 400; private static int[][] g = new int[2][SQ + 1]; private static int getB1(int a, int b) { return a / ceil(a, b); } private static int getMoves(int a, int b) { return ceil(a, b) - 1; } private static int ceil(int a, int b) { return (a + b - 1) / b; } private static int getIndex(int num, int last) { if (last * 1l * last >= num) { return num / last; } return SQ2 + last; } private static int count(int[] a, int n) { Arrays.fill(g[0], 0); Arrays.fill(g[1], 0); int ans = 0; int active = 0; for (int i = 1; i < n; i++) { // compute g[] Arrays.fill(g[active], 0); for (int j = 1; j <= SQ2; j++) { int last = a[i] / j; if (last == 0) { g[active][j] = 0; continue; } long res = (getMoves(a[i - 1], last) * 1l * i) % P; res = (res + g[active ^ 1][getIndex(a[i - 1], getB1(a[i - 1], last))]) % P; g[active][j] = (int) res; } for (int j = SQ2 + 1; j <= SQ; j++) { // last = (j - sq2), if [a[i] / [a[i] / (j - sq2)]] == j - sq2. int div = a[i] / (j - SQ2); if (div <= 0 || a[i] / div != j - SQ2) { g[active][j] = 0; continue; } int last = j - SQ2; long res = (getMoves(a[i - 1], last) * 1l * i) % P; res = (res + g[active ^ 1][getIndex(a[i - 1], getB1(a[i - 1], last))]) % P; g[active][j] = (int) res; } ans = (ans + g[active][1]) % P; active ^= 1; } return ans; } public static void main(String[] args) throws IOException { BufferedReader rd = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(System.out); int numTests = Integer.parseInt(rd.readLine()); for (int t = 0; t < numTests; t++) { int n = Integer.parseInt(rd.readLine()); StringTokenizer st = new StringTokenizer(rd.readLine()); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = Integer.parseInt(st.nextToken()); } pw.println(count(a, n)); } pw.flush(); pw.close(); rd.close(); } }
Java
["4\n3\n5 4 3\n4\n3 2 1 4\n1\n69\n8\n7264 40515 28226 92776 35285 21709 75124 48163"]
4 seconds
["5\n9\n0\n117"]
NoteLet $$$f(l, r)$$$ denote the extreme value of $$$[a_l, a_{l+1}, \ldots, a_r]$$$.In the first test case, $$$f(1, 3) = 3$$$, because YouKn0wWho can perform the following operations on the subarray $$$[5, 4, 3]$$$ (the newly inserted elements are underlined):$$$[5, 4, 3] \rightarrow [\underline{3}, \underline{2}, 4, 3] \rightarrow [3, 2, \underline{2}, \underline{2}, 3] \rightarrow [\underline{1}, \underline{2}, 2, 2, 2, 3]$$$; $$$f(1, 2) = 1$$$, because $$$[5, 4] \rightarrow [\underline{2}, \underline{3}, 4]$$$; $$$f(2, 3) = 1$$$, because $$$[4, 3] \rightarrow [\underline{1}, \underline{3}, 3]$$$; $$$f(1, 1) = f(2, 2) = f(3, 3) = 0$$$, because they are already non-decreasing. So the total sum of extreme values of all subarrays of $$$a = 3 + 1 + 1 + 0 + 0 + 0 = 5$$$.
Java 11
standard input
[ "dp", "greedy", "math", "number theory" ]
f760f108c66f695e1e51dc6470d29ce7
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^5$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$10^5$$$.
2,300
For each test case, print a single integer  — the sum of extreme values of all subarrays of $$$a$$$ modulo $$$998\,244\,353$$$.
standard output