exec_outcome
stringclasses 1
value | code_uid
stringlengths 32
32
| file_name
stringclasses 111
values | prob_desc_created_at
stringlengths 10
10
| prob_desc_description
stringlengths 63
3.8k
| prob_desc_memory_limit
stringclasses 18
values | source_code
stringlengths 117
65.5k
| lang_cluster
stringclasses 1
value | prob_desc_sample_inputs
stringlengths 2
802
| prob_desc_time_limit
stringclasses 27
values | prob_desc_sample_outputs
stringlengths 2
796
| prob_desc_notes
stringlengths 4
3k
⌀ | lang
stringclasses 5
values | prob_desc_input_from
stringclasses 3
values | tags
sequencelengths 0
11
| src_uid
stringlengths 32
32
| prob_desc_input_spec
stringlengths 28
2.37k
⌀ | difficulty
int64 -1
3.5k
⌀ | prob_desc_output_spec
stringlengths 17
1.47k
⌀ | prob_desc_output_to
stringclasses 3
values | hidden_unit_tests
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PASSED | d995bb95fb0935074cdf3bbabfc79c62 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | //package com.example.practice.codeforces.sc2000;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
//D. For Gamers. By Gamers.
public class Solution1 {
public static void main (String [] args) throws IOException {
// Use BufferedReader rather than RandomAccessFile; it's much faster
final BufferedReader input = new BufferedReader(new InputStreamReader(System.in));
// input file name goes above
//PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("inflate.out")));
StringTokenizer st = new StringTokenizer(input.readLine());
int n = Integer.parseInt(st.nextToken());
int C = Integer.parseInt(st.nextToken());
long[][] bs = new long[n][];
for (int i=0; i<n; ++i){
st = new StringTokenizer(input.readLine());
bs[i] = new long[3];
bs[i][0] = Long.parseLong(st.nextToken());
bs[i][1] = Long.parseLong(st.nextToken());
bs[i][2] = Long.parseLong(st.nextToken());
}
st = new StringTokenizer(input.readLine());
int m = Integer.parseInt(st.nextToken());
long[][] ms = new long[m][];
for (int i=0; i<m; ++i){
st = new StringTokenizer(input.readLine());
ms[i] = new long[2];
ms[i][0] = Long.parseLong(st.nextToken());
ms[i][1] = Long.parseLong(st.nextToken());
}
int[] res = calc(n, m, C, bs, ms);
for (int i=0;i<m;++i){
System.out.print(res[i]);
if (i<m-1)System.out.print(" ");
}
System.out.println();
//out.close(); // close the output file
}
private static int[] calc(final int n, final int m, final int C, final long[][] bs, final long[][] ms) {
final int c2 = (int) Math.sqrt(C);
long[] rd = new long[C+1], cs = new long[C+1];
for (long[] kk : bs){
int t = (int)kk[0];
rd[t] = Math.max(rd[t], kk[1]*kk[2]);
}
for (int i=1;i<=c2;++i){
for (int j=i*i,k=i;j<=C;j+=i,k++){
cs[j] = Math.max(cs[j], k*rd[i]);
cs[j] = Math.max(cs[j], i*rd[k]);
}
}
for (int i=1;i<=C;++i){
cs[i] = Math.max(cs[i], cs[i-1]);
}
int p = 0;
int[] res = new int[m];
for (long[] kk : ms){
int l=1, r=C, mid;
long t = kk[0] * kk[1];
while (l<=r){
mid = (l+r)>>1;
if (cs[mid] > t){
r = mid-1;
}else {
l = mid+1;
}
}
res[p++] = l<=C ? l : -1;
}
return res;
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | b7b23b04cd81dfd6f95304cf2ef174ad | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | //package com.example.practice.codeforces.sc2000;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.StringTokenizer;
//D. For Gamers. By Gamers.
public class Solution1 {
public static void main (String [] args) throws IOException {
// Use BufferedReader rather than RandomAccessFile; it's much faster
final BufferedReader input = new BufferedReader(new InputStreamReader(System.in));
// input file name goes above
//PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("inflate.out")));
StringTokenizer st = new StringTokenizer(input.readLine());
int n = Integer.parseInt(st.nextToken());
int C = Integer.parseInt(st.nextToken());
long[][] bs = new long[n][];
for (int i=0; i<n; ++i){
st = new StringTokenizer(input.readLine());
bs[i] = new long[3];
bs[i][0] = Long.parseLong(st.nextToken());
bs[i][1] = Long.parseLong(st.nextToken());
bs[i][2] = Long.parseLong(st.nextToken());
}
st = new StringTokenizer(input.readLine());
int m = Integer.parseInt(st.nextToken());
long[][] ms = new long[m][];
for (int i=0; i<m; ++i){
st = new StringTokenizer(input.readLine());
ms[i] = new long[2];
ms[i][0] = Long.parseLong(st.nextToken());
ms[i][1] = Long.parseLong(st.nextToken());
}
int[] res = calc(n, m, C, bs, ms);
for (int i=0;i<m;++i){
System.out.print(res[i]);
if (i<m-1)System.out.print(" ");
}
System.out.println();
//out.close(); // close the output file
}
private static int[] calc(final int n, final int m, final int C, final long[][] bs, final long[][] ms) {
final int c2 = (int) Math.sqrt(C);
long[] rd = new long[C+1], cs = new long[C+1];
for (long[] kk : bs){
int t = (int)kk[0];
rd[t] = Math.max(rd[t], kk[1]*kk[2]);
}
for (int i=1;i<=c2;++i){
for (int j=i*i,k=i;j<=C;j+=i,k++){
cs[j] = Math.max(cs[j], k*rd[i]);
cs[j] = Math.max(cs[j], i*rd[k]);
}
}
for (int i=1;i<=C;++i){
cs[i] = Math.max(cs[i], cs[i-1]);
}
int p = 0;
int[] res = new int[m];
for (long[] kk : ms){
int l=1, r=C, mid;
long t = kk[0] * kk[1];
while (l<=r){
mid = (l+r)>>1;
if (cs[mid] > t){
r = mid-1;
}else {
l = mid+1;
}
}
res[p++] = l<=C ? l : -1;
}
return res;
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | fdf8182b44483b17e235b2becbf930d8 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.util.*;
public class A {
static Scanner sc = new Scanner(System.in);
public static void main(String[] args) {
solve(0);
}
private static void solve(int t) {
int n = sc.nextInt();
int c = sc.nextInt();
long [][] squad = new long [n][2];
long [] maxDh = new long [c + 1];
Map<Long, Long> costMap = new HashMap<>();
for (int i = 0; i < n; ++i) {
squad[i][0] = sc.nextLong();
squad[i][1] = sc.nextLong() * sc.nextLong();
costMap.put(squad[i][0], Math.max(costMap.getOrDefault(squad[i][0], 0L), squad[i][1]));
}
long dh;
long sum = 0;
for (long key : costMap.keySet()) {
dh = costMap.get(key);
sum = 0;
for (int i = (int)key; i < maxDh.length; i += key) {
sum += dh;
maxDh[i] = Math.max(maxDh[i], sum);
}
}
long maxVisited = 0;
for (int i = 0; i < maxDh.length; ++i) {
maxVisited = Math.max(maxVisited, maxDh[i]);
maxDh[i] = maxVisited;
}
int m = sc.nextInt();
long [] res = new long [m];
long val;
for (int i = 0; i < m; ++i) {
val = sc.nextLong() * sc.nextLong();
res[i] = getSmallestGreater(val, maxDh);
}
StringBuilder sb = new StringBuilder();
for (int i = 0; i < res.length; ++i) {
sb.append(res[i]);
sb.append(' ');
}
System.out.println(sb);
}
private static long getSmallestGreater(long target, long [] dh) {
int h = dh.length - 1;
int l = 0;
if (dh[h] <= target)
return -1;
int mid;
while (h - l > 1) {
mid = (h + l) / 2;
if (dh[mid] <= target)
l = mid;
else
h = mid;
}
return h;
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 920c271f141671e30fce9da81594625b | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.*;
import java.util.*;
public class d {
public static void main(String[] args) throws Exception {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
StringTokenizer tokenizer = new StringTokenizer(in.readLine());
int nt = Integer.parseInt(tokenizer.nextToken());
int c = Integer.parseInt(tokenizer.nextToken());
long[] maxp = new long[c + 1];
for (int i = 0; i < nt; i++) {
tokenizer = new StringTokenizer(in.readLine());
int c1 = Integer.parseInt(tokenizer.nextToken());
long d1 = Integer.parseInt(tokenizer.nextToken());
long h1 = Integer.parseInt(tokenizer.nextToken());
maxp[c1] = Math.max(maxp[c1], d1 * h1);
}
for (int i = 1; i < maxp.length; i++) {
for(int j = 1; j * i < maxp.length; j++){
maxp[j*i] = Math.max(maxp[j*i], maxp[i] * j);
}
}
for (int i = 1; i < maxp.length; i++) {
maxp[i] = Math.max(maxp[i], maxp[i - 1]);
}
//System.out.println(Arrays.toString(maxp));
int nm = Integer.parseInt(in.readLine());
StringBuilder b = new StringBuilder();
for(int i = 0; i < nm; i++){
tokenizer = new StringTokenizer(in.readLine());
long v = Long.parseLong(tokenizer.nextToken()) * Long.parseLong(tokenizer.nextToken());
int low = 1;
int high = c+1;
while(low < high){
int mid = low + (high - low) / 2;
if(maxp[mid] > v){
high = mid;
}
else{
low = mid + 1;
}
}
b.append((low > c ? -1 : low) + " ");
}
System.out.println(b);
in.close();
out.close();
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | ec3c508fbbac7951757507bc77a3c558 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.util.*;
import java.io.*;
public class codeforce {
static boolean multipleTC = false;
final static int Mod = 1000000007;
final static int Mod2 = 998244353;
final double PI = 3.14159265358979323846;
int MAX = 1000000007;
void pre() throws Exception {
}
void solve(int t) throws Exception {
StringBuilder ans = new StringBuilder();
int n = ni();
int c = ni();
long dp[] = new long[c+1];
Arrays.fill(dp, 0);
for(int i=1;i<=n;i++) {
int ci = ni();
long di = nl();
long hi = nl();
dp[ci] = Math.max(dp[ci], (di*hi));
}
for(int i=1;i<=c;i++) {
for(int j=i;j<=c;j+=i) {
dp[j] = Math.max(dp[j], (dp[i]*(j/i)));
}
}
for(int i=1;i<=c;i++) {
dp[i] = Math.max(dp[i], dp[i-1]);
}
int m = ni();
for(int i=0;i<m;i++) {
long Di = nl();
long Hi = nl();
long val = Di*Hi;
int ind = binarySearch(dp, 1, c, val, -1);
ans.append(ind + " ");
}
pn(ans);
}
double dist(int x1, int y1, int x2, int y2) {
double a = x1 - x2, b = y1 - y2;
return Math.sqrt((a * a) + (b * b));
}
int[] readArr(int n) throws Exception {
int arr[] = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = ni();
}
return arr;
}
void sort(int arr[], int left, int right) {
ArrayList<Integer> list = new ArrayList<>();
for (int i = left; i <= right; i++)
list.add(arr[i]);
Collections.sort(list);
for (int i = left; i <= right; i++)
arr[i] = list.get(i - left);
}
void sort(int arr[]) {
ArrayList<Integer> list = new ArrayList<>();
for (int i = 0; i < arr.length; i++)
list.add(arr[i]);
Collections.sort(list);
for (int i = 0; i < arr.length; i++)
arr[i] = list.get(i);
}
// Manual Function Implementation
public int binarySearch(long dp[], int lo, int hi, long x, int succ) {
while(lo<=hi) {
int mid = lo + (hi-lo)/2;
if(dp[mid] <= x)
return binarySearch(dp, (mid+1), hi, x, succ);
else {
succ = mid;
return binarySearch(dp, lo, (mid-1), x , succ);
}
}
return succ;
}
public long max(long... arr) {
long max = arr[0];
for (long itr : arr)
max = Math.max(max, itr);
return max;
}
public int max(int... arr) {
int max = arr[0];
for (int itr : arr)
max = Math.max(max, itr);
return max;
}
public long min(long... arr) {
long min = arr[0];
for (long itr : arr)
min = Math.min(min, itr);
return min;
}
public int min(int... arr) {
int min = arr[0];
for (int itr : arr)
min = Math.min(min, itr);
return min;
}
public long sum(long... arr) {
long sum = 0;
for (long itr : arr)
sum += itr;
return sum;
}
public long sum(int... arr) {
long sum = 0;
for (int itr : arr)
sum += itr;
return sum;
}
String bin(long n) {
return Long.toBinaryString(n);
}
String bin(int n) {
return Integer.toBinaryString(n);
}
static int bitCount(int x) {
return x == 0 ? 0 : (1 + bitCount(x & (x - 1)));
}
static void dbg(Object... o) {
System.err.println(Arrays.deepToString(o));
}
int bit(long n) {
return (n == 0) ? 0 : (1 + bit(n & (n - 1)));
}
int abs(int a) {
return (a < 0) ? -a : a;
}
long abs(long a) {
return (a < 0) ? -a : a;
}
void p(Object o) {
out.print(o);
}
void pn(Object o) {
out.println(o);
}
void pni(Object o) {
out.println(o);
out.flush();
}
void pn(int[] arr) {
int n = arr.length;
StringBuilder sb = new StringBuilder();
for (int i = 0; i < n; i++) {
sb.append(arr[i] + " ");
}
pn(sb);
}
void pn(long[] arr) {
int n = arr.length;
StringBuilder sb = new StringBuilder();
for (int i = 0; i < n; i++) {
sb.append(arr[i] + " ");
}
pn(sb);
}
String n() throws Exception {
return in.next();
}
String nln() throws Exception {
return in.nextLine();
}
int ni() throws Exception {
return Integer.parseInt(in.next());
}
long nl() throws Exception {
return Long.parseLong(in.next());
}
double nd() throws Exception {
return Double.parseDouble(in.next());
}
public static void main(String[] args) throws Exception {
new codeforce().run();
}
FastReader in;
PrintWriter out;
void run() throws Exception {
in = new FastReader();
out = new PrintWriter(System.out);
int T = (multipleTC) ? ni() : 1;
pre();
for (int t = 1; t <= T; t++)
solve(t);
out.flush();
out.close();
}
class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) throws Exception {
br = new BufferedReader(new FileReader(s));
}
String next() throws Exception {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new Exception(e.toString());
}
}
return st.nextToken();
}
String nextLine() throws Exception {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
throw new Exception(e.toString());
}
return str;
}
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 3bae147dd7320744ce7008b5d4122563 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.*;
import java.util.*;
public class ForGamersByGamers {
//io
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static PrintWriter out = new PrintWriter(System.out);
static boolean debug = false;
//param
static int N;
static int C;
static long best[];
static int M;
public static void main(String[] args) throws IOException {
//parse input
StringTokenizer st = new StringTokenizer(br.readLine());
N = Integer.parseInt(st.nextToken());
C = Integer.parseInt(st.nextToken());
best = new long[C+1];
for (int i=0;i<N;i++){
st = new StringTokenizer(br.readLine());
int c = Integer.parseInt(st.nextToken());
long strength = Integer.parseInt(st.nextToken()) * 1L * Integer.parseInt(st.nextToken());
best[c]=Math.max(best[c],strength);
}
if (debug) System.out.println(Arrays.toString(best));
//what is the maximum power for cost c?
for (int unit=C;unit>=1;unit--){
for (int spend=unit;spend<=C;spend+=unit){
best[spend]=Math.max(best[spend],best[unit]*(spend/unit));
}
}
if (debug) System.out.println(Arrays.toString(best));
for (int i=1;i<=C;i++){
best[i]=Math.max(best[i],best[i-1]);
}
if (debug) System.out.println(Arrays.toString(best));
//query monsters
M = Integer.parseInt(br.readLine());
for (int i=0;i<M;i++){
st = new StringTokenizer(br.readLine());
long strength = Integer.parseInt(st.nextToken()) * Long.parseLong(st.nextToken());
out.print(cheapestWin(strength)+" ");
}
out.close();
}
public static int cheapestWin(long strength){
if (strength >= best[C]) return -1;
int lo=1;
int hi=C;
while (lo < hi){
int mid = (lo+hi)/2;
if (best[mid] > strength) hi=mid;
else lo=mid+1;
}
return lo;
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | b31c64309c6ced5934b7769c11e8beae | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.*;
import java.util.*;
public class For_Gamer_By_Gamers {
static FastScanner fs;
static FastWriter fw;
static boolean checkOnlineJudge = System.getProperty("ONLINE_JUDGE") == null;
private static final int[][] kdir = new int[][]{{-1, 2}, {-2, 1}, {-2, -1}, {-1, -2}, {1, -2}, {2, -1}, {2, 1}, {1, 2}};
private static final int[][] dir = new int[][]{{-1, 0}, {1, 0}, {0, 1}, {0, -1}};
private static final int iMax = (int) (1e9 + 100), iMin = (int) (-1e9 - 100);
private static final long lMax = (long) (1e18 + 100), lMin = (long) (-1e18 - 100);
private static final int mod1 = (int) (1e9 + 7);
private static final int mod2 = 998244353;
public static void main(String[] args) throws IOException {
fs = new FastScanner();
fw = new FastWriter();
int t = 1;
//t = fs.nextInt();
while (t-- > 0) {
solve();
}
fw.out.close();
}
private static long[] dp;
private static void solve() {
int n = fs.nextInt(), c = fs.nextInt();
dp = new long[c + 1];
for (int i = 0; i < n; i++) {
int curr_c = fs.nextInt();
dp[curr_c] = Math.max(dp[curr_c], fs.nextLong() * fs.nextLong());
}
for (int i = 1; i <= c; i++) {
dp[i] = Math.max(dp[i], dp[i - 1]);
for (int j = i; j <= c; j += i) {
dp[j] = Math.max(dp[j], (j / i) * dp[i]);
}
}
int m = fs.nextInt();
for (int i = 0; i < m; i++) {
long temp = fs.nextLong() * fs.nextLong();
int l = 1, r = c;
while (r - l > 1) {
int mid = l + ((r - l) / 2);
if (dp[mid] > temp) r = mid;
else l = mid;
}
if (dp[l] > temp) fw.out.print(l + " ");
else if (dp[r] > temp) fw.out.print(r + " ");
else fw.out.print(-1 + " ");
}
}
private static class UnionFind {
private final int[] parent;
private final int[] rank;
UnionFind(int n) {
parent = new int[n + 5];
rank = new int[n + 5];
for (int i = 0; i <= n; i++) {
parent[i] = i;
rank[i] = 0;
}
}
private int find(int i) {
if (parent[i] == i)
return i;
return parent[i] = find(parent[i]);
}
private void union(int a, int b) {
a = find(a);
b = find(b);
if (a != b) {
if (rank[a] < rank[b]) {
int temp = a;
a = b;
b = temp;
}
parent[b] = a;
if (rank[a] == rank[b])
rank[a]++;
}
}
}
private static long gcd(long a, long b) {
return (b == 0 ? a : gcd(b, a % b));
}
private static long lcm(long a, long b) {
return ((a * b) / gcd(a, b));
}
private static long pow(long a, long b, int mod) {
long result = 1;
while (b > 0) {
if ((b & 1L) == 1) {
result = (result * a) % mod;
}
a = (a * a) % mod;
b >>= 1;
}
return result;
}
private static long ceilDiv(long a, long b) {
return ((a + b - 1) / b);
}
private static long getMin(long... args) {
long min = lMax;
for (long arg : args)
min = Math.min(min, arg);
return min;
}
private static long getMax(long... args) {
long max = lMin;
for (long arg : args)
max = Math.max(max, arg);
return max;
}
private static boolean isPalindrome(String s, int l, int r) {
int i = l, j = r;
while (j - i >= 1) {
if (s.charAt(i) != s.charAt(j))
return false;
i++;
j--;
}
return true;
}
private static List<Integer> primes(int n) {
boolean[] primeArr = new boolean[n + 5];
Arrays.fill(primeArr, true);
for (int i = 2; (i * i) <= n; i++) {
if (primeArr[i]) {
for (int j = i * i; j <= n; j += i) {
primeArr[j] = false;
}
}
}
List<Integer> primeList = new ArrayList<>();
for (int i = 2; i <= n; i++) {
if (primeArr[i])
primeList.add(i);
}
return primeList;
}
private static class Pair<U, V> {
private final U first;
private final V second;
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Pair<?, ?> pair = (Pair<?, ?>) o;
return first.equals(pair.first) && second.equals(pair.second);
}
@Override
public int hashCode() {
return Objects.hash(first, second);
}
@Override
public String toString() {
return "(" + first + ", " + second + ")";
}
private Pair(U ff, V ss) {
this.first = ff;
this.second = ss;
}
}
private static <T> void randomizeArr(T[] arr, int n) {
Random r = new Random();
for (int i = (n - 1); i > 0; i--) {
int j = r.nextInt(i + 1);
swap(arr, i, j);
}
}
private static Integer[] readIntArray(int n) {
Integer[] arr = new Integer[n];
for (int i = 0; i < n; i++)
arr[i] = fs.nextInt();
return arr;
}
private static List<Integer> readIntList(int n) {
List<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++)
list.add(fs.nextInt());
return list;
}
private static <T> void swap(T[] arr, int i, int j) {
T temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
private static <T> void displayArr(T[] arr) {
for (T x : arr)
fw.out.print(x + " ");
fw.out.println();
}
private static <T> void displayList(List<T> list) {
for (T x : list)
fw.out.print(x + " ");
fw.out.println();
}
private static class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner() throws IOException {
if (checkOnlineJudge)
this.br = new BufferedReader(new FileReader("src/input.txt"));
else
this.br = new BufferedReader(new InputStreamReader(System.in));
this.st = new StringTokenizer("");
}
public String next() {
while (!st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException err) {
err.printStackTrace();
}
}
return st.nextToken();
}
public String nextLine() {
if (st.hasMoreTokens()) {
return st.nextToken("").trim();
}
try {
return br.readLine().trim();
} catch (IOException err) {
err.printStackTrace();
}
return "";
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
private static class FastWriter {
PrintWriter out;
FastWriter() throws IOException {
if (checkOnlineJudge)
out = new PrintWriter(new FileWriter("src/output.txt"));
else
out = new PrintWriter(System.out);
}
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | a436dce5e7ba23d0c4f0bbb5df743c70 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.*;
import java.util.*;
public class q4 {
public static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
// public static long mod = 1000000007;
public static void solve() throws Exception {
String[] parts = br.readLine().split(" ");
int n = Integer.parseInt(parts[0]);
int C = Integer.parseInt(parts[1]);
long[] cost = new long[C + 1];
for(int i = 0;i < n;i++){
parts = br.readLine().split(" ");
int v1 = Integer.parseInt(parts[0]);
long v2 = Long.parseLong(parts[1]);
long v3 = Long.parseLong(parts[2]);
cost[v1] = Math.max(cost[v1],v2 * v3);
}
for(int i = 1;i <= C;i++){
long val = cost[i];
for(int j = i;j <= C;j += i){
cost[j] = Math.max(cost[j],val);
val += cost[i];
}
}
for(int i = 2;i <= C;i++) cost[i] = Math.max(cost[i],cost[i - 1]);
StringBuilder ans = new StringBuilder();
int m = Integer.parseInt(br.readLine());
for(int i = 0;i < m;i++){
parts = br.readLine().split(" ");
long d2 = Long.parseLong(parts[0]);
long h2 = Long.parseLong(parts[1]);
int si = 0,ei = C;
int val = C + 1;
while(si <= ei){
int mid = si + (ei - si) / 2;
if(d2 * h2 < cost[mid]){
val = mid;
ei = mid - 1;
}else{
si = mid + 1;
}
}
if(val == C + 1) ans.append(-1).append(" ");
else ans.append(val).append(" ");
}
System.out.println(ans);
}
public static void main(String[] args) throws Exception {
// int tests = Integer.parseInt(br.readLine());
// for (int test = 1; test <= tests; test++) {
solve();
// }
}
// public static ArrayList<Integer> primes;
// public static void seive(int n){
// primes = new ArrayList<>();
// boolean[] arr = new boolean[n + 1];
// Arrays.fill(arr,true);
//
// for(int i = 2;i * i <= n;i++){
// if(arr[i]) {
// for (int j = i * i; j <= n; j += i) {
// arr[j] = false;
// }
// }
// }
// for(int i = 2;i <= n;i++) if(arr[i]) primes.add(i);
// }
// public static void sort(int[] arr){
// ArrayList<Integer> temp = new ArrayList<>();
// for(int val : arr) temp.add(val);
//
// Collections.sort(temp);
//
// for(int i = 0;i < arr.length;i++) arr[i] = temp.get(i);
// }
// public static void sort(long[] arr){
// ArrayList<Long> temp = new ArrayList<>();
// for(long val : arr) temp.add(val);
//
// Collections.sort(temp);
//
// for(int i = 0;i < arr.length;i++) arr[i] = temp.get(i);
// }
//
// public static long power(long a,long b,long mod){
// if(b == 0) return 1;
//
// long p = power(a,b / 2,mod);
// p = (p * p) % mod;
//
// if(b % 2 == 1) return (p * a) % mod;
// return p;
// }
// public static long modDivide(long a,long b,long mod){
// return ((a % mod) * (power(b,mod - 2,mod) % mod)) % mod;
// }
//
// public static int GCD(int a,int b){
// return b == 0 ? a : GCD(b,a % b);
// }
// public static long GCD(long a,long b){
// return b == 0 ? a : GCD(b,a % b);
// }
//
// public static int LCM(int a,int b){
// return a * b / GCD(a,b);
// }
// public static long LCM(long a,long b){
// return a * b / GCD(a,b);
// }
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | a31be1ce1ab55c9ea60f96dc4985fba8 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.*;
import java.util.*;
public class ForGamersByGamers {
private static final int C_MAX = 1000000;
public static void solve(FastIO io) {
final int N = io.nextInt();
final int C = io.nextInt();
long[] bestUnit = new long[C_MAX + 1];
for (int i = 0; i < N; ++i) {
final int Ci = io.nextInt();
final int Di = io.nextInt();
final int Hi = io.nextInt();
bestUnit[Ci] = Math.max(bestUnit[Ci], 1L * Di * Hi);
}
long[] maxPower = new long[C_MAX + 1];
for (int i = 1; i <= C_MAX; ++i) {
if (bestUnit[i] <= 0) {
continue;
}
long power = bestUnit[i];
for (int j = i; j <= C_MAX; j += i) {
maxPower[j] = Math.max(maxPower[j], power);
power += bestUnit[i];
}
}
final int M = io.nextInt();
Monster[] monsters = new Monster[M];
for (int i = 0; i < M; ++i) {
final int Dj = io.nextInt();
final long Hi = io.nextLong();
monsters[i] = new Monster(i, Dj * Hi);
}
Arrays.parallelSort(monsters, Monster.BY_POWER);
int[] ans = new int[M];
int currCost = 0;
long currPower = 0;
for (int i = 0; i < M; ++i) {
while (currPower <= monsters[i].power) {
++currCost;
if (currCost > C) {
break;
}
currPower = Math.max(currPower, maxPower[currCost]);
}
if (currCost <= C) {
ans[monsters[i].id] = currCost;
} else {
ans[monsters[i].id] = -1;
}
}
io.printlnArray(ans);
}
private static class Monster {
public int id;
public long power;
public Monster(int id, long power) {
this.id = id;
this.power = power;
}
public static final Comparator<Monster> BY_POWER = new Comparator<Monster>() {
@Override
public int compare(Monster a, Monster b) {
return Long.compare(a.power, b.power);
}
};
}
public static class FastIO {
private InputStream reader;
private PrintWriter writer;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public FastIO(InputStream r, OutputStream w) {
reader = r;
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(w)));
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = reader.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
public String nextString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
// TODO: read this byte-by-byte like the other read functions.
public double nextDouble() {
return Double.parseDouble(nextString());
}
public int[] nextIntArray(int n) {
return nextIntArray(n, 0);
}
public int[] nextIntArray(int n, int off) {
int[] arr = new int[n + off];
for (int i = 0; i < n; i++) {
arr[i + off] = nextInt();
}
return arr;
}
public long[] nextLongArray(int n) {
return nextLongArray(n, 0);
}
public long[] nextLongArray(int n, int off) {
long[] arr = new long[n + off];
for (int i = 0; i < n; i++) {
arr[i + off] = nextLong();
}
return arr;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void println(Object... objects) {
print(objects);
writer.println();
}
public void printArray(int[] arr) {
for (int i = 0; i < arr.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(arr[i]);
}
}
public void printArray(long[] arr) {
for (int i = 0; i < arr.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(arr[i]);
}
}
public void printlnArray(int[] arr) {
printArray(arr);
writer.println();
}
public void printlnArray(long[] arr) {
printArray(arr);
writer.println();
}
public void printf(String format, Object... args) {
print(String.format(format, args));
}
public void flush() {
writer.flush();
}
}
public static void main(String[] args) {
FastIO io = new FastIO(System.in, System.out);
solve(io);
io.flush();
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | f6525b7ca7f269e7bead82cd005e6432 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | //Utilities
import java.io.*;
import java.util.*;
public class a {
static int t;
static int n, c;
static int[] uc;
static long[] ud, uh;
static long[] dpd, dph;
static int m;
static long md, mh;
static int min;
public static void main(String[] args) throws IOException {
t = 1;
while (t-- > 0) {
n = in.iscan(); c = in.iscan();
uc = new int[n]; ud = new long[n]; uh = new long[n];
dpd = new long[c+1]; dph = new long[c+1];
for (int i = 0; i < n; i++) {
uc[i] = in.iscan(); ud[i] = in.lscan(); uh[i] = in.lscan();
if (ud[i] * uh[i] > dpd[uc[i]] * dph[uc[i]]) {
dpd[uc[i]] = ud[i]; dph[uc[i]] = uh[i];
}
}
for (int i = 1; i <= c; i++) {
if (dpd[i-1] * dph[i-1] > dpd[i] * dph[i]) {
dpd[i] = dpd[i-1]; dph[i] = dph[i-1];
}
for (int j = 2*i, mul = 2; j <= c; j += i, mul++) {
if (dpd[i] * mul * dph[i] > dpd[j] * dph[j]) {
dpd[j] = dpd[i] * mul; dph[j] = dph[i];
}
}
}
m = in.iscan();
while (m-- > 0) {
md = in.lscan(); mh = in.lscan();
min = Integer.MAX_VALUE;
long ud, uh;
int l = 1, r = c, mid;
while (l <= r) {
mid = (l+r)/2;
ud = dpd[mid]; uh = dph[mid];
Fraction f1 = new Fraction(ud, mh);
Fraction f2 = new Fraction(md, uh);
if (ud != 0 && f1.compareTo(f2) > 0) {
min = mid;
r = mid-1;
}
else {
l = mid+1;
}
}
out.print(min != Integer.MAX_VALUE ? min + " " : -1 + " ");
}
out.println();
}
out.close();
}
static class Fraction {
long n, d;
Fraction(long n, long d){
this.n = n; this.d = d;
}
public int compareTo(Fraction f) {
long lcm = UTILITIES.lcm(d, f.d);
long cmp1 = lcm / d * n;
long cmp2 = lcm / f.d * f.n;
return Long.compare(cmp1, cmp2);
}
}
static INPUT in = new INPUT(System.in);
static PrintWriter out = new PrintWriter(System.out);
private static class INPUT {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar, numChars;
public INPUT (InputStream stream) {
this.stream = stream;
}
public INPUT (String file) throws IOException {
this.stream = new FileInputStream (file);
}
public int cscan () throws IOException {
if (curChar >= numChars) {
curChar = 0;
numChars = stream.read (buf);
}
if (numChars == -1)
return numChars;
return buf[curChar++];
}
public int iscan () throws IOException {
int c = cscan (), sgn = 1;
while (space (c))
c = cscan ();
if (c == '-') {
sgn = -1;
c = cscan ();
}
int res = 0;
do {
res = (res << 1) + (res << 3);
res += c - '0';
c = cscan ();
}
while (!space (c));
return res * sgn;
}
public String sscan () throws IOException {
int c = cscan ();
while (space (c))
c = cscan ();
StringBuilder res = new StringBuilder ();
do {
res.appendCodePoint (c);
c = cscan ();
}
while (!space (c));
return res.toString ();
}
public double dscan () throws IOException {
int c = cscan (), sgn = 1;
while (space (c))
c = cscan ();
if (c == '-') {
sgn = -1;
c = cscan ();
}
double res = 0;
while (!space (c) && c != '.') {
if (c == 'e' || c == 'E')
return res * UTILITIES.fast_pow (10, iscan ());
res *= 10;
res += c - '0';
c = cscan ();
}
if (c == '.') {
c = cscan ();
double m = 1;
while (!space (c)) {
if (c == 'e' || c == 'E')
return res * UTILITIES.fast_pow (10, iscan ());
m /= 10;
res += (c - '0') * m;
c = cscan ();
}
}
return res * sgn;
}
public long lscan () throws IOException {
int c = cscan (), sgn = 1;
while (space (c))
c = cscan ();
if (c == '-') {
sgn = -1;
c = cscan ();
}
long res = 0;
do {
res = (res << 1) + (res << 3);
res += c - '0';
c = cscan ();
}
while (!space (c));
return res * sgn;
}
public boolean space (int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
public static class UTILITIES {
static final double EPS = 10e-6;
public static void sort(int[] a, boolean increasing) {
ArrayList<Integer> arr = new ArrayList<Integer>();
int n = a.length;
for (int i = 0; i < n; i++) {
arr.add(a[i]);
}
Collections.sort(arr);
for (int i = 0; i < n; i++) {
if (increasing) {
a[i] = arr.get(i);
}
else {
a[i] = arr.get(n-1-i);
}
}
}
public static void sort(long[] a, boolean increasing) {
ArrayList<Long> arr = new ArrayList<Long>();
int n = a.length;
for (int i = 0; i < n; i++) {
arr.add(a[i]);
}
Collections.sort(arr);
for (int i = 0; i < n; i++) {
if (increasing) {
a[i] = arr.get(i);
}
else {
a[i] = arr.get(n-1-i);
}
}
}
public static void sort(double[] a, boolean increasing) {
ArrayList<Double> arr = new ArrayList<Double>();
int n = a.length;
for (int i = 0; i < n; i++) {
arr.add(a[i]);
}
Collections.sort(arr);
for (int i = 0; i < n; i++) {
if (increasing) {
a[i] = arr.get(i);
}
else {
a[i] = arr.get(n-1-i);
}
}
}
public static int lower_bound (int[] arr, int x) {
int low = 0, high = arr.length, mid = -1;
while (low < high) {
mid = (low + high) / 2;
if (arr[mid] >= x)
high = mid;
else
low = mid + 1;
}
return low;
}
public static int upper_bound (int[] arr, int x) {
int low = 0, high = arr.length, mid = -1;
while (low < high) {
mid = (low + high) / 2;
if (arr[mid] > x)
high = mid;
else
low = mid + 1;
}
return low;
}
public static void updateMap(HashMap<Integer, Integer> map, int key, int v) {
if (!map.containsKey(key)) {
map.put(key, v);
}
else {
map.put(key, map.get(key) + v);
}
if (map.get(key) == 0) {
map.remove(key);
}
}
public static long gcd (long a, long b) {
return b == 0 ? a : gcd (b, a % b);
}
public static long lcm (long a, long b) {
return a * b / gcd (a, b);
}
public static long fast_pow_mod (long b, long x, int mod) {
if (x == 0) return 1;
if (x == 1) return b;
if (x % 2 == 0) return fast_pow_mod (b * b % mod, x / 2, mod) % mod;
return b * fast_pow_mod (b * b % mod, x / 2, mod) % mod;
}
public static long fast_pow (long b, long x) {
if (x == 0) return 1;
if (x == 1) return b;
if (x % 2 == 0) return fast_pow (b * b, x / 2);
return b * fast_pow (b * b, x / 2);
}
public static long choose (long n, long k) {
k = Math.min (k, n - k);
long val = 1;
for (int i = 0; i < k; ++i)
val = val * (n - i) / (i + 1);
return val;
}
public static long permute (int n, int k) {
if (n < k) return 0;
long val = 1;
for (int i = 0; i < k; ++i)
val = (val * (n - i));
return val;
}
// start of permutation and lower/upper bound template
public static void nextPermutation(int[] nums) {
//find first decreasing digit
int mark = -1;
for (int i = nums.length - 1; i > 0; i--) {
if (nums[i] > nums[i - 1]) {
mark = i - 1;
break;
}
}
if (mark == -1) {
reverse(nums, 0, nums.length - 1);
return;
}
int idx = nums.length-1;
for (int i = nums.length-1; i >= mark+1; i--) {
if (nums[i] > nums[mark]) {
idx = i;
break;
}
}
swap(nums, mark, idx);
reverse(nums, mark + 1, nums.length - 1);
}
public static void swap(int[] nums, int i, int j) {
int t = nums[i];
nums[i] = nums[j];
nums[j] = t;
}
public static void reverse(int[] nums, int i, int j) {
while (i < j) {
swap(nums, i, j);
i++;
j--;
}
}
static int lower_bound (int[] arr, int hi, int cmp) {
int low = 0, high = hi, mid = -1;
while (low < high) {
mid = (low + high) / 2;
if (arr[mid] >= cmp) high = mid;
else low = mid + 1;
}
return low;
}
static int upper_bound (int[] arr, int hi, int cmp) {
int low = 0, high = hi, mid = -1;
while (low < high) {
mid = (low + high) / 2;
if (arr[mid] > cmp) high = mid;
else low = mid + 1;
}
return low;
}
// end of permutation and lower/upper bound template
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | f21e8b62ed6c24ffc4b15467e2f81fe8 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
DForGamersByGamers solver = new DForGamersByGamers();
solver.solve(1, in, out);
out.close();
}
static class DForGamersByGamers {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
int tot = in.nextInt();
long[] dp = new long[tot + 1];
for (int i = 0; i < n; i++) {
int c = in.nextInt(), d = in.nextInt(), h = in.nextInt();
dp[c] = Math.max(dp[c], 1l * d * h);
}
for (int i = 1; i <= tot; i++) {
for (int j = i + i; j <= tot; j += i) {
dp[j] = Math.max(dp[j], dp[i] * (j / i));
}
}
long[] pref = new long[tot + 1];
for (int i = 1; i <= tot; i++) {
pref[i] = Math.max(dp[i], pref[i - 1]);
}
int m = in.nextInt();
for (int i = 0; i < m; i++) {
long d = in.nextLong(), h = in.nextLong();
long val = d * h;
int id = higher(pref, val);
if (id == tot + 1) {
out.println(-1);
} else {
out.println(id);
}
}
}
int higher(long[] a, long x) {
int lo = 0;
int hi = a.length - 1;
int ans = a.length;
while (lo <= hi) {
int mid = lo + (hi - lo) / 2;
if (a[mid] <= x) {
lo = mid + 1;
} else {
ans = mid;
hi = mid - 1;
}
}
return ans;
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void println(int i) {
writer.println(i);
}
}
static class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 90e0c5280b3f699e932267f90b796440 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import javax.swing.text.Segment;
import java.io.*;
import java.lang.reflect.Array;
import java.math.BigInteger;
import static java.lang.Math.*;
import java.util.*;
public class Main {
static public void main(String[] args){
out = new PrintWriter(new BufferedOutputStream(System.out));
in = new FastReader();
solve();
out.close();
}
static void solve(){
int n=in.nextInt();
int c= in.nextInt();
long [] dp=new long[c+1];
for(int i=0;i<n;i++){
int vc = in.nextInt();
long vk = in.nextLong()*in.nextLong();
dp[vc]=max(dp[vc],vk);
}
for(int i=1;i<=c;i++){
for(int j=2;j*i<=c;j++){
dp[j*i]=max(dp[j*i],j*dp[i]);
}
}
for(int i=1;i<=c;i++){
dp[i]=max(dp[i],dp[i-1]);
}
int m =in.nextInt();
for(int i=0;i<m;i++){
long mk= in.nextLong()*in.nextLong();
if(dp[c]<=mk){
out.print(-1+" ");
continue;
}
int l = 1,r = c,mid=0;
int ans = 0;
while(l<=r){
mid=(l+r)/2;
if(dp[mid]>mk){
ans = mid;
r=mid-1;
}else{
l=mid+1;
}
}
out.print(ans+" ");
}
}
public static FastReader in;
public static PrintWriter out;
static class FastReader
{
BufferedReader br;
StringTokenizer str;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (str == null || !str.hasMoreElements())
{
try
{
str = new StringTokenizer(br.readLine());
}
catch (IOException lastMonthOfVacation)
{
lastMonthOfVacation.printStackTrace();
}
}
return str.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException lastMonthOfVacation)
{
lastMonthOfVacation.printStackTrace();
}
return str;
}
}
static long lcm(long a, long b) {
return (a * b) / gcd(a, b);
}
static long gcd(long a, long b) {
return (a % b == 0) ? b : gcd(b, a % b);
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 858a05cf9c5e732e17b8ae8d9993dcf0 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.math.BigDecimal;
import java.math.RoundingMode;
import java.util.*;
public class Main {
static final long MOD1=1000000007;
static final long MOD=998244353;
static int cnt;
static int size = 0;
static long MAX = 1000000000000000000l;
public static void main(String[] args){
PrintWriter out = new PrintWriter(System.out);
InputReader sc=new InputReader(System.in);
int n = sc.nextInt();
int C = sc.nextInt();
int[] c = new int[n];
long[] d = new long[n];
long[] h = new long[n];
for (int i = 0; i < h.length; i++) {
c[i] = sc.nextInt();
d[i] = sc.nextLong();
h[i] = sc.nextLong();
}
int m = sc.nextInt();
long[] D = new long[m];
long[] H = new long[m];
for (int i = 0; i < H.length; i++) {
D[i] = sc.nextLong();
H[i] = sc.nextLong();
}
long[] dp = new long[C+1];
long[] max = new long[C+1];
for (int i = 0; i < n; i++) {
max[c[i]] = Math.max(max[c[i]], d[i]*h[i]);
}
for (int i = 1; i <= C; i++) {
for (int j = i; j <= C; j+=i) {
dp[j] = Math.max(dp[j], (long)(j/i) * max[i]);
}
}
for (int i = 1; i <= C; i++) {
dp[i] = Math.max(dp[i], dp[i-1]);
}
for (int i = 0; i < m; i++) {
int from=1;
int to=C+1;
while ((to-from)>=1) {
int mid=(to-from)/2+from;
if (f(dp, mid, H[i], D[i], C)) {
to=mid;
}
else {
from=mid+1;
}
}
if (to==C+1) {
to = -1;
}
out.println(to);
}
out.flush();
}
static boolean f(long[] dp, int mid, long H, long D, int C) {
if(mid==C+1) return true;
return dp[mid] > H*D;
}
static long ceil(long a,long b){
return a%b==0?a/b:a/b+1;
}
static class InputReader {
private InputStream in;
private byte[] buffer = new byte[1024];
private int curbuf;
private int lenbuf;
public InputReader(InputStream in) {
this.in = in;
this.curbuf = this.lenbuf = 0;
}
public boolean hasNextByte() {
if (curbuf >= lenbuf) {
curbuf = 0;
try {
lenbuf = in.read(buffer);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0)
return false;
}
return true;
}
private int readByte() {
if (hasNextByte())
return buffer[curbuf++];
else
return -1;
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private void skip() {
while (hasNextByte() && isSpaceChar(buffer[curbuf]))
curbuf++;
}
public boolean hasNext() {
skip();
return hasNextByte();
}
public String next() {
if (!hasNext())
throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while (!isSpaceChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public int nextInt() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public long nextLong() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public double nextDouble() {
return Double.parseDouble(next());
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public double[] nextDoubleArray(int n) {
double[] a = new double[n];
for (int i = 0; i < n; i++)
a[i] = nextDouble();
return a;
}
public long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public char[][] nextCharMap(int n, int m) {
char[][] map = new char[n][m];
for (int i = 0; i < n; i++)
map[i] = next().toCharArray();
return map;
}
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 97428f49aa56dc67f18a55d34455aa1e | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in), 16384);
eat("");
}
public void eat(String s) {
st = new StringTokenizer(s);
}
public boolean hasNext() {
while (!st.hasMoreTokens()) {
String s = nextLine();
if (s == null)
return false;
eat(s);
}
return true;
}
public String next() {
hasNext();
return st.nextToken();
}
public String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
return null;
}
}
public int nextInt() {
return Integer.parseInt(next());
}
public Long nextlong() {
return Long.valueOf(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
static FastScanner in = new FastScanner(System.in);
static PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
public static void main(String[] args) {
while (in.hasNext()) {
int n = in.nextInt();
int c = in.nextInt();
long[] v = new long[1000010];
for (int i = 1; i <= n; i++) {
int w = in.nextInt();
int u = in.nextInt();
int k = in.nextInt();
v[w] = Math.max(v[w], (long) u *k);
}
for(int i=1;i<=c;i++)
for(int j=i;j<=c;j+=i)
v[j]=Math.max(v[j],j/i*v[i]);
for(int i=1;i<=c;i++)v[i]=Math.max(v[i],v[i-1]);
int m = in.nextInt();
for(int i=1;i<=m;i++)
{
long cur = (long) in.nextInt() * in.nextlong();
if(v[c]<=cur){
System.out.println("-1");
} else {
int l = 1, r = c, ans = 0;
while (l <= r) {
int mid = (l + r) >> 1;
if (v[mid] > cur) {
ans = mid;
r = mid - 1;
} else l = mid + 1;
}
System.out.print(ans + " ");
}
}
System.out.println();
}
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | a99551a040d6d3701292c684d4809b6d | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.*;
import java.util.*;
public class Monsters2 {
public static void main(String[] args) throws Exception {
FastIO in = new FastIO();
int n = in.nextInt();
long c = in.nextLong();
long[] best = new long[(int) c+1];
for (int i=0; i<n; i++) {
int cost = in.nextInt();
long d = in.nextLong();
long h = in.nextLong();
best[cost] = Math.max(best[cost], d*h);
}
for (int cost = 1; cost<=c; cost++) {
for (int cx = cost; cx<=c; cx+=cost) {
best[cx] = Math.max(best[cx], best[cost]*(cx/cost));
}
}
for (int i=1; i<=c; i++) {
best[i] = Math.max(best[i], best[i-1]);
// System.out.println(i+" "+best[i]);
}
int m = in.nextInt();
for (int i=0; i<m; i++) {
long d = in.nextLong();
long h = in.nextLong();
int min = binarySearch(d*h, best);
if (min>c) System.out.print(-1+" ");
else System.out.print(min+" ");
}
}
// Returns index of earliest element greater than cost
public static int binarySearch(long cost, long[] best) {
if (best[best.length-1]<=cost) return -1;
int hi = best.length-1;
int lo = 0;
while (hi>lo) {
int mid = (hi+lo)/2;
if (best[mid]<=cost) lo = mid+1;
else hi = mid;
}
return hi;
}
static class FastIO {
BufferedReader br;
StringTokenizer st;
PrintWriter pr;
public FastIO() throws IOException
{
br = new BufferedReader(
new InputStreamReader(System.in));
pr = new PrintWriter(System.out);
}
public String next() throws IOException
{
while (st == null || !st.hasMoreElements()) {
st = new StringTokenizer(br.readLine());
}
return st.nextToken();
}
public int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(next()); }
public long nextLong() throws NumberFormatException, IOException { return Long.parseLong(next()); }
public double nextDouble() throws NumberFormatException, IOException
{
return Double.parseDouble(next());
}
public String nextLine() throws IOException
{
String str = br.readLine();
return str;
}
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | b9749e89f5d9735660ae7c4c4f5b2c84 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes |
import java.util.*;
import javax.print.DocFlavor.INPUT_STREAM;
import java.io.*;
import java.math.*;
import java.sql.Array;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.SQLIntegrityConstraintViolationException;
public class Main {
private static class MyScanner {
private static final int BUF_SIZE = 2048;
BufferedReader br;
private MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
private boolean isSpace(char c) {
return c == '\n' || c == '\r' || c == ' ';
}
String next() {
try {
StringBuilder sb = new StringBuilder();
int r;
while ((r = br.read()) != -1 && isSpace((char)r));
if (r == -1) {
return null;
}
sb.append((char) r);
while ((r = br.read()) != -1 && !isSpace((char)r)) {
sb.append((char)r);
}
return sb.toString();
} catch (IOException e) {
e.printStackTrace();
}
return null;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
static class Reader{
BufferedReader br;
StringTokenizer st;
public Reader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
static long mod = (long)(1e9 + 7);
static void sort(long[] arr ) {
ArrayList<Long> al = new ArrayList<>();
for(long e:arr) al.add(e);
Collections.sort(al);
for(int i = 0 ; i<al.size(); i++) arr[i] = al.get(i);
}
static void sort(int[] arr ) {
ArrayList<Integer> al = new ArrayList<>();
for(int e:arr) al.add(e);
Collections.sort(al);
for(int i = 0 ; i<al.size(); i++) arr[i] = al.get(i);
}
static void sort(char[] arr) {
ArrayList<Character> al = new ArrayList<Character>();
for(char cc:arr) al.add(cc);
Collections.sort(al);
for(int i = 0 ;i<arr.length ;i++) arr[i] = al.get(i);
}
static long mod_mul( long... a) {
long ans = a[0]%mod;
for(int i = 1 ; i<a.length ; i++) {
ans = (ans * (a[i]%mod))%mod;
}
return ans;
}
static long mod_sum( long... a) {
long ans = 0;
for(long e:a) {
ans = (ans + e)%mod;
}
return ans;
}
static long gcd(long a, long b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
static void print(long[] arr) {
System.out.println("---print---");
for(long e:arr) System.out.print(e+" ");
System.out.println("-----------");
}
static void print(int[] arr) {
System.out.println("---print---");
for(long e:arr) System.out.print(e+" ");
System.out.println("-----------");
}
static boolean[] prime(int num) {
boolean[] bool = new boolean[num];
for (int i = 0; i< bool.length; i++) {
bool[i] = true;
}
for (int i = 2; i< Math.sqrt(num); i++) {
if(bool[i] == true) {
for(int j = (i*i); j<num; j = j+i) {
bool[j] = false;
}
}
}
if(num >= 0) {
bool[0] = false;
bool[1] = false;
}
return bool;
}
static long modInverse(long a, long m)
{
long g = gcd(a, m);
return power(a, m - 2);
}
static long lcm(long a , long b) {
return (a*b)/gcd(a, b);
}
static int lcm(int a , int b) {
return (int)((a*b)/gcd(a, b));
}
static long power(long x, long y){
if(y<0) return 0;
long m = mod;
if (y == 0) return 1; long p = power(x, y / 2) % m; p = (int)((p * (long)p) % m);
if (y % 2 == 0) return p; else return (int)((x * (long)p) % m); }
static class Combinations{
private long[] z; // factorial
private long[] z1; // inverse factorial
private long[] z2; // incerse number
private long mod;
public Combinations(long N , long mod) {
this.mod = mod;
z = new long[(int)N+1];
z1 = new long[(int)N+1];
z[0] = 1;
for(int i =1 ; i<=N ; i++) z[i] = (z[i-1]*i)%mod;
z2 = new long[(int)N+1];
z2[0] = z2[1] = 1;
for (int i = 2; i <= N; i++)
z2[i] = z2[(int)(mod % i)] * (mod - mod / i) % mod;
z1[0] = z1[1] = 1;
for (int i = 2; i <= N; i++)
z1[i] = (z2[i] * z1[i - 1]) % mod;
}
long fac(long n) {
return z[(int)n];
}
long invrsNum(long n) {
return z2[(int)n];
}
long invrsFac(long n) {
return z1[(int)n];
}
long ncr(long N, long R)
{ if(R<0 || R>N ) return 0;
long ans = ((z[(int)N] * z1[(int)R])
% mod * z1[(int)(N - R)])
% mod;
return ans;
}
}
static class DisjointUnionSets {
int[] rank, parent;
int n;
public DisjointUnionSets(int n)
{
rank = new int[n];
parent = new int[n];
this.n = n;
makeSet();
}
void makeSet()
{
for (int i = 0; i < n; i++) {
parent[i] = i;
}
}
int find(int x)
{
if (parent[x] != x) {
parent[x] = find(parent[x]);
}
return parent[x];
}
void union(int x, int y)
{
int xRoot = find(x), yRoot = find(y);
if (xRoot == yRoot)
return;
if (rank[xRoot] < rank[yRoot])
parent[xRoot] = yRoot;
else if (rank[yRoot] < rank[xRoot])
parent[yRoot] = xRoot;
else
{
parent[yRoot] = xRoot;
rank[xRoot] = rank[xRoot] + 1;
}
}
}
static int max(int... a ) {
int max = a[0];
for(int e:a) max = Math.max(max, e);
return max;
}
static long max(long... a ) {
long max = a[0];
for(long e:a) max = Math.max(max, e);
return max;
}
static int min(int... a ) {
int min = a[0];
for(int e:a) min = Math.min(e, min);
return min;
}
static long min(long... a ) {
long min = a[0];
for(long e:a) min = Math.min(e, min);
return min;
}
static int[] KMP(String str) {
int n = str.length();
int[] kmp = new int[n];
for(int i = 1 ; i<n ; i++) {
int j = kmp[i-1];
while(j>0 && str.charAt(i) != str.charAt(j)) {
j = kmp[j-1];
}
if(str.charAt(i) == str.charAt(j)) j++;
kmp[i] = j;
}
return kmp;
}
/************************************************ Query **************************************************************************************/
/***************************************** Sparse Table ********************************************************/
static class SparseTable{
private long[][] st;
SparseTable(long[] arr){
int n = arr.length;
st = new long[n][25];
log = new int[n+2];
build_log(n+1);
build(arr);
}
private void build(long[] arr) {
int n = arr.length;
for(int i = n-1 ; i>=0 ; i--) {
for(int j = 0 ; j<25 ; j++) {
int r = i + (1<<j)-1;
if(r>=n) break;
if(j == 0 ) st[i][j] = arr[i];
else st[i][j] = Math.min(st[i][j-1] , st[ i + ( 1 << (j-1) ) ][ j-1 ] );
}
}
}
public long gcd(long a ,long b) {
if(a == 0) return b;
return gcd(b%a , a);
}
public long query(int l ,int r) {
int w = r-l+1;
int power = log[w];
return Math.min(st[l][power],st[r - (1<<power) + 1][power]);
}
private int[] log;
void build_log(int n) {
log[1] = 0;
for(int i = 2 ; i<=n ; i++) {
log[i] = 1 + log[i/2];
}
}
}
/******************************************************** Segement Tree *****************************************************/
static class SegmentTree{
long[] tree;
long[] arr;
int n;
SegmentTree(long[] arr){
this.n = arr.length;
tree = new long[4*n+1];
this.arr = arr;
buildTree(0, n-1, 1);
}
void buildTree(int s ,int e ,int index ) {
if(s == e) {
tree[index] = arr[s];
return;
}
int mid = (s+e)/2;
buildTree( s, mid, 2*index);
buildTree( mid+1, e, 2*index+1);
tree[index] = gcd(tree[2*index] , tree[2*index+1]);
}
long query(int si ,int ei) {
return query(0 ,n-1 , si ,ei , 1 );
}
private long query( int ss ,int se ,int qs , int qe,int index) {
if(ss>=qs && se<=qe) return tree[index];
if(qe<ss || se<qs) return (long)(0);
int mid = (ss + se)/2;
long left = query( ss , mid , qs ,qe , 2*index);
long right= query(mid + 1 , se , qs ,qe , 2*index+1);
return gcd(left, right);
}
public void update(int index , int val) {
arr[index] = val;
// for(long e:arr) System.out.print(e+" ");
update(index , 0 , n-1 , 1);
}
private void update(int id ,int si , int ei , int index) {
if(id < si || id>ei) return;
if(si == ei ) {
tree[index] = arr[id];
return;
}
if(si > ei) return;
int mid = (ei + si)/2;
update( id, si, mid , 2*index);
update( id , mid+1, ei , 2*index+1);
tree[index] = Math.min(tree[2*index] ,tree[2*index+1]);
}
}
/* ***************************************************************************************************************************************************/
// static MyScanner sc = new MyScanner(); // only in case of less memory
static Reader sc = new Reader();
static int TC;
static StringBuilder sb = new StringBuilder();
static PrintWriter out=new PrintWriter(System.out);
public static void main(String args[]) throws IOException {
int tc = 1;
// tc = sc.nextInt();
TC = 0;
for(int i = 1 ; i<=tc ; i++) {
TC++;
// sb.append("Case #" + i + ": " ); // During KickStart && HackerCup
TEST_CASE();
}
System.out.print(sb);
}
static void TEST_CASE() throws IOException {
int n = sc.nextInt();
int C = sc.nextInt();
int[] c = new int[n];
long[] d = new long[n] , h = new long[n];
for(int i = 0 ;i<n ; i++) {
c[i] = sc.nextInt();
d[i] = sc.nextLong();
h[i] = sc.nextLong();
}
int m = sc.nextInt();
// System.out.println(m);
long[] D = new long[m] , H = new long[m];
for(int i = 0 ; i<m ; i++) {
D[i] = sc.nextLong();
H[i] = sc.nextLong();
}
// for(int i = 0 ;i<m ; i++) System.out.println(D[i] +" "+H[i]);
long[] her = new long[n] , mon = new long[m];
for(int i =0 ; i<n ; i++) {
her[i] = d[i]*h[i];
}
for(int i = 0 ; i<m ; i++) {
mon[i] = D[i]*H[i];
}
long[] dp = new long[C+1];
Arrays.fill(dp, -1);
for(int i = 0 ;i<n ; i++) {
int ind = c[i];
if(dp[ind] == -1) dp[ind] = her[i];
else dp[ind] = max(dp[ind] , her[i]);
}
for(int i =1 ;i<=C ; i++) {
if(dp[i] == -1) continue;
long add = dp[i];
long ps = add;
for(int j = i;j<=C ; j+=i) {
if(dp[j] == -1) dp[j] = ps;
else dp[j] = max(dp[j] , ps);
ps += add;
}
}
for(int i = 1 ; i<=C ; i++) dp[i] = max(dp[i] , dp[i-1]);
// for(int i = 1 ; i <dp.length ; i++) {
// System.out.println(i+" "+dp[i]);
// }
// System.out.println("--------");
for(int i = 0 ; i<m ; i++) {
long f = mon[i]+1;
// System.out.println(i+" "+f);
int l = 0 , r = C;
while(l<=r) {
int mid = (l+r)/2;
if(dp[mid]<f) l = mid+1;
else r = mid-1;
}
if(l == C+1 || dp[l] == -1 ) {
sb.append("-1 ");
}else {
sb.append(l+" ");
}
}
}
}
/*******************************************************************************************************************************************************/
/**
*/
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | a698641454a1c35516085b84209eaa2f | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.*;
import java.util.*;
public class Solution extends PrintWriter {
Solution() { super(System.out, true); }
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
Solution o = new Solution(); o.main(); o.flush();
}
static final long INF = 0x3f3f3f3f3f3f3f3fL;
void main() {
int n = sc.nextInt();
int c = sc.nextInt();
long[] dh = new long[c + 1];
while (n-- > 0) {
int a = sc.nextInt();
int d = sc.nextInt();
int h = sc.nextInt();
dh[a] = Math.max(dh[a], (long) d * h);
}
for (int a = c - 1; a > 0; a--) {
long x = dh[a];
if (x == 0)
continue;
for (int k = 2, b; (b = k * a) <= c; k++)
dh[b] = Math.max(dh[b], k * x);
}
for (int a = 2; a <= c; a++)
dh[a] = Math.max(dh[a], dh[a - 1]);
int m = sc.nextInt();
while (m-- > 0) {
int d = sc.nextInt();
long h = sc.nextLong();
long x = d * h;
int ans;
if (x >= dh[c])
ans = -1;
else {
int lower = 0, upper = c;
while (upper - lower > 1) {
int a = (lower + upper) / 2;
if (x < dh[a])
upper = a;
else
lower = a;
}
ans = upper;
}
print(ans + " ");
}
println();
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 91c522c04a79c3db206a1ccdffd5fb16 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.PrintWriter;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
var sc = new Scanner(System.in);
int n = Integer.parseInt(sc.next());
int C = Integer.parseInt(sc.next());
var c = new int[n];
var d = new long[n];
var h = new long[n];
for(int i = 0; i < n; i++){
c[i] = Integer.parseInt(sc.next());
d[i] = Long.parseLong(sc.next());
h[i] = Long.parseLong(sc.next());
}
int m = Integer.parseInt(sc.next());
var D = new long[m];
var H = new long[m];
for(int i = 0; i < m; i++){
D[i] = Long.parseLong(sc.next());
H[i] = Long.parseLong(sc.next());
}
var a = new long[1000001];
for(int i = 0; i < n; i++){
a[c[i]] = Math.max(d[i] * h[i], a[c[i]]);
}
for(int i = 1; i <= 1000000; i++){
a[i] = Math.max(a[i-1], a[i]);
int j = 2;
while(i*j <= 1000000){
a[i*j] = Math.max(a[i] * j, a[i*j]);
j++;
}
}
var pw = new PrintWriter(System.out);
for(int i = 0; i < m; i++){
int ans = upperBound(a, D[i] * H[i]);
if(ans > C){
ans = -1;
}
if(i < m-1){
pw.print(ans + " ");
}else{
pw.println(ans);
}
}
pw.flush();
}
static int upperBound(long[] a, long key){
int left = -1;
int right = a.length;
while(right - left > 1){
int mid = left + (right - left) / 2;
if(a[mid] > key){
right = mid;
}else{
left = mid;
}
}
return right;
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 8e7669eb02dd11614575e9e7402951cb | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | /* package codechef; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Codechef
{static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
static int mod = 998244353 ;
static int N = 200005;
static long factorial_num_inv[] = new long[N+1];
static long natual_num_inv[] = new long[N+1];
static long fact[] = new long[N+1];
static void InverseofNumber()
{
natual_num_inv[0] = 1;
natual_num_inv[1] = 1;
for (int i = 2; i <= N; i++)
natual_num_inv[i] = natual_num_inv[mod % i] * (mod - mod / i) % mod;
}
static void InverseofFactorial()
{
factorial_num_inv[0] = factorial_num_inv[1] = 1;
for (int i = 2; i <= N; i++)
factorial_num_inv[i] = (natual_num_inv[i] * factorial_num_inv[i - 1]) % mod;
}
static long nCrModP(long N, long R)
{
long ans = ((fact[(int)N] * factorial_num_inv[(int)R]) % mod * factorial_num_inv[(int)(N - R)]) % mod;
return ans%mod;
}
static boolean prime[];
static void sieveOfEratosthenes(int n)
{
prime = new boolean[n+1];
for (int i = 0; i <= n; i++)
prime[i] = true;
for (int p = 2; p * p <= n; p++)
{
// If prime[p] is not changed, then it is a
// prime
if (prime[p] == true)
{
// Update all multiples of p
for (int i = p * p; i <= n; i += p)
prime[i] = false;
}
}
}
public static void main (String[] args) throws java.lang.Exception
{
// InverseofNumber();
// InverseofFactorial();
// fact[0] = 1;
// for (long i = 1; i <= 2*100000; i++)
// {
// fact[(int)i] = (fact[(int)i - 1] * i) % mod;
// }
FastReader scan = new FastReader();
PrintWriter pw = new PrintWriter(System.out);
int n = scan.nextInt();
int m = scan.nextInt();
long cost[] = new long[m+1];
for(int i=0;i<n;i++){
int ci = scan.nextInt();
long di = scan.nextLong();
long hi = scan.nextLong();
cost[ci] = Math.max(di*hi,cost[ci]);
}
for(int i=1;i<=m;i++){
for(int j=i;j<=m;j=j+i){
cost[j] = Math.max(cost[j],cost[i]*(j/i));
}
}
for(int i=1;i<=m;i++){
cost[i] = Math.max(cost[i],cost[i-1]);
}
// pw.println(Arrays.toString(cost));
int N = scan.nextInt();
for(int i=0;i<N;i++){
long Di = scan.nextLong();
long Hi = scan.nextLong();
int index = upper_bound(cost, Di*Hi, m);
if(index==m+1)
pw.print(-1+" ");
else
pw.print(index+" ");
}
pw.println();
pw.flush();
}
static int upper_bound(long cost[], long key,int n)
{
int low = 0, high = n;
int mid;
while (low <= high) {
mid = low + (high - low) / 2;
if (key < cost[mid]) {
high = mid-1;
}
else {
low = mid + 1;
}
}
return low;
}
//static long bin_exp_mod(long a,long n){
// long res = 1;
// while(n!=0){
// if(n%2==1){
// res = ((res)*(a));
// }
// n = n/2;
// a = ((a)*(a));
// }
// return res;
//}
//static long bin_exp_mod(long a,long n){
// long mod = 998244353;
// long res = 1;
// while(n!=0){
// if(n%2==1){
// res = ((res%mod)*(a%mod))%mod;
// }
// n = n/2;
// a = ((a%mod)*(a%mod))%mod;
// }
// res = res%mod;
// return res;
//}
static long gcd(long a,long b){
if(a==0)
return b;
return gcd(b%a,a);
}
// static long lcm(long a,long b){
// return (a/gcd(a,b))*b;
// }
}
class Pair{
int x,y;
Pair(int x,int y){
this.x = x;
this.y = y;
}
//public boolean equals(Object obj) {
// // TODO Auto-generated method stub
// if(obj instanceof Pair)
// {
// Pair temp = (Pair) obj;
// if(this.x.equals(temp.x) && this.y.equals(temp.y))
// return true;
// }
// return false;
//}
//@Override
//public int hashCode() {
// // TODO Auto-generated method stub
// return (this.x.hashCode() + this.y.hashCode());
//}
}
//class Compar implements Comparator<Pair>{
// public int compare(Pair p1,Pair p2){
// if(p1.y==p2.y)
// return 0;
// else if(p1.y<p2.y)
// return -1;
// else
// return 1;
// }
//}
//class DisjointSet{
// Map<Long,Node> map = new HashMap<>();
// class Node{
// long data;
// Node parent;
// int rank;
// }
// public void makeSet(long data){
// Node node = new Node();
// node.data = data;
// node.parent = node;
// node.rank = 0;
// map.put(data,node);
// }
// //here we just need the rank of parent to be exact
// public void union(long data1,long data2){
// Node node1 = map.get(data1);
// Node node2 = map.get(data2);
// Node parent1 = findSet(node1);
// Node parent2 = findSet(node2);
// if(parent1.data==parent2.data){
// return;
// }
// if(parent1.rank>=parent2.rank){
// parent1.rank = (parent1.rank==parent2.rank)?parent1.rank+1:parent1.rank;
// parent2.parent = parent1;
// }
// else{
// parent1.parent = parent2;
// }
// }
// public long findSet(long data){
// return findSet(map.get(data)).data;
// }
// private Node findSet(Node node){
// Node parent = node.parent;
// if(parent==node){
// return parent;
// }
// node.parent = findSet(node.parent);
// return node.parent;
// }
// } | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 770379e5708fc424f4cf8363e2c2a98a | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.*;
import java.math.*;
import java.util.*;
/*
* Author: Atuer
*/
public class Main
{
// ==== Solve Code ====//
static int INF = 2000000010;
public static void csh()
{
}
public static void main(String[] args) throws IOException
{
// csh();
// int t = in.nextInt();
// while (t-- > 0)
{
solve();
out.flush();
}
out.close();
}
public static void solve()
{
int n = in.nextInt();
int C = in.nextInt();
long[] sz = new long[C + 1];
for (int i = 0; i < n; i++)
{
int c = in.nextInt();
int d = in.nextInt();
int h = in.nextInt();
sz[c] = Math.max(sz[c], 1l * d * h);
}
for (int i = 1; i <= C; i++)
for (int j = 2; i * j <= C; j++)
sz[i * j] = Math.max(sz[i * j], sz[i] * j);
for (int i = 1; i <= C; i++)
sz[i] = Math.max(sz[i], sz[i - 1]);
// out.println(Arrays.toString(sz));
// out.flush();
int m = in.nextInt();
for (int i = 0; i < m; i++)
{
int D = in.nextInt();
long H = in.nextLong();
int l = 0, r = C;
while (l < r)
{
int mid = l + r >> 1;
if (sz[mid] >= H * D + 1)
r = mid;
else
l = mid + 1;
}
out.println(sz[l] >= H * D + 1 ? l : -1);
}
}
public static class Node
{
int x, y, k;
public Node(int x, int y, int k)
{
this.x = x;
this.y = y;
this.k = k;
}
}
// ==== Solve Code ====//
// ==== Template ==== //
public static long cnm(int a, int b)
{
long sum = 1;
int i = a, j = 1;
while (j <= b)
{
sum = sum * i / j;
i--;
j++;
}
return sum;
}
public static int gcd(int a, int b)
{
return b == 0 ? a : gcd(b, a % b);
}
public static int lcm(int a, int b)
{
return (a * b) / gcd(a, b);
}
public static void gbSort(int[] a, int l, int r)
{
if (l < r)
{
int m = (l + r) >> 1;
gbSort(a, l, m);
gbSort(a, m + 1, r);
int[] t = new int[r - l + 1];
int idx = 0, i = l, j = m + 1;
while (i <= m && j <= r)
if (a[i] <= a[j])
t[idx++] = a[i++];
else
t[idx++] = a[j++];
while (i <= m)
t[idx++] = a[i++];
while (j <= r)
t[idx++] = a[j++];
for (int z = 0; z < t.length; z++)
a[l + z] = t[z];
}
}
// ==== Template ==== //
// ==== IO ==== //
static InputStream inputStream = System.in;
static InputReader in = new InputReader(inputStream);
static PrintWriter out = new PrintWriter(System.out);
static class InputReader
{
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream)
{
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next()
{
while (tokenizer == null || !tokenizer.hasMoreTokens())
{
try
{
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e)
{
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
boolean hasNext()
{
while (tokenizer == null || !tokenizer.hasMoreTokens())
{
try
{
tokenizer = new StringTokenizer(reader.readLine());
} catch (Exception e)
{
return false;
// TODO: handle exception
}
}
return true;
}
public String nextLine()
{
String str = null;
try
{
str = reader.readLine();
} catch (IOException e)
{
e.printStackTrace();
}
return str;
}
public int nextInt()
{
return Integer.parseInt(next());
}
public long nextLong()
{
return Long.parseLong(next());
}
public Double nextDouble()
{
return Double.parseDouble(next());
}
public BigInteger nextBigInteger()
{
return new BigInteger(next());
}
public BigDecimal nextBigDecimal()
{
return new BigDecimal(next());
}
}
// ==== IO ==== //
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 35734d3c37e35878cb098d24b52ea2b8 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.*;
import java.util.*;
public class Codeforces extends PrintWriter {
Codeforces() { super(System.out); }
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
Codeforces o = new Codeforces(); o.main(); o.flush();
o.close();
}
void main() {
int n = sc.nextInt();
int C = sc.nextInt();
long dp[] = new long [C+1];
while(n-->0){
int c = sc.nextInt();
int d = sc.nextInt();
int h = sc.nextInt();
dp[c]=Math.max(dp[c],(long)d*h);
}
for (int a = C - 1; a > 0; a--) {
long x = dp[a];
if (x == 0)
continue;
for (int k = 2, b; (b = k * a) <= C; k++)
dp[b] = Math.max(dp[b], k * x);
}
for (int a = 2; a <= C; a++)
dp[a] = Math.max(dp[a], dp[a - 1]);
int m = sc.nextInt();
while (m-- > 0) {
int d = sc.nextInt();
long h = sc.nextLong();
long x = d * h;
int ans;
if (x >= dp[C])
ans = -1;
else {
int lower = 0, upper = C;
while (upper - lower > 1) {
int a = (lower + upper) / 2;
if (x < dp[a])
upper = a;
else
lower = a;
}
ans = upper;
}
print(ans + " ");
}
println();
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 1f55fd0415074153dbc6adb0cb382209 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | //some updates in import stuff
import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.Math.abs;
import java.util.*;
import java.io.*;
import java.math.*;
public class D{
static int mod = (int) (Math.pow(10, 9)+7);
static final int dx[] = { -1, 0, 1, 0 }, dy[] = { 0, -1, 0, 1 };
static final int[] dx8 = { -1, -1, -1, 0, 0, 1, 1, 1 }, dy8 = { -1, 0, 1, -1, 1, -1, 0, 1 };
static final int[] dx9 = { -1, -1, -1, 0, 0, 0, 1, 1, 1 }, dy9 = { -1, 0, 1, -1, 0, 1, -1, 0, 1 };
static final double eps = 1e-10;
static List<Integer> primeNumbers = new ArrayList<>();
public static void main(String[] args) {
MyScanner sc = new MyScanner();
out = new PrintWriter(new BufferedOutputStream(System.out));
//code below
long n = sc.nextLong();
long C = sc.nextLong();
long[][] data = new long[(int)n][3];
for(int i = 0; i < n; i++){
data[i][0] = sc.nextLong();
data[i][1] = sc.nextLong();
data[i][2] = sc.nextLong();
}
long m = sc.nextLong();
long[][] monsters = new long[(int)m][2];
for(int i = 0; i < m; i++){
monsters[i][0] = sc.nextLong();
monsters[i][1] = sc.nextLong();
}
//now we have the data
//simple stuff no boi??
long[] maxDamage = new long[(int)C + 1]; //with each coins what is the max damage
Map<Long, Long> uniqueBest = new HashMap<>();
for(int i = 0; i < n; i++){
long cost = data[i][0];
long power = data[i][1] * data[i][2];
//idc i just want to code this problem
uniqueBest.putIfAbsent(cost ,power);
if(uniqueBest.get(cost) < power){
uniqueBest.put(cost, power); //update with best
}
}
//now go through each cost and update this in maxDamage
//later on update the maxDamage for you convenience
for(long cost : uniqueBest.keySet()){
long first = cost;
long power = uniqueBest.get(cost);
long times = 1;
while(first <= C){
maxDamage[(int)first] = max(maxDamage[(int)first], power);
times++;
power = uniqueBest.get(cost) * times;
first = first + cost; //simple no??
}
}
// out.println(Arrays.toString(maxDamage));
//traverse through this bad boi once
long max = 0;
for(int i = 1 ; i <= C; i++){
max = max(max, maxDamage[i]);
maxDamage[i] = max;
}
// out.println(Arrays.toString(maxDamage));
//now for every coin we have best damage available no??
//apply binary search on it bro!!!! simple
ArrayList<Long> ans = new ArrayList<>();
for(int i = 0; i < m; i++){
long bigPower = monsters[i][0] * monsters[i][1];
//binary search
long coins = Long.MAX_VALUE;
//binary search is to be applied
boolean found = false;
long l = 0;
long r = C;
while(l <= r){
long middle = l + (r-l)/2;
if(maxDamage[(int)middle] > bigPower){
coins = middle;
found = true;
r = middle - 1;
}else{
l = middle + 1;
}
}
if(found){
ans.add(coins);
}else{
ans.add(-1L);
}
}
for(long i : ans){
out.print(i + " ");
}
out.println();
out.close();
}
//new stuff to learn (whenever this is need for them, then only)
//Lazy Segment Trees
//Persistent Segment Trees
//Square Root Decomposition
//Geometry & Convex Hull
//High Level DP -- yk yk
//String Matching Algorithms
//Heavy light Decomposition
//Updation Required
//Fenwick Tree - both are done (sum)
//Segment Tree - both are done (min, max, sum)
//-----CURRENTLY PRESENT-------//
//Graph
//DSU
//powerMODe
//power
//Segment Tree (work on this one)
//Prime Sieve
//Count Divisors
//Next Permutation
//Get NCR
//isVowel
//Sort (int)
//Sort (long)
//Binomial Coefficient
//Pair
//Triplet
//lcm (int & long)
//gcd (int & long)
//gcd (for binomial coefficient)
//swap (int & char)
//reverse
//primeExponentCounts
//Fast input and output
//-------------------------------------------------------------------
//-------------------------------------------------------------------
//-------------------------------------------------------------------
//-------------------------------------------------------------------
//-------------------------------------------------------------------
//GRAPH (basic structure)
public static class Graph{
public int V;
public ArrayList<ArrayList<Integer>> edges;
//2 -> [0,1,2] (current)
Graph(int V){
this.V = V;
edges = new ArrayList<>(V+1);
for(int i= 0; i <= V; i++){
edges.add(new ArrayList<>());
}
}
public void addEdge(int from , int to){
edges.get(from).add(to);
edges.get(to).add(from);
}
}
//DSU (path and rank optimised)
public static class DisjointUnionSets {
int[] rank, parent;
int n;
public DisjointUnionSets(int n)
{
rank = new int[n];
parent = new int[n];
Arrays.fill(rank, 1);
Arrays.fill(parent,-1);
this.n = n;
}
public int find(int curr){
if(parent[curr] == -1)
return curr;
//path compression optimisation
return parent[curr] = find(parent[curr]);
}
public void union(int a, int b){
int s1 = find(a);
int s2 = find(b);
if(s1 != s2){
if(rank[s1] < rank[s2]){
parent[s1] = s2;
rank[s2] += rank[s1];
}else{
parent[s2] = s1;
rank[s1] += rank[s2];
}
}
}
}
//with mod
public static long powerMOD(long x, long y)
{
long res = 1L;
while (y > 0)
{
// If y is odd, multiply x with result
if ((y & 1) != 0){
x %= mod;
res %= mod;
res = (res * x)%mod;
}
// y must be even now
y = y >> 1; // y = y/2
x%= mod;
x = (x * x)%mod; // Change x to x^2
}
return res%mod;
}
//without mod
public static long power(long x, long y)
{
long res = 1L;
while (y > 0)
{
// If y is odd, multiply x with result
if ((y & 1) != 0){
res = (res * x);
}
// y must be even now
y = y >> 1; // y = y/
x = (x * x);
}
return res;
}
public static class segmentTree{
//so let's make a constructor function for this bad boi for sure!!!
public long[] arr;
public long[] tree;
//COMPLEXITY (normal segment tree, stuff)
//build -> O(n)
//query -> O(logn)
//update -> O(logn)
//update-range -> O(n) (worst case)
//simple iteration and stuff for sure
public segmentTree(long[] arr){
int n = arr.length;
this.arr = new long[n];
for(int i= 0; i < n; i++){
this.arr[i] = arr[i];
}
tree = new long[4*n + 1];
}
//pretty basic idea if you read the code once
//first make child node once
//then form the parent node using them
public void buildTree(int s, int e, int index){
if(s == e){
tree[index] = arr[s];
return;
}
//recursive case
int mid = (s + e)/2;
buildTree(s, mid, 2 * index);
buildTree(mid + 1, e, 2*index + 1);
//the condition we want from children be like this
tree[index] = min(tree[2 * index], tree[2 * index + 1]);
return;
}
//definitely index based 0 query!!!
//only int index = 1!!
//baaki everything is simple as fuck
public long query(int s, int e, int qs , int qe, int index){
//complete overlap
if(s >= qs && e <= qe){
return tree[index];
}
//no overlap
if(qe < s || qs > e){
return Long.MAX_VALUE;
}
//partial overlap
int mid = (s + e)/2;
long left = query( s, mid , qs, qe, 2*index);
long right = query( mid + 1, e, qs, qe, 2*index + 1);
return min(left, right);
}
//updates are pretty cool
//point update and range update!!!
public void updateNode(int s, int e, int i, long increment, int index){
//case where I is out of bounds
if(i < s || i > e){
return;
}
if(s == e){
//making increment
tree[index] += increment;
return;
}
//otherwise
int mid = (s + e)/2;
updateNode(s, mid, i, increment, 2 * index);
updateNode(mid + 1, e, i, increment, 2 * index + 1);
tree[index] = min(tree[2 * index], tree[2 * index + 1]);
return;
}
//gonna do range updates for sure now!!
//let's do this bois!!! (solve this problem for sure)
public void updateRange(int s, int e, int l, int r, long increment, int index){
//out of bounds
if(l > e || r < s){
return;
}
//leaf node
if(s == e){
tree[index] += increment;
}
//recursive case
int mid = (s + e)/2;
updateRange(s, mid, l, r, increment, 2 * index);
updateRange(mid + 1, e, l, r, increment, 2 * index);
tree[index] = min(tree[2 * index], tree[2 * index + 1]);
}
}
//prime sieve
public static void primeSieve(int n){
BitSet bitset = new BitSet(n+1);
for(long i = 0; i < n ; i++){
if (i == 0 || i == 1) {
bitset.set((int) i);
continue;
}
if(bitset.get((int) i)) continue;
primeNumbers.add((int)i);
for(long j = i; j <= n ; j+= i)
bitset.set((int)j);
}
}
//number of divisors
public static int countDivisors(long number){
if(number == 1) return 1;
List<Integer> primeFactors = new ArrayList<>();
int index = 0;
long curr = primeNumbers.get(index);
while(curr * curr <= number){
while(number % curr == 0){
number = number/curr;
primeFactors.add((int) curr);
}
index++;
curr = primeNumbers.get(index);
}
if(number != 1) primeFactors.add((int) number);
int current = primeFactors.get(0);
int totalDivisors = 1;
int currentCount = 2;
for (int i = 1; i < primeFactors.size(); i++) {
if (primeFactors.get(i) == current) {
currentCount++;
} else {
totalDivisors *= currentCount;
currentCount = 2;
current = primeFactors.get(i);
}
}
totalDivisors *= currentCount;
return totalDivisors;
}
//primeExponentCounts
public static int primeExponentsCount(int n) {
if (n <= 1)
return 0;
int sqrt = (int) Math.sqrt(n);
int remainingNumber = n;
int result = 0;
for (int i = 2; i <= sqrt; i++) {
while (remainingNumber % i == 0) {
result++;
remainingNumber /= i;
}
}
//in case of prime numbers this would happen
if (remainingNumber > 1) {
result++;
}
return result;
}
//now adding next permutation function to java hehe
public static boolean next_permutation(int[] p) {
for (int a = p.length - 2; a >= 0; --a)
if (p[a] < p[a + 1])
for (int b = p.length - 1;; --b)
if (p[b] > p[a]) {
int t = p[a];
p[a] = p[b];
p[b] = t;
for (++a, b = p.length - 1; a < b; ++a, --b) {
t = p[a];
p[a] = p[b];
p[b] = t;
}
return true;
}
return false;
}
//finding the value of NCR in O(RlogN) time and O(1) space
public static long getNcR(int n, int r)
{
long p = 1, k = 1;
if (n - r < r) r = n - r;
if (r != 0) {
while (r > 0) {
p *= n;
k *= r;
long m = __gcd(p, k);
p /= m;
k /= m;
n--;
r--;
}
}
else {
p = 1;
}
return p;
}
//is vowel function
public static boolean isVowel(char c)
{
return (c=='a' || c=='A' || c=='e' || c=='E' || c=='i' || c=='I' || c=='o' || c=='O' || c=='u' || c=='U');
}
//to sort the array with better method
public static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
//sort long
public static void sort(long[] a) {
ArrayList<Long> l=new ArrayList<>();
for (long i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
//for calculating binomialCoeff
public static int binomialCoeff(int n, int k)
{
int C[] = new int[k + 1];
// nC0 is 1
C[0] = 1;
for (int i = 1; i <= n; i++) {
// Compute next row of pascal
// triangle using the previous row
for (int j = Math.min(i, k); j > 0; j--)
C[j] = C[j] + C[j - 1];
}
return C[k];
}
//Pair with int int
public static class Pair{
public int a;
public int b;
public int hashCode;
Pair(int a , int b){
this.a = a;
this.b = b;
this.hashCode = Objects.hash(a, b);
}
@Override
public String toString(){
return a + " -> " + b;
}
@Override
public boolean equals(Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())
return false;
Pair that = (Pair) o;
return a == that.a && b == that.b;
}
@Override
public int hashCode() {
return this.hashCode;
}
}
//Triplet with int int int
public static class Triplet{
public int a;
public int b;
public int c;
Triplet(int a , int b, int c){
this.a = a;
this.b = b;
this.c = c;
}
@Override
public String toString(){
return a + " -> " + b;
}
}
//Shortcut function
public static long lcm(long a , long b){
return a * (b/gcd(a,b));
}
//let's make one for calculating lcm basically
public static int lcm(int a , int b){
return (a * b)/gcd(a,b);
}
//int version for gcd
public static int gcd(int a, int b){
if(b == 0)
return a;
return gcd(b , a%b);
}
//long version for gcd
public static long gcd(long a, long b){
if(b == 0)
return a;
return gcd(b , a%b);
}
//for ncr calculator(ignore this code)
public static long __gcd(long n1, long n2)
{
long gcd = 1;
for (int i = 1; i <= n1 && i <= n2; ++i) {
// Checks if i is factor of both integers
if (n1 % i == 0 && n2 % i == 0) {
gcd = i;
}
}
return gcd;
}
//swapping two elements in an array
public static void swap(int[] arr, int left , int right){
int temp = arr[left];
arr[left] = arr[right];
arr[right] = temp;
}
//for char array
public static void swap(char[] arr, int left , int right){
char temp = arr[left];
arr[left] = arr[right];
arr[right] = temp;
}
//reversing an array
public static void reverse(int[] arr){
int left = 0;
int right = arr.length-1;
while(left <= right){
swap(arr, left,right);
left++;
right--;
}
}
public static long expo(long a, long b, long mod) {
long res = 1;
while (b > 0) {
if ((b & 1) == 1L) res = (res * a) % mod; //think about this one for a second
a = (a * a) % mod;
b = b >> 1;
}
return res;
}
//SOME EXTRA DOPE FUNCTIONS
public static long mminvprime(long a, long b) {
return expo(a, b - 2, b);
}
public static long mod_add(long a, long b, long m) {
a = a % m;
b = b % m;
return (((a + b) % m) + m) % m;
}
public static long mod_sub(long a, long b, long m) {
a = a % m;
b = b % m;
return (((a - b) % m) + m) % m;
}
public static long mod_mul(long a, long b, long m) {
a = a % m;
b = b % m;
return (((a * b) % m) + m) % m;
}
public static long mod_div(long a, long b, long m) {
a = a % m;
b = b % m;
return (mod_mul(a, mminvprime(b, m), m) + m) % m;
}
//O(n) every single time remember that
public static long nCr(long N, long K , long mod){
long upper = 1L;
long lower = 1L;
long lowerr = 1L;
for(long i = 1; i <= N; i++){
upper = mod_mul(upper, i, mod);
}
for(long i = 1; i <= K; i++){
lower = mod_mul(lower, i, mod);
}
for(long i = 1; i <= (N - K); i++){
lowerr = mod_mul(lowerr, i, mod);
}
// out.println(upper + " " + lower + " " + lowerr);
long answer = mod_mul(lower, lowerr, mod);
answer = mod_div(upper, answer, mod);
return answer;
}
// long[] fact = new long[2 * n + 1];
// long[] ifact = new long[2 * n + 1];
// fact[0] = 1;
// ifact[0] = 1;
// for (long i = 1; i <= 2 * n; i++)
// {
// fact[(int)i] = mod_mul(fact[(int)i - 1], i, mod);
// ifact[(int)i] = mminvprime(fact[(int)i], mod);
// }
//ifact is basically inverse factorial in here!!!!!(imp)
public static long combination(long n, long r, long m, long[] fact, long[] ifact) {
long val1 = fact[(int)n];
long val2 = ifact[(int)(n - r)];
long val3 = ifact[(int)r];
return (((val1 * val2) % m) * val3) % m;
}
//-----------PrintWriter for faster output---------------------------------
public static PrintWriter out;
//-----------MyScanner class for faster input----------
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
//--------------------------------------------------------
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | e53bd5584fea3b45700c1ec45885330e | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
static ContestScanner sc = new ContestScanner(System.in);
static PrintWriter pw = new PrintWriter(System.out);
static StringBuilder sb = new StringBuilder();
static long mod = (long) 1e9 + 7;
public static void main(String[] args) throws Exception {
solve();
pw.flush();
}
public static void solve() {
int n = sc.nextInt();
int C = sc.nextInt();
long[] dp = new long[C+1];
int mini = Integer.MAX_VALUE;
for(int i = 0; i < n; i++){
int c = sc.nextInt();
long d = sc.nextLong();
long h = sc.nextLong();
mini = Math.min(mini,c);
dp[c] = Math.max(dp[c],d*h);
}
for(int i = mini; i <= C; i++){
dp[i] = Math.max(dp[i-1],dp[i]);
int index = i;
long cnt = 1;
while(index <= C){
dp[index] = Math.max(dp[index],dp[i]*cnt);
index += i;
cnt++;
}
}
int m = sc.nextInt();
for(int i = 0; i < m; i++){
long d = sc.nextLong();
long h = sc.nextLong();
long total = d*h;
int left = 0;
int right = C+1;
while(right - left > 1){
int mid = (left+right)/2;
if(dp[mid] > total){
right = mid;
}else{
left = mid;
}
}
if(right == C+1) right = -1;
sb.append(right + " ");
}
pw.println(sb.toString().trim());
sb.setLength(0);
}
static class ArrayComparator implements Comparator<long[]> {
@Override
public int compare(long[] a1, long[] a2) {
if (a1[0] < a2[0]) {
return -1;
} else if (a1[0] > a2[0]) {
return 1;
} else {
return 0;
}
}
}
static class GeekInteger {
public static void save_sort(int[] array) {
shuffle(array);
Arrays.sort(array);
}
public static int[] shuffle(int[] array) {
int n = array.length;
Random random = new Random();
for (int i = 0, j; i < n; i++) {
j = i + random.nextInt(n - i);
int randomElement = array[j];
array[j] = array[i];
array[i] = randomElement;
}
return array;
}
public static void save_sort(long[] array) {
shuffle(array);
Arrays.sort(array);
}
public static long[] shuffle(long[] array) {
int n = array.length;
Random random = new Random();
for (int i = 0, j; i < n; i++) {
j = i + random.nextInt(n - i);
long randomElement = array[j];
array[j] = array[i];
array[i] = randomElement;
}
return array;
}
}
}
/**
* refercence : https://github.com/NASU41/AtCoderLibraryForJava/blob/master/ContestIO/ContestScanner.java
*/
class ContestScanner {
private final java.io.InputStream in;
private final byte[] buffer = new byte[1024];
private int ptr = 0;
private int buflen = 0;
private static final long LONG_MAX_TENTHS = 922337203685477580L;
private static final int LONG_MAX_LAST_DIGIT = 7;
private static final int LONG_MIN_LAST_DIGIT = 8;
public ContestScanner(java.io.InputStream in){
this.in = in;
}
public ContestScanner(java.io.File file) throws java.io.FileNotFoundException {
this(new java.io.BufferedInputStream(new java.io.FileInputStream(file)));
}
public ContestScanner(){
this(System.in);
}
private boolean hasNextByte() {
if (ptr < buflen) {
return true;
}else{
ptr = 0;
try {
buflen = in.read(buffer);
} catch (java.io.IOException e) {
e.printStackTrace();
}
if (buflen <= 0) {
return false;
}
}
return true;
}
private int readByte() {
if (hasNextByte()) return buffer[ptr++]; else return -1;
}
private static boolean isPrintableChar(int c) {
return 33 <= c && c <= 126;
}
public boolean hasNext() {
while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++;
return hasNextByte();
}
public String next() {
if (!hasNext()) throw new java.util.NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while(isPrintableChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public long nextLong() {
if (!hasNext()) throw new java.util.NoSuchElementException();
long n = 0;
boolean minus = false;
int b = readByte();
if (b == '-') {
minus = true;
b = readByte();
}
if (b < '0' || '9' < b) {
throw new NumberFormatException();
}
while (true) {
if ('0' <= b && b <= '9') {
int digit = b - '0';
if (n >= LONG_MAX_TENTHS) {
if (n == LONG_MAX_TENTHS) {
if (minus) {
if (digit <= LONG_MIN_LAST_DIGIT) {
n = -n * 10 - digit;
b = readByte();
if (!isPrintableChar(b)) {
return n;
} else if (b < '0' || '9' < b) {
throw new NumberFormatException(
String.format("%d%s... is not number", n, Character.toString(b))
);
}
}
} else {
if (digit <= LONG_MAX_LAST_DIGIT) {
n = n * 10 + digit;
b = readByte();
if (!isPrintableChar(b)) {
return n;
} else if (b < '0' || '9' < b) {
throw new NumberFormatException(
String.format("%d%s... is not number", n, Character.toString(b))
);
}
}
}
}
throw new ArithmeticException(
String.format("%s%d%d... overflows long.", minus ? "-" : "", n, digit)
);
}
n = n * 10 + digit;
}else if(b == -1 || !isPrintableChar(b)){
return minus ? -n : n;
}else{
throw new NumberFormatException();
}
b = readByte();
}
}
public int nextInt() {
long nl = nextLong();
if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException();
return (int) nl;
}
public double nextDouble() {
return Double.parseDouble(next());
}
public long[] nextLongArray(int length){
long[] array = new long[length];
for(int i=0; i<length; i++) array[i] = this.nextLong();
return array;
}
public long[] nextLongArray(int length, java.util.function.LongUnaryOperator map){
long[] array = new long[length];
for(int i=0; i<length; i++) array[i] = map.applyAsLong(this.nextLong());
return array;
}
public int[] nextIntArray(int length){
int[] array = new int[length];
for(int i=0; i<length; i++) array[i] = this.nextInt();
return array;
}
public int[] nextIntArray(int length, java.util.function.IntUnaryOperator map){
int[] array = new int[length];
for(int i=0; i<length; i++) array[i] = map.applyAsInt(this.nextInt());
return array;
}
public double[] nextDoubleArray(int length){
double[] array = new double[length];
for(int i=0; i<length; i++) array[i] = this.nextDouble();
return array;
}
public double[] nextDoubleArray(int length, java.util.function.DoubleUnaryOperator map){
double[] array = new double[length];
for(int i=0; i<length; i++) array[i] = map.applyAsDouble(this.nextDouble());
return array;
}
public long[][] nextLongMatrix(int height, int width){
long[][] mat = new long[height][width];
for(int h=0; h<height; h++) for(int w=0; w<width; w++){
mat[h][w] = this.nextLong();
}
return mat;
}
public int[][] nextIntMatrix(int height, int width){
int[][] mat = new int[height][width];
for(int h=0; h<height; h++) for(int w=0; w<width; w++){
mat[h][w] = this.nextInt();
}
return mat;
}
public double[][] nextDoubleMatrix(int height, int width){
double[][] mat = new double[height][width];
for(int h=0; h<height; h++) for(int w=0; w<width; w++){
mat[h][w] = this.nextDouble();
}
return mat;
}
public char[][] nextCharMatrix(int height, int width){
char[][] mat = new char[height][width];
for(int h=0; h<height; h++){
String s = this.next();
for(int w=0; w<width; w++){
mat[h][w] = s.charAt(w);
}
}
return mat;
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 81cad9369f505454b630f60f8f925a66 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | /* package codechef; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Codechef
{
static class Reader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(
new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') {
if (cnt != 0) {
break;
}
else {
continue;
}
}
buf[cnt++] = (byte)c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0,
BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
public static void main (String[] args) throws java.lang.Exception
{
Reader sc = new Reader();
int n = sc.nextInt();
int c = sc.nextInt();
long hd[] = new long[c+1];
long x[] = new long[c+1];
long C[] = new long[c+1];
for(int i = 0 ; i < n ; i++)
{
int cc = sc.nextInt();
long d = sc.nextLong();
long h = sc.nextLong();
long v = d*h;
hd[cc] = Math.max(v,hd[cc]);
}
for(int i = 1 ; i <= c ; i++)
{
for(int j = i ; j <= c ; j += i)
{
C[j] = Math.max(C[j],hd[i]*(long)(j/i));
}
}
int m = sc.nextInt();
pair a[] = new pair[m];
for(int i = 0 ; i < m ; i++)
{
long xx = sc.nextLong();
long yy = sc.nextLong();
a[i] = new pair(xx*yy,i);
}
Arrays.sort(a , new Compare());
int ans[] = new int[m];
for(int i = 0 ; i < m ; i++)
{
ans[i] = Integer.MAX_VALUE;
}
TreeMap<Long,Integer> map = new TreeMap<Long,Integer>();
for(int i = 0 ; i < m ; i++)
{
map.put(a[i].v,i);
}
for(int i = 1 ; i <= c ; i++)
{
if(C[i] != 0)
{
if(map.lowerKey(C[i]) != null)
ans[map.get(map.lowerKey(C[i]))] = Math.min(ans[map.get(map.lowerKey(C[i]))],
i);
}
}
StringBuffer str = new StringBuffer("");
int ass = Integer.MAX_VALUE;
int la[] = new int[m];
for(int i = m-1 ; i >= 0 ; i--)
{
ass = Math.min(ass,ans[i]);
la[a[i].idx] = ass;
}
for(int i = 0 ; i < m ; i++)
{
if(la[i] == Integer.MAX_VALUE)
str.append("-1 ");
else
str.append(la[i] + " ");
}
System.out.println(str);
}
}
class pair
{
long v;
int idx;
public pair(long v , int idx)
{
this.v =v;
this.idx = idx;
}
}
class Compare implements Comparator<pair>
{
public int compare(pair a , pair b)
{
if(a.v < b.v)
return -1;
else if(a.v > b.v)
return 1;
return 0;
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 11 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 202e5413656932fbc1ee6d28eaef52f2 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes |
import java.util.*;
import java.io.*;
public class D {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
if (st.hasMoreTokens()) {
str = st.nextToken("\n");
} else {
str = br.readLine();
}
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
private static void runWithStd() {
FastReader scanner = new FastReader();
PrintWriter output = new PrintWriter(System.out);
int n = scanner.nextInt(),c = scanner.nextInt();
long[][] soilders = new long[n][3];
for (int i = 0; i < n; i++) {
for (int j = 0; j < soilders[0].length; j++) {
soilders[i][j] = scanner.nextLong();
}
}
int m = scanner.nextInt();
long[][] monsters = new long[m][2];
for (int i = 0; i < m; i++) {
for (int j = 0; j < monsters[0].length; j++) {
monsters[i][j] = scanner.nextLong();
}
}
long[] ret = solve(soilders,monsters,c);
StringBuilder stringBuilder = new StringBuilder();
for(long r : ret) stringBuilder.append(r + " ");
output.println(stringBuilder);
output.close();
}
private static long[] solve(long[][] soilders, long[][] monsters,long c) {
Arrays.sort(soilders,(o1, o2) -> {if(o1[0] != o2[0]) return Long.compare(o1[0],o2[0]);return Long.compare(o2[1] * o2[2],o1[1] * o1[2]);});
long[] dps = new long[(int)c + 1];
for (int i = 0; i < soilders.length; i++) {
if(i > 0 && soilders[i][0] == soilders[i - 1][0]) continue;
long base = soilders[i][1] * soilders[i][2];
for (int j = (int) soilders[i][0]; j < dps.length; j+=soilders[i][0]) {
dps[j] = Math.max(dps[j],base * ((j - soilders[i][0]) / soilders[i][0] + 1));
}
}
for (int i = 1; i < dps.length; i++) {
dps[i] = Math.max(dps[i],dps[i - 1]);
}
//System.out.println(Arrays.toString(dps));
long[] ret = new long[monsters.length];
for (int i = 0; i < monsters.length; i++) {
long target = monsters[i][0] * monsters[i][1];
ret[i] = -1;
int lo = 1,hi = dps.length - 1;
while (lo <= hi){
int mid = (lo + hi) / 2;
if(dps[mid] > target){
hi = mid - 1;
ret[i] = mid;
}else{
lo = mid + 1;
}
}
}
return ret;
}
private static void runWithDebug() {
Random random = new Random();
int t = 100;
while (t-- > 0) {
long ts = System.currentTimeMillis();
long delta = System.currentTimeMillis() - ts;
System.out.println("case t = " + t + " time = " + delta);
}
System.out.println("all passed");
}
public static void main(String[] args) {
runWithStd();
//runWithDebug();
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 17 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 7168bd2cf361cd167d82e9f0ea2ddca4 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.*;
import java.util.*;
public class ForGamersByGamers {
private static final int C_MAX = 1000000;
public static void solve(FastIO io) {
final int N = io.nextInt();
final int C = io.nextInt();
long[] bestUnit = new long[C_MAX + 1];
for (int i = 0; i < N; ++i) {
final int Ci = io.nextInt();
final int Di = io.nextInt();
final int Hi = io.nextInt();
bestUnit[Ci] = Math.max(bestUnit[Ci], 1L * Di * Hi);
}
long[] maxPower = new long[C_MAX + 1];
for (int i = 1; i <= C_MAX; ++i) {
if (bestUnit[i] <= 0) {
continue;
}
long power = bestUnit[i];
for (int j = i; j <= C_MAX; j += i) {
maxPower[j] = Math.max(maxPower[j], power);
power += bestUnit[i];
}
}
final int M = io.nextInt();
Monster[] monsters = new Monster[M];
for (int i = 0; i < M; ++i) {
final int Dj = io.nextInt();
final long Hi = io.nextLong();
monsters[i] = new Monster(i, Dj * Hi);
}
Arrays.parallelSort(monsters, Monster.BY_POWER);
int[] ans = new int[M];
int currCost = 0;
long currPower = 0;
for (int i = 0; i < M; ++i) {
while (currPower <= monsters[i].power) {
++currCost;
if (currCost > C) {
break;
}
currPower = Math.max(currPower, maxPower[currCost]);
}
if (currCost <= C) {
ans[monsters[i].id] = currCost;
} else {
ans[monsters[i].id] = -1;
}
}
io.printlnArray(ans);
}
private static class Monster {
public int id;
public long power;
public Monster(int id, long power) {
this.id = id;
this.power = power;
}
public static final Comparator<Monster> BY_POWER = new Comparator<Monster>() {
@Override
public int compare(Monster a, Monster b) {
return Long.compare(a.power, b.power);
}
};
}
public static class FastIO {
private InputStream reader;
private PrintWriter writer;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public FastIO(InputStream r, OutputStream w) {
reader = r;
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(w)));
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = reader.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
public String nextString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
// TODO: read this byte-by-byte like the other read functions.
public double nextDouble() {
return Double.parseDouble(nextString());
}
public int[] nextIntArray(int n) {
return nextIntArray(n, 0);
}
public int[] nextIntArray(int n, int off) {
int[] arr = new int[n + off];
for (int i = 0; i < n; i++) {
arr[i + off] = nextInt();
}
return arr;
}
public long[] nextLongArray(int n) {
return nextLongArray(n, 0);
}
public long[] nextLongArray(int n, int off) {
long[] arr = new long[n + off];
for (int i = 0; i < n; i++) {
arr[i + off] = nextLong();
}
return arr;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void println(Object... objects) {
print(objects);
writer.println();
}
public void printArray(int[] arr) {
for (int i = 0; i < arr.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(arr[i]);
}
}
public void printArray(long[] arr) {
for (int i = 0; i < arr.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(arr[i]);
}
}
public void printlnArray(int[] arr) {
printArray(arr);
writer.println();
}
public void printlnArray(long[] arr) {
printArray(arr);
writer.println();
}
public void printf(String format, Object... args) {
print(String.format(format, args));
}
public void flush() {
writer.flush();
}
}
public static void main(String[] args) {
FastIO io = new FastIO(System.in, System.out);
solve(io);
io.flush();
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 17 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 0b26c697c17270884154a0bb5846b1c9 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.util.*;
import java.io.*;
import java.math.*;
public class Main {
static long INF = 2000000000000000010l;
public static void main(String[] args) throws IOException {
//int t = cin.nextInt();
//while (t-- > 0) {
// csh();
solve();
out.flush();
//}
out.close();
}
public static void solve() {
int n = cin.nextInt();
int C=cin.nextInt();
long[]w=new long[C+1];
for(int i=0;i<n;i++){
int c1=cin.nextInt();
long c2=cin.nextLong();
long c3=cin.nextLong();
w[c1]=Math.max(w[c1], (long)(c3*c2));
}
for(int i=1;i<=C;i++){
for(int j=2;j<=C/i;j++){
w[i*j]=Math.max(w[i*j], (long)(w[i]*j));
}
}
for(int i=1;i<=C;i++){
w[i]=Math.max(w[i], w[i-1]);
}
//for(int i=0;i<=C;i++)out.print(w[i]+" ");
long nn=cin.nextLong();
while(nn-->0){
boolean f=false;
long D=cin.nextLong();
long H=cin.nextLong();
int l=0,r=C;
while(l<r){
int mid=(l+r)/2;
if(w[mid]>=H*D+1){
r=mid;
f=true;
}else{
l=mid+1;
}
}
if(w[l]>=H*D+1){
out.print(l+" ");
}else{
out.print(-1+" ");
}
}
}
static class Node implements Comparable<Node> {
long x, y, k;
Node() {
}
public Node(long x, long y, long k) {
this.x = x;
this.y = y;
this.k = k;
}
@Override
public int compareTo(Node o) {
if(this.x-o.x!=0){
return (int) (this.x-o.x);
}else{
if(this.y-o.y!=0){
return (int) -(this.y-o.y);
}else{
return (int) -(this.k-o.k);
}
}
}
}
static void csh() {
}
static long cnm(int a, int b) {
long sum = 1;
int i = a, j = 1;
while (j <= b) {
sum = sum * i / j;
i--;
j++;
}
return sum;
}
static int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
static int lcm(int a, int b) {
return (a * b) / gcd(a, b);
}
static void gbSort(int[] a, int l, int r) {
if (l < r) {
int m = (l + r) >> 1;
gbSort(a, l, m);
gbSort(a, m + 1, r);
int[] t = new int[r - l + 1];
int idx = 0, i = l, j = m + 1;
while (i <= m && j <= r)
if (a[i] <= a[j])
t[idx++] = a[i++];
else
t[idx++] = a[j++];
while (i <= m)
t[idx++] = a[i++];
while (j <= r)
t[idx++] = a[j++];
for (int z = 0; z < t.length; z++)
a[l + z] = t[z];
}
}
static FastScanner cin = new FastScanner(System.in);
static PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in), 16384);
eat("");
}
public void eat(String s) {
st = new StringTokenizer(s);
}
public String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
return null;
}
}
public boolean hasNext() {
while (!st.hasMoreTokens()) {
String s = nextLine();
if (s == null)
return false;
eat(s);
}
return true;
}
public String next() {
hasNext();
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public Double nextDouble() {
return Double.parseDouble(next());
}
public BigInteger nextBigInteger() {
return new BigInteger(next());
}
public BigDecimal nextBigDecimal() {
return new BigDecimal(next());
}
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | a4520c8bfa1474a4a5429663001279da | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
//import java.text.DecimalFormat;
import java.util.*;
import java.util.function.LongToIntFunction;
public class Codeforces {
static int mod= 998244353 ;
static class Node{
long c,d,h;
Node(int c,int d,int h){
this.c=c;
this.d=d;
this.h=h;
}
}
public static void main(String[] args) throws Exception {
PrintWriter out=new PrintWriter(System.out);
FastScanner fs=new FastScanner();
int t=1;
outer:for(int time=1;time<=t;time++) {
int n=fs.nextInt(), C=fs.nextInt();
long f[]=new long[C+1];
for(int i=0;i<n;i++) {
int c=fs.nextInt(), h=fs.nextInt(), d=fs.nextInt();
f[c]= Math.max(f[c], 1L*h*d);
}
for(int i=1;i<=C;i++) {
for(int j=2*i;j<=C;j+=i) {
f[j]=Math.max(f[j], (j/i)*f[i]);
}
}
for(int i=1;i<=C;i++) f[i]=Math.max(f[i], f[i-1]);
int m=fs.nextInt();
long ans[]=new long[m];
for(int i=0;i<m;i++) {
long D=fs.nextLong(), H=fs.nextLong();
D*=H;
int l=1,r=C;
if(f[C]<=D) {
ans[i]=-1;
continue ;
}
while(l<r) {
int mid= (l+r)/2;
if(f[mid]>D) {
r=mid;
}
else l=mid+1;
}
ans[i]=l;
}
for(long ele:ans) out.print(ele+ " ");
out.println();
}
out.close();
}
static long pow(long a,long b) {
if(b<0) return 1;
long res=1;
while(b!=0) {
if((b&1)!=0) {
res*=a;
res%=mod;
}
a*=a;
a%=mod;
b=b>>1;
}
return res;
}
static long gcd(long a,long b) {
if(b==0) return a;
return gcd(b,a%b);
}
static long nck(int n,int k) {
if(k>n) return 0;
long res=1;
res*=fact(n);
res%=mod;
res*=modInv(fact(k));
res%=mod;
res*=modInv(fact(n-k));
res%=mod;
return res;
}
static long fact(long n) {
// return fact[(int)n];
long res=1;
for(int i=2;i<=n;i++) {
res*=i;
res%=mod;
}
return res;
}
static long modInv(long n) {
return pow(n,mod-2);
}
static void sort(int[] a) {
//suffle
int n=a.length;
Random r=new Random();
for (int i=0; i<a.length; i++) {
int oi=r.nextInt(n);
int temp=a[i];
a[i]=a[oi];
a[oi]=temp;
}
//then sort
Arrays.sort(a);
}
static void sort(long[] a) {
//suffle
int n=a.length;
Random r=new Random();
for (int i=0; i<a.length; i++) {
int oi=r.nextInt(n);
long temp=a[i];
a[i]=a[oi];
a[oi]=temp;
}
//then sort
Arrays.sort(a);
}
// Use this to input code since it is faster than a Scanner
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long[] readArrayL(int n) {
long a[]=new long[n];
for(int i=0;i<n;i++) a[i]=nextLong();
return a;
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 5d7407f0fab0de970ac8d0e82d7e30a0 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import static java.lang.Math.*;
import static java.lang.System.out;
import java.util.*;
import java.io.*;
public class Main {
static FastReader sc;
static StringBuilder sb = new StringBuilder();
static final long MOD = 998244353;
//sb.append("Case #"+(t+1)+": IMPOSSIBLE\n");
static final long MAX= (long) 1e6;
static long []cost;
public static long lowerBound(long k){
long ans=Long.MAX_VALUE;
int n= cost.length;
int s=1,e=n-1;
while(s<=e){
int mid=(s+e)/2;
if(cost[mid]>k){
ans=min(ans,mid);
e=mid-1;
}else{
s=mid+1;
}
}
return ans;
}
public static void main(String args[]) throws InterruptedException {
sc = new FastReader();
// int tc=sc.nextInt();
int tc=1;
for(int t=0;t<tc;t++){
int n=sc.nextInt(),c=sc.nextInt();
cost=new long[c+1];
for(int i=0;i<=c;i++){
cost[i]=0;
}
long[]unitCost=new long[n];
long[]unit=new long[n];
for(int i=0;i<n;i++){
long cs,d,h;
cs=sc.nextLong();
unitCost[i]=cs;
d=sc.nextLong();
h=sc.nextLong();
unit[i]=h*d;
cost[(int) cs]=max(cost[(int) cs],d*h);
}
for(int i=1;i<=c;i++){
for(int j=i;j<=c;j+=i){
cost[j]=max(cost[j],cost[i]*(j/i));
}
}
for(int i=1;i<=c;i++){
cost[i]=max(cost[i-1],cost[i]);
}
int m=sc.nextInt();
long[]monster=new long[m];
long maxa=0;
for(int i=0;i<m;i++){
long d=sc.nextLong(),h=sc.nextLong();
monster[i]=d*h;
}
for(int i=0;i<m;i++){
long ans=lowerBound(monster[i]);
if(ans==Long.MAX_VALUE){
sb.append("-1"+" ");
}else
sb.append(ans+" ");
}
}
out.println(sb.toString());
}
private static void printArray(long[] unit) {
int n=unit.length;
for(int i=0;i<n;i++){
out.print(unit[i]+" ");
}
out.println();
}
public static void reverse(int[] b) {
int n=b.length;
int i=0,j=n-1;
while(i<j){
int k=b[i];
b[i]=b[j];
b[j]=k;
i++;
j--;
}
return;
}
public static boolean nextPermutation(int[]a){
int n=a.length;
if(n==0||n==1)return false;
int pos=-1;
for(int i=n-2;i>=0;i--){
if(a[i]<a[i+1]){
pos=i;
int rep=-1;
for(int j=i+1;j<n;j++){
if(a[j]>a[pos]){
rep=j;
}
}
int k=a[pos];
a[pos]=a[rep];
a[rep]=k;
break;
}
}
int i=pos+1,j=n-1;
while(i<j){
int k=a[i];
a[i]=a[j];
a[j]=k;
i++;
j--;
}
return (pos==-1)?false:true;
}
public static long powerMOD(long x, long y)
{
long res = 1L;
while (y > 0)
{
// If y is odd, multiply x with result
if ((y & 1) != 0){
x %= MOD;
res %= MOD;
res = (res * x)%MOD;
}
// y must be even now
y = y >> 1; // y = y/2
x%= MOD;
x = (x * x)%MOD; // Change x to x^2
}
return res%MOD;
}
public static long power(long x, long y)
{
long res = 1L;
while (y > 0)
{
// If y is odd, multiply x with result
if ((y & 1) != 0){
res = (res * x);
}
// y must be even now
y = y >> 1; // y = y/
x = (x * x);
}
return res;
}
public static void printArray(int[] a){
int n=a.length;
for(int i=0;i<n;i++){
System.out.print(a[i]+" ");
}
System.out.println();
}
public static int gcd(int a, int b){
if(b == 0)
return a;
return gcd(b , a%b);
}
static int cntBits(long n){
int cnt=0;
while(n>0){
if(n%2==1)
cnt++;
n/=2;
}
return cnt;
}
static double p_dist(long x1,long y1,long x2,long y2){
double dist=(x1-x2)*(x1-x2)+(y1-y2)*(y1-y2);
dist=Math.sqrt(dist);
return dist;
}
static void swap(int[]a,int i,int j){
int k=a[i];
a[i]=a[j];
a[j]=k;
}
static void printArray(char[]a){
int n=a.length;
for(int i=0;i<n;i++){
System.out.print(a[i]+" ");
}
System.out.println();
}
public static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
public static void sort(char[] a) {
ArrayList<Character> l=new ArrayList<>();
for (char i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
public static void sort(long[] a) {
ArrayList<Long> l=new ArrayList<>();
for (long i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static int log2(int N) {
int result = (int) (Math.log(N) / Math.log(2));
return result;
}
public static boolean isVowel(char c)
{
return (c=='a' || c=='A' || c=='e' || c=='E' || c=='i' || c=='I' || c=='o' || c=='O' || c=='u' || c=='U');
}
static int[] readArray(int N) {
int[] res = new int[N];
for (int i = 0; i < N; i++) {
res[i] = (int) sc.nextInt();
}
return res;
}
static long[] readArrayLong(int N) {
long[] res = new long[N];
for (int i = 0; i < N; i++) {
res[i] = sc.nextLong();
}
return res;
}
public static long gcd(long a, long b){
if(b == 0)
return a;
return gcd(b , a%b);
}
public static class Pair implements Comparable<Pair>{
public long a;
public long b;
Pair(long a , long b){
this.a = a;
this.b = b;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Pair pair = (Pair) o;
return (a == pair.a && b == pair.b);
}
@Override
public int hashCode() {
return Objects.hash(a,b);
}
@Override
public String toString(){
return "("+a + "," + b+")";
}
@Override
public int compareTo(Pair pair) {
if((a == pair.a && b == pair.b))
return 0;
return 1;
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
char nextChar(){
return next().charAt(0);
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 3f697443c3cb3aaef5f4163e6fe0b23a | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.util.Scanner;
public class D1 {
static Scanner sc = new Scanner(System.in);
public static void main(String[] args) {
int n = sc.nextInt();
int C = sc.nextInt();
long[] cList = new long[C + 1];
for (int i = 0; i < n; i++) {
int c = sc.nextInt();
long d = sc.nextLong();
long h = sc.nextLong();
if (c <= C) {
cList[c] = Math.max(d * h, cList[c]);
}
}
for (int i = 1; i <= C; i++) {
cList[i] = Math.max(cList[i], cList[i - 1]);
for (int j = i; j <= C; j += i) {
cList[j] = Math.max(cList[j], cList[i] * (long) j / (long) i);
}
}
int m = sc.nextInt();
int[] result = new int[m];
for (int i = 0; i < m; i++) {
long d = sc.nextLong();
long h = sc.nextLong();
long val = d * h;
if (val >= cList[C]) {
result[i] = -1;
continue;
}
int start = 1;
int end = C;
while (start < end) {
int mid = start + ((end - start) >> 1);
if (cList[mid] > val) {
end = mid;
} else {
start = mid + 1;
}
}
result[i] = end;
}
StringBuffer sb = new StringBuffer();
for (int i = 0; i < m; i++) {
sb.append(result[i]);
if (i != m - 1) {
sb.append(" ");
}
}
System.out.println(sb);
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 1e5b5b59dce845bd7d8273a336b37b29 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.util.Scanner;
public class D1 {
static Scanner sc = new Scanner(System.in);
public static void main(String[] args) {
int n = sc.nextInt();
int C = sc.nextInt();
long[] cList = new long[C + 1];
for (int i = 0; i < n; i++) {
int c = sc.nextInt();
long d = sc.nextLong();
long h = sc.nextLong();
if (c <= C) {
cList[c] = Math.max(d * h, cList[c]);
}
}
for (int i = 1; i <= C; i++) {
for (int j = i; j <= C; j += i) {
cList[j] = Math.max(cList[j], cList[i] * (long) j / (long) i);
}
}
for (int i = 2; i <= C; i++) {
cList[i] = Math.max(cList[i], cList[i - 1]);
}
int m = sc.nextInt();
int[] result = new int[m];
for (int i = 0; i < m; i++) {
long d = sc.nextLong();
long h = sc.nextLong();
long val = d * h;
if (val >= cList[C]) {
result[i] = -1;
continue;
}
int start = 1;
int end = C;
while (start < end) {
int mid = start + ((end - start) >> 1);
if (cList[mid] > val) {
end = mid;
} else {
start = mid + 1;
}
}
result[i] = end;
}
StringBuffer sb = new StringBuffer();
for (int i = 0; i < m; i++) {
sb.append(result[i]);
if (i != m - 1) {
sb.append(" ");
}
}
System.out.println(sb);
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 1dce16e57de14fea2851eb3352159162 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.util.*;
public class D {
static Scanner sc = new Scanner(System.in);
public static void main(String[] args) {
int n = sc.nextInt();
int C = sc.nextInt();
long[][] array = new long[n][2];
Queue<long[]> queue = new PriorityQueue<>((a1, a2) -> {
if (a1[0] == a2[0]) {
return Long.compare(a2[1], a1[1]);
}
return Long.compare(a1[0], a2[0]);
});
for (int i = 0; i < n; i++) {
array[i][0] = sc.nextLong();
long d = sc.nextLong();
long h = sc.nextLong();
array[i][1] = d * h;
}
Arrays.sort(array, (a1, a2) -> {
if (a1[0] == a2[0]) {
return Long.compare(a2[1], a1[1]);
}
return Long.compare(a1[0], a2[0]);
});
for (int i = 0; i < n; i++) {
if (queue.isEmpty()) {
queue.offer(new long[]{array[i][0], array[i][1], i});
continue;
}
if (array[i][0] == queue.peek()[0]) {
continue;
}
queue.offer(new long[]{array[i][0], array[i][1], i});
}
int m = sc.nextInt();
long[][] list = new long[m][2];
for (int i = 0; i < m; i++) {
long d = sc.nextLong();
long h = sc.nextLong();
long val = d * h;
list[i][0] = val;
list[i][1] = i;
}
long[] result = new long[m];
Arrays.sort(list, Comparator.comparingLong(a -> a[0]));
for (long[] longs : list) {
if (queue.isEmpty()) {
break;
}
while (!queue.isEmpty()) {
long[] top = queue.peek();
if (top[1] > longs[0]) {
result[(int) longs[1]] = top[0];
break;
}
top = queue.poll();
long cnt = longs[0] / array[(int) top[2]][1] + 1;
long cost = array[(int) top[2]][0] * cnt;
if (cost > 0 && cost <= C) {
queue.offer(new long[]{cost, array[(int) top[2]][1] * cnt, top[2]});
}
}
}
for (int i = 0; i < m; i++) {
if (result[i] == 0) {
result[i] = -1;
}
}
StringBuffer sb = new StringBuffer();
for (int i = 0; i < m; i++) {
sb.append(result[i]);
if (i != m - 1) {
sb.append(" ");
}
}
System.out.println(sb);
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 1d6600e8e685cecc87746f73ad622cfb | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.*;
import java.util.*;
public class ForGamersByGamers_1657D {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken()), C = Integer.parseInt(st.nextToken());
long[] units = new long[C + 1];
for(int i = 0; i < n; i ++) {
st = new StringTokenizer(br.readLine());
int c = Integer.parseInt(st.nextToken());
long d = Integer.parseInt(st.nextToken());
int h = Integer.parseInt(st.nextToken());
units[c] = Math.max(units[c], d * h);
}
long prev = 0;
for(int i = 1; i <= C; i ++) {
if(units[i] == 0) continue;
if(units[i] <= prev) {
units[i] = 0;
} else {
prev = units[i];
}
}
for(int i = 1; i <= C; i ++) {
if(units[i] == 0) continue;
for(int j = 1; j <= C; j ++) {
if(i * j > C) break;
units[i * j] = Math.max(units[i * j], units[i] * j);
}
}
int m = Integer.parseInt(br.readLine());
int[] res = new int[m];
PriorityQueue<Monster> queue = new PriorityQueue<>();
for(int i = 0; i < m; i ++) {
st = new StringTokenizer(br.readLine());
long d = Integer.parseInt(st.nextToken());
long h = Long.parseLong(st.nextToken());
queue.add(new Monster(i, d * h));
}
long maxPower = 0;
for(int i = 1; i <= C; i ++) {
maxPower = Math.max(maxPower, units[i]);
while(!queue.isEmpty() && queue.peek().power < maxPower) {
Monster monster = queue.poll();
res[monster.idx] = i;
}
if(queue.isEmpty()) break;
}
StringBuilder output = new StringBuilder();
for(int i : res) {
if(i == 0) {
output.append(-1);
} else {
output.append(i);
}
output.append(' ');
}
System.out.println(output.toString());
}
}
class Monster implements Comparable<Monster> {
int idx;
long power;
public Monster(int idx, long power) {
this.idx = idx; this.power = power;
}
public int compareTo(Monster that) {
return this.power < that.power? -1 : this.power == that.power? this.idx - that.idx : 1;
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 7f9546cf350cd19c01e93ad66e5bd951 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.HashMap;
public class Main {
public static void main(String[] args) throws IOException{
String[]data;
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n, C;
int[] c, d, h;
int m;
long[] D, H;
long[] cost;
long[] dh;
data = br.readLine().split(" ");
n = Integer.parseInt(data[0]);
C = Integer.parseInt(data[1]);
cost = new long[C+1];
dh = new long[C+1];
c = new int[n];
d = new int[n];
h = new int[n];
for(int i = 0 ; i < n ; ++i){
data = br.readLine().split(" ");
c[i] = Integer.valueOf(data[0]);
d[i] = Integer.valueOf(data[1]);
h[i] = Integer.valueOf(data[2]);
long power = d[i];
power*=h[i];
if(dh[c[i]] < power)
dh[c[i]] = power;
}
m = Integer.valueOf(br.readLine());
D = new long[m];
H = new long[m];
for(int j = 0 ; j < m ; ++j){
data = br.readLine().split(" ");
D[j] = Integer.parseInt(data[0]);
H[j] = Long.parseLong(data[1]);
}
for(int i = 0 ; i <= C ; ++i){
if(dh[i] != 0)
for(int j = i, x = 1 ; j<= C ; j+=i, x++){
long power = x;
power*= dh[i];
cost[j] = Math.max(power, cost[j]);
}
}
for(int i = 0 ; i < C ; ++i){
cost[i+1] = Math.max(cost[i], cost[i+1]);
}
for(int j = 0 ; j < m ; ++j){
long power = D[j]*H[j];
if(power >= cost[C]){
System.out.print(-1+" ");
}else{
System.out.print(binary_search(C, power+1, cost)+" ");
}
}
}
static int binary_search(int C, long obj, long[] cost){
int l = 0, r = C;
while(l<=r){
int mid = (l+r)/2;
if(cost[mid] < obj){
l = mid + 1;
}else{
r = mid -1;
}
}
return l;
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | e21b4385b593d78b00c5a34e95cba6d6 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.HashMap;
public class Main {
public static void main(String[] args) throws IOException{
String[]data;
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n, C;
int[] c, d, h;
int m;
long[] D, H;
long[] cost;
HashMap<Integer, Long> dh = new HashMap<>();
data = br.readLine().split(" ");
n = Integer.parseInt(data[0]);
C = Integer.parseInt(data[1]);
cost = new long[C+1];
c = new int[n];
d = new int[n];
h = new int[n];
for(int i = 0 ; i < n ; ++i){
data = br.readLine().split(" ");
c[i] = Integer.valueOf(data[0]);
d[i] = Integer.valueOf(data[1]);
h[i] = Integer.valueOf(data[2]);
long power = d[i];
power*=h[i];
if(!dh.containsKey(c[i])){
dh.put(c[i], power);
}else{
if(dh.get(c[i]) < power){
dh.replace(c[i], power);
}
}
}
m = Integer.valueOf(br.readLine());
D = new long[m];
H = new long[m];
for(int j = 0 ; j < m ; ++j){
data = br.readLine().split(" ");
D[j] = Integer.parseInt(data[0]);
H[j] = Long.parseLong(data[1]);
}
for(int ci : dh.keySet()){
for(int j = ci, x = 1 ; j<= C ; j+=ci, x++){
long power = x;
power*= dh.get(ci);
cost[j] = Math.max(power, cost[j]);
}
}
for(int i = 0 ; i < C ; ++i){
cost[i+1] = Math.max(cost[i], cost[i+1]);
}
for(int j = 0 ; j < m ; ++j){
long power = D[j]*H[j];
if(power >= cost[C]){
System.out.print(-1+" ");
}else{
System.out.print(binary_search(C, power+1, cost)+" ");
}
}
}
static int binary_search(int C, long obj, long[] cost){
int l = 0, r = C;
while(l<=r){
int mid = (l+r)/2;
if(cost[mid] < obj){
l = mid + 1;
}else{
r = mid -1;
}
}
return l;
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | cc90cdc2e552ac5e6e3ed9567a330f2e | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.TreeMap;
public class Main {
public static void main(String[] args) throws IOException{
String[]data;
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n, C;
int[] c, d, h;
int m;
long[] D, H;
long[] cost;
TreeMap<Integer, Long> dh = new TreeMap<>();
data = br.readLine().split(" ");
n = Integer.parseInt(data[0]);
C = Integer.parseInt(data[1]);
cost = new long[C+1];
c = new int[n];
d = new int[n];
h = new int[n];
for(int i = 0 ; i < n ; ++i){
data = br.readLine().split(" ");
c[i] = Integer.valueOf(data[0]);
d[i] = Integer.valueOf(data[1]);
h[i] = Integer.valueOf(data[2]);
long power = d[i];
power*=h[i];
if(!dh.containsKey(c[i])){
dh.put(c[i], power);
}else{
if(dh.get(c[i]) < power){
dh.replace(c[i], power);
}
}
}
m = Integer.valueOf(br.readLine());
D = new long[m];
H = new long[m];
for(int j = 0 ; j < m ; ++j){
data = br.readLine().split(" ");
D[j] = Integer.parseInt(data[0]);
H[j] = Long.parseLong(data[1]);
}
for(int ci : dh.keySet()){
for(int j = ci, x = 1 ; j<= C ; j+=ci, x++){
long power = x;
power*= dh.get(ci);
cost[j] = Math.max(power, cost[j]);
}
}
for(int i = 0 ; i < C ; ++i){
cost[i+1] = Math.max(cost[i], cost[i+1]);
}
for(int j = 0 ; j < m ; ++j){
long power = D[j]*H[j];
if(power >= cost[C]){
System.out.print(-1+" ");
}else{
System.out.print(binary_search(C, power+1, cost)+" ");
}
}
}
static int binary_search(int C, long obj, long[] cost){
int l = 0, r = C;
while(l<=r){
int mid = (l+r)/2;
if(cost[mid] < obj){
l = mid + 1;
}else{
r = mid -1;
}
}
return l;
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | e8dd6c9910c63a6cc622f4a5c0ba6ca8 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.util.*;
import java.io.*;
public class Omar {
static Scanner sc;
static PrintWriter pw;
static int get(long val, long[] values) {
int s = 0, end = values.length - 1;
while (s <= end) {
int mid = s + end >> 1;
if (values[mid] > val)
end = mid - 1;
else
s = mid + 1;
}
return s;
}
public static void main(String[] args) throws IOException, InterruptedException {
sc = new Scanner(System.in);
pw = new PrintWriter(System.out);
int n = sc.nextInt();
int c = sc.nextInt();
long[] max = new long[c + 1];
Arrays.fill(max, -1);
long inf = (long) 1e18;
for (int i = 0; i < n; i++) {
int ci = sc.nextInt();
max[ci] = Math.max(max[ci], sc.nextLong() * sc.nextLong());
}
for (int i = 1; i <= c; i++) {
if(max[i]==0)
continue;
long cur=max[i];
for (int k = i; k <= c; k += i) {
max[k]=Math.max(max[k], cur);
cur+=max[i];
}
}
long mm=-1*inf;
for(int i=1;i<=c;i++) {
mm=Math.max(mm, max[i]);
max[i]=mm;
}
int m=sc.nextInt();
for(int i=0;i<m;i++) {
long d=sc.nextLong();
long h=sc.nextLong();
long ans=get(d*h, max);
pw.print(ans==c+1?-1:ans);
pw.print(" ");
}
pw.flush();
}
static class pair {
long x, y;
// int x, y;
public pair(long x, long y) {
this.x = x;
this.y = y;
}
public String toString() {
return x + " " + y;
}
public boolean equals(Object o) {
if (o instanceof pair) {
pair p = (pair) o;
return p.x == x && p.y == y;
}
return false;
}
public int hashCode() {
return new Long(x).hashCode() * 31 + new Long(y).hashCode();
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String readAllLines(BufferedReader reader) throws IOException {
StringBuilder content = new StringBuilder();
String line;
while ((line = reader.readLine()) != null) {
content.append(line);
content.append(System.lineSeparator());
}
return content.toString();
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 581920283673f86e5b8a256ae7e4f7cc | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes |
import java.io.*;
import java.util.*;
public class Solution {
static long cr[][]=new long[1001][1001];
//static double EPS = 1e-7;
static long mod=998244353;
static long val=0;
static boolean flag=true;
public static void main(String[] args)
{
FScanner sc = new FScanner();
//Arrays.fill(prime, true);
//sieve();
//ncr();
// int t=sc.nextInt();
StringBuilder sb = new StringBuilder();
// while(t-->0)
// {
int n=sc.nextInt();
int C=sc.nextInt();
TreeMap<Integer,Long> tm=new TreeMap<>();
for(int i=0;i<n;i++)
{
int c=sc.nextInt();
long d=sc.nextLong();
long h=sc.nextLong();
long val=d*h;
if(tm.containsKey(c))
{
tm.put(c,Math.max(val,tm.get(c)));
}
else
tm.put(c, val);
}
long arr[]=new long[C+1];
for(Map.Entry<Integer,Long> e: tm.entrySet() )
{
int c=e.getKey();
long val=e.getValue();
long value=val;
for(int j=c;j<=C;j=j+c)
{
arr[j]=Math.max(value,arr[j]);
value=val+value;
}
}
for(int i=1;i<=C;i++)
{
arr[i]=Math.max(arr[i],arr[i-1]);
}
// sb.append(tm+"\n");
TreeMap<Long,Integer> tm1=new TreeMap<>();
tm1.put(Long.MAX_VALUE,-1);
long max=0;
for(int i=1;i<=C;i++)
{ max=Math.max(max,arr[i]);
if(tm1.containsKey(max))
tm1.put(max,Math.min(i,tm1.get(max)));
else
tm1.put(max,i);
}
// ArrayList<Long> A=new ArrayList<>();
int m=sc.nextInt();
// sb.append(tm1+"\n");
for(int i=0;i<m;i++)
{
long a=sc.nextLong();
long b=sc.nextLong();
int ind=tm1.higherEntry(a*b).getValue();
sb.append(ind+" ");
}
sb.append("\n");
// }
System.out.println(sb.toString());
}
public static boolean check(char c[],int i,int j,int dp[][])
{ int k=i;
while(i<=j-4)
{
if(palin(c,i,i+4) )
return true;
i++;
}
i=k;
while(i<=j-5)
{
if(palin(c,i,i+5) )
return true;
i++;
}
return false;
}
public static boolean palin(char c[],int i,int j)
{
while(i<j)
{
if(c[i]!=c[j])
return false;
i++;j--;
}
return true;
}
public static long powerLL(long x, long n)
{
long result = 1;
while (n > 0)
{
if (n % 2 == 1)
{
result = result * x % mod;
}
n = n / 2;
x = x * x % mod;
}
return result;
}
public static long gcd(long a,long b)
{
return b==0 ? a:gcd(b,a%b);
}
/* public static void sieve()
{ prime[0]=prime[1]=false;
int n=1000000;
for(int p = 2; p*p <=n; p++)
{
if(prime[p] == true)
{
for(int i = p*p; i <= n; i += p)
prime[i] = false;
}
}
*/
public static void ncr()
{
cr[0][0]=1;
for(int i=1;i<=1000;i++)
{
cr[i][0]=1;
for(int j=1;j<i;j++)
{
cr[i][j]=(cr[i-1][j-1]+cr[i-1][j])%mod;
}
cr[i][i]=1;
}
}
}
class pair
//implements Comparable<pair>
{
long a;long b;
pair(long a,long b)
{
this.b=b;
this.a=a;
}
}
class FScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer sb = new StringTokenizer("");
String next(){
while(!sb.hasMoreTokens()){
try{
sb = new StringTokenizer(br.readLine());
} catch(IOException e){ }
}
return sb.nextToken();
}
String nextLine(){
try{ return br.readLine(); }
catch(IOException e) { } return "";
}
int nextInt(){
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
int[] readArray(int n) {
int a[] = new int[n];
for(int i=0;i<n;i++) a[i] = nextInt();
return a;
}
float nextFloat(){
return Float.parseFloat(next());
}
double nextDouble(){
return Double.parseDouble(next());
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 448bb381d6aaf3cdbefaae65280aebb9 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.math.BigInteger;
import java.util.*;
public class CF1{
public static void main(String[] args) {
FastScanner sc=new FastScanner();
// int T=sc.nextInt();
int T=1;
for (int tt=1; tt<=T; tt++){
int n =sc.nextInt();
int c = sc.nextInt();
long ans[]= new long[c+1];
for (int i=0; i<n; i++){
int x= sc.nextInt();
ans[x]=Math.max(ans[x], sc.nextLong()*sc.nextLong());
}
for (int i=1; i<=c; i++){
ans[i]=Math.max(ans[i], ans[i-1]);
for (int j=1; j*i<=c; j++){
ans[j*i]=Math.max(ans[j*i], j*ans[i]);
}
}
int m = sc.nextInt();
StringBuilder sb= new StringBuilder();
for (int i=0; i<m; i++){
long pp= sc.nextLong()*sc.nextLong();
if (pp>=ans[c]) sb.append(-1+" ");
else {
int lo=1;
int hi=c;
int xx=1;
while (lo<=hi){
int mid=(lo+hi)/2;
if (ans[mid]<=pp){
lo=mid+1;
}
else {
hi=mid-1;
xx=mid;
}
}
sb.append(xx+" ");
}
}
System.out.println(sb.toString());
}
}
static long factorial (int x){
if (x==0) return 1;
long ans =x;
for (int i=x-1; i>=1; i--){
ans*=i;
ans%=mod;
}
return ans;
}
static long mod =998244353L;
static long power2 (long a, long b){
long res=1;
while (b>0){
if ((b&1)== 1){
res= (res * a % mod)%mod;
}
a=(a%mod * a%mod)%mod;
b=b>>1;
}
return res;
}
static boolean sieveOfEratosthenes(int n)
{
boolean prime[] = new boolean[n+1];
for(int i=0;i<=n;i++)
prime[i] = true;
for(int p = 2; p*p <=n; p++)
{
if(prime[p] == true)
{
for(int i = p*p; i <= n; i += p)
prime[i] = false;
}
}
return prime[n];
}
static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static void sortLong(long[] a) {
ArrayList<Long> l=new ArrayList<>();
for (long i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static long gcd (long n, long m){
if (m==0) return n;
else return gcd(m, n%m);
}
static class Pair implements Comparable<Pair>{
int x,y;
private static final int hashMultiplier = BigInteger.valueOf(new Random().nextInt(1000) + 100).nextProbablePrime().intValue();
public Pair(int x, int y){
this.x = x;
this.y = y;
}
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Pair pii = (Pair) o;
if (x != pii.x) return false;
return y == pii.y;
}
public int hashCode() {
return hashMultiplier * x + y;
}
public int compareTo(Pair o){
return Integer.compare(this.x , o.x);
}
// this.x-o.x is ascending
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 3a195a764ace23679a327aabb31c7831 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class Main {
static Reader rd = new Reader();
public static void main(String[] args) {
while (true) {
new Solution().solve();
break;
}
}
static class Solution {
void solve() {
int n = rd.nextInt(), C = rd.nextInt();
long[][] unit = new long[n][3];
for (int i = 0; i < n; i++) {
unit[i][0] = rd.nextInt();
unit[i][1] = rd.nextInt();
unit[i][2] = rd.nextInt();
}
int m = rd.nextInt();
long[][] mon = new long[m][2];
for (int i = 0; i < m; i++) {
mon[i][0] = rd.nextLong();
mon[i][1] = rd.nextLong();
}
long[] maxpow = new long[C + 1];
for (int i = 0; i < n; i++) {
int c = (int) unit[i][0];
maxpow[c] = Math.max(maxpow[c], unit[i][1] * unit[i][2]);
}
long[] exact = new long[C + 1];
for (int i = 1; i <= C; i++) {
for (int x = 1; (long) x * i <= (long) C; x++) {
int c = x * i;
exact[c] = Math.max(exact[c], maxpow[i] * x);
}
}
long[] pref = new long[C + 1];
for (int i = 1; i <= C; i++) {
pref[i] = Math.max(pref[i - 1], exact[i]);
}
// Utils.printArray(exact);
// Utils.printArray(pref);
StringBuilder sb = new StringBuilder();
for (int i = 0; i < m; i++) {
long power = mon[i][0] * mon[i][1];
int lo = 0, hi = pref.length;
while (lo < hi) {
int mid = (lo + hi) >> 1;
if (pref[mid] > power) {
hi = mid;
} else {
lo = mid + 1;
}
}
if (hi == pref.length) {
// System.out.printf("-1 ");
sb.append("-1 ");
} else {
// System.out.printf("%d ", hi);
sb.append(hi).append(' ');
}
}
System.out.println(sb.toString());
}
}
static class Reader {
private BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
private StringTokenizer tokenizer = new StringTokenizer("");
private String innerNextLine() {
try {
return reader.readLine();
} catch (IOException ex) {
throw new RuntimeException(ex);
}
}
public boolean hasNext() {
while (!tokenizer.hasMoreTokens()) {
String nextLine = innerNextLine();
if (nextLine == null) {
return false;
}
tokenizer = new StringTokenizer(nextLine);
}
return true;
}
public String nextLine() {
tokenizer = new StringTokenizer("");
return innerNextLine();
}
public String next() {
hasNext();
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.valueOf(next());
}
public long nextLong() {
return Long.valueOf(next());
}
public double nextDouble() {
return Double.valueOf(next());
}
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 8ea95bbe619fd761198e2656ce93f108 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class Main {
static Reader rd = new Reader();
public static void main(String[] args) {
while (true) {
new Solution().solve();
break;
}
}
static class Solution {
void solve() {
int n = rd.nextInt(), C = rd.nextInt();
long[][] unit = new long[n][3];
for (int i = 0; i < n; i++) {
unit[i][0] = rd.nextInt();
unit[i][1] = rd.nextInt();
unit[i][2] = rd.nextInt();
}
int m = rd.nextInt();
long[][] mon = new long[m][2];
for (int i = 0; i < m; i++) {
mon[i][0] = rd.nextLong();
mon[i][1] = rd.nextLong();
}
long[] maxpow = new long[C + 1];
for (int i = 0; i < n; i++) {
int c = (int) unit[i][0];
maxpow[c] = Math.max(maxpow[c], unit[i][1] * unit[i][2]);
}
long[] exact = new long[C + 1];
for (int i = 1; i <= C; i++) {
for (int x = 1; (long) x * i <= (long) C; x++) {
int c = x * i;
exact[c] = Math.max(exact[c], maxpow[i] * x);
}
}
long[] pref = new long[C + 1];
for (int i = 1; i <= C; i++) {
pref[i] = Math.max(pref[i - 1], exact[i]);
}
// Utils.printArray(exact);
// Utils.printArray(pref);
for (int i = 0; i < m; i++) {
long power = mon[i][0] * mon[i][1];
int lo = 0, hi = pref.length;
while (lo < hi) {
int mid = (lo + hi) >> 1;
if (pref[mid] > power) {
hi = mid;
} else {
lo = mid + 1;
}
}
if (hi == pref.length) {
System.out.printf("-1 ");
} else {
System.out.printf("%d ", hi);
}
}
System.out.println();
}
}
static class Reader {
private BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
private StringTokenizer tokenizer = new StringTokenizer("");
private String innerNextLine() {
try {
return reader.readLine();
} catch (IOException ex) {
throw new RuntimeException(ex);
}
}
public boolean hasNext() {
while (!tokenizer.hasMoreTokens()) {
String nextLine = innerNextLine();
if (nextLine == null) {
return false;
}
tokenizer = new StringTokenizer(nextLine);
}
return true;
}
public String nextLine() {
tokenizer = new StringTokenizer("");
return innerNextLine();
}
public String next() {
hasNext();
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.valueOf(next());
}
public long nextLong() {
return Long.valueOf(next());
}
public double nextDouble() {
return Double.valueOf(next());
}
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 4e016ea0e78c1bdd31a1da04364cca92 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
//--------------------------INPUT READER---------------------------------//
static class fs {
public BufferedReader br;
StringTokenizer st = new StringTokenizer("");
public fs() { this(System.in); }
public fs(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
}
String next() {
while (!st.hasMoreTokens()) {
try { st = new StringTokenizer(br.readLine()); }
catch (IOException e) { e.printStackTrace(); }
}
return st.nextToken();
}
int ni() { return Integer.parseInt(next()); }
long nl() { return Long.parseLong(next()); }
double nd() { return Double.parseDouble(next()); }
String ns() { return next(); }
int[] na(long nn) {
int n = (int) nn;
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = ni();
return a;
}
long[] nal(long nn) {
int n = (int) nn;
long[] l = new long[n];
for(int i = 0; i < n; i++) l[i] = nl();
return l;
}
}
//-----------------------------------------------------------------------//
//---------------------------PRINTER-------------------------------------//
static class Printer {
static PrintWriter w;
public Printer() {this(System.out);}
public Printer(OutputStream os) {
w = new PrintWriter(os);
}
public void p(int i) {w.println(i);}
public void p(long l) {w.println(l);}
public void p(double d) {w.println(d);}
public void p(String s) { w.println(s);}
public void pr(int i) {w.print(i);}
public void pr(long l) {w.print(l);}
public void pr(double d) {w.print(d);}
public void pr(String s) { w.print(s);}
public void pl() {w.println();}
public void close() {w.close();}
}
//-----------------------------------------------------------------------//
//--------------------------VARIABLES------------------------------------//
static fs sc = new fs();
static OutputStream outputStream = System.out;
static Printer w = new Printer(outputStream);
static long lma = Long.MAX_VALUE, lmi = Long.MIN_VALUE;
static int ima = Integer.MAX_VALUE, imi = Integer.MIN_VALUE;
static long mod = 1000000007;
//-----------------------------------------------------------------------//
//--------------------------ADMIN_MODE-----------------------------------//
private static void ADMIN_MODE() throws IOException {
if (System.getProperty("ONLINE_JUDGE") == null) {
w = new Printer(new FileOutputStream("output.txt"));
sc = new fs(new FileInputStream("input.txt"));
}
}
//-----------------------------------------------------------------------//
//----------------------------START--------------------------------------//
public static void main(String[] args)
throws IOException {
ADMIN_MODE();
//int t = sc.ni();while(t-->0)
solve();
w.close();
}
static void solve() throws IOException {
int n = sc.ni(), c = sc.ni();
// let skills be attack*defense*freq
// now to win skills of monster should be strictly less than skills of unit
long[] bestSkills = new long[c+1]; // Best skills for exactly c coins
for(int i = 0; i < n; i++) {
int ci = sc.ni(), di = sc.ni(), hi = sc.ni();
bestSkills[ci] = Math.max(bestSkills[ci], (long)di*hi);
}
// to get the best skills for every amount we have to propagate the value
// this will take harmonic series -> c + c/2 + c/3 ...
// i.e for one coin we have to check for every amount till c
// for 2 we have to update 2, 4, 6 and so on
// time complexity of harmonic series is C*log(C)
for(int i = 1; i <= c; i++) {
for(int j = i; j <= c; j+=i) {
bestSkills[j] = Math.max(bestSkills[j], (j/i)*bestSkills[i]);
}
}
// since this is only for exactly c, now make a prefix array
for(int i = 1; i <= c; i++) {
bestSkills[i] = Math.max(bestSkills[i-1], bestSkills[i]);
}
int monsters = sc.ni();
for(int i = 0; i < monsters; i++) {
long di = sc.nl(), hi = sc.nl();
long skill = di*hi;
if(bestSkills[c] <= skill) {
w.pr(-1+" ");
continue;
}
int l = 0, r = c;
while(l < r-1) {
int mid = (l+r)/2;
if(bestSkills[mid] > skill) {
r = mid;
} else l = mid;
}
w.pr(r+" ");
}
w.pl();
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 5792d9630fb72c8a37185c2f58134880 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | /*############################################################################################################
########################################## >>>> Diaa12360 <<<< ###############################################
########################################### Just Nothing #################################################
#################################### If You Need it, Fight For IT; #########################################
###############################################.-. 1 5 9 2 .-.################################################
############################################################################################################*/
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class Solution {
static Map<Long, Long> mp = new HashMap<>();
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringBuilder out = new StringBuilder();
StringTokenizer tk;
// int t = ints(in.readLine());
// while (t-- > 0){
tk = new StringTokenizer(in.readLine());
int n = ints(tk.nextToken()), C = ints(tk.nextToken());
long[] maxVal = new long[C + 10];
for (int i = 0; i < n; i++) {
tk = new StringTokenizer(in.readLine());
int c = ints(tk.nextToken()), d = ints(tk.nextToken()), h = ints(tk.nextToken());
maxVal[c] = Math.max(maxVal[c], (long) d * h);
}
for (int i = 1; i <= C; i++) {
for (int j = i * 2; j <= C; j += i) {
maxVal[j] = Math.max(maxVal[j], maxVal[i] * j / i);
}
}
for (int i = 1; i <= C; i++)
maxVal[i] = Math.max(maxVal[i], maxVal[i - 1]);
int m = ints(in.readLine());
StringBuilder ans = new StringBuilder();
for (int i = 0; i < m; i++) {
tk = new StringTokenizer(in.readLine());
long D = ll(tk.nextToken());
long H = ll(tk.nextToken());
long v = D * H;
int l = 1, r = C;
while (l < r) {
int mid = l + r >> 1;
if (maxVal[mid] > v) r = mid;
else l = mid + 1;
}
if (maxVal[l] > v) {
ans.append(l).append(" ");
} else {
ans.append("-1").append(" ");
}
}
// }
System.out.print(ans);
}
private static boolean vaild(int toX, int toY, int n, int m) {
return toX < n && toY < m && toX >= 0 && toY >= 0;
}
private static void sol(long val) {
if (val % 2 == 0)
if (mp.containsKey(2L))
mp.replace(2L, mp.get(2L) + 1);
else
mp.put(2L, 1L);
while (val % 2 == 0) val /= 2;
for (long j = 3; j * j <= val; j += 2) {
if (val % j == 0)
if (mp.containsKey(j))
mp.replace(j, mp.get(j) + 1);
else
mp.put(j, 1L);
while (val % j == 0) val /= j;
}
if (val > 2)
if (mp.containsKey(val))
mp.replace(val, mp.get(val) + 1);
else
mp.put(val, 1L);
}
static int ints(String s) {
return Integer.parseInt(s);
}
static long ll(String s) {
return Long.parseLong(s);
}
static int[] readArray(String s, int n) {
StringTokenizer tk = new StringTokenizer(s);
int[] arr = new int[n];
for (int i = 0; i < n; i++)
arr[i] = ints(tk.nextToken());
return arr;
}
static int[] readArray(String s) {
StringTokenizer tk = new StringTokenizer(s);
int[] arr = new int[tk.countTokens()];
for (int i = 0; i < arr.length; i++)
arr[i] = ints(tk.nextToken());
return arr;
}
static void printArray(char[][] arr, StringBuilder out) {
out.append("YES").append('\n');
for (char[] chars : arr) {
for (char c : chars) {
out.append(c);
}
out.append('\n');
}
}
}
class ArrayStack<E> {
public static final int CAPACITY = 1000;
private E[] data;
private int t = -1;
public ArrayStack() {
this(CAPACITY);
}
public ArrayStack(int capacity) {
data = (E[]) new Object[capacity];
}
public int size() {
return t + 1;
}
public boolean isEmpty() {
return t == -1;
}
public E push(E e) throws IllegalStateException {
if (size() == data.length) throw new IllegalStateException("Stack is full");
data[++t] = e;
return e;
}
public E peek() {
return isEmpty() ? null : data[t];
}
public E pop() {
if (isEmpty())
return null;
E d = data[t];
data[t] = null;
t--;
return d;
}
}
/*
5 15
14 10 3
9 2 2
10 4 3
7 3 5
4 3 1
6
11 2
1 1
4 7
2 1
1 2267357229
3 3
*/ | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | f0e6da45d14fa9d78a56d7f7a4c3a244 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.util.*;
import java.io.*;
// cd C:\Users\Lenovo\Desktop\New
//ArrayList<Integer> a=new ArrayList<>();
//List<Integer> lis=new ArrayList<>();
//StringBuilder ans = new StringBuilder();
//HashMap<Integer,Integer> map=new HashMap<>();
public class cf {
static FastReader in=new FastReader();
static final Random random=new Random();
static int mod=1000000007;
//static long dp[]=new long[200002];
static int dp[][];
static int d;
static int res;
public static void main(String args[]) throws IOException {
FastReader sc=new FastReader();
//Scanner s=new Scanner(System.in);
//int tt=sc.nextInt();
int tt=1;
while(tt-->0){
int n=sc.nextInt();
int total=sc.nextInt();
long arr[]=new long[total+1];
for(int i=0;i<n;i++){
int c=sc.nextInt();
int d=sc.nextInt();
int h=sc.nextInt();
arr[c]=Math.max(arr[c],1l*d*h);
}
for(int i=1;i<=total;i++){
for(int j=2*i;j<=total;j=j+i){
arr[j]=Math.max(arr[j],arr[i]*(j/i));
}
}
for(int i=1;i<=total;i++){
arr[i]=Math.max(arr[i],arr[i-1]);
}
int m=sc.nextInt();
StringBuilder ans=new StringBuilder();
for(int i=0;i<m;i++){
long D=sc.nextLong();
long H=sc.nextLong();
D*=H;
int l=1,r=total;
if(arr[total]<=D) {
ans.append(-1+" ");
continue;
}
while(l<r) {
int mid= (l+r)/2;
if(arr[mid]>D) {
r=mid;
}
else l=mid+1;
}
ans.append(l+" ");
}
System.out.println(ans);
}
}
static int upper_bound(long arr[], long key)
{
int mid, N = arr.length;
int low = 0;
int high = N;
// Till low is less than high
while (low < high && low != N) {
mid = low + (high - low) / 2;
if (key >= arr[mid]) {
low = mid + 1;
}
else {
high = mid;
}
}
if (low == N ) {
return -1;
}
return low;
}
static boolean prime(int n){
for(int i=2;i<=Math.sqrt(n);i++){
if(n%i==0){
return false;
}
}
return true;
}
static void factorial(int n){
long ret = 1;
while(n > 0){
ret = ret * n % mod;
n--;
}
System.out.println(ret);
}
static long find_min(int a,int arr[]){
long ans=Integer.MAX_VALUE;
for(int i=0;i<arr.length;i++){
if(Math.abs(a-arr[i])<ans){
ans=Math.abs(a-arr[i]);
}
}
return ans;
}
static long find(ArrayList<Long> arr,long n){
int l=0;
int r=arr.size();
while(l+1<r){
int mid=(l+r)/2;
if(arr.get(mid)<n){
l=mid;
}
else{
r=mid;
}
}
return arr.get(l);
}
static void factorial(long []fact){
for(int i=2;i<14;i++){
fact[i]=1l*(i+1)*fact[i-1];
}
}
static void rotate(int ans[]){
int last=ans[0];
for(int i=0;i<ans.length-1;i++){
ans[i]=ans[i+1];
}
ans[ans.length-1]=last;
}
static int reduce(int n){
while(n>1){
if(n%2==1){
n--;
n=n/2;
}
else{
if(n%4==0){
n=n/4;
}
else{
break;
}
}
}
return n;
}
static long count(long n,int p,HashSet<Long> set){
if(n<Math.pow(2,p)){
set.add(n);
return count(2*n+1,p,set)+count(4*n,p,set)+1;
}
return 0;
}
static int countprimefactors(int n){
int ans=0;
int z=(int)Math.sqrt(n);
for(int i=2;i<=z;i++){
while(n%i==0){
ans++;
n=n/i;
}
}
if(n>1){
ans++;
}
return ans;
}
/*static int count(int arr[],int idx,long sum,int []dp){
if(idx>=arr.length){
return 0;
}
if(dp[idx]!=-1){
return dp[idx];
}
if(arr[idx]<0){
return dp[idx]=Math.max(1+count(arr,idx+1,sum+arr[idx],dp),count(arr,idx+1,sum,dp));
}
else{
return dp[idx]=1+count(arr,idx+1,sum+arr[idx],dp);
}
}*/
static String reverse(String s){
String ans="";
for(int i=s.length()-1;i>=0;i--){
ans+=s.charAt(i);
}
return ans;
}
static int find_max(int []check,int y){
int max=0;
for(int i=y;i>=0;i--){
if(check[i]!=0){
max=i;
break;
}
}
return max;
}
static int msb(int x){
int ans=0;
while(x!=0){
x=x/2;
ans++;
}
return ans;
}
static void ruffleSort(int[] a) {
int n=a.length;
for (int i=0; i<n; i++) {
int oi=random.nextInt(n), temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static int gcd(int a,int b)
{
if(b==0)
{
return a;
}
return gcd(b,a%b);
}
/* static boolean checkprime(int n1)
{
if(n1%2==0||n1%3==0)
return false;
else
{
for(int i=5;i*i<=n1;i+=6)
{
if(n1%i==0||n1%(i+2)==0)
return false;
}
return true;
}
}
*/
/* Iterator<Map.Entry<Integer, Integer>> iterator = map.entrySet().iterator();
while(iterator.hasNext()){
Map.Entry<Integer, Integer> entry = iterator.next();
int value = entry.getValue();
if(value==1){
iterator.remove();
}
else{
entry.setValue(value-1);
}
}
*/
static class Pair implements Comparable
{
int a,b;
public String toString()
{
return a+" " + b;
}
public Pair(int x , int y)
{
a=x;b=y;
}
@Override
public int compareTo(Object o) {
Pair p = (Pair)o;
if((Math.abs(a)+Math.abs(b))!=(Math.abs(p.a)+Math.abs(p.b))){
return ((Math.abs(a)+Math.abs(b))-(Math.abs(p.a)+Math.abs(p.b)));
}
else{
return a-p.a;
}
/*if(p.a!=a){
return a-p.a;//in
}
else{
return b-p.b;//
}*/
}
}
/* public static boolean checkAP(List<Integer> lis){
for(int i=1;i<lis.size()-1;i++){
if(2*lis.get(i)!=lis.get(i-1)+lis.get(i+1)){
return false;
}
}
return true;
}
public static int minBS(int[]arr,int val){
int l=-1;
int r=arr.length;
while(r>l+1){
int mid=(l+r)/2;
if(arr[mid]>=val){
r=mid;
}
else{
l=mid;
}
}
return r;
}
public static int maxBS(int[]arr,int val){
int l=-1;
int r=arr.length;
while(r>l+1){
int mid=(l+r)/2;
if(arr[mid]<=val){
l=mid;
}
else{
r=mid;
}
}
return l;
}
static int lcm(int a, int b)
{
return (a / gcd(a, b)) * b;
}*/
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 9d163b732cf9ce89a320f1e2d6d0ffab | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.*;
import java.util.*;
public class ForGamersByGamers {
private static final int C_MAX = 1000000;
public static void solve(FastIO io) {
final int N = io.nextInt();
final int C = io.nextInt();
long[] bestUnit = new long[C_MAX + 1];
for (int i = 0; i < N; ++i) {
final int Ci = io.nextInt();
final int Di = io.nextInt();
final int Hi = io.nextInt();
bestUnit[Ci] = Math.max(bestUnit[Ci], 1L * Di * Hi);
}
long[] maxPower = new long[C_MAX + 1];
for (int i = 1; i <= C_MAX; ++i) {
if (bestUnit[i] <= 0) {
continue;
}
long power = bestUnit[i];
for (int j = i; j <= C_MAX; j += i) {
maxPower[j] = Math.max(maxPower[j], power);
power += bestUnit[i];
}
}
final int M = io.nextInt();
Monster[] monsters = new Monster[M];
for (int i = 0; i < M; ++i) {
final int Dj = io.nextInt();
final long Hi = io.nextLong();
monsters[i] = new Monster(i, Dj * Hi);
}
Arrays.parallelSort(monsters, Monster.BY_POWER);
int[] ans = new int[M];
int currCost = 0;
long currPower = 0;
for (int i = 0; i < M; ++i) {
while (currPower <= monsters[i].power) {
++currCost;
if (currCost > C) {
break;
}
currPower = Math.max(currPower, maxPower[currCost]);
}
if (currCost <= C) {
ans[monsters[i].id] = currCost;
} else {
ans[monsters[i].id] = -1;
}
}
io.printlnArray(ans);
}
private static class Monster {
public int id;
public long power;
public Monster(int id, long power) {
this.id = id;
this.power = power;
}
public static final Comparator<Monster> BY_POWER = new Comparator<Monster>() {
@Override
public int compare(Monster a, Monster b) {
return Long.compare(a.power, b.power);
}
};
}
public static class FastIO {
private InputStream reader;
private PrintWriter writer;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public FastIO(InputStream r, OutputStream w) {
reader = r;
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(w)));
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = reader.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
public String nextString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
// TODO: read this byte-by-byte like the other read functions.
public double nextDouble() {
return Double.parseDouble(nextString());
}
public int[] nextIntArray(int n) {
return nextIntArray(n, 0);
}
public int[] nextIntArray(int n, int off) {
int[] arr = new int[n + off];
for (int i = 0; i < n; i++) {
arr[i + off] = nextInt();
}
return arr;
}
public long[] nextLongArray(int n) {
return nextLongArray(n, 0);
}
public long[] nextLongArray(int n, int off) {
long[] arr = new long[n + off];
for (int i = 0; i < n; i++) {
arr[i + off] = nextLong();
}
return arr;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void println(Object... objects) {
print(objects);
writer.println();
}
public void printArray(int[] arr) {
for (int i = 0; i < arr.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(arr[i]);
}
}
public void printArray(long[] arr) {
for (int i = 0; i < arr.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(arr[i]);
}
}
public void printlnArray(int[] arr) {
printArray(arr);
writer.println();
}
public void printlnArray(long[] arr) {
printArray(arr);
writer.println();
}
public void printf(String format, Object... args) {
print(String.format(format, args));
}
public void flush() {
writer.flush();
}
}
public static void main(String[] args) {
FastIO io = new FastIO(System.in, System.out);
solve(io);
io.flush();
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | ddff668c308166788156971cc53e03d4 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.*;
import java.math.*;
import java.util.*;
public class ForGamersByGamers {
private static final int C_MAX = 1000000;
public static void solve(FastIO io) {
final int N = io.nextInt();
final int C = io.nextInt();
// HashMap<Long, Integer> bestCost = new HashMap<>();
// for (int i = 0; i < N; ++i) {
// final int Ci = io.nextInt();
// final int Di = io.nextInt();
// final int Hi = io.nextInt();
//
// long power = Di * Hi;
// bestCost.put(power, Math.min(Ci, bestCost.getOrDefault(power, Integer.MAX_VALUE)));
// }
//
// for (Map.Entry<Long, Integer> kvp : bestCost) {
// long basePower = kvp.getKey();
// long baseCost = kvp.getValue();
//
// for (int i = basePower)
// }
long[] bestUnit = new long[C_MAX + 1];
for (int i = 0; i < N; ++i) {
final int Ci = io.nextInt();
final int Di = io.nextInt();
final int Hi = io.nextInt();
bestUnit[Ci] = Math.max(bestUnit[Ci], 1L * Di * Hi);
}
long[] maxPower = new long[C_MAX + 1];
for (int i = 1; i <= C_MAX; ++i) {
if (bestUnit[i] <= 0) {
continue;
}
long power = bestUnit[i];
for (int j = i; j <= C_MAX; j += i) {
maxPower[j] = Math.max(maxPower[j], power);
power += bestUnit[i];
}
}
// for (int i = 2; i <= C_MAX; ++i) {
// maxPower[i] = Math.max(maxPower[i], maxPower[i - 1]);
// }
final int M = io.nextInt();
Monster[] monsters = new Monster[M];
for (int i = 0; i < M; ++i) {
final int Dj = io.nextInt();
final long Hi = io.nextLong();
monsters[i] = new Monster(i, Dj * Hi);
}
Arrays.parallelSort(monsters, Monster.BY_POWER);
int[] ans = new int[M];
int currCost = 0;
long currPower = 0;
for (int i = 0; i < M; ++i) {
while (currPower <= monsters[i].power) {
++currCost;
if (currCost > C) {
break;
}
currPower = Math.max(currPower, maxPower[currCost]);
}
if (currCost <= C) {
ans[monsters[i].id] = currCost;
} else {
ans[monsters[i].id] = -1;
}
}
io.printlnArray(ans);
}
private static class Monster {
public int id;
public long power;
public Monster(int id, long power) {
this.id = id;
this.power = power;
}
public static final Comparator<Monster> BY_POWER = new Comparator<Monster>() {
@Override
public int compare(Monster a, Monster b) {
return Long.compare(a.power, b.power);
}
};
}
public static class FastIO {
private InputStream reader;
private PrintWriter writer;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public FastIO(InputStream r, OutputStream w) {
reader = r;
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(w)));
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = reader.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
public String nextString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
// TODO: read this byte-by-byte like the other read functions.
public double nextDouble() {
return Double.parseDouble(nextString());
}
public int[] nextIntArray(int n) {
return nextIntArray(n, 0);
}
public int[] nextIntArray(int n, int off) {
int[] arr = new int[n + off];
for (int i = 0; i < n; i++) {
arr[i + off] = nextInt();
}
return arr;
}
public long[] nextLongArray(int n) {
return nextLongArray(n, 0);
}
public long[] nextLongArray(int n, int off) {
long[] arr = new long[n + off];
for (int i = 0; i < n; i++) {
arr[i + off] = nextLong();
}
return arr;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void println(Object... objects) {
print(objects);
writer.println();
}
public void printArray(int[] arr) {
for (int i = 0; i < arr.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(arr[i]);
}
}
public void printArray(long[] arr) {
for (int i = 0; i < arr.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(arr[i]);
}
}
public void printlnArray(int[] arr) {
printArray(arr);
writer.println();
}
public void printlnArray(long[] arr) {
printArray(arr);
writer.println();
}
public void printf(String format, Object... args) {
print(String.format(format, args));
}
public void flush() {
writer.flush();
}
}
public static void main(String[] args) {
FastIO io = new FastIO(System.in, System.out);
solve(io);
io.flush();
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 80a4b1a91778867f784032433a08319c | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | /*
I am dead inside
Do you like NCT, sKz, BTS?
5 4 3 2 1 Moonwalk
Imma knock it down like domino
Is this what you want? Is this what you want?
Let's ttalkbocky about that :()
*/
import static java.lang.Math.*;
import java.util.*;
import java.io.*;
public class x1657D
{
static final int INF = Integer.MAX_VALUE/2;
public static void main(String[] followthekkathyoninsta) throws Exception
{
BufferedReader infile = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(infile.readLine());
int N = Integer.parseInt(st.nextToken());
int C = Integer.parseInt(st.nextToken());
long[] best = new long[C+2];
for(int i=0; i < N; i++)
{
st = new StringTokenizer(infile.readLine());
int c = Integer.parseInt(st.nextToken());
long d = Integer.parseInt(st.nextToken());
long h = Integer.parseInt(st.nextToken());
best[c] = max(best[c], d*h);
}
for(int i=1; i <= C; i++)
for(int j=i+i; j <= C; j+=i)
best[j] = max(best[j], best[i]*(j/i));
for(int i=2; i <= C; i++)
best[i] = max(best[i], best[i-1]);
int M = Integer.parseInt(infile.readLine());
StringBuilder sb = new StringBuilder();
while(M-->0)
{
st = new StringTokenizer(infile.readLine());
int D = Integer.parseInt(st.nextToken());
long H = Long.parseLong(st.nextToken());
int low = 1;
int high = C+1;
while(low != high)
{
int mid = (low+high)>>1;
if(best[mid] <= D*H)
low = mid+1;
else
high = mid;
}
if(low == C+1)
sb.append("-1 ");
else
sb.append(low+" ");
}
System.out.println(sb);
}
}
/*
Hj/(f*di) < hi/Dj
Hj*Dj < hi*di*f
maximize product
best[c] = max product we can get with c coins
two units: best[c] <- 2*best[c/2]
three units: best[c] <- 3*best[c/3]
sieve lol
*/ | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | bdf531de913ad2f7ac3c275130fbc07b | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.*;
public class D{
static BufferedReader ins = new BufferedReader(new InputStreamReader(System.in));
static StreamTokenizer in = new StreamTokenizer(ins);
static PrintWriter out = new PrintWriter(System.out);
static int s, n, m;
static int[][] r = new int[20][20];
public static void main(String[] args) throws IOException {
int n =in();
int C = in();
long[] dp = new long[1000200];
for (int i = 0; i < n; i++) {
int c=in();
long d= in();
long h = in();
dp[c]=Math.max(dp[c],d*h);
}
for (int c = 1; c <=C; c++) {
for (int i = c; i <=C; i+=c) {
dp[i]=Math.max(dp[i],dp[c]*(i/c));
}
}
for (int c = 1; c <=C; c++) {
dp[c]=Math.max(dp[c-1],dp[c]);
}
int m =in();
int res=0;
for (int i = 0; i < m; i++) {
long D=inl();
long H = inl();
if(dp[C]<=D*H){
res=-1;
}
else{
int l=1,r=C;
while(l<=r){
int mid = (l+r)>>1;
if(dp[mid]>D*H){
res=mid;r=mid-1;
}else l=mid+1;
}
}
out.println(res);
}
out.flush();
}
public static int in() throws IOException {
in.nextToken();
return (int) in.nval;
}
public static long inl() throws IOException {
in.nextToken();
return (long) in.nval;
}
public static double ind() throws IOException {
in.nextToken();
return in.nval;
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 149be4abef09e7ebe154b07842d80f93 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.*;
import java.util.*;
import java.util.logging.Logger;
import java.util.stream.Collectors;
/**
* Accomplished using the EduTools plugin by JetBrains https://plugins.jetbrains.com/plugin/10081-edutools
* <p>
* To modify the template, go to Preferences -> Editor -> File and Code Templates -> Other
*/
public class Main {
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
public static class Pair<K extends Comparable<K>, V extends Comparable<V>> implements Comparable<Pair<K, V>> {
private K p1;
private V p2;
public Pair(K p1, V p2) {
this.p1 = p1;
this.p2 = p2;
}
public K getP1() {
return p1;
}
public void setP1(K p1) {
this.p1 = p1;
}
public V getP2() {
return p2;
}
public void setP2(V p2) {
this.p2 = p2;
}
@Override
public int compareTo(Pair<K, V> o) {
if (p1.compareTo(o.getP1()) == 0) {
return p2.compareTo(o.getP2());
}
return p1.compareTo(o.getP1());
}
}
static <T extends Comparable<T>> int lowerbound(List<T> arr, T element) {
int size = arr.size();
if (element.compareTo(arr.get(size-1)) >= 0)
return -1;
if (element.compareTo(arr.get(0)) < 0)
return 0;
int low = 0;
int high = size - 1;
while (low < high) {
int mid = (low + high) / 2;
if (element.compareTo(arr.get(mid)) >= 0) {
low = mid + 1;
} else {
high = mid;
}
}
return low;
}
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
long n = in.nextLong();
long C = in.nextLong();
List<Long> arr = new ArrayList<>();
for (int i = 0; i <= 1000000; i++)
arr.add(0L);
for (int i = 0; i < n; i++) {
int c = in.nextInt();
long d = in.nextLong();
long h = in.nextLong();
arr.set(c, Math.max(d * h, arr.get(c)));
}
for (int i = 1; i <= 1000000; i++) {
for (int j = i; j <= 1000000; j += i) {
arr.set(j, Math.max(arr.get(i) * (j / i), arr.get(j)));
}
}
for(int i = 0;i < 1000000;i++) {
arr.set(i+1,Math.max(arr.get(i+1), arr.get(i)));
}
int t = in.nextInt();
while (t-- > 0) {
long x = in.nextLong();
long y = in.nextLong();
Long toS = x * y;
int ans = lowerbound(arr,toS);
if(ans > C || ans == -1)
out.write("-1");
else
out.write("" + ans);
if(t > 0)
out.write(" ");
}
out.close();
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 626f17935d33d05ae8c5c4199cd532a9 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | //make sure to make new file!
import java.io.*;
import java.util.*;
public class D125{
public static void main(String[] args)throws IOException{
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
StringTokenizer st = new StringTokenizer(f.readLine());
int n = Integer.parseInt(st.nextToken());
int C = Integer.parseInt(st.nextToken());
long[] costmins = new long[C+1];
for(int k = 0; k < n; k++){
st = new StringTokenizer(f.readLine());
int c = Integer.parseInt(st.nextToken());
long d = Long.parseLong(st.nextToken());
long h = Long.parseLong(st.nextToken());
costmins[c] = Math.max(costmins[c],d*h);
}
long[] coins = new long[C+1];
for(int k = 1; k <= C; k++){
if(costmins[k] == 0) continue;
long start = costmins[k]-1;
for(int j = k; j <= C; j += k){
coins[j] = Math.max(coins[j],start);
start += costmins[k];
}
}
for(int k = 2; k <= C; k++){
coins[k] = Math.max(coins[k],coins[k-1]);
}
int q = Integer.parseInt(f.readLine());
int[] answer = new int[q];
for(int qq = 0; qq < q; qq++){
st = new StringTokenizer(f.readLine());
long D = Long.parseLong(st.nextToken());
long H = Long.parseLong(st.nextToken());
long prod = D*H;
int l = 1;
int r = C;
int ans = -1;
while(l <= r){
int mid = l + (r-l)/2;
if(prod <= coins[mid]){
ans = mid;
r = mid-1;
} else {
l = mid+1;
}
}
answer[qq] = ans;
}
StringJoiner sj = new StringJoiner(" ");
for(int k = 0; k < q; k++){
sj.add("" + answer[k]);
}
out.println(sj.toString());
out.close();
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 9e1e92324fb6a1a25ddb853db5344683 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.util.Arrays;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
Solution solution = new Solution();
int n = cin.nextInt();
int c = cin.nextInt();
long[][] units = new long[n][4];
for (int i = 0; i < n; i++) {
units[i][0] = cin.nextLong();
units[i][1] = cin.nextLong();
units[i][2] = cin.nextLong();
}
int m = cin.nextInt();
long[][] monsters = new long[m][3];
for (int i = 0; i < m; i++) {
monsters[i][0] = cin.nextLong();
monsters[i][1] = cin.nextLong();
}
long[] ans = solution.func(c, units, monsters);
StringBuilder sb = new StringBuilder();
for (int i = 0; i < ans.length; i++) {
sb.append(ans[i]);
sb.append(' ');
}
System.out.println(sb);
}
}
class Solution {
public long[] func(int c, long[][] units, long[][] monsters) {
int m = monsters.length;
int n = units.length;
long[] ans = new long[m];
Arrays.fill(ans, -1);
long[] dp = new long[c + 1];
for (long[] unit : units) {
dp[(int) unit[0]] = Math.max(dp[(int) unit[0]], unit[1] * unit[2]);
}
for (int i = 1; i <= c; i++) {
dp[i] = Math.max(dp[i], dp[i - 1]);
for (int j = i; j <= c; j += i) {
dp[j] = Math.max(dp[j], (j / i) * dp[i]);
}
}
for (int i = 0; i < monsters.length; i++) {
long[] monster = monsters[i];
long t = monster[0] * monster[1];
int l = 0;
int r = c + 1;
while (l < r) {
int mid = l + (r - l) / 2;
if (dp[mid] > t) {
r = mid;
} else {
l = mid + 1;
}
}
if (l != c + 1) {
ans[i] = l;
}
}
return ans;
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 2484bbcd705431d1288589a348963ae9 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class Main {
static AReader scan = new AReader();
static void slove() {
int n = scan.nextInt();
int C = scan.nextInt();
long[] maxval = new long[C+10];
for(int i = 0;i<n;i++){
int c = scan.nextInt();
int d = scan.nextInt();
int h = scan.nextInt();
maxval[c] = Math.max(maxval[c],(long)d*h);
}
for(int i = 1;i<=C;i++){
for(int j = i*2;j<=C;j +=i){
maxval[j] = Math.max(maxval[j],maxval[i] * j /i);
}
}
for(int i = 1;i<=C;i++)
maxval[i] = Math.max(maxval[i],maxval[i-1]);
int m = scan.nextInt();
StringBuffer sb = new StringBuffer();
for(int i = 0;i<m;i++){
int D = scan.nextInt();
long H = scan.nextLong();
long v = D * H;
int l = 1,r = C;
while(l < r){
int mid = l + r >> 1;
if(maxval[mid] > v) r = mid;
else l = mid + 1;
}
if(maxval[l] > v) {
sb.append(l).append(" ");
}else{
sb.append("-1").append(" ");
}
}
System.out.println(sb.toString());
}
public static void main(String[] args) {
//int T = scan.nextInt();
//while (T-- > 0) {
slove();
//}
}
}
class AReader {
private BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
private StringTokenizer tokenizer = new StringTokenizer("");
private String innerNextLine() {
try {
return reader.readLine();
} catch (IOException ex) {
return null;
}
}
public boolean hasNext() {
while (!tokenizer.hasMoreTokens()) {
String nextLine = innerNextLine();
if (nextLine == null) {
return false;
}
tokenizer = new StringTokenizer(nextLine);
}
return true;
}
public String nextLine() {
tokenizer = new StringTokenizer("");
return innerNextLine();
}
public String next() {
hasNext();
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
class Pair {
int x;
int y;
public Pair(int x, int y) {
this.x = x;
this.y = y;
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 10252254dddd8210183ffbdaad3ff3d8 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class AACFCC {
// public static long mod = (long) Math.pow(10, 9) + 7;
public static long mod2 = 998244353;
public static int oo = 0;
public static HashMap<Integer, Integer> primenom;
public static HashMap<Integer, Integer> primeden;
public static HashMap<Integer, Integer> fin;
public static int zz = -1;
public static long ttt = 0;
static HashMap<Integer, Integer>[] factors;
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(System.out);
int p = 1;
int t = 1;// Integer.parseInt(br.readLine());
// System.out.println("00000");
while (t-- > 0) {
String[] s2 = (br.readLine()).split(" ");
int n = Integer.valueOf(s2[0]);
int c = Integer.valueOf(s2[1]);
int[] cc = new int[n];
long[] mul1 = new long[n];
for (int i = 0; i < n; i++) {
String[] s1 = br.readLine().split(" ");
cc[i] = Integer.valueOf(s1[0]);
mul1[i] = Long.valueOf(s1[1]) * Long.valueOf(s1[2]);
}
long[] arr = new long[c + 1];
Arrays.fill(arr, 0);
for (int i = 0; i < n; i++) {
arr[cc[i]] = Math.max(arr[cc[i]], mul1[i]);
}
for(int i=1;i<=c;i++) {
arr[i]=Math.max(arr[i-1],arr[i]);
for(int j=2*i;j<=c;j+=i) {
arr[j]=Math.max(arr[j], arr[i]*(j/i));
}
//System.out.print(arr[i]+" ");
}//System.out.println();
StringBuilder str=new StringBuilder();
int m= Integer.valueOf(br.readLine());
for (int i = 0; i < m; i++) {
String[] s1 = br.readLine().split(" ");
//int cost = Integer.valueOf(s1[0]);
long value = Long.valueOf(s1[0]) * Long.valueOf(s1[1]);
int l=1,r=c;
int ans=c+1;
while(l<=r) {
int mid=(l+r)/2;
if(arr[mid]>value) {
ans=mid;
r=mid-1;
}else {
l=mid+1;
}
}
if(ans>c) {
ans=-1;
}
str.append(ans+" ");
}
pw.println(str.toString());
// int[] arr = new int[n];
// String[] s1 = br.readLine().split(" ");
// for (int i = 0; i < n; i++) {
// arr[i] = Integer.valueOf(s1[i]);
// }
}
pw.close();
}
}
// private static void putBit(int ind, int val, int[] bit) {
// // TODO Auto-generated method stub
// for (int i = ind; i < bit.length; i += (i & -i)) {
// bit[i] += val;
// }
// }
//
// private static int getSum(int ind, int[] bit) {
// // TODO Auto-generated method stub
// int ans = 0;
// for (int i = ind; i > 0; i -= (i & -i)) {
// ans += bit[i];
// }
// return ans;
// }
// private static void product(long[] bin, int ind, int currIt, long[] power) {
// // TODO Auto-generated method stub
// long pre = 1;
// if (ind > 1) {
// pre = power(power[ind - 1] - 1, mod2 - 1);
// }
// long cc = power[ind] - 1;
// // System.out.println(pre + " " + cc);
// for (int i = ind; i < bin.length; i += (i & (-i))) {
// bin[i] = (bin[i] * pre) % mod2;
// bin[i] = (bin[i] * cc) % mod2;
// }
// }
//
// private static void add(long[] bin, int ind, int val) {
// // TODO Auto-generated method stub
// for (int i = ind; i < bin.length; i += (i & (-i))) {
// bin[i] += val;
// }
// }
//
// private static long sum(long[] bin, int ind) {
// // TODO Auto-generated method stub
// long ans = 0;
// for (int i = ind; i > 0; i -= (i & (-i))) {
// ans += bin[i];
// }
// return ans;
// }
//
// private static long power(long a, long p) {
// TODO Auto-generated method stub
// long res = 1;while(p>0)
// {
// if (p % 2 == 1) {
// res = (res * a) % mod;
// }
// p = p / 2;
// a = (a * a) % mod;
// }return res;
// }}
// private static void getFac(long n, PrintWriter pw) {
// // TODO Auto-generated method stub
// int a = 0;
// while (n % 2 == 0) {
// a++;
// n = n / 2;
// }
// if (n == 1) {
// a--;
// }
// for (int i = 3; i <= Math.sqrt(n); i += 2) {
// while (n % i == 0) {
// n = n / i;
// a++;
// }
// }
// if (n > 1) {
// a++;
// }
// if (a % 2 == 0) {
// pw.println("Bob");
// } else {
// pw.println("Alice");
// }
// //System.out.println(a);
// return;
// }
// private static long power(long a, long p) {
// // TODO Auto-generated method stub
// long res = 1;
// while (p > 0) {
// if (p % 2 == 1) {
// res = (res * a) % mod;
// }
// p = p / 2;
// a = (a * a) % mod;
// }
// return res;
// }
//
// private static void fac() {
// fac[0] = 1;
// // TODO Auto-generated method stub
// for (int i = 1; i < fac.length; i++) {
// if (i == 1) {
// fac[i] = 1;
// } else {
// fac[i] = i * fac[i - 1];
// }
// if (fac[i] > mod) {
// fac[i] = fac[i] % mod;
// }
// }
// }
//
// private static int getLower(Long long1, Long[] st) {
// // TODO Auto-generated method stub
// int left = 0, right = st.length - 1;
// int ans = -1;
// while (left <= right) {
// int mid = (left + right) / 2;
// if (st[mid] <= long1) {
// ans = mid;
// left = mid + 1;
// } else {
// right = mid - 1;
// }
// }
// return ans;
// }
// private static long getGCD(long l, long m) {
//
// long t1 = Math.min(l, m);
// long t2 = Math.max(l, m);
// while (true) {
// long temp = t2 % t1;
// if (temp == 0) {
// return t1;
// }
// t2 = t1;
// t1 = temp;
// }
// }
// private static int kmp(String str) {
// // TODO Auto-generated method stub
// // System.out.println(str);
// int[] pi = new int[str.length()];
// pi[0] = 0;
// for (int i = 1; i < str.length(); i++) {
// int j = pi[i - 1];
// while (j > 0 && str.charAt(i) != str.charAt(j)) {
// j = pi[j - 1];
// }
// if (str.charAt(j) == str.charAt(i)) {
// j++;
// }
// pi[i] = j;
// System.out.print(pi[i]);
// }
// System.out.println();
// return pi[str.length() - 1];
// }
// private static void getFac(long n, PrintWriter pw) {
// // TODO Auto-generated method stub
// int a = 0;
// while (n % 2 == 0) {
// a++;
// n = n / 2;
// }
// if (n == 1) {
// a--;
// }
// for (int i = 3; i <= Math.sqrt(n); i += 2) {
// while (n % i == 0) {
// n = n / i;
// a++;
// }
// }
// if (n > 1) {
// a++;
// }
// if (a % 2 == 0) {
// pw.println("Bob");
// } else {
// pw.println("Alice");
// }
// //System.out.println(a);
// return;
// }
// private static long power(long a, long p) {
// // TODO Auto-generated method stub
// long res = 1;
// while (p > 0) {
// if (p % 2 == 1) {
// res = (res * a) % mod;
// }
// p = p / 2;
// a = (a * a) % mod;
// }
// return res;
// }
//
// private static void fac() {
// fac[0] = 1;
// // TODO Auto-generated method stub
// for (int i = 1; i < fac.length; i++) {
// if (i == 1) {
// fac[i] = 1;
// } else {
// fac[i] = i * fac[i - 1];
// }
// if (fac[i] > mod) {
// fac[i] = fac[i] % mod;
// }
// }
// }
//
// private static int getLower(Long long1, Long[] st) {
// // TODO Auto-generated method stub
// int left = 0, right = st.length - 1;
// int ans = -1;
// while (left <= right) {
// int mid = (left + right) / 2;
// if (st[mid] <= long1) {
// ans = mid;
// left = mid + 1;
// } else {
// right = mid - 1;
// }
// }
// return ans;
// }
// private static long getGCD(long l, long m) {
//
// long t1 = Math.min(l, m);
// long t2 = Math.max(l, m);
// while (true) {
// long temp = t2 % t1;
// if (temp == 0) {
// return t1;
// }
// t2 = t1;
// t1 = temp;
// }
// } | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 68a5d5ee2f36009d186b513e6d98684e | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.*;
import java.util.*;
public class gotoJapan {
public static void main(String[] args) throws java.lang.Exception {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Solution solver = new Solution();
boolean isTest = false;
int tC = isTest ? Integer.parseInt(in.next()) : 1;
for (int i = 1; i <= tC; i++)
solver.solve(in, out, i);
out.close();
}
/* ............................................................. */
static class Solution {
InputReader in;
PrintWriter out;
public void solve(InputReader in, PrintWriter out, int test) {
this.in = in;
this.out = out;
int n=ni();
int C=ni();
long c[]=new long[C+5];
for(int i=0;i<n;i++) {
int x=ni();
long y=ni();
long z=ni();
c[x]=Math.max(c[x], y*z);
}
for(int i=1;i<=C;i++) {
for(int j=i*2;j<=C;j=j+i) {
c[j]=Math.max(c[j], c[i]*(long)(j/i));
}
}
//for(int i=1;i<=10;i++)pn(c[i]);
int m=ni();
//for()
int ans[]=new int[m];
Pair p[]=new Pair[m];
for(int i=0;i<m;i++) {
long x=ni();
long y=nl();
p[i]=new Pair(x*y, i);
}
Arrays.fill(ans, -1);
Arrays.sort(p,new Comparator<Pair>() {
public int compare(Pair p1,Pair p2) {
if(p1.x>p2.x)return 1;
else return -1;
}
});
int j=0;
for(int i=1;i<=C;i++) {
while(j<m) {
if(c[i]<=p[j].x)break;
ans[p[j].y]=i;
j++;
}
}
for(int i=0;i<m;i++)out.print(ans[i]+" ");
}
class Pair {
long x;
int y;
Pair(long x, int y) {
this.x = x;
this.y = y;
}
}
char[] n() {
return in.next().toCharArray();
}
int ni() {
return in.nextInt();
}
long nl() {
return in.nextLong();
}
long[] nal(int n) {
long a[] = new long[n];
for (int i = 0; i < n; i++)
a[i] = nl();
return a;
}
void pn(long zx) {
out.println(zx);
}
void pn(String sz) {
out.println(sz);
}
void pn(double dx) {
out.println(dx);
}
void pn(long ar[]) {
for (int i = 0; i < ar.length; i++)
out.print(ar[i] + " ");
out.println();
}
void pn(String ar[]) {
for (int i = 0; i < ar.length; i++)
out.println(ar[i]);
}
}
/* ......................Just Input............................. */
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
/* ......................Just Input............................. */
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | a4dfd43395a7e046056ad757fe9110ad | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.StringTokenizer;
public class ForGamersByGamers {
static class Pair {
int f;
int s; //
Pair() {
}
Pair(int f, int s) {
this.f = f;
this.s = s;
}
}
static class Fast {
BufferedReader br;
StringTokenizer st;
public Fast() {
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
int[] readArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
long[] readArray1(int n) {
long a[] = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
String nextLine() {
String str = "";
try {
str = br.readLine().trim();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
/* static long noOfDivisor(long a)
{
long count=0;
long t=a;
for(long i=1;i<=(int)Math.sqrt(a);i++)
{
if(a%i==0)
count+=2;
}
if(a==((long)Math.sqrt(a)*(long)Math.sqrt(a)))
{
count--;
}
return count;
}*/
static boolean isPrime(long a) {
for (long i = 2; i <= (long) Math.sqrt(a); i++) {
if (a % i == 0)
return false;
}
return true;
}
static void primeFact(int n) {
int temp = n;
HashMap<Integer, Integer> h = new HashMap<>();
for (int i = 2; i * i <= n; i++) {
if (temp % i == 0) {
int c = 0;
while (temp % i == 0) {
c++;
temp /= i;
}
h.put(i, c);
}
}
if (temp != 1)
h.put(temp, 1);
}
static void reverseArray(int a[]) {
int n = a.length;
for (int i = 0; i < n / 2; i++) {
a[i] = a[i] ^ a[n - i - 1];
a[n - i - 1] = a[i] ^ a[n - i - 1];
a[i] = a[i] ^ a[n - i - 1];
}
}
static void sort(int[] a) {
ArrayList<Integer> l = new ArrayList<>();
for (int i : a) l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++) a[i] = l.get(i);
}
static void sort(long[] a) {
ArrayList<Long> l = new ArrayList<>();
for (long i : a) l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++) a[i] = l.get(i);
}
static int upper_bound(long a[],long s)
{
int low=0;int high=a.length-1;
while(low<=high)
{
int mid=(low+high)/2;
if(a[mid]>s)
{
high=mid-1;
}
else// if(a[mid]<=s)
{
low=mid+1;
}
}
return low;
}
static long max(long a, long b) {
return a > b ? a : b;
}
static long gcd(long a,long b)
{
if(b%a==0)
return a;
return gcd(b%a,a);
}
static long lcm(long a,long b)
{
return (a*b)/gcd(a,b);
}
static long calc(int i)
{
return ((1L<<(i+1))-1);
}
public static void main(String args[]) throws IOException {
Fast sc = new Fast();
PrintWriter out = new PrintWriter(System.out);
int n=sc.nextInt();int c= sc.nextInt();;
long troops[]=new long[c+1];
for(int i=0;i<n;i++)
{
long ci=sc.nextInt();
long di=sc.nextLong();
long hi=sc.nextLong();
// long tot=c/ci;
troops[(int)ci]=max((hi*di),troops[(int)ci]);
}
for(int i=1;i<=c;i++)
{
for(int j=1;i*j<=c;j++)
{
troops[i*j]=max(j*troops[i],troops[(i*j)]);
}
}
int m=sc.nextInt();
long mon[]=new long[m];
for(int i=0;i<m;i++)
{
long dim=sc.nextLong();
long him=sc.nextLong();
mon[i]=dim*him;
}
/* for(long ne:troops)
out.print(ne+" ");
out.println();
for(long ne:mon)
out.print(ne+" ");
out.println();*/
for(int i=1;i<c+1;i++)
{
if(troops[i]<troops[i-1])
troops[i]=troops[i-1];
}
// for(long ne:troops)
// out.print(ne+" ");
// out.println();
for(int i=0;i<m;i++)
{
int idx=upper_bound(troops,mon[i]);
if(idx>=c+1)
out.print(-1+" ");
else
{
out.print(idx+" ");
}
}
out.println();
out.close();
}
}
/* public static void main(String args[]) throws IOException {
Fast sc = new Fast();
PrintWriter out = new PrintWriter(System.out);
int n=sc.nextInt();int c= sc.nextInt();;
long troops[]=new long[c+1];
for(int i=0;i<n;i++)
{
long ci=sc.nextInt();
long di=sc.nextLong();
long hi=sc.nextLong();
long tot=c/ci;
troops[(int)ci]=max((tot*tot)*(hi*di),troops[(int)ci]);
}
int m=sc.nextInt();
long mon[]=new long[m];
for(int i=0;i<m;i++)
{
long dim=sc.nextLong();
long him=sc.nextLong();
mon[i]=dim*him;
}
for(long ne:troops)
out.print(ne+" ");
out.println();
for(long ne:mon)
out.print(ne+" ");
out.println();
for(int i=1;i<c+1;i++)
{
if(troops[i]<troops[i-1])
troops[i]=troops[i-1];
}
for(long ne:troops)
out.print(ne+" ");
out.println();
for(int i=0;i<m;i++)
{
int idx=upper_bound(troops,mon[i]);
if(idx>=c+1)
out.print(-1+" ");
else
{
int no_of_units=c/idx; // no_of_units is tot
long dihi=troops[idx]/(no_of_units*no_of_units);
long xsq2=(long)Math.ceil(mon[i]*1.0/dihi);
long ans1=(long)Math.ceil((Math.sqrt(xsq2)));
out.print(ans1*idx+" ");
}
out.println();
}
out.close();
}
}
*/
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 2369defcfd263d72b45cacbd2c28239e | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.*;
public class Main{
static BufferedReader ins = new BufferedReader(new InputStreamReader(System.in));
static StreamTokenizer in = new StreamTokenizer(ins);
static PrintWriter out = new PrintWriter(System.out);
static int s, n, m;
static int[][] r = new int[20][20];
public static void main(String[] args) throws IOException {
int n =in();
int C = in();
long[] dp = new long[1000200];
for (int i = 0; i < n; i++) {
int c=in();
long d= in();
long h = in();
dp[c]=Math.max(dp[c],d*h);
}
for (int c = 1; c <=C; c++) {
for (int i = c; i <=C; i+=c) {
dp[i]=Math.max(dp[i],dp[c]*(i/c));
}
}
for (int c = 1; c <=C; c++) {
dp[c]=Math.max(dp[c-1],dp[c]);
}
int m =in();
int res=0;
for (int i = 0; i < m; i++) {
long D=inl();
long H = inl();
if(dp[C]<=D*H){
res=-1;
}
else{
int l=1,r=C;
while(l<=r){
int mid = (l+r)>>1;
if(dp[mid]>D*H){
res=mid;r=mid-1;
}else l=mid+1;
}
}
out.println(res);
}
out.flush();
}
public static int in() throws IOException {
in.nextToken();
return (int) in.nval;
}
public static long inl() throws IOException {
in.nextToken();
return (long) in.nval;
}
public static double ind() throws IOException {
in.nextToken();
return in.nval;
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | c710efd4ddb98bcc2ac7f84fc578e164 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.*;
import java.math.*;
import java.util.*;
/*
* Author: Atuer
*/
public class Main
{
// ==== Solve Code ====//
static int INF = 2000000010;
public static void csh()
{
}
public static void main(String[] args) throws IOException
{
// csh();
// int t = in.nextInt();
// while (t-- > 0)
{
solve();
out.flush();
}
out.close();
}
public static void solve()
{
int n = in.nextInt();
int C = in.nextInt();
long[] sz = new long[C + 1];
for (int i = 0; i < n; i++)
{
int c = in.nextInt();
int d = in.nextInt();
int h = in.nextInt();
sz[c] = Math.max(sz[c], 1l * d * h);
}
for (int i = 1; i <= C; i++)
for (int j = 2; i * j <= C; j++)
sz[i * j] = Math.max(sz[i * j], sz[i] * j);
for (int i = 1; i <= C; i++)
sz[i] = Math.max(sz[i], sz[i - 1]);
// out.println(Arrays.toString(sz));
// out.flush();
int m = in.nextInt();
for (int i = 0; i < m; i++)
{
int D = in.nextInt();
long H = in.nextLong();
int l = 0, r = C;
while (l < r)
{
int mid = l + r >> 1;
if (sz[mid] >= H * D + 1)
r = mid;
else
l = mid + 1;
}
out.println(sz[l] >= H * D + 1 ? l : -1);
}
}
public static class Node
{
int x, y, k;
public Node(int x, int y, int k)
{
this.x = x;
this.y = y;
this.k = k;
}
}
// ==== Solve Code ====//
// ==== Template ==== //
public static long cnm(int a, int b)
{
long sum = 1;
int i = a, j = 1;
while (j <= b)
{
sum = sum * i / j;
i--;
j++;
}
return sum;
}
public static int gcd(int a, int b)
{
return b == 0 ? a : gcd(b, a % b);
}
public static int lcm(int a, int b)
{
return (a * b) / gcd(a, b);
}
public static void gbSort(int[] a, int l, int r)
{
if (l < r)
{
int m = (l + r) >> 1;
gbSort(a, l, m);
gbSort(a, m + 1, r);
int[] t = new int[r - l + 1];
int idx = 0, i = l, j = m + 1;
while (i <= m && j <= r)
if (a[i] <= a[j])
t[idx++] = a[i++];
else
t[idx++] = a[j++];
while (i <= m)
t[idx++] = a[i++];
while (j <= r)
t[idx++] = a[j++];
for (int z = 0; z < t.length; z++)
a[l + z] = t[z];
}
}
// ==== Template ==== //
// ==== IO ==== //
static InputStream inputStream = System.in;
static InputReader in = new InputReader(inputStream);
static PrintWriter out = new PrintWriter(System.out);
static class InputReader
{
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream)
{
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next()
{
while (tokenizer == null || !tokenizer.hasMoreTokens())
{
try
{
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e)
{
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
boolean hasNext()
{
while (tokenizer == null || !tokenizer.hasMoreTokens())
{
try
{
tokenizer = new StringTokenizer(reader.readLine());
} catch (Exception e)
{
return false;
// TODO: handle exception
}
}
return true;
}
public String nextLine()
{
String str = null;
try
{
str = reader.readLine();
} catch (IOException e)
{
e.printStackTrace();
}
return str;
}
public int nextInt()
{
return Integer.parseInt(next());
}
public long nextLong()
{
return Long.parseLong(next());
}
public Double nextDouble()
{
return Double.parseDouble(next());
}
public BigInteger nextBigInteger()
{
return new BigInteger(next());
}
public BigDecimal nextBigDecimal()
{
return new BigDecimal(next());
}
}
// ==== IO ==== //
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 95599979b4eaa80b9a9b02b6c871de68 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.util.*;
import java.io.*;
public class cf1657d {
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(System.out);
StringTokenizer st;
st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int o = Integer.parseInt(st.nextToken());
long[] bst = new long[o + 1];
for (int i = 0; i < n; i++) {
st = new StringTokenizer(br.readLine());
int c = Integer.parseInt(st.nextToken());
long v = Long.parseLong(st.nextToken()) * Long.parseLong(st.nextToken());
bst[c] = Math.max(bst[c], v);
}
for (int c = 1; c <= o; c++) {
for (int c2 = c; c2 <= o; c2+=c) {
bst[c2] = Math.max(bst[c2], bst[c] * c2 / c);
}
}
for (int c = 0; c < o; c++) {
bst[c + 1] = Math.max(bst[c + 1], bst[c]);
}
int m = Integer.parseInt(br.readLine());
for (int i = 0; i < m; i++) {
st = new StringTokenizer(br.readLine());
long v = Long.parseLong(st.nextToken()) * Long.parseLong(st.nextToken());
int min = 0;
int max = o;
while (min < max) {
int mid = (min + max) / 2;
if (bst[mid] <= v) {
min = mid + 1;
} else {
max = mid;
}
}
if (bst[min] <= v) pw.print("-1 ");
else pw.print(min + " ");
}
pw.close();
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 7c9d516759cb270361023d0873aceac9 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.io.*;
import java.util.*;
public class Contest {
public static void main(String[] args) throws IOException {
// Reader reader = new Reader("d.in");
Reader reader = new Reader();
int n = reader.nextInt();
int C = reader.nextInt();
long[] dh = new long[C+1];
Arrays.fill(dh, 0L);
for (int i = 0; i < n; i++) {
int c = reader.nextInt();
Long d = reader.nextLong();
Long h = reader.nextLong();
dh[c] = Math.max(dh[c], d*h);
}
long[] costs = new long[C+1];
Arrays.fill(costs, 0L);
for (int i = 1; i <= C; i++) {
for (int j = 1; i * j <= C; j++) {
costs[i*j] = Math.max(costs[i*j], dh[i] * j);
}
}
for (int i = 1; i <= C; i++) {
costs[i] = Math.max(costs[i], costs[i-1]);
}
int m = reader.nextInt();
while (m-- > 0) {
long D = reader.nextLong();
long H = reader.nextLong();
long p = upper(costs, D*H)+1;
if (p <= C) {
System.out.print(p+" ");
} else {
System.out.print(-1+" ");
}
}
}
public static int upper(long arr[], long key){
int low = 0;
int high = arr.length-1;
while(low < high){
int mid = low + (high - low+1)/2;
if(arr[mid] <= key){
low = mid;
}
else{
high = mid-1;
}
}
return low;
}
public static class Reader {
final private int BUFFER_SIZE_BYTE = 500_001;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader(String fileName) throws FileNotFoundException {
din = new DataInputStream(new FileInputStream(fileName));
buffer = new byte[BUFFER_SIZE_BYTE];
bufferPointer = bytesRead = 0;
}
public Reader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE_BYTE];
bufferPointer = bytesRead = 0;
}
public String nextString() throws IOException {
byte[] buf = new byte[BUFFER_SIZE_BYTE]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n' || c == '\r') {
if (cnt != 0) {
break;
}
else {
continue;
}
}
buf[cnt++] = (byte)c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
boolean neg = (c == '-');
if (neg) {
c = read();
}
do
{
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) {
return -ret;
}
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
boolean neg = (c == '-');
if (neg) {
c = read();
}
do
{
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) {
return -ret;
}
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE_BYTE);
if (bytesRead == -1) {
buffer[0] = -1;
}
}
private byte read() throws IOException {
if (bufferPointer == bytesRead) {
fillBuffer();
}
return buffer[bufferPointer++];
}
public void close() throws IOException {
if (din == null) {
return;
}
din.close();
}
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 0298c28b449dd4fdac527281579a83af | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.StringTokenizer;
import java.util.TreeMap;
public class D {
public static void main(String[]args) throws IOException {
Scanner sc=new Scanner(System.in);
PrintWriter out=new PrintWriter(System.out);
int n=sc.nextInt(),C=sc.nextInt();
HashMap<Integer, Long>DH=new HashMap<Integer, Long>();
for(int i=0;i<n;i++) {
int c=sc.nextInt();
long d=sc.nextLong(),h=sc.nextLong();
long v=DH.getOrDefault(c, 0l);
DH.put(c, Math.max(d*h, v));
}
long[]cs=new long[C+1];
for(Integer ci:DH.keySet()) {
long val=DH.get(ci);
long cur=val;
for(int i=ci;i<cs.length;i+=ci,cur+=val) {
cs[i]=Math.max(cs[i], cur);
}
}
TreeMap<Long, Integer>mins=new TreeMap<Long, Integer>();
mins.put(Long.MAX_VALUE, -1);
mins.put(0l, 0);
long mx=0l;
for(int i=1;i<cs.length;i++) {
if(cs[i]>mx) {
mins.put(cs[i], i);
mx=cs[i];
}
}
int m=sc.nextInt();
for(int i=0;i<m;i++) {
long dh=sc.nextLong()*sc.nextLong();
out.print(mins.get(mins.higherKey(dh))+" ");
}
out.println();
out.close();
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public boolean hasNext() {return st.hasMoreTokens();}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public double nextDouble() throws IOException {return Double.parseDouble(next());}
public long nextLong() throws IOException {return Long.parseLong(next());}
public String nextLine() throws IOException {return br.readLine();}
public boolean ready() throws IOException {return br.ready(); }
}
}
| Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | d5f1822bc61c94dcb4c96f998d4aded2 | train_110.jsonl | 1647960300 | Monocarp is playing a strategy game. In the game, he recruits a squad to fight monsters. Before each battle, Monocarp has $$$C$$$ coins to spend on his squad.Before each battle starts, his squad is empty. Monocarp chooses one type of units and recruits no more units of that type than he can recruit with $$$C$$$ coins.There are $$$n$$$ types of units. Every unit type has three parameters: $$$c_i$$$ — the cost of recruiting one unit of the $$$i$$$-th type; $$$d_i$$$ — the damage that one unit of the $$$i$$$-th type deals in a second; $$$h_i$$$ — the amount of health of one unit of the $$$i$$$-th type. Monocarp has to face $$$m$$$ monsters. Every monster has two parameters: $$$D_j$$$ — the damage that the $$$j$$$-th monster deals in a second; $$$H_j$$$ — the amount of health the $$$j$$$-th monster has. Monocarp has to fight only the $$$j$$$-th monster during the $$$j$$$-th battle. He wants all his recruited units to stay alive. Both Monocarp's squad and the monster attack continuously (not once per second) and at the same time. Thus, Monocarp wins the battle if and only if his squad kills the monster strictly faster than the monster kills one of his units. The time is compared with no rounding.For each monster, Monocarp wants to know the minimum amount of coins he has to spend to kill that monster. If this amount is greater than $$$C$$$, then report that it's impossible to kill that monster. | 256 megabytes | import java.util.*;
import java.io.*;
public class tr0 {
static PrintWriter out;
static StringBuilder sb;
static long mod = (long) 998244353;
static long inf = (long) 1e16;
static int n, l, k;
static ArrayList<Integer>[][] ad, ad1;
static int[][] remove, add;
static int[][] memo;
static long[] inv, f, ncr[];
static HashMap<Integer, Integer> hm;
static int[] pre, suf, Smax[], Smin[];
static int idmax, idmin;
static ArrayList<Integer> av;
static HashMap<Integer, Integer> mm;
static boolean[] msks;
static int[] lazy[], lazyCount;
static int[] c, w;
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
out = new PrintWriter(System.out);
int n = sc.nextInt();
int c = sc.nextInt();
TreeMap<Long, Long> tm = new TreeMap<>();
long[] cc = new long[n];
long[] dd = new long[n];
long[] hh = new long[n];
for (int i = 0; i < n; i++) {
long x = sc.nextLong();
long y = sc.nextLong();
long z = sc.nextLong();
cc[i] = x;
dd[i] = y;
hh[i] = z;
tm.put(cc[i], Math.max(tm.getOrDefault(cc[i], 0l), dd[i] * hh[i]));
}
long[] coins = new long[c + 1];
// System.out.println(tm);
for (long k1 : tm.keySet()) {
int k = (int) k1;
for (int i = k; i <= c; i += k) {
coins[i] = Math.max(coins[i], (i / k) * tm.get(k1));
}
// System.out.println(Arrays.toString(coins)+" "+k1);
}
// System.out.println(Arrays.toString(coins));
for (int i = 1; i <= c; i++)
coins[i] = Math.max(coins[i], coins[i - 1]);
// System.out.println(Arrays.toString(coins));
int m = sc.nextInt();
while (m-- > 0) {
long d = sc.nextLong() * sc.nextLong();
int lo = 1;
int hi = c;
int id = -1;
// System.out.println(d);
while (lo <= hi) {
int mid = (lo + hi) >> 1;
if (coins[mid] > d) {
id = mid;
hi = mid - 1;
} else {
lo = mid + 1;
}
}
out.print(id + " ");
}
out.flush();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream system) {
br = new BufferedReader(new InputStreamReader(system));
}
public Scanner(String file) throws Exception {
br = new BufferedReader(new FileReader(file));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public String nextLine() throws IOException {
return br.readLine();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public char nextChar() throws IOException {
return next().charAt(0);
}
public Long nextLong() throws IOException {
return Long.parseLong(next());
}
public int[] nextArrInt(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public long[] nextArrLong(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextArrIntSorted(int n) throws IOException {
int[] a = new int[n];
Integer[] a1 = new Integer[n];
for (int i = 0; i < n; i++)
a1[i] = nextInt();
Arrays.sort(a1);
for (int i = 0; i < n; i++)
a[i] = a1[i].intValue();
return a;
}
public long[] nextArrLongSorted(int n) throws IOException {
long[] a = new long[n];
Long[] a1 = new Long[n];
for (int i = 0; i < n; i++)
a1[i] = nextLong();
Arrays.sort(a1);
for (int i = 0; i < n; i++)
a[i] = a1[i].longValue();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
public void waitForInput() throws InterruptedException {
Thread.sleep(3000);
}
}
} | Java | ["3 10\n3 4 6\n5 5 5\n10 3 4\n3\n8 3\n5 4\n10 15", "5 15\n14 10 3\n9 2 2\n10 4 3\n7 3 5\n4 3 1\n6\n11 2\n1 1\n4 7\n2 1\n1 14\n3 3", "5 13\n13 1 9\n6 4 5\n12 18 4\n9 13 2\n5 4 5\n2\n16 3\n6 2"] | 4 seconds | ["5 3 -1", "14 4 14 4 7 7", "12 5"] | NoteConsider the first monster of the first example.Monocarp can't recruit one unit of the first type, because it will take both him and the monster $$$0.75$$$ seconds to kill each other. He can recruit two units for the cost of $$$6$$$ coins and kill the monster in $$$0.375$$$ second.Monocarp can recruit one unit of the second type, because he kills the monster in $$$0.6$$$ seconds, and the monster kills him in $$$0.625$$$ seconds. The unit is faster. Thus, $$$5$$$ coins is enough.Monocarp will need at least three units of the third type to kill the first monster, that will cost $$$30$$$ coins.Monocarp will spend the least coins if he chooses the second type of units and recruits one unit of that type. | Java 8 | standard input | [
"binary search",
"brute force",
"greedy",
"math",
"sortings"
] | 476c05915a1536cd989c4681c61c9deb | The first line contains two integers $$$n$$$ and $$$C$$$ ($$$1 \le n \le 3 \cdot 10^5$$$; $$$1 \le C \le 10^6$$$) — the number of types of units and the amount of coins Monocarp has before each battle. The $$$i$$$-th of the next $$$n$$$ lines contains three integers $$$c_i, d_i$$$ and $$$h_i$$$ ($$$1 \le c_i \le C$$$; $$$1 \le d_i, h_i \le 10^6$$$). The next line contains a single integer $$$m$$$ ($$$1 \le m \le 3 \cdot 10^5$$$) — the number of monsters that Monocarp has to face. The $$$j$$$-th of the next $$$m$$$ lines contains two integers $$$D_j$$$ and $$$H_j$$$ ($$$1 \le D_j \le 10^6$$$; $$$1 \le H_j \le 10^{12}$$$). | 2,000 | Print $$$m$$$ integers. For each monster, print the minimum amount of coins Monocarp has to spend to kill that monster. If this amount is greater than $$$C$$$, then print $$$-1$$$. | standard output | |
PASSED | 45af5f15fd1c6ac1ad74daf2ba1b632b | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import java.util.*;
import java.lang.*;
import java.io.*;
public class A {
public static void main(String[] args) throws IOException {
InputStreamReader re=new InputStreamReader(System.in);
BufferedReader br=new BufferedReader(re);
int t = Integer.parseInt(br.readLine());
int i,j,k;
for(i=0;i<t;i++) {
int n = Integer.parseInt(br.readLine());
String s = br.readLine();
String[] c = s.split(" ");
long [] arr = new long[n];
for(j=0;j<n;j++)
arr[j] = Long.parseLong(c[j]);
for(j=0;j<n;j++) {
for(k=j+2;k>=2;k--) {
if(arr[j]%k!=0)
break;
}
//System.out.println(k+" "+j);
if(k==1)
break;
}
if(j==n)
System.out.println("Yes");
else
System.out.println("No");
}
}
static long solve(long[] arr,long l,long r, int n,int k) {
int j;
if(l<=r) {
long m = l+(r-l)/2;
long sum = arr[0]+m;
for(j=1;j<n;j++) {
if((double)arr[j]> (double)(sum*k)/(double)100)
break;
sum+=arr[j];
}
if(j==n)
return solve(arr,l,m-1,n,k);
else
return solve(arr,m+1,r,n,k);
}
return l;
}
static long factorial(long n)
{
return (n == 1 || n == 0) ? 1 : n * factorial(n - 1);
}
static long setbitNumber(long n)
{
long k = (int)(Math.log(n) / Math.log(2));
return 1 << k;
}
static void leftrotate(int arr[],int i, int n)
{
int t = arr[i];
int f;
int j = i+1;
for(;j<=n;j++) {
f = arr[j];
arr[j] = t;
t = f;
}
arr[i] = t;
}
static int search(int l, int r,int x, int[]arr) {
if (r >= l) {
int mid = l + (r - l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return search( l, mid - 1, x,arr);
return search( mid + 1, r, x,arr);
}
return -1;
}
static long combination(long n, long k){ // nCr combination
long res = 1;
if (k > n - k)
k = n - k;
// Calculate value of
// [n * (n-1) *---* (n-k+1)] / [k * (k-1) *----* 1]
for (int i = 0; i < k; ++i) {
res *= (n - i);
res /= (i + 1);
}
return res;
}
static long modpower(long x, long y, long p)
{
long res = 1; // Initialize result
x = x % p; // Update x if it is more than or
// equal to p
if (x == 0)
return 0; // In case x is divisible by p;
while (y > 0)
{
// If y is odd, multiply x with result
if ((y & 1) != 0)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
static int xor(int n){
// If n is a multiple of 4
if (n % 4 == 0)
return n;
// If n%4 gives remainder 1
if (n % 4 == 1)
return 1;
// If n%4 gives remainder 2
if (n % 4 == 2)
return n + 1;
return 0;
}
static int getsum(int n) // sum of digits
{
int sum = 0;
while (n != 0)
{
sum = sum + n % 10;
n = n/10;
}
return sum;
}
static boolean isPrime(int n) // check prime
{
if (n <= 1)
return false;
else if (n == 2)
return true;
else if (n % 2 == 0)
return false;
for (int i = 3; i <= Math.sqrt(n); i += 2)
{
if (n % i == 0)
return false;
}
return true;
}
static long gcd(long a, long b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
} | Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | e744d81f639a1b6410e110e42232fdaf | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | //package CodeForces.CodeForcesRounds.src.main.java.aarkay.codeforcesrounds.round752.A;
import java.io.*;
import java.util.*;
public class DiVisibleConfusion_A {
public static void main(String[] args) {
MyScanner sc = new MyScanner();
out = new PrintWriter(new BufferedOutputStream(System.out));
// Start writing your solution here. -------------------------------------
/*
int n = sc.nextInt(); // read input as integer
long k = sc.nextLong(); // read input as long
double d = sc.nextDouble(); // read input as double
String str = sc.next(); // read input as String
String s = sc.nextLine(); // read whole line as String
int result = 3*n;
out.println(result); // print via PrintWriter
*/
int totalCases = sc.nextInt();
while(totalCases != 0) {
int inputCount = sc.nextInt();
List<Integer> input = new ArrayList<>();
int i = 0;
while(i != inputCount) {
input.add(sc.nextInt());
i++;
}
out.println(findDivisibilityConfusionForInput(input));
totalCases--;
}
// Stop writing your solution here. -------------------------------------
out.close();
}
private static String findDivisibilityConfusionForInput(List<Integer> testCase) {
for(int i=0; i<testCase.size(); i++) {
int temp = testCase.get(i);
if(temp % (i+2) != 0) {
continue;
} else {
boolean validFlag = false;
for(int j = i-1; j>=0; j--) {
if(temp % (j+2) != 0) {
validFlag = true;
break;
}
}
if(!validFlag) return "NO";
}
}
return "YES";
}
//-----------PrintWriter for faster output---------------------------------
public static PrintWriter out;
//-----------MyScanner class for faster input----------
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
//--------------------------------------------------------
}
| Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | c7dae84c2e74f1c8e100f45166d47e87 | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import com.sun.security.jgss.GSSUtil;
import javax.swing.plaf.IconUIResource;
import java.io.*;
import java.net.Inet4Address;
import java.util.*;
public class Main {
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private FastWriter wr;
private Reader rd;
public final int MOD = 1000000007;
/************************************************** FAST INPUT IMPLEMENTATION *********************************************/
class Reader {
BufferedReader br;
StringTokenizer st;
public Reader() {
br = new BufferedReader(
new InputStreamReader(System.in));
}
public Reader(String path) throws FileNotFoundException {
br = new BufferedReader(
new InputStreamReader(new FileInputStream(path)));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public int ni() throws IOException {
return rd.nextInt();
}
public long nl() throws IOException {
return rd.nextLong();
}
public void yOrn(boolean flag) {
if (flag) {
wr.println("YES");
} else {
wr.println("NO");
}
}
char nc() throws IOException {
return rd.next().charAt(0);
}
public String ns() throws IOException {
return rd.nextLine();
}
public Double nd() throws IOException {
return rd.nextDouble();
}
public ArrayList<Integer> nli(int n, int start) throws IOException {
ArrayList<Integer> list=new ArrayList<>(n+start);
for (int i = 0; i < n+start; i++) {
list.add(rd.nextInt());
}
return list;
}
public ArrayList<Integer> nli(int n) throws IOException {
int start=0;
ArrayList<Integer> list=new ArrayList<>(n+start);
for (int i = 0; i < n+start; i++) {
list.add(rd.nextInt());
}
return list;
}
public ArrayList<String> nls(int n, int start) throws IOException {
ArrayList<String> list=new ArrayList<>(n+start);
for (int i = 0; i < n+start; i++) {
list.add(rd.nextLine());
}
return list;
}
public ArrayList<String> nls(int n) throws IOException {
int start=0;
ArrayList<String> list=new ArrayList<>(n+start);
for (int i = 0; i < n+start; i++) {
list.add(rd.nextLine());
}
return list;
}
public ArrayList<Long> nll(int n, int start) throws IOException {
ArrayList<Long> list=new ArrayList<>(n+start);
for (int i = 0; i < n+start; i++) {
list.add(rd.nextLong());
}
return list;
}
public ArrayList<Long> nll(int n) throws IOException {
int start=0;
ArrayList<Long> list=new ArrayList<>(n+start);
for (int i = 0; i < n+start; i++) {
list.add(rd.nextLong());
}
return list;
}
/************************************************** FAST OUTPUT IMPLEMENTATION *********************************************/
public static class FastWriter {
private static final int BUF_SIZE = 1 << 13;
private final byte[] buf = new byte[BUF_SIZE];
private final OutputStream out;
private int ptr = 0;
private FastWriter() {
out = null;
}
public FastWriter(OutputStream os) {
this.out = os;
}
public FastWriter(String path) {
try {
this.out = new FileOutputStream(path);
} catch (FileNotFoundException e) {
throw new RuntimeException("FastWriter");
}
}
public FastWriter write(byte b) {
buf[ptr++] = b;
if (ptr == BUF_SIZE) innerflush();
return this;
}
public FastWriter write(char c) {
return write((byte) c);
}
public FastWriter write(char[] s) {
for (char c : s) {
buf[ptr++] = (byte) c;
if (ptr == BUF_SIZE) innerflush();
}
return this;
}
public FastWriter write(String s) {
s.chars().forEach(c -> {
buf[ptr++] = (byte) c;
if (ptr == BUF_SIZE) innerflush();
});
return this;
}
private static int countDigits(int l) {
if (l >= 1000000000) return 10;
if (l >= 100000000) return 9;
if (l >= 10000000) return 8;
if (l >= 1000000) return 7;
if (l >= 100000) return 6;
if (l >= 10000) return 5;
if (l >= 1000) return 4;
if (l >= 100) return 3;
if (l >= 10) return 2;
return 1;
}
public FastWriter write(int x) {
if (x == Integer.MIN_VALUE) {
return write((long) x);
}
if (ptr + 12 >= BUF_SIZE) innerflush();
if (x < 0) {
write((byte) '-');
x = -x;
}
int d = countDigits(x);
for (int i = ptr + d - 1; i >= ptr; i--) {
buf[i] = (byte) ('0' + x % 10);
x /= 10;
}
ptr += d;
return this;
}
private static int countDigits(long l) {
if (l >= 1000000000000000000L) return 19;
if (l >= 100000000000000000L) return 18;
if (l >= 10000000000000000L) return 17;
if (l >= 1000000000000000L) return 16;
if (l >= 100000000000000L) return 15;
if (l >= 10000000000000L) return 14;
if (l >= 1000000000000L) return 13;
if (l >= 100000000000L) return 12;
if (l >= 10000000000L) return 11;
if (l >= 1000000000L) return 10;
if (l >= 100000000L) return 9;
if (l >= 10000000L) return 8;
if (l >= 1000000L) return 7;
if (l >= 100000L) return 6;
if (l >= 10000L) return 5;
if (l >= 1000L) return 4;
if (l >= 100L) return 3;
if (l >= 10L) return 2;
return 1;
}
public FastWriter write(long x) {
if (x == Long.MIN_VALUE) {
return write("" + x);
}
if (ptr + 21 >= BUF_SIZE) innerflush();
if (x < 0) {
write((byte) '-');
x = -x;
}
int d = countDigits(x);
for (int i = ptr + d - 1; i >= ptr; i--) {
buf[i] = (byte) ('0' + x % 10);
x /= 10;
}
ptr += d;
return this;
}
public FastWriter write(double x, int precision) {
if (x < 0) {
write('-');
x = -x;
}
x += Math.pow(10, -precision) / 2;
// if(x < 0){ x = 0; }
write((long) x).write(".");
x -= (long) x;
for (int i = 0; i < precision; i++) {
x *= 10;
write((char) ('0' + (int) x));
x -= (int) x;
}
return this;
}
public FastWriter writeln(char c) {
return write(c).writeln();
}
public FastWriter writeln(int x) {
return write(x).writeln();
}
public FastWriter writeln(long x) {
return write(x).writeln();
}
public FastWriter writeln(double x, int precision) {
return write(x, precision).writeln();
}
public FastWriter write(int... xs) {
boolean first = true;
for (int x : xs) {
if (!first) write(' ');
first = false;
write(x);
}
return this;
}
public FastWriter write(long... xs) {
boolean first = true;
for (long x : xs) {
if (!first) write(' ');
first = false;
write(x);
}
return this;
}
public FastWriter writeln() {
return write((byte) '\n');
}
public FastWriter writeln(int... xs) {
return write(xs).writeln();
}
public FastWriter writeln(long... xs) {
return write(xs).writeln();
}
public FastWriter writeln(char[] line) {
return write(line).writeln();
}
public FastWriter writeln(char[]... map) {
for (char[] line : map) write(line).writeln();
return this;
}
public FastWriter writeln(String s) {
return write(s).writeln();
}
private void innerflush() {
try {
out.write(buf, 0, ptr);
ptr = 0;
} catch (IOException e) {
throw new RuntimeException("innerflush");
}
}
public void flush() {
innerflush();
try {
out.flush();
} catch (IOException e) {
throw new RuntimeException("flush");
}
}
public FastWriter print(byte b) {
return write(b);
}
public FastWriter print(char c) {
return write(c);
}
public FastWriter print(char[] s) {
return write(s);
}
public FastWriter print(String s) {
return write(s);
}
public FastWriter print(int x) {
return write(x);
}
public FastWriter print(long x) {
return write(x);
}
public FastWriter print(double x, int precision) {
return write(x, precision);
}
public FastWriter println(char c) {
return writeln(c);
}
public FastWriter println(int x) {
return writeln(x);
}
public FastWriter println(long x) {
return writeln(x);
}
public FastWriter println(double x, int precision) {
return writeln(x, precision);
}
public FastWriter print(int... xs) {
return write(xs);
}
public FastWriter print(long... xs) {
return write(xs);
}
public FastWriter println(int... xs) {
return writeln(xs);
}
public FastWriter println(long... xs) {
return writeln(xs);
}
public FastWriter println(char[] line) {
return writeln(line);
}
public FastWriter println(char[]... map) {
return writeln(map);
}
public FastWriter println(String s) {
return writeln(s);
}
public FastWriter println() {
return writeln();
}
}
/********************************************************* USEFUL CODE **************************************************/
boolean[] SAPrimeGenerator(int n) {
// TC-N*LOG(LOG N)
//Create Prime Marking Array and fill it with true value
boolean[] primeMarker = new boolean[n + 1];
Arrays.fill(primeMarker, true);
primeMarker[0] = false;
primeMarker[1] = false;
for (int i = 2; i <= n; i++) {
if (primeMarker[i]) {
// we start from 2*i because i*1 must be prime
for (int j = 2 * i; j <= n; j += i) {
primeMarker[j] = false;
}
}
}
return primeMarker;
}
private void tr(Object... o) {
if (!oj) System.out.println(Arrays.deepToString(o));
}
class Pair<F, S> {
F first;
S second;
Pair(F first, S second) {
this.first = first;
this.second = second;
}
}
class PairThree<F, S, X> {
private F first;
private S second;
private X third;
PairThree(F first, S second, X third) {
this.first = first;
this.second = second;
this.third = third;
}
}
public static void main(String[] args) throws IOException {
new Main().run();
}
public void run() throws IOException {
if (oj) {
rd = new Reader();
wr = new FastWriter(System.out);
} else {
File input = new File("input.txt");
File output = new File("output.txt");
if (input.exists() && output.exists()) {
rd = new Reader(input.getPath());
wr = new FastWriter(output.getPath());
} else {
rd = new Reader();
wr = new FastWriter(System.out);
oj = true;
}
}
long s = System.currentTimeMillis();
solve();
wr.flush();
tr(System.currentTimeMillis() - s + "ms");
}
/***************************************************************************************************************************
*********************************************************** MAIN CODE ******************************************************
****************************************************************************************************************************/
boolean[] sieve;
public void solve() throws IOException {
int t = 1;
t = ni();
while (t-- > 0) {
go();
}
}
/********************************************************* MAIN LOGIC HERE ****************************************************/
long gcd(long a, long b) {
if (a == 0)
return b;
return gcd(b % a, a);
}
boolean isPowerOfTwo(int n) {
int counter = 0;
while (n != 0) {
if ((n & 1) == 1) {
counter++;
}
n = n >> 1;
}
return counter <= 1;
}
void printList(ArrayList<Integer> al){
for(int i=0;i<al.size();i++){
wr.print(al.get(i)+" ");
}
wr.println("");
}
int lower_than(ArrayList<Long> al,long key){
int start=0,end=al.size()-1;
int ans=0;
while (start<=end){
int mid=(start+end)/2;
if(al.get(mid)<key){
ans=mid;
start=mid+1;
}else {
end=mid-1;
}
}
return ans;
}
public void go() throws IOException {
int n=ni();
ArrayList<Integer> al=nli(n);
int start=2,end=2;
boolean flag=true;
for(int i=0;i<n;i++){
int num=al.get(i);
boolean flag2=false;
for(int j=start;j<=end;j++){
if(num%j!=0){
flag2=true;
break;
}
}
end++;
flag&=flag2;
}
yOrn(flag);
}
} | Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | 0d33defc9931f2b452134484e2ed9a40 | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import com.sun.security.jgss.GSSUtil;
import javax.swing.plaf.IconUIResource;
import java.io.*;
import java.net.Inet4Address;
import java.util.*;
public class Main {
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private FastWriter wr;
private Reader rd;
public final int MOD = 1000000007;
/************************************************** FAST INPUT IMPLEMENTATION *********************************************/
class Reader {
BufferedReader br;
StringTokenizer st;
public Reader() {
br = new BufferedReader(
new InputStreamReader(System.in));
}
public Reader(String path) throws FileNotFoundException {
br = new BufferedReader(
new InputStreamReader(new FileInputStream(path)));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public int ni() throws IOException {
return rd.nextInt();
}
public long nl() throws IOException {
return rd.nextLong();
}
public void yOrn(boolean flag) {
if (flag) {
wr.println("YES");
} else {
wr.println("NO");
}
}
char nc() throws IOException {
return rd.next().charAt(0);
}
public String ns() throws IOException {
return rd.nextLine();
}
public Double nd() throws IOException {
return rd.nextDouble();
}
public ArrayList<Integer> nli(int n, int start) throws IOException {
ArrayList<Integer> list=new ArrayList<>(n+start);
for (int i = 0; i < n+start; i++) {
list.add(rd.nextInt());
}
return list;
}
public ArrayList<Integer> nli(int n) throws IOException {
int start=0;
ArrayList<Integer> list=new ArrayList<>(n+start);
for (int i = 0; i < n+start; i++) {
list.add(rd.nextInt());
}
return list;
}
public ArrayList<String> nls(int n, int start) throws IOException {
ArrayList<String> list=new ArrayList<>(n+start);
for (int i = 0; i < n+start; i++) {
list.add(rd.nextLine());
}
return list;
}
public ArrayList<String> nls(int n) throws IOException {
int start=0;
ArrayList<String> list=new ArrayList<>(n+start);
for (int i = 0; i < n+start; i++) {
list.add(rd.nextLine());
}
return list;
}
public ArrayList<Long> nll(int n, int start) throws IOException {
ArrayList<Long> list=new ArrayList<>(n+start);
for (int i = 0; i < n+start; i++) {
list.add(rd.nextLong());
}
return list;
}
public ArrayList<Long> nll(int n) throws IOException {
int start=0;
ArrayList<Long> list=new ArrayList<>(n+start);
for (int i = 0; i < n+start; i++) {
list.add(rd.nextLong());
}
return list;
}
/************************************************** FAST OUTPUT IMPLEMENTATION *********************************************/
public static class FastWriter {
private static final int BUF_SIZE = 1 << 13;
private final byte[] buf = new byte[BUF_SIZE];
private final OutputStream out;
private int ptr = 0;
private FastWriter() {
out = null;
}
public FastWriter(OutputStream os) {
this.out = os;
}
public FastWriter(String path) {
try {
this.out = new FileOutputStream(path);
} catch (FileNotFoundException e) {
throw new RuntimeException("FastWriter");
}
}
public FastWriter write(byte b) {
buf[ptr++] = b;
if (ptr == BUF_SIZE) innerflush();
return this;
}
public FastWriter write(char c) {
return write((byte) c);
}
public FastWriter write(char[] s) {
for (char c : s) {
buf[ptr++] = (byte) c;
if (ptr == BUF_SIZE) innerflush();
}
return this;
}
public FastWriter write(String s) {
s.chars().forEach(c -> {
buf[ptr++] = (byte) c;
if (ptr == BUF_SIZE) innerflush();
});
return this;
}
private static int countDigits(int l) {
if (l >= 1000000000) return 10;
if (l >= 100000000) return 9;
if (l >= 10000000) return 8;
if (l >= 1000000) return 7;
if (l >= 100000) return 6;
if (l >= 10000) return 5;
if (l >= 1000) return 4;
if (l >= 100) return 3;
if (l >= 10) return 2;
return 1;
}
public FastWriter write(int x) {
if (x == Integer.MIN_VALUE) {
return write((long) x);
}
if (ptr + 12 >= BUF_SIZE) innerflush();
if (x < 0) {
write((byte) '-');
x = -x;
}
int d = countDigits(x);
for (int i = ptr + d - 1; i >= ptr; i--) {
buf[i] = (byte) ('0' + x % 10);
x /= 10;
}
ptr += d;
return this;
}
private static int countDigits(long l) {
if (l >= 1000000000000000000L) return 19;
if (l >= 100000000000000000L) return 18;
if (l >= 10000000000000000L) return 17;
if (l >= 1000000000000000L) return 16;
if (l >= 100000000000000L) return 15;
if (l >= 10000000000000L) return 14;
if (l >= 1000000000000L) return 13;
if (l >= 100000000000L) return 12;
if (l >= 10000000000L) return 11;
if (l >= 1000000000L) return 10;
if (l >= 100000000L) return 9;
if (l >= 10000000L) return 8;
if (l >= 1000000L) return 7;
if (l >= 100000L) return 6;
if (l >= 10000L) return 5;
if (l >= 1000L) return 4;
if (l >= 100L) return 3;
if (l >= 10L) return 2;
return 1;
}
public FastWriter write(long x) {
if (x == Long.MIN_VALUE) {
return write("" + x);
}
if (ptr + 21 >= BUF_SIZE) innerflush();
if (x < 0) {
write((byte) '-');
x = -x;
}
int d = countDigits(x);
for (int i = ptr + d - 1; i >= ptr; i--) {
buf[i] = (byte) ('0' + x % 10);
x /= 10;
}
ptr += d;
return this;
}
public FastWriter write(double x, int precision) {
if (x < 0) {
write('-');
x = -x;
}
x += Math.pow(10, -precision) / 2;
// if(x < 0){ x = 0; }
write((long) x).write(".");
x -= (long) x;
for (int i = 0; i < precision; i++) {
x *= 10;
write((char) ('0' + (int) x));
x -= (int) x;
}
return this;
}
public FastWriter writeln(char c) {
return write(c).writeln();
}
public FastWriter writeln(int x) {
return write(x).writeln();
}
public FastWriter writeln(long x) {
return write(x).writeln();
}
public FastWriter writeln(double x, int precision) {
return write(x, precision).writeln();
}
public FastWriter write(int... xs) {
boolean first = true;
for (int x : xs) {
if (!first) write(' ');
first = false;
write(x);
}
return this;
}
public FastWriter write(long... xs) {
boolean first = true;
for (long x : xs) {
if (!first) write(' ');
first = false;
write(x);
}
return this;
}
public FastWriter writeln() {
return write((byte) '\n');
}
public FastWriter writeln(int... xs) {
return write(xs).writeln();
}
public FastWriter writeln(long... xs) {
return write(xs).writeln();
}
public FastWriter writeln(char[] line) {
return write(line).writeln();
}
public FastWriter writeln(char[]... map) {
for (char[] line : map) write(line).writeln();
return this;
}
public FastWriter writeln(String s) {
return write(s).writeln();
}
private void innerflush() {
try {
out.write(buf, 0, ptr);
ptr = 0;
} catch (IOException e) {
throw new RuntimeException("innerflush");
}
}
public void flush() {
innerflush();
try {
out.flush();
} catch (IOException e) {
throw new RuntimeException("flush");
}
}
public FastWriter print(byte b) {
return write(b);
}
public FastWriter print(char c) {
return write(c);
}
public FastWriter print(char[] s) {
return write(s);
}
public FastWriter print(String s) {
return write(s);
}
public FastWriter print(int x) {
return write(x);
}
public FastWriter print(long x) {
return write(x);
}
public FastWriter print(double x, int precision) {
return write(x, precision);
}
public FastWriter println(char c) {
return writeln(c);
}
public FastWriter println(int x) {
return writeln(x);
}
public FastWriter println(long x) {
return writeln(x);
}
public FastWriter println(double x, int precision) {
return writeln(x, precision);
}
public FastWriter print(int... xs) {
return write(xs);
}
public FastWriter print(long... xs) {
return write(xs);
}
public FastWriter println(int... xs) {
return writeln(xs);
}
public FastWriter println(long... xs) {
return writeln(xs);
}
public FastWriter println(char[] line) {
return writeln(line);
}
public FastWriter println(char[]... map) {
return writeln(map);
}
public FastWriter println(String s) {
return writeln(s);
}
public FastWriter println() {
return writeln();
}
}
/********************************************************* USEFUL CODE **************************************************/
boolean[] SAPrimeGenerator(int n) {
// TC-N*LOG(LOG N)
//Create Prime Marking Array and fill it with true value
boolean[] primeMarker = new boolean[n + 1];
Arrays.fill(primeMarker, true);
primeMarker[0] = false;
primeMarker[1] = false;
for (int i = 2; i <= n; i++) {
if (primeMarker[i]) {
// we start from 2*i because i*1 must be prime
for (int j = 2 * i; j <= n; j += i) {
primeMarker[j] = false;
}
}
}
return primeMarker;
}
private void tr(Object... o) {
if (!oj) System.out.println(Arrays.deepToString(o));
}
class Pair<F, S> {
F first;
S second;
Pair(F first, S second) {
this.first = first;
this.second = second;
}
}
class PairThree<F, S, X> {
private F first;
private S second;
private X third;
PairThree(F first, S second, X third) {
this.first = first;
this.second = second;
this.third = third;
}
}
public static void main(String[] args) throws IOException {
new Main().run();
}
public void run() throws IOException {
if (oj) {
rd = new Reader();
wr = new FastWriter(System.out);
} else {
File input = new File("input.txt");
File output = new File("output.txt");
if (input.exists() && output.exists()) {
rd = new Reader(input.getPath());
wr = new FastWriter(output.getPath());
} else {
rd = new Reader();
wr = new FastWriter(System.out);
oj = true;
}
}
long s = System.currentTimeMillis();
solve();
wr.flush();
tr(System.currentTimeMillis() - s + "ms");
}
/***************************************************************************************************************************
*********************************************************** MAIN CODE ******************************************************
****************************************************************************************************************************/
boolean[] sieve;
public void solve() throws IOException {
int t = 1;
t = ni();
while (t-- > 0) {
go();
}
}
/********************************************************* MAIN LOGIC HERE ****************************************************/
long gcd(long a, long b) {
if (a == 0)
return b;
return gcd(b % a, a);
}
boolean isPowerOfTwo(int n) {
int counter = 0;
while (n != 0) {
if ((n & 1) == 1) {
counter++;
}
n = n >> 1;
}
return counter <= 1;
}
void printList(ArrayList<Integer> al){
for(int i=0;i<al.size();i++){
wr.print(al.get(i)+" ");
}
wr.println("");
}
int lower_than(ArrayList<Long> al,long key){
int start=0,end=al.size()-1;
int ans=0;
while (start<=end){
int mid=(start+end)/2;
if(al.get(mid)<key){
ans=mid;
start=mid+1;
}else {
end=mid-1;
}
}
return ans;
}
public void go() throws IOException {
int n=ni();
ArrayList<Integer> al=nli(n);
int start=2,end=2;
boolean flag=true;
for(int i=0;i<n;i++){
int num=al.get(i);
boolean flag2=false;
for(int j=start;j<=end;j++){
if(num%j!=0){
flag2=true;
break;
}
}
end++;
flag=flag2;
if(!flag){
break;
}
}
yOrn(flag);
}
} | Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | cde7f6a495a17d33e56150e629b450e1 | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import java.util.Scanner;
public class Main{
public static boolean check(int n,int index){
for(int i = 2;i<=index+2;i++){
if(n%i != 0){return true;}
}
return false;
}
public static void main(String[]args){
Scanner at = new Scanner(System.in);
int t = at.nextInt();
while(t-->0){
int n =at.nextInt();
int[]arr = new int[n];
boolean ok =true;
for(int i = 0;i<n;i++){
arr[i] = at.nextInt();
boolean h = check(arr[i],i);
if(h == false){ok = false;}
}
if(ok){System.out.println("YES");}
else {
System.out.println("NO");
}
}
}
} | Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | c09a134c161275b8d7cd2d7a52cfb5a3 | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import java.util.*;
public class Main
{
public static void main(String[] args) {
Scanner at = new Scanner(System.in);
int t = at.nextInt();
while(t-->0){
int n = at.nextInt();
int[] arr = new int[n+1];
for(int i = 1;i<n+1;i++){
arr[i] = at.nextInt();;
}
boolean valid = true;
for(int i = 1;i<n+1;i++){
boolean ok = false;
for(int j = i+1;j>=2;j--){
if(arr[i] % j != 0){
ok = true;
break;
}
}
if(!ok){
valid = false;
break;
}
}
if(valid){System.out.println("YES");}
else{System.out.println("NO");}
}
}
}
| Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | 613c109722756149d529ac0c18135e9d | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import java.util.*;
public class DivisibleConfusion {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0){
int n=sc.nextInt();
boolean g=true;
for(int i=0;i<n;i++) {
int x=sc.nextInt();
boolean flag=false;
for(int j=i+2;j>=2;j--) {
if(x%j!=0) {
flag=true;
break;
}
}
g=g&flag;
}
if(g) System.out.println( "YES");
else System.out.println("NO");
}
}
} | Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | 17a2e072df40181cc15f9c55753266ba | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | // package codeforce;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class B {
static class Node {
int id1;
int id2;
Node(int v1, int w1){
this.id1= v1;
this.id2=w1;
}
Node(){}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next(){
while (st == null || !st.hasMoreElements()){
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e){
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt(){
return Integer.parseInt(next());
}
long nextLong(){
return Long.parseLong(next());
}
double nextDouble(){
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try{
str = br.readLine();
}
catch (IOException e){
e.printStackTrace();
}
return str;
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
}
static long[] dp = new long[1001];
public static void main(String[] args) {
// TODO Auto-generated method stub
FastReader sc = new FastReader();
int t = sc.nextInt();
while(t--!=0) {
int n = sc.nextInt();
int[] arr = sc.readArray(n);
boolean f = arr[0]%2==0?false:true;
if(f==false)System.out.println("NO");
else {
for(int i=1; i<n; i++) {
boolean fi = false;
for(int j= i+2; j>=2; j--) {
if(arr[i]%j!=0) {
fi = true;
break;
}
}
f=(f&fi);
}
System.out.println(f?"YES":"NO");
}
}
}
public static long fib(int n, long[] dp) {
if(n==0 || n==1) {
dp[n]=n;
return n;
}
if(dp[n]!=0) {
return dp[n];
}
long fibo = fib(n-1, dp)+fib(n-2, dp);
dp[n]= fibo;
return fibo;
}
static void solve(int[][] arr, int x, int y, int w, int h) {
}
static int gcd(int reduceNum, int b)
{
return b == 0 ?
reduceNum : gcd(b, reduceNum % b);
}
static ArrayList<Integer> al = new ArrayList<Integer>();
static int found=0;
static int length;
// public static void dfs(ArrayList<ArrayList<Integer>> adj,boolean[] vis, int ind, int cnt ) {
// vis[ind]= true;
// cnt++;
// if(cnt==length) {
// arr.add(ind);
// found=1;
// return;
// }
//
// for(int it: adj.get(ind)) {
// if(vis[it]==false && found==0) {
// dfs(adj, vis, it, cnt);
// }
// if(found==1) {
// arr.add(ind);
// return;
// }
// }
// }
}
| Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | 91b9619d87df1ba88997eb26cc4451f4 | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import java.io.*;
import java.util.*;
import java.math.BigDecimal;
import java.math.*;
//
public class Main{
public static void main(String[] args) {
TaskA solver = new TaskA();
// boolean[]prime=seive(3*100001);
int t = in.nextInt();
for (int i = 1; i <= t ; i++) {
solver.solve(1, in, out);
}
// solver.solve(1, in, out);
out.flush();
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n= in.nextInt();
boolean ans=true;
for(int i=1;i<=n;i++) {
boolean ok=false;
int x= in.nextInt();
int m= Math.min(i+1, 30);
for(int j=2;j<=m;j++) {
if(x%j!=0) {
ok=true;break;
}
}
ans&=ok;
}
if(ans) {println("YES");}else {println("NO");}
}
}
private static void printIArray(int[] arr) {
for (int i = 0; i < arr.length; i++)
System .out.print(arr[i] + " ");
System.out.println(" ");
}
static int dis(int a,int b,int c,int d) {
return Math.abs(c-a)+Math.abs(d-b);
}
static long ceil(long a,long b) {
return (a/b + Math.min(a%b, 1));
}
static char[] rev(char[]ans,int n) {
for(int i=ans.length-1;i>=n;i--) {
ans[i]=ans[ans.length-i-1];
}
return ans;
}
static int countStep(int[]arr,long sum,int k,int count1) {
int count=count1;
int index=arr.length-1;
while(sum>k&&index>0) {
sum-=(arr[index]-arr[0]);
count++;
if(sum<=k) {
break;
}
index--;
// println("c");
}
if(sum<=k) {
return count;
}
else {
return Integer.MAX_VALUE;
}
}
static long pow(long b, long e) {
long ans = 1;
while (e > 0) {
if (e % 2 == 1)
ans = ans * b % mod;
e >>= 1;
b = b * b % mod;
}
return ans;
}
static void sortDiff(Pair arr[])
{
// Comparator to sort the pair according to second element
Arrays.sort(arr, new Comparator<Pair>() {
@Override public int compare(Pair p1, Pair p2)
{ if(p1.first==p2.first) {
return (p1.second-p1.first)-(p2.second-p1.first);
}
return (p1.second-p1.first)-(p2.second-p2.first);
}
});
}
static void sortF(Pair arr[])
{
// Comparator to sort the pair according to second element
Arrays.sort(arr, new Comparator<Pair>() {
@Override public int compare(Pair p1, Pair p2)
{ if(p1.first==p2.first) {
return p1.second-p2.second;
}
return p1.first - p2.first;
}
});
}
static int[] shift (int[]inp,int i,int j){
int[]arr=new int[j-i+1];
int n=j-i+1;
for(int k=i;k<=j;k++) {
arr[(k-i+1)%n]=inp[k];
}
for(int k=0;k<n;k++ ) {
inp[k+i]=arr[k];
}
return inp;
}
static long[] fac;
static long mod = (long) 1000000007;
static void initFac(long n) {
fac = new long[(int)n + 1];
fac[0] = 1;
for (int i = 1; i <= n; i++) {
fac[i] = (fac[i - 1] * i) % mod;
}
}
static long nck(int n, int k) {
if (n < k)
return 0;
long den = inv((int) (fac[k] * fac[n - k] % mod));
return fac[n] * den % mod;
}
static long inv(long x) {
return pow(x, mod - 2);
}
static void sort(int[] a) {
ArrayList<Integer> q = new ArrayList<>();
for (int i : a) q.add(i);
Collections.sort(q);
for (int i = 0; i < a.length; i++) a[i] = q.get(i);
}
static void sort(long[] a) {
ArrayList<Long> q = new ArrayList<>();
for (long i : a) q.add(i);
Collections.sort(q);
for (int i = 0; i < a.length; i++) a[i] = q.get(i);
}
public static int bfsSize(int source,LinkedList<Integer>[]a,boolean[]visited) {
Queue<Integer>q=new LinkedList<>();
q.add(source);
visited[source]=true;
int distance=0;
while(!q.isEmpty()) {
int curr=q.poll();
distance++;
for(int neighbour:a[curr]) {
if(!visited[neighbour]) {
visited[neighbour]=true;
q.add(neighbour);
}
}
}
return distance;
}
public static Set<Integer>factors(int n){
Set<Integer>ans=new HashSet<>();
ans.add(1);
for(int i=2;i*i<=n;i++) {
if(n%i==0) {
ans.add(i);
ans.add(n/i);
}
}
return ans;
}
public static int bfsSp(int source,int destination,ArrayList<Integer>[]a) {
boolean[]visited=new boolean[a.length];
int[]parent=new int[a.length];
Queue<Integer>q=new LinkedList<>();
int distance=0;
q.add(source);
visited[source]=true;
parent[source]=-1;
while(!q.isEmpty()) {
int curr=q.poll();
if(curr==destination) {
break;
}
for(int neighbour:a[curr]) {
if(neighbour!=-1&&!visited[neighbour]) {
visited[neighbour]=true;
q.add(neighbour);
parent[neighbour]=curr;
}
}
}
int cur=destination;
while(parent[cur]!=-1) {
distance++;
cur=parent[cur];
}
return distance;
}
static int bs(int size,int[]arr) {
int x = -1;
for (int b = size/2; b >= 1; b /= 2) {
while (!ok(arr));
}
int k = x+1;
return k;
}
static boolean ok(int[]x) {
return false;
}
public static int solve1(ArrayList<Integer> A) {
long[]arr =new long[A.size()+1];
int n=A.size();
for(int i=1;i<=A.size();i++) {
arr[i]=((i%2)*((n-i+1)%2))%2;
arr[i]%=2;
}
int ans=0;
for(int i=0;i<A.size();i++) {
if(arr[i+1]==1) {
ans^=A.get(i);
}
}
return ans;
}
public static String printBinary(long a) {
String str="";
for(int i=31;i>=0;i--) {
if((a&(1<<i))!=0) {
str+=1;
}
if((a&(1<<i))==0 && !str.isEmpty()) {
str+=0;
}
}
return str;
}
public static String reverse(long a) {
long rev=0;
String str="";
int x=(int)(Math.log(a)/Math.log(2))+1;
for(int i=0;i<32;i++) {
rev<<=1;
if((a&(1<<i))!=0) {
rev|=1;
str+=1;
}
else {
str+=0;
}
}
return str;
}
////////////////////////////////////////////////////////
static void sortS(Pair arr[])
{
// Comparator to sort the pair according to second element
Arrays.sort(arr, new Comparator<Pair>() {
@Override public int compare(Pair p1, Pair p2)
{
return p1.second - p2.second;
}
});
}
static class Pair implements Comparable<Pair>
{
int first ;int second ;
public Pair(int x, int y)
{
this.first = x ;this.second = y ;
}
@Override
public boolean equals(Object obj)
{
if(obj == this)return true ;
if(obj == null)return false ;
if(this.getClass() != obj.getClass()) return false ;
Pair other = (Pair)(obj) ;
if(this.first != other.first)return false ;
if(this.second != other.second)return false ;
return true ;
}
@Override
public int hashCode()
{
return this.first^this.second ;
}
@Override
public String toString() {
String ans = "" ;ans += this.first ; ans += " "; ans += this.second ;
return ans ;
}
@Override
public int compareTo(Main.Pair o) {
{ if(this.first==o.first) {
return this.second-o.second;
}
return this.first - o.first;
}
}
}
//////////////////////////////////////////////////////////////////////////
static int nD(long num) {
String s=String.valueOf(num);
return s.length();
}
static int CommonDigits(int x,int y) {
String s=String.valueOf(x);
String s2=String.valueOf(y);
return 0;
}
static int lcs(String str1, String str2, int m, int n)
{
int L[][] = new int[m + 1][n + 1];
int i, j;
// Following steps build L[m+1][n+1] in
// bottom up fashion. Note that L[i][j]
// contains length of LCS of str1[0..i-1]
// and str2[0..j-1]
for (i = 0; i <= m; i++) {
for (j = 0; j <= n; j++) {
if (i == 0 || j == 0)
L[i][j] = 0;
else if (str1.charAt(i - 1)
== str2.charAt(j - 1))
L[i][j] = L[i - 1][j - 1] + 1;
else
L[i][j] = Math.max(L[i - 1][j],
L[i][j - 1]);
}
}
// L[m][n] contains length of LCS
// for X[0..n-1] and Y[0..m-1]
return L[m][n];
}
/////////////////////////////////
boolean IsPowerOfTwo(int x)
{
return (x != 0) && ((x & (x - 1)) == 0);
}
////////////////////////////////
static long power(long a,long b,long m ) {
long ans=1;
while(b>0) {
if(b%2==1) {
ans=((ans%m)*(a%m))%m; b--;
}
else {
a=(a*a)%m;b/=2;
}
}
return ans%m;
}
///////////////////////////////
public static boolean repeatedSubString(String string) {
return ((string + string).indexOf(string, 1) != string.length());
}
static int search(char[]c,int start,int end,char x) {
for(int i=start;i<end;i++) {
if(c[i]==x) {return i;}
}
return -2;
}
////////////////////////////////
static long gcd(long a, long b) {
while (b != 0) {
long t = b;
b = a % b;
a = t;
}
return a;
}
static long fac(long a)
{
if(a== 0L || a==1L)return 1L ;
return a*fac(a-1L) ;
}
static ArrayList al() {
ArrayList<Integer>a =new ArrayList<>();
return a;
}
static HashSet h() {
return new HashSet<Integer>();
}
static void debug(int[][]a) {
int n= a.length;
for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) {
out.print(a[i][j]+" ");
}
out.print("\n");
}
}
static void debug(int[]a) {
out.println(Arrays.toString(a));
}
static void debug(ArrayList<Integer>a) {
out.println(a.toString());
}
static boolean[]seive(int n){
boolean[]b=new boolean[n+1];
for (int i = 2; i <= n; i++)
b[i] = true;
for(int i=2;i*i<=n;i++) {
if(b[i]) {
for(int j=i*i;j<=n;j+=i) {
b[j]=false;
}
}
}
return b;
}
static int longestIncreasingSubseq(int[]arr) {
int[]sizes=new int[arr.length];
Arrays.fill(sizes, 1);
int max=1;
for(int i=1;i<arr.length;i++) {
for(int j=0;j<i;j++) {
if(arr[j]<arr[i]) {
sizes[i]=Math.max(sizes[i],sizes[j]+1);
max=Math.max(max, sizes[i]);
}
}
}
return max;
}
public static ArrayList primeFactors(long n)
{
ArrayList<Long>h= new ArrayList<>();
// Print the number of 2s that divide n
if(n%2 ==0) {h.add(2L);}
// n must be odd at this point. So we can
// skip one element (Note i = i +2)
for (long i = 3; i <= Math.sqrt(n); i+= 2)
{
if(n%i==0) {h.add(i);}
}
if (n > 2)
h.add(n);
return h;
}
static boolean Divisors(long n){
if(n%2==1) {
return true;
}
for (long i=2; i<=Math.sqrt(n); i++){
if (n%i==0 && i%2==1){
return true;
}
}
return false;
}
static InputStream inputStream = System.in;
static OutputStream outputStream = System.out;
static InputReader in = new InputReader(inputStream);
static PrintWriter out = new PrintWriter(outputStream);
public static void superSet(int[]a,ArrayList<String>al,int i,String s) {
if(i==a.length) {
al.add(s);
return;
}
superSet(a,al,i+1,s);
superSet(a,al,i+1,s+a[i]+" ");
}
public static long[] makeArr() {
long size=in.nextInt();
long []arr=new long[(int)size];
for(int i=0;i<size;i++) {
arr[i]=in.nextInt();
}
return arr;
}
public static long[] arr(int n) {
long []arr=new long[n+1];
for(int i=1;i<n+1;i++) {
arr[i]=in.nextLong();
}
return arr;
}
public static void sort(long arr[], int l, int r)
{
if (l < r)
{
// Find the middle point
int m = (l+r)/2;
// Sort first and second halves
sort(arr, l, m);
sort(arr , m+1, r);
// Merge the sorted halves
merge(arr, l, m, r);
}
}
static void println(long x) {
out.println(x);
}
static void print(long c) {
out.print(c);
}
static void print(int c) {
out.print(c);
}
static void println(int x) {
out.println(x);
}
static void print(String s) {
out.print(s);
}
static void println(String s) {
out.println(s);
}
public static void merge(long arr[], int l, int m, int r)
{
// Find sizes of two subarrays to be merged
int n1 = m - l + 1;
int n2 = r - m;
/* Create temp arrays */
long L[] = new long[n1];
long R[] = new long[n2];
//Copy data to temp arrays
for (int i=0; i<n1; ++i)
L[i] = arr[l + i];
for (int j=0; j<n2; ++j)
R[j] = arr[m + 1+ j];
/* Merge the temp arrays */
// Initial indexes of first and second subarrays
int i = 0, j = 0;
// Initial index of merged subarry array
int k = l;
while (i < n1 && j < n2)
{
if (L[i] <= R[j])
{
arr[k] = L[i];
i++;
}
else
{
arr[k] = R[j];
j++;
}
k++;
}
/* Copy remaining elements of L[] if any */
while (i < n1)
{
arr[k] = L[i];
i++;
k++;
}
/* Copy remaining elements of R[] if any */
while (j < n2)
{
arr[k] = R[j];
j++;
k++;
}
}
public static void reverse(int[] array)
{
int n = array.length;
for (int i = 0; i < n / 2; i++) {
int temp = array[i];
array[i] = array[n - i - 1];
array[n - i - 1] = temp;
}
}
public static long nCr(int n,int k)
{
long ans=1L;
k=k>n-k?n-k:k;
for( int j=1;j<=k;j++,n--)
{
if(n%j==0)
{
ans*=n/j;
}else
if(ans%j==0)
{
ans=ans/j*n;
}else
{
ans=(ans*n)/j;
}
}
return ans;
}
static int searchMax(int index,long[]inp) {
while(index+1<inp.length &&inp[index+1]>inp[index]) {
index+=1;
}
return index;
}
static int searchMin(int index,long[]inp) {
while(index+1<inp.length &&inp[index+1]<inp[index]) {
index+=1;
}
return index;
}
public class ListNode {
int val;
ListNode next;
ListNode() {}
ListNode(int val) { this.val = val; }
ListNode(int val, ListNode next) { this.val = val; this.next = next; }
}
static class Pairr implements Comparable<Pairr>{
private int index;
private int cumsum;
private ArrayList<Integer>indices;
public Pairr(int index,int cumsum) {
this.index=index;
this.cumsum=cumsum;
indices=new ArrayList<Integer>();
}
public int compareTo(Pairr other) {
return Integer.compare(cumsum, other.cumsum);
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
} | Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | e5446ee7ec3064351127d6a5c513aa89 | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class A{
public static void main(String[] args) throws IOException{
// br = new BufferedReader(new FileReader(".in"));
// out = new PrintWriter(new FileWriter(".out"));
// new Thread(null, new (), "fisa balls", 1<<28).start();
boolean[] s = new boolean[(int)2e5+1];
for (int i = 2; i * i < s.length; i++) {
if (!s[i]) {
for (int j = i*i; j < s.length; j+=i) s[j] = true;
}
}
int t= readInt();
outer: while(t-->0) {
int n =readInt();
long[] a = new long[n];
for (int i =0 ; i < n; i++) a[i]=readLong();
// Idea is: You can remove odds willy nilly, but evens have a pretty hard condition.
// Evens should find the first value such that they can be removed and do it?
if (a[0]%2==0) {
out.println("NO");
continue;
}
else {
for (int i = 0; i < n; i++) {
int cur = (i+2);
if (a[i]%2==1) continue;
else {
boolean w = false;
for (int x = 2; x <= min(100,cur); x++) {
if (x <= cur) {
if (a[i]%x != 0)w = true;
}
}
if (cur >= 100) w = true;
if (!w) {
out.println("NO");
continue outer;
}
}
}
out.println("YES");
}
}
out.close();
}
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
static StringTokenizer st = new StringTokenizer("");
static String read() throws IOException{
while (!st.hasMoreElements()) st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public static int readInt() throws IOException{return Integer.parseInt(read());}
public static long readLong() throws IOException{return Long.parseLong(read());}
} | Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | 0eb4bcfcd21360a8a8cae364f44034e6 | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import java.io.*;
import java.lang.*;
import java.util.*;
public class ComdeFormces {
public static int cc2;
public static pair pr;
public static long sum;
public static void main(String[] args) throws Exception{
// TODO Auto-generated method stub
// Reader.init(System.in);
FastReader sc=new FastReader();
BufferedWriter log = new BufferedWriter(new OutputStreamWriter(System.out));
// OutputStream out = new BufferedOutputStream ( System.out );
int t=sc.nextInt();
int tc=1;
while(t--!=0) {
int n=sc.nextInt();
int a[]=new int[n];
for(int i=0;i<n;i++) {
a[i]=sc.nextInt();
}
int cnt=0;
boolean ans=true;
for(int i=0;i<n;i++) {
int tp=a[i];
// ArrayList<Integer> div=new ArrayList<>();
if(tp%(i+2)==0) {
if((tp)%(i+2-cnt)==0) {
boolean f=false;
for(int j=1;j<=cnt;j++) {
if(tp%(i+2-j)!=0) {
cnt++;
f=true;
break;
}
}
if(!f) {
ans=false;
break;
}
}
else cnt++;
}
else {
cnt++;
}
}
log.write((ans?"YES":"NO")+"\n");
log.flush();
}
}
static long eval(ArrayList<ArrayList<Integer>> ar,int src,long f[], boolean vis[]) {
long mn=Integer.MAX_VALUE;
vis[src]=true;
for(int p:ar.get(src)) {
if(!vis[p]) {
long s=eval(ar,p,f,vis);
mn=Math.min(mn,s);
sum+=s;
}
}
if(src==0)return 0;
if(mn==Integer.MAX_VALUE)return f[src];
sum-=mn;
return Math.max(f[src], mn);
}
public static void radixSort(int a[]) {
int n=a.length;
int res[]=new int[n];
int p=1;
for(int i=0;i<=8;i++) {
int cnt[]=new int[10];
for(int j=0;j<n;j++) {
a[j]=res[j];
cnt[(a[j]/p)%10]++;
}
for(int j=1;j<=9;j++) {
cnt[j]+=cnt[j-1];
}
for(int j=n-1;j>=0;j--) {
res[cnt[(a[j]/p)%10]-1]=a[j];
cnt[(a[j]/p)%10]--;
}
p*=10;
}
}
static int bits(long n) {
int ans=0;
while(n!=0) {
if((n&1)==1)ans++;
n>>=1;
}
return ans;
}
static long flor(ArrayList<Long> ar,long el) {
int s=0;
int e=ar.size()-1;
while(s<=e) {
int m=s+(e-s)/2;
if(ar.get(m)==el)return ar.get(m);
else if(ar.get(m)<el)s=m+1;
else e=m-1;
}
return e>=0?e:-1;
}
public static int kadane(int a[]) {
int sum=0,mx=Integer.MIN_VALUE;
for(int i=0;i<a.length;i++) {
sum+=a[i];
mx=Math.max(mx, sum);
if(sum<0) sum=0;
}
return mx;
}
public static int m=1000000007;
public static int mul(int a, int b) {
return ((a%m)*(b%m))%m;
}
public static long mul(long a, long b) {
return ((a%m)*(b%m))%m;
}
public static int add(int a, int b) {
return ((a%m)+(b%m))%m;
}
public static long add(long a, long b) {
return ((a%m)+(b%m))%m;
}
//debug
public static <E> void p(E[][] a,String s) {
System.out.println(s);
for(int i=0;i<a.length;i++) {
for(int j=0;j<a[0].length;j++) {
System.out.print(a[i][j]+" ");
}
System.out.println();
}
}
public static void p(int[] a,String s) {
System.out.print(s+"=");
for(int i=0;i<a.length;i++)System.out.print(a[i]+" ");
System.out.println();
}
public static void p(long[] a,String s) {
System.out.print(s+"=");
for(int i=0;i<a.length;i++)System.out.print(a[i]+" ");
System.out.println();
}
public static <E> void p(E a,String s){
System.out.println(s+"="+a);
}
public static <E> void p(ArrayList<E> a,String s){
System.out.println(s+"="+a);
}
public static <E> void p(LinkedList<E> a,String s){
System.out.println(s+"="+a);
}
public static <E> void p(HashSet<E> a,String s){
System.out.println(s+"="+a);
}
public static <E> void p(Stack<E> a,String s){
System.out.println(s+"="+a);
}
public static <E> void p(Queue<E> a,String s){
System.out.println(s+"="+a);
}
//utils
static ArrayList<Integer> divisors(int n){
ArrayList<Integer> ar=new ArrayList<>();
for (int i=2; i<=Math.sqrt(n); i++){
if (n%i == 0){
if (n/i == i) {
ar.add(i);
}
else {
ar.add(i);
ar.add(n/i);
}
}
}
return ar;
}
static int primeDivisor(int n){
ArrayList<Integer> ar=new ArrayList<>();
int cnt=0;
boolean pr=false;
while(n%2==0) {
pr=true;
n/=2;
}
if(pr)ar.add(2);
for(int i=3;i*i<=n;i+=2) {
pr=false;
while(n%i==0) {
n/=i;
pr=true;
}
if(pr)ar.add(i);
}
if(n>2) ar.add(n);
return ar.size();
}
static long gcd(long a,long b) {
if(b==0)return a;
else return gcd(b,a%b);
}
static int gcd(int a,int b) {
if(b==0)return a;
else return gcd(b,a%b);
}
static long factmod(long n,long mod,long img) {
if(n==0)return 1;
long ans=1;
long temp=1;
while(n--!=0) {
if(temp!=img) {
ans=((ans%mod)*((temp)%mod))%mod;
}
temp++;
}
return ans%mod;
}
static int ncr(int n, int r){
if(r>n-r)r=n-r;
int ans=1;
for(int i=0;i<r;i++){
ans*=(n-i);
ans/=(i+1);
}
return ans;
}
public static class trip{
int a,b;
int c;
public trip(int a,int b,int c) {
this.a=a;
this.b=b;
this.c=c;
}
public int compareTo(trip q) {
return this.b-q.b;
}
}
static void mergesort(long[] a,int start,int end) {
if(start>=end)return ;
int mid=start+(end-start)/2;
mergesort(a,start,mid);
mergesort(a,mid+1,end);
merge(a,start,mid,end);
}
static void merge(long[] a, int start,int mid,int end) {
int ptr1=start;
int ptr2=mid+1;
long b[]=new long[end-start+1];
int i=0;
while(ptr1<=mid && ptr2<=end) {
if(a[ptr1]<=a[ptr2]) {
b[i]=a[ptr1];
ptr1++;
i++;
}
else {
b[i]=a[ptr2];
ptr2++;
i++;
}
}
while(ptr1<=mid) {
b[i]=a[ptr1];
ptr1++;
i++;
}
while(ptr2<=end) {
b[i]=a[ptr2];
ptr2++;
i++;
}
for(int j=start;j<=end;j++) {
a[j]=b[j-start];
}
}
public static class FastReader {
BufferedReader b;
StringTokenizer s;
public FastReader() {
b=new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while(s==null ||!s.hasMoreElements()) {
try {
s=new StringTokenizer(b.readLine());
}
catch(IOException e) {
e.printStackTrace();
}
}
return s.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str="";
try {
str=b.readLine();
}
catch(IOException e) {
e.printStackTrace();
}
return str;
}
boolean hasNext() {
if (s != null && s.hasMoreTokens()) {
return true;
}
String tmp;
try {
b.mark(1000);
tmp = b.readLine();
if (tmp == null) {
return false;
}
b.reset();
} catch (IOException e) {
return false;
}
return true;
}
}
public static class pair{
int a;
double b;
public pair(int a,double b) {
this.a=a;
this.b=b;
}
public int compareTo(pair b) {
return this.a-b.a;
}
// public int compareToo(pair b) {
// return this.b-b.b;
// }
@Override
public String toString() {
return "{"+this.a+" "+this.b+"}";
}
}
static long pow(long a, long pw) {
long temp;
if(pw==0)return 1;
temp=pow(a,pw/2);
if(pw%2==0)return temp*temp;
return a*temp*temp;
}
static int pow(int a, int pw) {
int temp;
if(pw==0)return 1;
temp=pow(a,pw/2);
if(pw%2==0)return temp*temp;
return a*temp*temp;
}
} | Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | 243679ba39c66d7fe55c388d15970021 | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import java.io.*;
import java.util.*;
public class ComdeFormces {
public static void main(String[] args) throws Exception{
// TODO Auto-generated method stub
FastReader sc=new FastReader();
BufferedWriter log = new BufferedWriter(new OutputStreamWriter(System.out));
int t=sc.nextInt();
while(t--!=0) {
int n=sc.nextInt();
int a[]=new int[n];
for(int i=0;i<n;i++)a[i]=sc.nextInt();
int cnt=0;
boolean ans=true;
for(int i=0;i<n;i++) {
if(a[i]%(i+2)!=0)cnt++;
else {
for(int j=2;j<=i+2;j++) {
if(a[i]%j!=0 ) {
if(j-1>cnt)ans=false;
else ans=true;
break;
}
else ans=false;
}
if(ans)cnt++;
else break;
}
}
if(ans)log.write("YES");
else log.write("NO");
log.write("\n");
log.flush();
}
}
static long slv(int a[],int b[],long dp[][],int end,int k,int i) {
if(i<1 ) {
if(k==0) {
return (end-a[0])*b[0];
}
else return Integer.MAX_VALUE;
}
if(k<0)return Integer.MAX_VALUE;
if(k==0) {
return (end-a[0])*b[0];
}
if(dp[i][k]!=0)return dp[i][k];
long ans1=slv(a,b,dp,a[i],k-1,i-1);
long ans2=slv(a,b,dp,end,k,i-1);
long val=(end-a[i])*b[i];
return dp[i][k]=Math.min(val+ans1,ans2);
}
//debug
public static <E> void p(E a,String s){
System.out.println(s+"="+a);
}
public static <E> void p(E a[],String s) {
System.out.print(s+"=");
for(int i=0;i<a.length;i++)System.out.print(a[i]+" ");
System.out.println();
}
public static <E> void p(ArrayList<E> a,String s){
System.out.println(s+"="+a);
}
public static <E> void p(LinkedList<E> a,String s){
System.out.println(s+"="+a);
}
public static <E> void p(Stack<E> a,String s){
System.out.println(s+"="+a);
}
public static <E> void p(Queue<E> a,String s){
System.out.println(s+"="+a);
}
//utils
static ArrayList<Integer> divisors(int n){
ArrayList<Integer> ar=new ArrayList<>();
for (int i=2; i<=Math.sqrt(n); i++){
if (n%i == 0){
if (n/i == i) {
ar.add(i);
}
else {
ar.add(i);
ar.add(n/i);
}
}
}
return ar;
}
static int primeDivisor(int n){
ArrayList<Integer> ar=new ArrayList<>();
int cnt=0;
boolean pr=false;
while(n%2==0) {
pr=true;
n/=2;
}
if(pr)ar.add(2);
for(int i=3;i*i<=n;i+=2) {
pr=false;
while(n%i==0) {
n/=i;
pr=true;
}
if(pr)ar.add(i);
}
if(n>2) ar.add(n);
return ar.size();
}
static String rev(String s) {
char temp[]=s.toCharArray();
for(int i=0;i<temp.length/2;i++) {
char tp=temp[i];
temp[i]=temp[temp.length-1-i];
temp[temp.length-1-i]=tp;
}
return String.valueOf(temp);
}
static int bs(ArrayList<pair> arr,int el) {
int start=0;
int end=arr.size()-1;
while(start<=end) {
int mid=start+(end-start)/2;
if(arr.get(mid).a==el)return mid;
else if(arr.get(mid).a<el)start=mid+1;
else end=mid-1;
}
if(start>arr.size()-1)return -2;
return -1;
}
static long find(int s,long a[]) {
if(s>=a.length)return -1;
long num=a[s];
for(int i=s;i<a.length;i+=2) {
num=gcd(num,a[i]);
if(num==1 || num==0)return -1;
}
return num;
}
static long gcd(long a,long b) {
if(b==0)return a;
else return gcd(b,a%b);
}
static long factmod(long n,long mod,long img) {
if(n==0)return 1;
long ans=1;
long temp=1;
while(n--!=0) {
if(temp!=img) {
ans=((ans%mod)*((temp)%mod))%mod;
}
temp++;
}
return ans%mod;
}
static int bs(long a[] ,long num) {
int start=0;
int end=a.length-1;
while(start<=end) {
int mid=start+(end-start)/2;
if(a[mid]==num) {
return mid;
}
else if(a[mid]<num)start=mid+1;
else end=mid-1;
}
return start;
}
static int ncr(int n, int r){
if(r>n-r)r=n-r;
int ans=1;
for(int i=0;i<r;i++){
ans*=(n-i);
ans/=(i+1);
}
return ans;
}
public static class trip{
int a,b,c;
public trip(int a,int b,int c) {
this.a=a;
this.b=b;
this.c=c;
}
public int compareTo(trip q) {
return this.c-q.c;
}
}
static void mergesort(ArrayList<Integer> a,int start,int end) {
if(start>=end)return ;
int mid=start+(end-start)/2;
mergesort(a,start,mid);
mergesort(a,mid+1,end);
merge(a,start,mid,end);
}
static void merge(ArrayList<Integer> a, int start,int mid,int end) {
int ptr1=start;
int ptr2=mid+1;
int b[]=new int[end-start+1];
int i=0;
while(ptr1<=mid && ptr2<=end) {
if(a.get(ptr1)<=a.get(ptr2)) {
b[i]=a.get(ptr1);
ptr1++;
i++;
}
else {
b[i]=a.get(ptr2);
ptr2++;
i++;
}
}
while(ptr1<=mid) {
b[i]=a.get(ptr1);
ptr1++;
i++;
}
while(ptr2<=end) {
b[i]=a.get(ptr2);
ptr2++;
i++;
}
for(int j=start;j<=end;j++) {
a.set(j, b[j-start]);
}
}
public static class FastReader {
BufferedReader b;
StringTokenizer s;
public FastReader() {
b=new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while(s==null ||!s.hasMoreElements()) {
try {
s=new StringTokenizer(b.readLine());
}
catch(IOException e) {
e.printStackTrace();
}
}
return s.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str="";
try {
str=b.readLine();
}
catch(IOException e) {
e.printStackTrace();
}
return str;
}
boolean hasNext() {
if (s != null && s.hasMoreTokens()) {
return true;
}
String tmp;
try {
b.mark(1000);
tmp = b.readLine();
if (tmp == null) {
return false;
}
b.reset();
} catch (IOException e) {
return false;
}
return true;
}
}
public static class pair{
int a;
int b;
public pair(int a,int b) {
this.a=a;
this.b=b;
}
public int compareTo(pair b) {
return this.a-b.a;
}
public int compareToo(pair b) {
if(this.a!=b.a)return this.a-b.a;
else {
return b.b-this.b;
}
}
@Override
public String toString() {
return "{"+this.a+" "+this.b+"}";
}
}
static long pow(long a, long pw) {
long temp;
if(pw==0)return 1;
temp=pow(a,pw/2);
if(pw%2==0)return temp*temp;
return a*temp*temp;
}
static int pow(int a, int pw) {
int temp;
if(pw==0)return 1;
temp=pow(a,pw/2);
if(pw%2==0)return temp*temp;
return a*temp*temp;
}
}
| Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | aa191f1ab7659afebc482b3bdf52820e | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | // ceil using integer division: ceil(x/y) = (x+y-1)/y
import java.lang.reflect.Array;
import java.util.*;
import java.lang.*;
import java.io.*;
public class practice {
public static void main(String[] args) throws IOException {
Reader.init(System.in);
int t = Reader.nextInt();
while(t-->0){
int n = Reader.nextInt();
long[] arr = new long[n];
for(int i =0;i<n;i++){
arr[i] = Reader.nextLong();
}
long num = 1;
boolean flag = false;
for(int i = 0;i<n;i++){
if(num<=(long)1e9) num = (num * (i+2))/(i+2 < num ? gcd(i+2,num) : gcd(num,i+2));
if(arr[i]%num==0){
flag = true;
System.out.println("NO");
break;
}
}
if(!flag){
System.out.println("YES");
}
}
}
public static long gcd(long a, long b){
if(a==0){
return b;
}
return gcd(b%a,a);
}
}
class Reader {
static BufferedReader reader;
static StringTokenizer tokenizer;
/** call this method to initialize reader for InputStream */
static void init(InputStream input) {
reader = new BufferedReader(
new InputStreamReader(input) );
tokenizer = new StringTokenizer("");
}
/** get next word */
static String next() throws IOException {
while ( ! tokenizer.hasMoreTokens() ) {
//TODO add check for eof if necessary
tokenizer = new StringTokenizer(
reader.readLine() );
}
return tokenizer.nextToken();
}
static String nextLine() throws IOException {
return reader.readLine();
}
static int nextInt() throws IOException {
return Integer.parseInt( next() );
}
static long nextLong() throws IOException{
return Long.parseLong(next() );
}
static double nextDouble() throws IOException {
return Double.parseDouble( next() );
}
}
| Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | ae3e8fe0cfb31969d1ed26a9bb7f64af | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | // ceil using integer division: ceil(x/y) = (x+y-1)/y
import java.lang.reflect.Array;
import java.util.*;
import java.lang.*;
import java.io.*;
public class practice {
public static void main(String[] args) throws IOException {
Reader.init(System.in);
int t = Reader.nextInt();
while(t-->0){
int n = Reader.nextInt();
long[] arr = new long[n];
for(int i =0;i<n;i++){
arr[i] = Reader.nextLong();
}
long num = 1;
boolean flag = true;
for(int i = 1;i<=n;i++){
boolean temp = false;
for(int j = i+1;j>=2;j--){
if(arr[i-1]%j!=0){
temp = true;
break;
}
}
flag = temp;
if(!temp) break;
}
if(!flag){
System.out.println("NO");
}
else{
System.out.println("YES");
}
}
}
public static long gcd(long a, long b){
if(a==0){
return b;
}
return gcd(a%b,a);
}
}
class Reader {
static BufferedReader reader;
static StringTokenizer tokenizer;
/** call this method to initialize reader for InputStream */
static void init(InputStream input) {
reader = new BufferedReader(
new InputStreamReader(input) );
tokenizer = new StringTokenizer("");
}
/** get next word */
static String next() throws IOException {
while ( ! tokenizer.hasMoreTokens() ) {
//TODO add check for eof if necessary
tokenizer = new StringTokenizer(
reader.readLine() );
}
return tokenizer.nextToken();
}
static String nextLine() throws IOException {
return reader.readLine();
}
static int nextInt() throws IOException {
return Integer.parseInt( next() );
}
static long nextLong() throws IOException{
return Long.parseLong(next() );
}
static double nextDouble() throws IOException {
return Double.parseDouble( next() );
}
}
| Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | 6b4d0805efc3198540b88bcd9a8536f8 | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.Math.abs;
import static java.lang.Math.sqrt;
import static java.lang.Math.pow;
import static java.lang.System.out;
import static java.lang.System.err;
import java.util.*;
import java.io.*;
import java.math.*;
public class Main
{
static FastReader sc;
static long mod=((long)1e9)+7;
// static FastWriter out;
public static void main(String hi[]){
initializeIO();
sc=new FastReader();
int t=sc.nextInt();
boolean[] seave=sieveOfEratosthenes((int)(1e7));
// int[] seave2=sieveOfEratosthenesInt((int)(1e4));
// int t=1;
while(t--!=0){
int n=sc.nextInt();
long[] arr=readLongArray(n);
// debug(""+test(n));
print(solve(arr,n));
}
// System.out.println(String.format("%.10f", max));
}
private static String solve(long[] arr,int n){
for(int i=0;i<n;i++){
int ct=22;
boolean done=false;
for(int j=i+2;j>=2&&ct>0;j--){
if(arr[i]%j!=0){
done=true;
break;
}
}
if(!done)return "No";
}
return "yes";
}
private static long sumOfAp(long a,long n,long d){
long val=(n*( 2*a+((n-1)*d)));
return val/2;
}
//geometrics
private static double areaOftriangle(double x1,double y1,double x2,double y2,double x3,double y3){
double[] mid_point=midOfaLine(x1,y1,x2,y2);
// debug(Arrays.toString(mid_point)+" "+x1+" "+y1+" "+x2+" "+y2+" "+x3+" "+" "+y3);
double height=distanceBetweenPoints(mid_point[0],mid_point[1],x3,y3);
double wight=distanceBetweenPoints(x1,y1,x2,y2);
// debug(height+" "+wight);
return (height*wight)/2;
}
private static double distanceBetweenPoints(double x1,double y1,double x2,double y2){
double x=x2-x1;
double y=y2-y1;
return sqrt(Math.pow(x,2)+Math.pow(y,2));
}
private static double[] midOfaLine(double x1,double y1,double x2,double y2){
double[] mid=new double[2];
mid[0]=(x1+x2)/2;
mid[1]=(y1+y2)/2;
return mid;
}
private static long sumOfN(long n){
return (n*(n+1))/2;
}
private static long power(long x,long y,long p){
long res = 1; // Initialize result
x = x % p; // Update x if it is more than or
// equal to p
if (x == 0)
return 0; // In case x is divisible by p;
while (y > 0){
// If y is odd, multiply x with result
if ((y & 1) != 0)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
/* Function to calculate x raised to the power y in O(logn)*/
static long power(long x, long y){
long temp;
if( y == 0)
return 1l;
temp = power(x, y / 2);
if (y % 2 == 0)
return (temp*temp);
else
return (x*temp*temp);
}
private static StringBuilder reverseString(String s){
StringBuilder sb=new StringBuilder(s);
int l=0,r=sb.length()-1;
while(l<=r){
char ch=sb.charAt(l);
sb.setCharAt(l,sb.charAt(r));
sb.setCharAt(r,ch);
l++;
r--;
}
return sb;
}
static int lcm(int a, int b)
{
return (a / gcd(a, b)) * b;
}
static long lcm(long a, long b){
return (a / gcd(a, b)) * b;
}
private static String decimalToString(int x){
return Integer.toBinaryString(x);
}
private static boolean isPallindrome(String s){
int l=0,r=s.length()-1;
while(l<r){
if(s.charAt(l)!=s.charAt(r))return false;
l++;
r--;
}
return true;
}
private static StringBuilder removeLeadingZero(StringBuilder sb){
int i=0;
while(i<sb.length()&&sb.charAt(i)=='0')i++;
// debug("remove "+i);
if(i==sb.length())return new StringBuilder();
return new StringBuilder(sb.substring(i,sb.length()));
}
private static int stringToDecimal(String binaryString){
// debug(decimalToString(n<<1));
return Integer.parseInt(binaryString,2);
}
private static int stringToInt(String s){
return Integer.parseInt(s);
}
private static String toString(int val){
return String.valueOf(val);
}
private static void print(String s){
out.println(s);
}
private static void debug(String s){
err.println(s);
}
private static int charToInt(char c){
return ((((int)(c-'0'))%48));
}
private static void print(double s){
out.println(s);
}
private static void print(float s){
out.println(s);
}
private static void print(long s){
out.println(s);
}
private static void print(int s){
out.println(s);
}
private static void debug(double s){
err.println(s);
}
private static void debug(float s){
err.println(s);
}
private static void debug(long s){
err.println(s);
}
private static void debug(int s){
err.println(s);
}
private static boolean isPrime(int n){
// Check if number is less than
// equal to 1
if (n <= 1)
return false;
// Check if number is 2
else if (n == 2)
return true;
// Check if n is a multiple of 2
else if (n % 2 == 0)
return false;
// If not, then just check the odds
for (int i = 3; i <= Math.sqrt(n); i += 2)
{
if (n % i == 0)
return false;
}
return true;
}
//read graph
private static List<List<Integer>> readUndirectedGraph(int n){
List<List<Integer>> graph=new ArrayList<>();
for(int i=0;i<=n;i++){
graph.add(new ArrayList<>());
}
for(int i=0;i<n;i++){
int x=sc.nextInt();
int y=sc.nextInt();
graph.get(x).add(y);
graph.get(y).add(x);
}
return graph;
}
private static List<List<Integer>> readUndirectedGraph(int[][] intervals,int n){
List<List<Integer>> graph=new ArrayList<>();
for(int i=0;i<=n;i++){
graph.add(new ArrayList<>());
}
for(int i=0;i<intervals.length;i++){
int x=intervals[i][0];
int y=intervals[i][1];
graph.get(x).add(y);
graph.get(y).add(x);
}
return graph;
}
private static List<List<Integer>> readDirectedGraph(int[][] intervals,int n){
List<List<Integer>> graph=new ArrayList<>();
for(int i=0;i<=n;i++){
graph.add(new ArrayList<>());
}
for(int i=0;i<intervals.length;i++){
int x=intervals[i][0];
int y=intervals[i][1];
graph.get(x).add(y);
// graph.get(y).add(x);
}
return graph;
}
private static List<List<Integer>> readDirectedGraph(int n){
List<List<Integer>> graph=new ArrayList<>();
for(int i=0;i<=n;i++){
graph.add(new ArrayList<>());
}
for(int i=0;i<n;i++){
int x=sc.nextInt();
int y=sc.nextInt();
graph.get(x).add(y);
// graph.get(y).add(x);
}
return graph;
}
static String[] readStringArray(int n){
String[] arr=new String[n];
for(int i=0;i<n;i++){
arr[i]=sc.next();
}
return arr;
}
private static Map<Character,Integer> freq(String s){
Map<Character,Integer> map=new HashMap<>();
for(char c:s.toCharArray()){
map.put(c,map.getOrDefault(c,0)+1);
}
return map;
}
static boolean[] sieveOfEratosthenes(long n){
boolean prime[] = new boolean[(int)n + 1];
for (int i = 2; i <= n; i++)
prime[i] = true;
for (int p = 2; p * p <= n; p++)
{
// If prime[p] is not changed, then it is a
// prime
if (prime[p] == true){
// Update all multiples of p
for (int i = p * p; i <= n; i += p)
prime[i] = false;
}
}
return prime;
}
static int[] sieveOfEratosthenesInt(long n){
boolean prime[] = new boolean[(int)n + 1];
Set<Integer> li=new HashSet<>();
for (int i = 1; i <= n; i++){
prime[i] = true;
li.add(i);
}
for (int p = 2; p * p <= n; p++)
{
if (prime[p] == true){
for (int i = p * p; i <= n; i += p){
li.remove(i);
prime[i] = false;
}
}
}
int[] arr=new int[li.size()+1];
int i=0;
for(int x:li){
arr[i++]=x;
}
return arr;
}
public static long Kadens(List<Long> prices) {
long sofar=0;
long max_v=0;
for(int i=0;i<prices.size();i++){
sofar+=prices.get(i);
if (sofar<0) {
sofar=0;
}
max_v=Math.max(max_v,sofar);
}
return max_v;
}
static boolean isMemberAC(int a, int d, int x){
// If difference is 0, then x must
// be same as a.
if (d == 0)
return (x == a);
// Else difference between x and a
// must be divisible by d.
return ((x - a) % d == 0 && (x - a) / d >= 0);
}
private static void sort(int[] arr){
int n=arr.length;
List<Integer> li=new ArrayList<>();
for(int x:arr){
li.add(x);
}
Collections.sort(li);
for (int i=0;i<n;i++) {
arr[i]=li.get(i);
}
}
private static void sortReverse(int[] arr){
int n=arr.length;
List<Integer> li=new ArrayList<>();
for(int x:arr){
li.add(x);
}
Collections.sort(li,Collections.reverseOrder());
for (int i=0;i<n;i++) {
arr[i]=li.get(i);
}
}
private static void sort(double[] arr){
int n=arr.length;
List<Double> li=new ArrayList<>();
for(double x:arr){
li.add(x);
}
Collections.sort(li);
for (int i=0;i<n;i++) {
arr[i]=li.get(i);
}
}
private static void sortReverse(double[] arr){
int n=arr.length;
List<Double> li=new ArrayList<>();
for(double x:arr){
li.add(x);
}
Collections.sort(li,Collections.reverseOrder());
for (int i=0;i<n;i++) {
arr[i]=li.get(i);
}
}
private static void sortReverse(long[] arr){
int n=arr.length;
List<Long> li=new ArrayList<>();
for(long x:arr){
li.add(x);
}
Collections.sort(li,Collections.reverseOrder());
for (int i=0;i<n;i++) {
arr[i]=li.get(i);
}
}
private static void sort(long[] arr){
int n=arr.length;
List<Long> li=new ArrayList<>();
for(long x:arr){
li.add(x);
}
Collections.sort(li);
for (int i=0;i<n;i++) {
arr[i]=li.get(i);
}
}
private static long sum(int[] arr){
long sum=0;
for(int x:arr){
sum+=x;
}
return sum;
}
private static long evenSumFibo(long n){
long l1=0,l2=2;
long sum=0;
while (l2<n) {
long l3=(4*l2)+l1;
sum+=l2;
if(l3>n)break;
l1=l2;
l2=l3;
}
return sum;
}
private static void initializeIO(){
try {
System.setIn(new FileInputStream("input.txt"));
System.setOut(new PrintStream(new FileOutputStream("output.txt")));
System.setErr(new PrintStream(new FileOutputStream("error.txt")));
} catch (Exception e) {
// System.err.println(e.getMessage());
}
}
private static int maxOfArray(int[] arr){
int max=Integer.MIN_VALUE;
for(int x:arr){
max=Math.max(max,x);
}
return max;
}
private static long maxOfArray(long[] arr){
long max=Long.MIN_VALUE;
for(long x:arr){
max=Math.max(max,x);
}
return max;
}
private static int[][] readIntIntervals(int n,int m){
int[][] arr=new int[n][m];
for(int j=0;j<n;j++){
for(int i=0;i<m;i++){
arr[j][i]=sc.nextInt();
}
}
return arr;
}
private static long gcd(long a,long b){
if(b==0)return a;
return gcd(b,a%b);
}
private static int gcd(int a,int b){
if(b==0)return a;
return gcd(b,a%b);
}
private static int[] readIntArray(int n){
int[] arr=new int[n];
for(int i=0;i<n;i++){
arr[i]=sc.nextInt();
}
return arr;
}
private static double[] readDoubleArray(int n){
double[] arr=new double[n];
for(int i=0;i<n;i++){
arr[i]=sc.nextDouble();
}
return arr;
}
private static long[] readLongArray(int n){
long[] arr=new long[n];
for(int i=0;i<n;i++){
arr[i]=sc.nextLong();
}
return arr;
}
private static void print(int[] arr){
out.println(Arrays.toString(arr));
}
private static void print(long[] arr){
out.println(Arrays.toString(arr));
}
private static void print(String[] arr){
out.println(Arrays.toString(arr));
}
private static void print(double[] arr){
out.println(Arrays.toString(arr));
}
private static void debug(String[] arr){
err.println(Arrays.toString(arr));
}
private static void debug(int[] arr){
err.println(Arrays.toString(arr));
}
private static void debug(long[] arr){
err.println(Arrays.toString(arr));
}
static class FastReader{
BufferedReader br;
StringTokenizer st;
public FastReader(){
br=new BufferedReader(new InputStreamReader(System.in));
}
String next(){
while(st==null || !st.hasMoreTokens()){
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt(){
return Integer.parseInt(next());
}
long nextLong(){
return Long.parseLong(next());
}
double nextDouble(){
return Double.parseDouble(next());
}
String nextLine(){
String str="";
try {
str=br.readLine().trim();
} catch (Exception e) {
e.printStackTrace();
}
return str;
}
}
static class FastWriter {
private final BufferedWriter bw;
public FastWriter() {
this.bw = new BufferedWriter(new OutputStreamWriter(System.out));
}
public void print(Object object) throws IOException {
bw.append("" + object);
}
public void println(Object object) throws IOException {
print(object);
bw.append("\n");
}
public void close() throws IOException {
bw.close();
}
}
static class Dsu {
int[] parent, size;
Dsu(int n) {
parent = new int[n + 1];
size = new int[n + 1];
for (int i = 0; i <= n; i++) {
parent[i] = i;
size[i] = 1;
}
}
private int findParent(int u) {
if (parent[u] == u) return u;
return parent[u] = findParent(parent[u]);
}
private boolean union(int u, int v) {
// System.out.println("uf "+u+" "+v);
int pu = findParent(u);
// System.out.println("uf2 "+pu+" "+v);
int pv = findParent(v);
// System.out.println("uf3 " + u + " " + pv);
if (pu == pv) return false;
if (size[pu] <= size[pv]) {
parent[pu] = pv;
size[pv] += size[pu];
} else {
parent[pv] = pu;
size[pu] += size[pv];
}
return true;
}
}
} | Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | a1fb32c8ec8c8d0ecf38d4e85857c95e | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | //some updates in import stuff
import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.Math.abs;
import java.util.*;
import java.io.*;
import java.math.*;
/*
Always check before submitting list
-> int to long conversion needed
-> while loop mein break case shi ho
-> extra kuch output na ho rha free fund mein
-> Got TLE becuase of calling one function 10^5 times! (never do that again) (reduce function calls)
*/
//update this bad boi too
public class Main{
static int mod = (int) (Math.pow(10, 9)+7);
static final int dx[] = { -1, 0, 1, 0 }, dy[] = { 0, -1, 0, 1 };
static final int[] dx8 = { -1, -1, -1, 0, 0, 1, 1, 1 }, dy8 = { -1, 0, 1, -1, 1, -1, 0, 1 };
static final int[] dx9 = { -1, -1, -1, 0, 0, 0, 1, 1, 1 }, dy9 = { -1, 0, 1, -1, 0, 1, -1, 0, 1 };
static final double eps = 1e-10;
static Set<Integer> primeNumbers = new HashSet<>();
public static void main(String[] args) throws IOException{
MyScanner sc = new MyScanner();
//changes in this line of code
out = new PrintWriter(new BufferedOutputStream(System.out));
// out = new PrintWriter(new BufferedWriter(new FileWriter("output.out")));
//Write Code Below
int test = sc.nextInt();
while(test --> 0){
int n = sc.nextInt();
long[] arr = new long[n];
//some chutiya bkchodi ho le rena ka time ho gya hai
for(int i= 0; i < n ;i++){
arr[i] = sc.nextLong();
}
boolean flag = true;
long curr = 2;
for(long i = 0; i < n; i++){
if(arr[(int)i]%curr == 0){
flag = false;
break;
}
// curr = curr*(i+3L);
curr = lcm(curr, i+3L);
if(curr > 1000_000_000L) break;
}
out.println(flag ? "YES" : "NO");
}
out.close();
}
//-------------------------------------------------------------------
//-------------------------------------------------------------------
//-------------------------------------------------------------------
//-------------------------------------------------------------------
//-------------------------------------------------------------------
//Updation Required
//Fenwick Tree (customisable)
//Segment Tree (customisable)
//-----CURRENTLY PRESENT-------//
//Graph
//DSU
//powerMODe
//power
//Segment Tree (work on this one)
//Prime Sieve
//Count Divisors
//Next Permutation
//Get NCR
//isVowel
//Sort (int)
//Sort (long)
//Binomial Coefficient
//Pair
//Triplet
//lcm (int & long)
//gcd (int & long)
//gcd (for binomial coefficient)
//swap (int & char)
//reverse
//SOME LATEST UPDATIONS!!!
//mod_mul
//mod_div
//Fast input and output
//-------------------------------------------------------------------
//-------------------------------------------------------------------
//-------------------------------------------------------------------
//-------------------------------------------------------------------
//-------------------------------------------------------------------
//finding combinations in O(1) (basically the most basic logic you can think of)
//not that complicated as i though it of
//GRAPH (basic structure)
public static class Graph{
public int V;
public ArrayList<ArrayList<Integer>> edges;
//2 -> [0,1,2] (current)
Graph(int V){
this.V = V;
edges = new ArrayList<>(V+1);
for(int i= 0; i <= V; i++){
edges.add(new ArrayList<>());
}
}
public void addEdge(int from , int to){
edges.get(from).add(to);
// edges.get(to).add(from);
}
//floyd()
// for(int k = 0 ; k < V ; k++){
// for(int i = 0 ; i < V ; i++){
// for(int j = 0; j< V; j++){
// if(i == k || j == k || i == j) continue;
// //update the matrix
// if(matrix[i][k] == Integer.MAX_VALUE || matrix[k][j] == Integer.MAX_VALUE) continue;
// matrix[i][j] = Math.min(matrix[i][j], matrix[i][k] + matrix[k][j]);
// }
// }
// }
}
//DSU (path and rank optimised)
public static class DisjointUnionSets {
int[] rank, parent;
int n;
public DisjointUnionSets(int n)
{
rank = new int[n];
parent = new int[n];
Arrays.fill(rank, 1);
Arrays.fill(parent,-1);
this.n = n;
}
public int find(int curr){
if(parent[curr] == -1)
return curr;
//path compression optimisation
return parent[curr] = find(parent[curr]);
}
public void union(int a, int b){
int s1 = find(a);
int s2 = find(b);
if(s1 != s2){
if(rank[s1] < rank[s2]){
parent[s1] = s2;
rank[s2] += rank[s1];
}else{
parent[s2] = s1;
rank[s1] += rank[s2];
}
}
}
}
//with mod
public static long powerMOD(long x, long y)
{
long res = 1L;
while (y > 0)
{
// If y is odd, multiply x with result
if ((y & 1) != 0){
x %= mod;
res %= mod;
res = (res * x)%mod;
}
// y must be even now
y = y >> 1; // y = y/2
x%= mod;
x = (x * x)%mod; // Change x to x^2
}
return res%mod;
}
//without mod
public static long power(long x, long y)
{
long res = 1L;
while (y > 0)
{
// If y is odd, multiply x with result
if ((y & 1) != 0){
res = (res * x);
}
// y must be even now
y = y >> 1; // y = y/
x = (x * x);
}
return res;
}
public static class segmentTree{
public long[] arr;
public long[] tree;
public long[] lazy;
segmentTree(long[] array){
int n = array.length;
arr = new long[n];
for(int i= 0; i < n; i++) arr[i] = array[i];
tree = new long[4*n + 1];
lazy = new long[4*n + 1];
}
public void build(int[]arr, int s, int e, int[] tree, int index){
if(s == e){
tree[index] = arr[s];
return;
}
//otherwise divide in two parts and fill both sides simply
int mid = (s+e)/2;
build(arr, s, mid, tree, 2*index);
build(arr, mid+1, e, tree, 2*index+1);
//who will build the current position dude
tree[index] = Math.min(tree[2*index], tree[2*index+1]);
}
public int query(int sr, int er, int sc, int ec, int index, int[] tree){
if(lazy[index] != 0){
tree[index] += lazy[index];
if(sc != ec){
lazy[2*index+1] += lazy[index];
lazy[2*index] += lazy[index];
}
lazy[index] = 0;
}
//no overlap
if(sr > ec || sc > er) return Integer.MAX_VALUE;
//found the index baby
if(sr <= sc && ec <= er) return tree[index];
//finding the index on both sides hehehehhe
int mid = (sc + ec)/2;
int left = query(sr, er, sc, mid, 2*index, tree);
int right = query(sr, er, mid+1, ec, 2*index + 1, tree);
return Integer.min(left, right);
}
//now we will do point update implementation
//it should be simple then we expected for sure
public void update(int index, int indexr, int increment, int[] tree, int s, int e){
if(lazy[index] != 0){
tree[index] += lazy[index];
if(s != e){
lazy[2*index+1] = lazy[index];
lazy[2*index] = lazy[index];
}
lazy[index] = 0;
}
//no overlap
if(indexr < s || indexr > e) return;
//found the required index
if(s == e){
tree[index] += increment;
return;
}
//search for the index on both sides
int mid = (s+e)/2;
update(2*index, indexr, increment, tree, s, mid);
update(2*index+1, indexr, increment, tree, mid+1, e);
//now update the current range simply
tree[index] = Math.min(tree[2*index+1], tree[2*index]);
}
public void rangeUpdate(int[] tree , int index, int s, int e, int sr, int er, int increment){
//if not at all in the same range
if(e < sr || er < s) return;
//complete then also move forward
if(s == e){
tree[index] += increment;
return;
}
//otherwise move in both subparts
int mid = (s+e)/2;
rangeUpdate(tree, 2*index, s, mid, sr, er, increment);
rangeUpdate(tree, 2*index + 1, mid+1, e, sr, er, increment);
//update current range too na
//i always forget this step for some reasons hehehe, idiot
tree[index] = Math.min(tree[2*index], tree[2*index + 1]);
}
public void rangeUpdateLazy(int[] tree, int index, int s, int e, int sr, int er, int increment){
//update lazy values
//resolve lazy value before going down
if(lazy[index] != 0){
tree[index] += lazy[index];
if(s != e){
lazy[2*index+1] += lazy[index];
lazy[2*index] += lazy[index];
}
lazy[index] = 0;
}
//no overlap case
if(sr > e || s > er) return;
//complete overlap
if(sr <= s && er >= e){
tree[index] += increment;
if(s != e){
lazy[2*index+1] += increment;
lazy[2*index] += increment;
}
return;
}
//otherwise go on both left and right side and do your shit
int mid = (s + e)/2;
rangeUpdateLazy(tree, 2*index, s, mid, sr, er, increment);
rangeUpdateLazy(tree, 2*index + 1, mid+1, e, sr, er, increment);
tree[index] = Math.min(tree[2*index+1], tree[2*index]);
return;
}
}
//prime sieve
public static void primeSieve(int n){
BitSet bitset = new BitSet(n+1);
for(long i = 0; i < n ; i++){
if (i == 0 || i == 1) {
bitset.set((int) i);
continue;
}
if(bitset.get((int) i)) continue;
primeNumbers.add((int)i);
for(long j = i; j <= n ; j+= i)
bitset.set((int)j);
}
}
//number of divisors
// public static int countDivisors(long number){
// if(number == 1) return 1;
// List<Integer> primeFactors = new ArrayList<>();
// int index = 0;
// long curr = primeNumbers.get(index);
// while(curr * curr <= number){
// while(number % curr == 0){
// number = number/curr;
// primeFactors.add((int) curr);
// }
// index++;
// curr = primeNumbers.get(index);
// }
// if(number != 1) primeFactors.add((int) number);
// int current = primeFactors.get(0);
// int totalDivisors = 1;
// int currentCount = 2;
// for (int i = 1; i < primeFactors.size(); i++) {
// if (primeFactors.get(i) == current) {
// currentCount++;
// } else {
// totalDivisors *= currentCount;
// currentCount = 2;
// current = primeFactors.get(i);
// }
// }
// totalDivisors *= currentCount;
// return totalDivisors;
// }
//now adding next permutation function to java hehe
public static boolean next_permutation(int[] p) {
for (int a = p.length - 2; a >= 0; --a)
if (p[a] < p[a + 1])
for (int b = p.length - 1;; --b)
if (p[b] > p[a]) {
int t = p[a];
p[a] = p[b];
p[b] = t;
for (++a, b = p.length - 1; a < b; ++a, --b) {
t = p[a];
p[a] = p[b];
p[b] = t;
}
return true;
}
return false;
}
//is vowel function
public static boolean isVowel(char c)
{
return (c=='a' || c=='A' || c=='e' || c=='E' || c=='i' || c=='I' || c=='o' || c=='O' || c=='u' || c=='U');
}
//to sort the array with better method
public static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
//sort long
public static void sort(long[] a) {
ArrayList<Long> l=new ArrayList<>();
for (long i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
//for calculating binomialCoeff
public static int binomialCoeff(int n, int k)
{
int C[] = new int[k + 1];
// nC0 is 1
C[0] = 1;
for (int i = 1; i <= n; i++) {
// Compute next row of pascal
// triangle using the previous row
for (int j = Math.min(i, k); j > 0; j--)
C[j] = C[j] + C[j - 1];
}
return C[k];
}
//Pair with int int
public static class Pair{
public int a;
public int b;
Pair(int a , int b){
this.a = a;
this.b = b;
}
@Override
public String toString(){
return a + " -> " + b;
}
}
//Triplet with int int int
public static class Triplet{
public int a;
public int b;
public int c;
Triplet(int a , int b, int c){
this.a = a;
this.b = b;
this.c = c;
}
@Override
public String toString(){
return a + " -> " + b;
}
}
//Shortcut function
public static long lcm(long a , long b){
return a * (b/gcd(a,b));
}
//let's make one for calculating lcm basically
public static int lcm(int a , int b){
return (a * b)/gcd(a,b);
}
//int version for gcd
public static int gcd(int a, int b){
if(b == 0)
return a;
return gcd(b , a%b);
}
//long version for gcd
public static long gcd(long a, long b){
if(b == 0)
return a;
return gcd(b , a%b);
}
//for ncr calculator(ignore this code)
public static long __gcd(long n1, long n2)
{
long gcd = 1;
for (int i = 1; i <= n1 && i <= n2; ++i) {
// Checks if i is factor of both integers
if (n1 % i == 0 && n2 % i == 0) {
gcd = i;
}
}
return gcd;
}
//swapping two elements in an array
public static void swap(int[] arr, int left , int right){
int temp = arr[left];
arr[left] = arr[right];
arr[right] = temp;
}
//for char array
public static void swap(char[] arr, int left , int right){
char temp = arr[left];
arr[left] = arr[right];
arr[right] = temp;
}
//reversing an array
public static void reverse(int[] arr){
int left = 0;
int right = arr.length-1;
while(left <= right){
swap(arr, left,right);
left++;
right--;
}
}
public static long expo(long a, long b, long mod) {
long res = 1;
while (b > 0) {
if ((b & 1) == 1L) res = (res * a) % mod; //think about this one for a second
a = (a * a) % mod;
b = b >> 1;
}
return res;
}
//SOME EXTRA DOPE FUNCTIONS
public static long mminvprime(long a, long b) {
return expo(a, b - 2, b);
}
public static long mod_add(long a, long b, long m) {
a = a % m;
b = b % m;
return (((a + b) % m) + m) % m;
}
public static long mod_sub(long a, long b, long m) {
a = a % m;
b = b % m;
return (((a - b) % m) + m) % m;
}
public static long mod_mul(long a, long b, long m) {
a = a % m;
b = b % m;
return (((a * b) % m) + m) % m;
}
public static long mod_div(long a, long b, long m) {
a = a % m;
b = b % m;
return (mod_mul(a, mminvprime(b, m), m) + m) % m;
}
//O(n) every single time remember that
public static long nCr(long N, long K , long mod){
long upper = 1L;
long lower = 1L;
long lowerr = 1L;
for(long i = 1; i <= N; i++){
upper = mod_mul(upper, i, mod);
}
for(long i = 1; i <= K; i++){
lower = mod_mul(lower, i, mod);
}
for(long i = 1; i <= (N - K); i++){
lowerr = mod_mul(lowerr, i, mod);
}
// out.println(upper + " " + lower + " " + lowerr);
long answer = mod_mul(lower, lowerr, mod);
answer = mod_div(upper, answer, mod);
return answer;
}
// ll *fact = new ll[2 * n + 1];
// ll *ifact = new ll[2 * n + 1];
// fact[0] = 1;
// ifact[0] = 1;
// for (ll i = 1; i <= 2 * n; i++)
// {
// fact[i] = mod_mul(fact[i - 1], i, MOD1);
// ifact[i] = mminvprime(fact[i], MOD1);
// }
//ifact is basically inverse factorial in here!!!!!(imp)
public static long combination(long n, long r, long m, long[] fact, long[] ifact) {
long val1 = fact[(int)n];
long val2 = ifact[(int)(n - r)];
long val3 = ifact[(int)r];
return (((val1 * val2) % m) * val3) % m;
}
//-----------PrintWriter for faster output---------------------------------
public static PrintWriter out;
//-----------MyScanner class for faster input----------
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
// public MyScanner() throws FileNotFoundException {
// br = new BufferedReader(new FileReader("input.in"));
// }
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
//--------------------------------------------------------
} | Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | d5997f3f9685afe9546927ca88bb327f | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import java.util.*;
public class IncString {
public static void main(String[] args) {
int t;
Scanner sc = new Scanner(System.in);
t = sc.nextInt();
while(t-- > 0) {
int n = sc.nextInt();
boolean flag1 = true;
for(int i=1;i<=n;i++) {
int ele = sc.nextInt();
boolean flag = false;
for(int j=i+1;j>=2;j--) {
if(ele%j != 0) {
flag = true;
break;
}
}
if(!flag && flag1) {
flag1 = false;
}
}
if(flag1)
System.out.println("YES");
else
System.out.println("NO");
}
}
}
| Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | ea88e2d0e5840f11ac933b66842e6022 | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import java.util.*;
import java.io.*;
public class Practice {
static boolean multipleTC = true;
FastReader in;
PrintWriter out;
static int mod = (int) (1e9 + 7);
static int mod2 = 998244353;
int parent[];
int rank[];
ArrayList<Integer> primes;
boolean sieve[];
int pf[];
int MAX = 1000005;
int dirX[] = { 1, -1, 0, 0 };
int dirY[] = { 0, 0, -1, 1 };
public static void main(String[] args) throws Exception {
new Practice().run();
}
void run() throws Exception {
in = new FastReader();
out = new PrintWriter(System.out);
int T = (multipleTC) ? ni() : 1;
pre();
for (int t = 1; t <= T; t++)
solve(t);
out.flush();
out.close();
}
void pre() throws Exception {
}
// declare all variables fucking long even array indices.
// if you are copying some code make sure you done all necessary modifications
// that's leads WA.
// Divide by Zero Exception Ruin Your Life.
// Number Format Exception : Make sure you read constraint carefully.
// Always use TreeMap instead of HashMap.
// Always write comparators using wrapper classes;
void solve(int TC) throws Exception {
int n = ni();
int arr[] = readArr(n);
boolean possible = true;
int idx = 2;
for (int i = 0; i < n; i++) {
int j = 0;
for (j = 2; j <= i + 2; j++) {
if (arr[i] % j != 0) {
break;
}
}
if (j > i + 2) {
possible = false;
}
}
if (possible)
pn("YES");
else
pn("NO");
}
int[] readArr(int n) throws Exception {
int arr[] = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = ni();
}
return arr;
}
void sort(int arr[]) {
ArrayList<Integer> list = new ArrayList<>();
for (int i = 0; i < arr.length; i++)
list.add(arr[i]);
Collections.sort(list);
for (int i = 0; i < arr.length; i++)
arr[i] = list.get(i);
}
public long max(long... arr) {
long max = arr[0];
for (long itr : arr)
max = Math.max(max, itr);
return max;
}
public int max(int... arr) {
int max = arr[0];
for (int itr : arr)
max = Math.max(max, itr);
return max;
}
public long min(long... arr) {
long min = arr[0];
for (long itr : arr)
min = Math.min(min, itr);
return min;
}
public int min(int... arr) {
int min = arr[0];
for (int itr : arr)
min = Math.min(min, itr);
return min;
}
public long sum(long... arr) {
long sum = 0;
for (long itr : arr)
sum += itr;
return sum;
}
public long sum(int... arr) {
long sum = 0;
for (int itr : arr)
sum += itr;
return sum;
}
public StringBuilder printArr(int arr[]) {
StringBuilder sb = new StringBuilder();
int n = arr.length;
for (int i = 0; i < n; i++) {
sb.append(arr[i] + " ");
}
return sb;
}
static int bitCount(int x) {
return x == 0 ? 0 : (1 + bitCount(x & (x - 1)));
}
static void dbg(Object... o) {
System.err.println(Arrays.deepToString(o));
}
int bit(long n) {
return (n == 0) ? 0 : (1 + bit(n & (n - 1)));
}
int abs(int a) {
return (a < 0) ? -a : a;
}
long abs(long a) {
return (a < 0) ? -a : a;
}
void p(Object o) {
out.print(o);
}
void pn(Object o) {
out.println(o);
}
void pni(Object o) {
out.println(o);
out.flush();
}
String n() throws Exception {
return in.next();
}
String nln() throws Exception {
return in.nextLine();
}
int ni() throws Exception {
return Integer.parseInt(in.next());
}
long nl() throws Exception {
return Long.parseLong(in.next());
}
double nd() throws Exception {
return Double.parseDouble(in.next());
}
class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) throws Exception {
br = new BufferedReader(new FileReader(s));
}
String next() throws Exception {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new Exception(e.toString());
}
}
return st.nextToken();
}
String nextLine() throws Exception {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
throw new Exception(e.toString());
}
return str;
}
}
} | Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | c70a40496031f99423ed2858a40c3cc7 | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import java.io.*;
import java.util.*;
public final class Main {
static PrintWriter out = new PrintWriter(System.out);
static FastReader in = new FastReader();
static Pair[] moves = new Pair[]{new Pair(-1, 0), new Pair(0, 1), new Pair(1, 0), new Pair(0, -1)};
static int mod = (int) (1e9 + 7);
static int mod2 = 998244353;
public static void main(String[] args) {
int tt = i();
while (tt-- > 0) {
solve();
}
out.flush();
}
public static void solve() {
int N = i();
int[] a = input(N);
boolean isPossible = true;
for(int j = 1;j<=N;j++) {
boolean isVerif = false;
for(int i=2;i<=j+1;i++) {
if(a[j-1]%i != 0) {
isVerif = true;
break;
}
}
isPossible = isVerif;
if(!isPossible) break;
}
if(isPossible) out.println("YES");
else out.println("NO");
}
public static long numOfSymbs(long k, long cur) {
if(cur<=k) return (cur*(cur+1))/2;
else return k*k - ((2*k-1-cur)*(2*k-cur))/2;
}
static long[] pre(int[] a) {
long[] pre = new long[a.length + 1];
pre[0] = 0;
for (int i = 0; i < a.length; i++) {
pre[i + 1] = pre[i] + a[i];
}
return pre;
}
static long[] pre(long[] a) {
long[] pre = new long[a.length + 1];
pre[0] = 0;
for (int i = 0; i < a.length; i++) {
pre[i + 1] = pre[i] + a[i];
}
return pre;
}
static void print(char A[]) {
for (char c : A) {
out.print(c);
}
out.println();
}
static void print(boolean A[]) {
for (boolean c : A) {
out.print(c + " ");
}
out.println();
}
static void print(int A[]) {
for (int c : A) {
out.print(c + " ");
}
out.println();
}
static void print(long A[]) {
for (long i : A) {
out.print(i + " ");
}
out.println();
}
static void print(List<Integer> A) {
for (int a : A) {
out.print(a + " ");
}
}
static int i() {
return in.nextInt();
}
static long l() {
return in.nextLong();
}
static double d() {
return in.nextDouble();
}
static String s() {
return in.nextLine();
}
static String c() {
return in.next();
}
static int[][] inputWithIdx(int N) {
int A[][] = new int[N][2];
for (int i = 0; i < N; i++) {
A[i] = new int[]{i, in.nextInt()};
}
return A;
}
static int[] input(int N) {
int A[] = new int[N];
for (int i = 0; i < N; i++) {
A[i] = in.nextInt();
}
return A;
}
static long[] inputLong(int N) {
long A[] = new long[N];
for (int i = 0; i < A.length; i++) {
A[i] = in.nextLong();
}
return A;
}
static int GCD(int a, int b) {
if (b == 0) {
return a;
} else {
return GCD(b, a % b);
}
}
static long GCD(long a, long b) {
if (b == 0) {
return a;
} else {
return GCD(b, a % b);
}
}
static long LCM(int a, int b) {
return (long) a / GCD(a, b) * b;
}
static long LCM(long a, long b) {
return a / GCD(a, b) * b;
}
static void shuffle(int[] arr) {
for (int i = 0; i < arr.length; i++) {
int rand = (int) (Math.random() * arr.length);
int temp = arr[rand];
arr[rand] = arr[i];
arr[i] = temp;
}
}
static void shuffleAndSort(int[] arr) {
for (int i = 0; i < arr.length; i++) {
int rand = (int) (Math.random() * arr.length);
int temp = arr[rand];
arr[rand] = arr[i];
arr[i] = temp;
}
Arrays.sort(arr);
}
static void shuffleAndSort(int[][] arr, Comparator<? super int[]> comparator) {
for (int i = 0; i < arr.length; i++) {
int rand = (int) (Math.random() * arr.length);
int[] temp = arr[rand];
arr[rand] = arr[i];
arr[i] = temp;
}
Arrays.sort(arr, comparator);
}
static void shuffleAndSort(long[] arr) {
for (int i = 0; i < arr.length; i++) {
int rand = (int) (Math.random() * arr.length);
long temp = arr[rand];
arr[rand] = arr[i];
arr[i] = temp;
}
Arrays.sort(arr);
}
static boolean isPerfectSquare(double number) {
double sqrt = Math.sqrt(number);
return ((sqrt - Math.floor(sqrt)) == 0);
}
static void swap(int A[], int a, int b) {
int t = A[a];
A[a] = A[b];
A[b] = t;
}
static void swap(char A[], int a, int b) {
char t = A[a];
A[a] = A[b];
A[b] = t;
}
static long pow(long a, long b, int mod) {
long pow = 1;
long x = a;
while (b != 0) {
if ((b & 1) != 0) {
pow = (pow * x) % mod;
}
x = (x * x) % mod;
b /= 2;
}
return pow;
}
static long pow(long a, long b) {
long pow = 1;
long x = a;
while (b != 0) {
if ((b & 1) != 0) {
pow *= x;
}
x = x * x;
b /= 2;
}
return pow;
}
static long modInverse(long x, int mod) {
return pow(x, mod - 2, mod);
}
static boolean isPrime(long N) {
if (N <= 1) {
return false;
}
if (N <= 3) {
return true;
}
if (N % 2 == 0 || N % 3 == 0) {
return false;
}
for (int i = 5; i * i <= N; i = i + 6) {
if (N % i == 0 || N % (i + 2) == 0) {
return false;
}
}
return true;
}
public static String reverse(String str) {
if (str == null) {
return null;
}
return new StringBuilder(str).reverse().toString();
}
public static void reverse(int[] arr) {
for (int i = 0; i < arr.length / 2; i++) {
int tmp = arr[i];
arr[arr.length - 1 - i] = tmp;
arr[i] = arr[arr.length - 1 - i];
}
}
public static String repeat(char ch, int repeat) {
if (repeat <= 0) {
return "";
}
final char[] buf = new char[repeat];
for (int i = repeat - 1; i >= 0; i--) {
buf[i] = ch;
}
return new String(buf);
}
public static int[] manacher(String s) {
char[] chars = s.toCharArray();
int n = s.length();
int[] d1 = new int[n];
for (int i = 0, l = 0, r = -1; i < n; i++) {
int k = (i > r) ? 1 : Math.min(d1[l + r - i], r - i + 1);
while (0 <= i - k && i + k < n && chars[i - k] == chars[i + k]) {
k++;
}
d1[i] = k--;
if (i + k > r) {
l = i - k;
r = i + k;
}
}
return d1;
}
public static int[] kmp(String s) {
int n = s.length();
int[] res = new int[n];
for (int i = 1; i < n; ++i) {
int j = res[i - 1];
while (j > 0 && s.charAt(i) != s.charAt(j)) {
j = res[j - 1];
}
if (s.charAt(i) == s.charAt(j)) {
++j;
}
res[i] = j;
}
return res;
}
}
class Pair {
int i;
int j;
Pair(int i, int j) {
this.i = i;
this.j = j;
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
Pair pair = (Pair) o;
return i == pair.i && j == pair.j;
}
@Override
public int hashCode() {
return Objects.hash(i, j);
}
}
class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
class Node {
int val;
public Node(int val) {
this.val = val;
}
}
class ST {
int n;
Node[] st;
ST(int n) {
this.n = n;
st = new Node[4 * Integer.highestOneBit(n)];
}
void build(Node[] nodes) {
build(0, 0, n - 1, nodes);
}
private void build(int id, int l, int r, Node[] nodes) {
if (l == r) {
st[id] = nodes[l];
return;
}
int mid = (l + r) >> 1;
build((id << 1) + 1, l, mid, nodes);
build((id << 1) + 2, mid + 1, r, nodes);
st[id] = comb(st[(id << 1) + 1], st[(id << 1) + 2]);
}
void update(int i, Node node) {
update(0, 0, n - 1, i, node);
}
private void update(int id, int l, int r, int i, Node node) {
if (i < l || r < i) {
return;
}
if (l == r) {
st[id] = node;
return;
}
int mid = (l + r) >> 1;
update((id << 1) + 1, l, mid, i, node);
update((id << 1) + 2, mid + 1, r, i, node);
st[id] = comb(st[(id << 1) + 1], st[(id << 1) + 2]);
}
Node get(int x, int y) {
return get(0, 0, n - 1, x, y);
}
private Node get(int id, int l, int r, int x, int y) {
if (x > r || y < l) {
return new Node(0);
}
if (x <= l && r <= y) {
return st[id];
}
int mid = (l + r) >> 1;
return comb(get((id << 1) + 1, l, mid, x, y), get((id << 1) + 2, mid + 1, r, x, y));
}
Node comb(Node a, Node b) {
if (a == null) {
return b;
}
if (b == null) {
return a;
}
return new Node(a.val | b.val);
}
} | Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | c936f64e848acbbe87c6e1592df89788 | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes |
import java.util.Scanner;
public class A752 {
public static void main(String[] args){
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-- > 0){
int n=sc.nextInt();
int[] input=new int[n+1];
for(int i=1;i<=n;i++) input[i]=sc.nextInt();
boolean possible=true;
for(int i=n;i>=1;i--){
if (input[i]%(i+1)==0){
boolean found=false;
for(int j=2;j<=i&&!found;j++){
if (input[i]%j!=0) found=true;
}
if (!found) possible=false;
}
}
if (possible) System.out.println("YES");
else System.out.println("NO");
}
sc.close();
}
}
| Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | 0b1ecb7c693fbcce3c6af04f17b34094 | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.Math.abs;
import static java.lang.System.in;
import static java.lang.System.out;
import java.util.*;
import java.io.*;
public class Main {
static FastScanner sc;
public static void main(String hi[]) throws Exception {
sc = new FastScanner(System.in);
int T = sc.nextInt();
while(T-- > 0){
int n = sc.nextInt();
long[] arr = readArr2(n);
solver(n, arr);
}
}
public static void solver(int n, long[] arr) {
long lcm = 2l;
for(long i = 0; i < n; i++){
if(arr[(int)i] % lcm == 0){
out.println("NO");
return;
}
if(lcm <= 1_000_000_000)
lcm = lcm * (i + 3l) / gcd(lcm, i+3l);
}
out.println("YES");
}
public static void printDecimal(int decimalPlaces, float val) {
String str = "%." + decimalPlaces + "f";
out.printf(str, val);
}
public static int[] readArr(int N) throws Exception {
int[] arr = new int[N];
for (int i = 0; i < N; i++)
arr[i] = sc.nextInt();
return arr;
}
public static long[] readArr2(int N) throws Exception {
long[] arr = new long[N];
for (int i = 0; i < N; i++)
arr[i] = sc.nextLong();
return arr;
}
public static void print(List<Long> arr) {
//for debugging only
for (long x : arr)
out.print(x + " ");
out.println();
}
public static void print(int[] arr) {
//for debugging only
for (int x : arr)
out.print(x + " ");
out.println();
}
public static void print(int[] arr, int s, int e) {
//for debugging only
for (int i = s; i < e; i++)
out.print(arr[i] + " ");
out.println();
}
public static void print(long[] arr) {
//for debugging only
for (long x : arr)
out.print(x + " ");
out.println();
}
public static void print(long[] arr, int s, int e) {
//for debugging only
for (int i = s; i < e; i++)
out.print(arr[i] + " ");
out.println();
}
public static boolean isPrime(long n) {
if (n < 2) return false;
if (n == 2 || n == 3) return true;
if (n % 2 == 0 || n % 3 == 0) return false;
long sqrtN = (long) Math.sqrt(n) + 1;
for (long i = 6L; i <= sqrtN; i += 6) {
if (n % (i - 1) == 0 || n % (i + 1) == 0) return false;
}
return true;
}
public static long gcd(long a, long b) {
if (a > b)
a = (a + b) - (b = a);
if (a == 0L)
return b;
return gcd(b % a, a);
}
public static int gcd(int a, int b) {
if (a > b)
a = (a + b) - (b = a);
if (a == 0)
return b;
return gcd(b % a, a);
}
public static void sort(int[] arr) {
//because Arrays.sort() uses quicksort which is dumb
//Collections.sort() uses merge sort
ArrayList<Integer> ls = new ArrayList<Integer>();
for (int x : arr)
ls.add(x);
Collections.sort(ls);
for (int i = 0; i < arr.length; i++)
arr[i] = ls.get(i);
}
public static void sort(long[] arr) {
ArrayList<Long> ls = new ArrayList<Long>();
for (long x : arr)
ls.add(x);
Collections.sort(ls);
for (int i = 0; i < arr.length; i++)
arr[i] = ls.get(i);
}
static class FastScanner {
private BufferedReader reader = null;
private StringTokenizer tokenizer = null;
public FastScanner(InputStream in) {
reader = new BufferedReader(new InputStreamReader(in));
tokenizer = null;
}
public String next() {
if (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public String nextLine() {
if (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
return reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken("\n");
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = (int) nextInt();
return a;
}
public long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
}
}
| Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | 0df0467d19d1a10d016cc5413c2e0e9e | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class A1603 {
public static void main(String[] args) throws IOException {
BufferedReader rd = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(System.out);
int numTests = Integer.parseInt(rd.readLine());
for (int t = 0; t < numTests; t++) {
int n = Integer.parseInt(rd.readLine());
boolean ok = true;
long prod = 1;
StringTokenizer st = new StringTokenizer(rd.readLine());
for (int i = 1; i <= n; i++) {
int num = Integer.parseInt(st.nextToken());
if (prod <= 1000000000) {
prod = lcm(prod, 1 + i);
}
if (num % prod == 0) {
ok = false;
}
}
pw.println(ok ? "YES" : "NO");
}
pw.flush();
pw.close();
rd.close();
}
private static long gcd(long a, long b) {
if (a > b) {
return gcd(b, a);
}
return a == 0 ? b : gcd(b % a, a);
}
private static long lcm(long a, long b) {
return (a / gcd(a, b)) * b;
}
}
| Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | 20af92e80d8a3c7ccfce39c84eccbc84 | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
public class codeforces {
public static void main(String[] args) throws NumberFormatException, IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int t = Integer.parseInt(br.readLine());
while(t-->0)
{
int n = Integer.parseInt(br.readLine());
String st[] = br.readLine().trim().split(" ");
ArrayList<Integer> al = new ArrayList<>();
boolean ans = true;
int odd =0;
for(int i=0;i<st.length;i++)
{
al.add(Integer.parseInt(st[i]));
}
for(int i=0;i<al.size();i++)
{
ans = false;
for(int j=i+2;j>=2;j--)
{
if(al.get(i)%j!=0)
{
ans = true;
break;
}
}
if(ans==false)
break;
}
if(ans)
System.out.println("YES");
else
System.out.println("NO");
}
}
} | Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | dbb307bdbb0c7841213b31270075b393 | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | //package com.codeforces.Practise;
import java.io.*;
public class DivisibleConfusion {
//If you stuck for 30min don't waste time anymore, have a look at to the hint or solution
//when you get WA and you are okk with your solution then try out some edge cases means on which test case your code fails
// because sometimes your writing code mistake
// Consistency will always give you great Result
// Don't Confuse Always make things simple
// Don't afraid after seeing the problem instead dive deep into it to get better understanding
//Experience is the name of the game
// You won't fail until you stop trying.......
// you can solve one problem by many approaches. when you stuck you are going to learn something new okk
// Everything is easy. you feel its hard because of you don't know, and you not understand it very well.
//// How to Improve Your problem-solving skill ??( By practise ). ***simple
/// ==>> Solve problems slightly above of your level (to know some logic and how to approach cp problems)
// Otherwise You will stay as it is okk. Learn from other code as well.
// ____________________________________________________________
// |( if you feel problem is hard then your approach is wrong )|
//-------------------------------------------------------------
/////////////////////////////////////////////////////////////////////////
/// How to Solve Problem in CP ? (you need to come up with brainstorm(Learning))
// ==>> Step01 :- Understanding problem statement clearly. Then Only Move Forward (Because Everything is mentioned in problem statement).
// Step02 :- Think a lot about Solution. if you are confident that your solution might be correct Then only Move Forward
// Step03 :- First think of brute force then move to optimal approach
// Step04 :- Finally Code ( there is no any sense to code. if you not follow about steps okk)
///////////////////////////////////////////////////////////////////////////
public static void main(String[] args)throws IOException {
Reader scan=new Reader();
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
int t=scan.nextInt();
while (t-->0) {
int n=scan.nextInt();
boolean ans=true;
int[] arr=new int[n];
for (int i = 0; i < n; i++) {
arr[i]=scan.nextInt();
}
for (int i = 0; i < n; i++) {
int val=arr[i];
boolean flag=true;
for (int j = Math.min(i+2,23) ; j >=2 ; j--) {
if(val%j!=0){
flag=false;
break;
}
}
if(flag){
ans=false;
break;
}
}
if(ans) {
bw.write("YES");
}
else {
bw.write("NO");
}
bw.newLine();
bw.flush();
}
}
//FAST READER
static class Reader {
public int BS = 1<<16;
public char NC = (char)0;
byte[] buf = new byte[BS];
int bId = 0, size = 0;
char c = NC;
double num = 1;
BufferedInputStream in;
public Reader() {
in = new BufferedInputStream(System.in, BS);
}
public Reader(String s) throws FileNotFoundException {
in = new BufferedInputStream(new FileInputStream(new File(s)), BS);
}
public char nextChar(){
while(bId==size) {
try {
size = in.read(buf);
}catch(Exception e) {
return NC;
}
if(size==-1)return NC;
bId=0;
}
return (char)buf[bId++];
}
public int nextInt() {
return (int)nextLong();
}
public long nextLong() {
num=1;
boolean neg = false;
if(c==NC)c=nextChar();
for(;(c<'0' || c>'9'); c = nextChar()) {
if(c=='-')neg=true;
}
long res = 0;
for(; c>='0' && c <='9'; c=nextChar()) {
res = (res<<3)+(res<<1)+c-'0';
num*=10;
}
return neg?-res:res;
}
public double nextDouble() {
double cur = nextLong();
return c!='.' ? cur:cur+(cur < 0 ? -1*nextLong()/num : nextLong()/num);
}
public String next() {
StringBuilder res = new StringBuilder();
while(c<=32)c=nextChar();
while(c>32) {
res.append(c);
c=nextChar();
}
return res.toString();
}
}
}
| Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | 81649bb48fb28d71216b4e02ca1bb338 | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | //Harsh Gour code
import java.util.*;
import java.io.*;
import java.lang.*;
public class Codechef {
// Arrays.sort(arr, (a, b) -> a[1] - b[1]);
// this is used to to sort value pairs
/*
String str ="3";
int p = Integer.parseInt(str);
System.out.println(p);
*/
// Using stringBuilder functions
/*
StringBuilder sb =new StringBuilder();
sb.append("Hii my name is Harsh ");
int age = 21;
sb.append("My age is :"+age+"\n");
System.out.println(sb);
*/
public static void main(String[] args) throws IOException{
// TODO Auto-generated method stub
FastReader sc = new FastReader(System.in);
int t=sc.nextInt();
while (t-->0){
int n=sc.nextInt();
boolean ok = true;
for(int i=1;i<=n;i++){
int x=sc.nextInt();
boolean found = false;
for(int j=i+1;j>=2;j--){
if (x%j!=0){
found=true;
break;
}
}
// System.out.println(found);
ok &= found;
}
if(ok)System.out.print("YES\n");
else System.out.print("NO\n");
}
}
// largest possible divisor of an number
static int largestDivisor(int n) {
if (n % 2 == 0) {
return n / 2;
}
final int sqrtn = (int) Math.sqrt(n);
for (int i = 3; i <= sqrtn; i += 2) {
if (n % i == 0) {
return n / i;
}
}
return 1;
}
static long calculate(long p, long q)
{
long mod = 998244353, expo;
expo = mod - 2;
// Loop to find the value
// until the expo is not zero
while (expo != 0)
{
// Multiply p with q
// if expo is odd
if ((expo & 1) == 1)
{
p = (p * q) % mod;
}
q = (q * q) % mod;
// Reduce the value of
// expo by 2
expo >>= 1;
}
return p;
}
//GCD
static int gcd(int a, int b) {
if (a == 0)
return b;
else
return gcd(b % a, a);
}
// optimal power function
static int power(int x, int y)
{
if (y == 0)
return 1;
else if (y % 2 == 0)
return power(x, y / 2) * power(x, y / 2);
else
return x * power(x, y / 2) * power(x, y / 2);
}
// optimal power function end
static int minimumadjacentswapstomakearraysidentical(char []s1, char[] s2, int size)
{
int i = 0, j = 0;
int result = 0;
// Iterate over the first string and convert
// every element equal to the second string
while (i < size)
{
j = i;
// Find index element of first string which
// is equal to the ith element of second string
while (s1[j] != s2[i])
{
j += 1;
}
// Swap adjacent elements in first string so
// that element at ith position becomes equal
while (i < j)
{
// Swap elements using temporary variable
char temp = s1[j];
s1[j] = s1[j - 1];
s1[j - 1] = temp;
j -= 1;
result += 1;
}
i += 1;
}
return result;
}
//end//
// sorted pair by its key value
/*
StringBuilder sb =new StringBuilder();
Map<Integer , Integer> map = new HashMap<>();
TreeMap<Integer,Integer> sorted=new TreeMap<Integer,Integer>();
sorted.putAll(map);
for(Map.Entry<Integer , Integer>entry : sorted.entrySet()) {
sb.append(entry.getKey()+" "+ entry.getValue()+ "\n");
}
*/
}
//Pair class
class Pair {
int x;
int y;
//Constructor
public Pair(int x, int y)
{
this.x = x;
this.y = y;
}
}
// Fast Reader
// FastReader in = new FastReader(System.in);
class FastReader {
byte[] buf = new byte[2048];
int index, total;
InputStream in;
FastReader(InputStream is) {
in = is;
}
int scan() throws IOException {
if (index >= total) {
index = 0;
total = in.read(buf);
if (total <= 0) {
return -1;
}
}
return buf[index++];
}
String next() throws IOException {
int c;
for (c = scan(); c <= 32; c = scan())
;
StringBuilder sb = new StringBuilder();
for (; c > 32; c = scan()) {
sb.append((char) c);
}
return sb.toString();
}
String nextLine() throws IOException {
int c;
for (c = scan(); c <= 32; c = scan())
;
StringBuilder sb = new StringBuilder();
for (; c != 10 && c != 13; c = scan()) {
sb.append((char) c);
}
return sb.toString();
}
char nextChar() throws IOException {
int c;
for (c = scan(); c <= 32; c = scan())
;
return (char) c;
}
int nextInt() throws IOException {
int c, val = 0;
for (c = scan(); c <= 32; c = scan())
;
boolean neg = c == '-';
if (c == '-' || c == '+') {
c = scan();
}
for (; c >= '0' && c <= '9'; c = scan()) {
val = (val << 3) + (val << 1) + (c & 15);
}
return neg ? -val : val;
}
long nextLong() throws IOException {
int c;
long val = 0;
for (c = scan(); c <= 32; c = scan())
;
boolean neg = c == '-';
if (c == '-' || c == '+') {
c = scan();
}
for (; c >= '0' && c <= '9'; c = scan()) {
val = (val << 3) + (val << 1) + (c & 15);
}
return neg ? -val : val;
}
}
| Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | 2bf074426297e9e8cc3d3ae7a61a3b4e | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | //package Codeforces.Practice1300;
import java.io.*;
import java.util.*;
public class DivisibleConfu {
public static void main(String[] args) throws Exception {new DivisibleConfu().run();}
long mod = 1000000000 + 7;
int[][] dp= new int[32][200001];
// int[][] ar;
void solve() throws Exception {
int t=ni();
while(t-->0){
int n = ni();
int[] a = new int[n];
for(int i=0;i<n;i++){
a[i] = ni();
}
if(n==1){
if(a[0]%2==0) out.println("NO");
else out.println("YES");
continue;
}
boolean flag=false;
int cnt=0;
for(int i=0;i<n;i++){
if(a[i]%(i+2)!=0)cnt++;
else{
int ind = i+2;
boolean found = false;
for(int j=1;j<=cnt;j++){
if(a[i]%(ind-j)!=0){
cnt++;
found = true;
break;
}
}
if(!found) flag=true;
}
if(flag){
break;
}
}
if(flag) out.println("NO");
else out.println("YES");
}
}
int[] sort(int[] a){
List<Integer> l= new ArrayList<>();
for(int i:a) l.add(i);
int[] res = new int[l.size()];
for(int i=0;i<l.size();i++){
res[i] = l.get(i);
}
return res;
}
void formDP(){
for(int i=0;i<32;i++){
for(int j=1;j<200001;j++){
if((j&(1<<i))==0){
dp[i][j] = dp[i][j-1];
}else{
dp[i][j]=1+dp[i][j-1];
}
}
}
}
// void buildMatrix(){
//
// for(int i=1;i<=1000;i++){
//
// ar[i][1] = (i*(i+1))/2;
//
// for(int j=2;j<=1000;j++){
// ar[i][j] = ar[i][j-1]+(j-1)+i-1;
// }
// }
// }
/* FAST INPUT OUTPUT & METHODS BELOW */
private byte[] buf = new byte[1024];
private int index;
private InputStream in;
private int total;
private SpaceCharFilter filter;
PrintWriter out;
int min(int... ar) {
int min = Integer.MAX_VALUE;
for (int i : ar)
min = Math.min(min, i);
return min;
}
long min(long... ar) {
long min = Long.MAX_VALUE;
for (long i : ar)
min = Math.min(min, i);
return min;
}
int max(int... ar) {
int max = Integer.MIN_VALUE;
for (int i : ar)
max = Math.max(max, i);
return max;
}
long max(long... ar) {
long max = Long.MIN_VALUE;
for (long i : ar)
max = Math.max(max, i);
return max;
}
void shuffle(int a[]) {
ArrayList<Integer> al = new ArrayList<>();
for (int i = 0; i < a.length; i++)
al.add(a[i]);
Collections.sort(al);
for (int i = 0; i < a.length; i++)
a[i] = al.get(i);
}
long lcm(long a, long b) {
return (a * b) / (gcd(a, b));
}
int gcd(int a, int b) {
if (a == 0)
return b;
return gcd(b % a, a);
}
long gcd(long a, long b) {
if (a == 0)
return b;
return gcd(b % a, a);
}
/*
* for (1/a)%mod = ( a^(mod-2) )%mod ----> use expo to calc -->(a^(mod-2))
*/
long expo(long p, long q) /* (p^q)%mod */
{
long z = 1;
while (q > 0) {
if (q % 2 == 1) {
z = (z * p) % mod;
}
p = (p * p) % mod;
q >>= 1;
}
return z;
}
void run() throws Exception {
in = System.in;
out = new PrintWriter(System.out);
solve();
out.flush();
}
private int scan() throws IOException {
if (total < 0)
throw new InputMismatchException();
if (index >= total) {
index = 0;
total = in.read(buf);
if (total <= 0)
return -1;
}
return buf[index++];
}
private int ni() throws IOException {
int c = scan();
while (isSpaceChar(c))
c = scan();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = scan();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = scan();
} while (!isSpaceChar(c));
return res * sgn;
}
private long nl() throws IOException {
long num = 0;
int b;
boolean minus = false;
while ((b = scan()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = scan();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = scan();
}
}
private double nd() throws IOException {
return Double.parseDouble(ns());
}
private String ns() throws IOException {
int c = scan();
while (isSpaceChar(c))
c = scan();
StringBuilder res = new StringBuilder();
do {
if (Character.isValidCodePoint(c))
res.appendCodePoint(c);
c = scan();
} while (!isSpaceChar(c));
return res.toString();
}
private String nss() throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
return br.readLine();
}
private char nc() throws IOException {
int c = scan();
while (isSpaceChar(c))
c = scan();
return (char) c;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1)
return true;
return false;
}
private boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return isWhiteSpace(c);
}
private interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
| Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | 15e90bd0ef383c49f6b68193515025de | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | // Compete Against yourself :)
import java.io.*;
import java.util.*;
public class Main {
static FastReader fr = new FastReader();
StringBuilder op = new StringBuilder();
public void run() {
int tt= fr.nextInt();
while(tt-->0){
int n=fr.nextInt();
int a[]=new int[n+1];
for(int i=1;i<=n;i++){
a[i]=fr.nextInt();
}
boolean ok=true;
for(int i=1;i<=n;i++){
boolean yes=false;
for(int j=i;j>=1;j--){
if(a[i]%(j+1)!=0){
yes=true;
break;
}
}
ok&=yes;
}
op.append(ok?"YES":"NO").append("\n");
}
System.out.println(op);
}
public static void main(String[] args) {
new Main().run();
}
//math related functions
//gcd
private long gcd(long a, long b) {
if (a == 0) {
return b;
} else {
return gcd(b % a, a);
}
}
//lcm
private long lcm(long a, long b) {
return (a * b) / gcd(a, b);
}
//exponential power
private long power(long a, long b) {
if (a == 1 || b == 0) {
return 1;
}
long res = 1;
while (b != 0) {
if (b % 2 == 1) {
res = res * a;
}
b /= 2;
a *= a;
}
return res;
}
// euler totient function copied from
// https://www.geeksforgeeks.org/eulers-totient-function/
private int phi(int n) {
// Initialize result as n
double result = n;
// Consider all prime factors of n and for
// every prime factor p, multiply result
// with (1 - 1/p)
for (int p = 2; p * p <= n; ++p) {
// Check if p is a prime factor.
if (n % p == 0) {
// If yes, then update n and result
while (n % p == 0)
n /= p;
result *= (1.0 - (1.0 / (double) p));
}
}
// If n has a prime factor greater than sqrt(n)
// (There can be at-most one such prime factor)
if (n > 1)
result *= (1.0 - (1.0 / (double) n));
return (int) result;
}
//binary search related functions
private int lowerBound(int[] a, int key) {
int ans = -1;
int low = 0;
int high = a.length - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
if (a[mid] >= key) {
ans = mid;
high = mid - 1;
} else {
low = mid + 1;
}
}
return ans;
}
private int upperBound(int[] a, int key) {
int ans = -1;
int low = 0;
int high = a.length - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
if (a[mid] > key) {
ans = mid;
high = mid - 1;
} else {
low = mid + 1;
}
}
return ans;
}
//reverse
private void reverse(int[] a, int s, int e) {
for (int i = s, j = e; i <= j; i++, j--) {
int temp = a[i];
a[i] = a[j];
a[j] = temp;
}
}
private void reverse(long[] a, int s, int e) {
for (int i = s, j = e; i <= j; i++, j--) {
long temp = a[i];
a[i] = a[j];
a[j] = temp;
}
}
//sorting
private void sort(int[] a) {
List<Integer> ls = new ArrayList<Integer>();
for (int x : a) {
ls.add(x);
}
Collections.sort(ls);
for (int i = 0; i < a.length; i++) {
a[i] = ls.get(i);
}
}
private void sort(long[] a) {
List<Long> ls = new ArrayList<Long>();
for (long x : a) {
ls.add(x);
}
Collections.sort(ls);
for (int i = 0; i < a.length; i++) {
a[i] = ls.get(i);
}
}
private void sortInRangeInt(int[] a, int s, int e) {
List<Integer> ls = new ArrayList<>();
for (int i = s; i <= e; i++) ls.add(a[i]);
Collections.sort(ls);
for (int i = s; i <= e; i++) {
a[i] = ls.get(i);
}
}
private void sortInRangeLong(long[] a, int s, int e) {
List<Long> ls = new ArrayList<>();
for (int i = s; i <= e; i++) ls.add(a[i]);
Collections.sort(ls);
for (int i = s; i <= e; i++) {
a[i] = ls.get(i);
}
}
//Fast I/O
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
st = null;
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException ie) {
ie.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
;
int[] readIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
long[] readLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = nextLong();
}
return a;
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException ie) {
ie.printStackTrace();
}
return str;
}
}
}
| Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | b15c709dd64a0be0d52e0fa9485f781e | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class A1 {
static final Reader s = new Reader();
static final PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) throws IOException {
int t = s.nextInt();
// int t=1;
for(int i=1; i<=t; ++i) {
// out.print("Case #"+i+": ");
new Solver();
}
out.close();
}
static class Solver {
Solver() {
int n = s.nextInt();
List<Long> l = new ArrayList<>();
for(int i=0;i<n;i++) {
l.add(s.nextLong());
}
for(int i=0;i<n;i++) {
boolean f=false;
for(int j=0;j<i+1;j++) {
if(l.get(i)%(j+2)!=0) {
f=true;
break;
}
}
if(!f) {
System.out.println("NO");
return;
}
}
System.out.println("YES");
}
}
static class Reader {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st;
String next() {
while(st==null||!st.hasMoreTokens()) {
try {
st=new StringTokenizer(in.readLine());
} catch(Exception e) {}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
}
}
| Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | 40602d2a36bd3727d100cc31ddfbcfe0 | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import java.util.*;
public class Main {
public static void main(String[] args) {
// write your code here
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0){
int n=sc.nextInt();
ArrayList<Integer> arr=new ArrayList<>();
for(int i=0;i<n;i++){
arr.add(sc.nextInt());
}
int i=0;
while(arr.size()>0){
for(i=arr.size()-1;i>=0;i--){
if(arr.get(i)%(i+2)!=0){
arr.remove(i);
break;
}
}
if(i==-1){
break;
}
}
if(arr.size()==0) System.out.println("YES");
else System.out.println("NO");
}
}
}
| Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | 5eebd8761687d98a0298018c61145a54 | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.Math.abs;
import java.util.*;
import java.io.*;
import java.math.*;
public class A_Di_Visible_Confusion {
public static void main(String[] args) {
OutputStream outputStream = System.out;
PrintWriter out = new PrintWriter(outputStream);
FastReader f = new FastReader();
int t = f.nextInt();
while(t-- > 0){
solve(f, out);
}
out.close();
}
public static void solve(FastReader f, PrintWriter out) {
int n = f.nextInt();
int arr[] = f.nextArray(n);
long lcm = 2;
for(int i = 0; i < n; i++) {
lcm = lcm(lcm, (i+2));
if(arr[i]%lcm == 0) {
out.println("NO");
return;
}
if(lcm > 1000000000) {
break;
}
}
out.println("YES");
}
public static void sort(int arr[]) {
ArrayList<Integer> al = new ArrayList<>();
for(int i: arr) {
al.add(i);
}
Collections.sort(al);
for(int i = 0; i < arr.length; i++) {
arr[i] = al.get(i);
}
}
public static void allDivisors(int n) {
for(int i = 1; i*i <= n; i++) {
if(n%i == 0) {
System.out.println(i + " ");
if(i != n/i) {
System.out.println(n/i + " ");
}
}
}
}
public static boolean isPrime(int n) {
if(n < 1) return false;
if(n == 2 || n == 3) return true;
if(n % 2 == 0 || n % 3 == 0) return false;
for(int i = 5; i*i <= n; i += 6) {
if(n % i == 0 || n % (i+2) == 0) {
return false;
}
}
return true;
}
public static long gcd(long a, long b) {
long dividend = a > b ? a : b;
long divisor = a < b ? a : b;
while(divisor > 0) {
long reminder = dividend % divisor;
dividend = divisor;
divisor = reminder;
}
return dividend;
}
public static long lcm(long a, long b) {
long gcd = gcd(a, b);
long lcm = (a * b) / gcd;
return lcm;
}
public static String sortString(String inputString) {
char tempArray[] = inputString.toCharArray();
Arrays.sort(tempArray);
return new String(tempArray);
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
float nextFloat() {
return Float.parseFloat(next());
}
boolean nextBoolean() {
return Boolean.parseBoolean(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] nextArray(int n) {
int[] a = new int[n];
for(int i=0; i<n; i++) {
a[i] = nextInt();
}
return a;
}
}
}
/**
Dec Char Dec Char Dec Char Dec Char
--------- --------- --------- ----------
0 NUL (null) 32 SPACE 64 @ 96 `
1 SOH (start of heading) 33 ! 65 A 97 a
2 STX (start of text) 34 " 66 B 98 b
3 ETX (end of text) 35 # 67 C 99 c
4 EOT (end of transmission) 36 $ 68 D 100 d
5 ENQ (enquiry) 37 % 69 E 101 e
6 ACK (acknowledge) 38 & 70 F 102 f
7 BEL (bell) 39 ' 71 G 103 g
8 BS (backspace) 40 ( 72 H 104 h
9 TAB (horizontal tab) 41 ) 73 I 105 i
10 LF (NL line feed, new line) 42 * 74 J 106 j
11 VT (vertical tab) 43 + 75 K 107 k
12 FF (NP form feed, new page) 44 , 76 L 108 l
13 CR (carriage return) 45 - 77 M 109 m
14 SO (shift out) 46 . 78 N 110 n
15 SI (shift in) 47 / 79 O 111 o
16 DLE (data link escape) 48 0 80 P 112 p
17 DC1 (device control 1) 49 1 81 Q 113 q
18 DC2 (device control 2) 50 2 82 R 114 r
19 DC3 (device control 3) 51 3 83 S 115 s
20 DC4 (device control 4) 52 4 84 T 116 t
21 NAK (negative acknowledge) 53 5 85 U 117 u
22 SYN (synchronous idle) 54 6 86 V 118 v
23 ETB (end of trans. block) 55 7 87 W 119 w
24 CAN (cancel) 56 8 88 X 120 x
25 EM (end of medium) 57 9 89 Y 121 y
26 SUB (substitute) 58 : 90 Z 122 z
27 ESC (escape) 59 ; 91 [ 123 {
28 FS (file separator) 60 < 92 \ 124 |
29 GS (group separator) 61 = 93 ] 125 }
30 RS (record separator) 62 > 94 ^ 126 ~
31 US (unit separator) 63 ? 95 _ 127 DEL
*/
| Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | 41b136efd7b0565732585fe74c1c7f21 | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes |
import java.io.*;
import java.math.*;
import java.util.*;
public class A_Divisible
{
public static void main(String[] args)throws Exception
{
new Solver().solve();
}
}
//* Success is not final, failure is not fatal: it is the courage to continue that counts.
class Solver {
long[] lcm = new long[100005];
long getLCM(long a,long b){
return (a/gcd(a,b))*b;
}
//O(min(a,b))
long gcd(long a ,long b){
if(b==0){
return a;
}
return gcd(b,b%a);
}
void solve() throws Exception
{
int t = sc.nextInt();
while(t-->0){
int n =sc.nextInt();
long[] arr = new long[n+1];
for(int i =1;i<=n;i++){
arr[i] = sc.nextLong();
}
// how to do with that
boolean isPos = true;
for(int i = 1;i<n+1;i++){
boolean ok = false;
for(int j = i+1;j>=2;j--){
if(arr[i] % j != 0){
ok = true;
break;
}
}
if(!ok){
isPos = false;
break;
}
}
sc.println(isPos?"YES":"NO");
}
sc.flush();
}
final Helper sc;
final int MAXN = 1000_006;
final long MOD = (long) 1e9 + 7;
Solver() {
sc = new Helper(MOD, MAXN);
sc.initIO(System.in, System.out);
}
}
class Helper {
final long MOD;
final int MAXN;
final Random rnd;
public Helper(long mod, int maxn) {
MOD = mod;
MAXN = maxn;
rnd = new Random();
}
public static int[] sieve;
public static ArrayList<Integer> primes;
public void setSieve() {
primes = new ArrayList<>();
sieve = new int[MAXN];
int i, j;
for (i = 2; i < MAXN; ++i)
if (sieve[i] == 0) {
primes.add(i);
for (j = i; j < MAXN; j += i) {
sieve[j] = i;
}
}
}
public static long[] factorial;
public void setFactorial() {
factorial = new long[MAXN];
factorial[0] = 1;
for (int i = 1; i < MAXN; ++i) factorial[i] = factorial[i - 1] * i % MOD;
}
public long getFactorial(int n) {
if (factorial == null) setFactorial();
return factorial[n];
}
public long ncr(int n, int r) {
if (r > n) return 0;
if (factorial == null) setFactorial();
long numerator = factorial[n];
long denominator = factorial[r] * factorial[n - r] % MOD;
return numerator * pow(denominator, MOD - 2, MOD) % MOD;
}
public long[] getLongArray(int size) throws Exception {
long[] ar = new long[size];
for (int i = 0; i < size; ++i) ar[i] = nextLong();
return ar;
}
public int[] getIntArray(int size) throws Exception {
int[] ar = new int[size];
for (int i = 0; i < size; ++i) ar[i] = nextInt();
return ar;
}
public long gcd(long a, long b) {
return b == 0 ? a : gcd(b, a % b);
}
public int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
public long max(long[] ar) {
long ret = ar[0];
for (long itr : ar) ret = Math.max(ret, itr);
return ret;
}
public int max(int[] ar) {
int ret = ar[0];
for (int itr : ar) ret = Math.max(ret, itr);
return ret;
}
public long min(long[] ar) {
long ret = ar[0];
for (long itr : ar) ret = Math.min(ret, itr);
return ret;
}
public int min(int[] ar) {
int ret = ar[0];
for (int itr : ar) ret = Math.min(ret, itr);
return ret;
}
public long sum(long[] ar) {
long sum = 0;
for (long itr : ar) sum += itr;
return sum;
}
public long sum(int[] ar) {
long sum = 0;
for (int itr : ar) sum += itr;
return sum;
}
public void shuffle(int[] ar) {
int r;
for (int i = 0; i < ar.length; ++i) {
r = rnd.nextInt(ar.length);
if (r != i) {
ar[i] ^= ar[r];
ar[r] ^= ar[i];
ar[i] ^= ar[r];
}
}
}
public void shuffle(long[] ar) {
int r;
for (int i = 0; i < ar.length; ++i) {
r = rnd.nextInt(ar.length);
if (r != i) {
ar[i] ^= ar[r];
ar[r] ^= ar[i];
ar[i] ^= ar[r];
}
}
}
public long pow(long base, long exp, long MOD) {
base %= MOD;
long ret = 1;
while (exp > 0) {
if ((exp & 1) == 1) ret = ret * base % MOD;
base = base * base % MOD;
exp >>= 1;
}
return ret;
}
static byte[] buf = new byte[1000_006];
static int index, total;
static InputStream in;
static BufferedWriter bw;
public void initIO(InputStream is, OutputStream os) {
try {
in = is;
bw = new BufferedWriter(new OutputStreamWriter(os));
} catch (Exception e) {
}
}
public void initIO(String inputFile, String outputFile) {
try {
in = new FileInputStream(inputFile);
bw = new BufferedWriter(new OutputStreamWriter(
new FileOutputStream(outputFile)));
} catch (Exception e) {
}
}
private int scan() throws Exception {
if (index >= total) {
index = 0;
total = in.read(buf);
if (total <= 0)
return -1;
}
return buf[index++];
}
public String nextLine() throws Exception {
int c;
for (c = scan(); c <= 32; c = scan()) ;
StringBuilder sb = new StringBuilder();
for (; c >= 32; c = scan())
sb.append((char) c);
return sb.toString();
}
public String next() throws Exception {
int c;
for (c = scan(); c <= 32; c = scan()) ;
StringBuilder sb = new StringBuilder();
for (; c > 32; c = scan())
sb.append((char) c);
return sb.toString();
}
public int nextInt() throws Exception {
int c, val = 0;
for (c = scan(); c <= 32; c = scan()) ;
boolean neg = c == '-';
if (c == '-' || c == '+')
c = scan();
for (; c >= '0' && c <= '9'; c = scan())
val = (val << 3) + (val << 1) + (c & 15);
return neg ? -val : val;
}
public long nextLong() throws Exception {
int c;
long val = 0;
for (c = scan(); c <= 32; c = scan()) ;
boolean neg = c == '-';
if (c == '-' || c == '+')
c = scan();
for (; c >= '0' && c <= '9'; c = scan())
val = (val << 3) + (val << 1) + (c & 15);
return neg ? -val : val;
}
public void print(Object a) throws Exception {
bw.write(a.toString());
}
public void printsp(Object a) throws Exception {
print(a);
print(" ");
}
public void println() throws Exception {
bw.write("\n");
}
public void printArray(int[] arr) throws Exception{
for(int i = 0;i<arr.length;i++){
print(arr[i]+ " ");
}
println();
}
public void println(Object a) throws Exception {
print(a);
println();
}
public void flush() throws Exception {
bw.flush();
}
}
| Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | 8f487c8cda723cbcf2375a55acf6f175 | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import java.io.*;
import java.util.*;
public class Q1603A {
static int mod = (int) (1e9 + 7);
static void solve() {
int n = i();
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = l();
}
for(int i=0;i<n;i++){
if(arr[i]%(i+2)==0){
boolean flag=true;
l1:for(int j=0;j<i;j++){
if(arr[i]%(j+2)!=0){
flag=false;
break l1;
}
}
if(flag==true){
System.out.println("NO");
return;
}
}
}
System.out.println("YES");
}
public static void main(String[] args) {
int test = i();
while (test-- > 0) {
solve();
}
}
// -----> POWER ---> long power(long x, long y) <----
// -----> LCM ---> long lcm(long x, long y) <----
// -----> GCD ---> long gcd(long x, long y) <----
// -----> SIEVE --> ArrayList<Integer> sieve(int N) <-----
// -----> NCR ---> long ncr(int n, int r) <----
// -----> BINARY_SEARCH ---> int binary_Search(long[]arr,long x) <----
// -----> (SORTING OF LONG, CHAR,INT) -->long[] sortLong(long[] a2)<--
// ----> DFS ---> void dfs(ArrayList<ArrayList<Integer>>edges,int child,int
// parent)<---
// ---> NODETOROOT --> ArrayList<Integer>
// node2Root(ArrayList<ArrayList<Integer>>edges,int child,int parent,int tofind)
// <--
// ---> LEVELS_TREE -->levels_Trees(ArrayList<HashSet<Integer>> edges, int
// child, int parent,int[]level,int currLevel) <--
// ---> K_THPARENT --> int k_thparent(int node,int[][]parent,int k) <---
// ---> TWOPOWERITHPARENTFILL --> void twoPowerIthParentFill(int[][]parent) <---
// -----> (INPUT OF INT,LONG ,STRING) -> int i() long l() String s()<-
// tempstart
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int Int() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String String() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return String();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static InputReader in = new InputReader(System.in);
public static int i() {
return in.Int();
}
public static long l() {
String s = in.String();
return Long.parseLong(s);
}
public static String s() {
return in.String();
}
}
| Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | 484581c4dd52eb066458ad43f63fb5fc | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | //package com.company;
import java.util.*;
import java.lang.*;
import java.io.*;
public class Rough_Work {
public static void main(String[] args) throws IOException {
new Rough_Work().TestCases();
}
void TestCases() throws IOException{
sieveOfEratosthenes(1000000);
int t = nextInt();
while (t-->0) {
solve();
}
out.flush();
} // Put t = 1, for NO testcases // out.flush() is written in this method
void solve () throws IOException {
int n = nextInt();
int[] arr = nextIntArray(n);
for (int i = 0; i < n; i++) {
int k = arr[i];
boolean flag = true;
for (int j = i+2; j > 1; j--) {
if (k%j != 0 ) {
flag = false;
break;
}
}
if (flag) {
out.println("NO");
return;
}
}
out.println("YES");
}
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
StringTokenizer st;
void printIntArray (int[] arr) {
for (int z : arr) out.print(z+" ");
out.println();
}
void printIntList (ArrayList<Integer> arr) {
for (int z : arr) out.print(z+" ");
out.println();
}
void printLongArray (long[] arr) {
for (long z : arr) out.print(z+" ");
out.println();
}
void printLongList (ArrayList<Long> arr) {
for (long z : arr) out.print(z+" ");
out.println();
}
String next () throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine().trim());
return st.nextToken();
}
int nextInt () throws IOException {
return Integer.parseInt(next());
}
int[] nextIntArray (int n) throws IOException {
int[] arr = new int[n];
for (int i = 0; i < n; i++) arr[i] = nextInt();
return arr;
}
long nextLong () throws IOException {
return Long.parseLong(next());
}
long[] nextLongArray (int n) throws IOException {
long[] arr = new long[n];
for (int i = 0; i < n; i++) arr[i] = nextLong();
return arr;
}
ArrayList<Long> nextLongList (int n) throws IOException {
ArrayList<Long> lis = new ArrayList<>(n);
for (int i = 0; i < n; i++) lis.add(nextLong());
return lis;
}
double nextDouble () throws IOException {
return Double.parseDouble(next());
}
char nextChar () throws IOException {
return next().charAt(0);
}
String nextLine () throws IOException {
return br.readLine().trim();
}
boolean is_Sorted_int (int[] arr) {
for (int i = 0; i < arr.length-1; i++) if (arr[i] > arr[i+1]) return false;
return true;
}
boolean is_Sorted_long (long[] arr) {
for (int i = 0; i < arr.length-1; i++) if (arr[i] > arr[i+1]) return false;
return true;
}
long gcd(long a, long b) { return (b==0?a:gcd(b,a%b)); }
long lcm(long a, long b) { return (a / gcd(a, b)) * b; }
ArrayList<Integer> Factors(int n) {
ArrayList<Integer> ret = new ArrayList<>();
for (int i=1; i<=Math.sqrt(n); i++) {
if (n%i==0) {
// If divisors are equal, print only one
if (n/i != i) ret.add(n/i);
ret.add(i);
}
}
return ret;
}
boolean check_Integer (double a) {return Math.ceil(a) == Math.floor(a);}
static class Pair implements Comparable<Pair> {
long f;
long s;
public Pair (long f, long s) {
this.f = f;
this.s = s;
}
@Override
public int compareTo(Pair o) {
if (this.f == o.f) return Long.compare(this.s,o.s);
else return Long.compare(this.f,o.f);
}
} // Comparable on basis of first then second.
static class Triplet {
long f;
long s;
long t;
public Triplet (long f, long s, long t) {
this.f = f;
this.s = s;
this.t = t;
}
} // Implement comparable accordingly.
long mod = 1_000_000_007;
long mod_Multiply(long a,long b) {
return (a*b)%mod;
}
long mod_factorial (long n) {
long fact =1;
for(int i=1; i<=n; i++) {
fact = mod_Multiply(fact,i);
}
return fact%mod;
}
long mod_power(long x, long y) {
long temp;
if (y == 0)
return 1;
temp = mod_power(x, y / 2);
if (y % 2 == 0) return mod_Multiply(temp,temp);
else {
if (y > 0) return mod_Multiply(x,mod_Multiply(temp,temp));
else return (mod_Multiply(temp,temp)) / x;
}
}
void Print_all_subsequence (int i, int[] x) {
if (i >= x.length) {
printIntArray(x);
return;
}
for (int j = i; j < x.length; j++) {
XOR_Swap(i,j,x);
Print_all_subsequence(i+1,x);
XOR_Swap(i,j,x);
}
}
void XOR_Swap (int i, int j, int[] x) {
if (i == j) return;
x[i] = x[i]^x[j];
x[j] = x[i]^x[j];
x[i] = x[i]^x[j];
} // works only for numbers..
boolean[] prime;
void sieveOfEratosthenes(int n) {
prime = new boolean[n + 1];
Arrays.fill(prime,true);
prime[0] = prime[1] = false;
//for (int i = 2; i <= n; i++) prime[i] = true;
for (int p = 2; p * p <= n; p++) {
if (prime[p])
{
// Update all multiples of p
for (int i = p * p; i <= n; i += p)
prime[i] = false;
}
}
} // Gives prime numbers less than equal to n in boolean[] array prime.
}
| Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | d60d06f817a173e448cd53607c7b1052 | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import java.util.*;
import java.io.*;
import java.math.*;
public class Main {
public static void main(String[] args) throws Exception {
FastReader sc = new FastReader();
PrintWriter writer = new PrintWriter(System.out);
int t = sc.nextInt();
while(t-->0) {
int n = sc.nextInt();
int arr[] = new int[n];
Arrays.setAll(arr, i-> sc.nextInt());
long start = 2;
boolean vall = true;
for(int i = 0; i < n; i++) {
if(arr[i]%start == 0) {
vall = false;
break;
}else {
if(start < 1000000000)
start = (start*(i+3)) / gcd(start, i+3);
}
}
if(vall)writer.println("YES");
else writer.println("NO");
//writer.println(start);
}
writer.flush();
writer.close();
}
private static long power (long a, long n, long p) {
long res = 1;
while(n!=0) {
if(n%2==1) {
res=(res*a)%p;
n--;
}else {
a= (a*a)%p;
n/=2;
}
}
return res;
}
private static boolean isPrime(int c) {
for (int i = 2; i*i <= c; i++) {
if(c%i==0)return false;
}
return true;
}
private static int find(int a , int arr[]) {
if(arr[a] != a) return arr[a] = find(arr[a], arr);
return arr[a];
}
private static void union(int a, int b, int arr[]) {
int aa = find(a,arr);
int bb = find(b, arr);
arr[aa] = bb;
}
private static long gcd(long a, long b) {
if(a==0)return b;
return gcd(b%a, a);
}
public static int[] readIntArray(int size, FastReader s) {
int[] array = new int[size];
for (int i = 0; i < size; i++) {
array[i] = s.nextInt();
}
return array;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
class Pair implements Comparable<Pair>{
long a;
long b;
Pair(long a, long b){
this.a = a;
this.b = b;
}
@Override
public boolean equals(Object obj) {
if(this == obj) return true;
if(obj == null || obj.getClass()!= this.getClass()) return false;
Pair pair = (Pair) obj;
return (pair.a == this.a && pair.b == this.b);
}
@Override
public int hashCode()
{
return Objects.hash(a,b);
}
@Override
public int compareTo(Pair o) {
if(this.a == o.a) {
return Long.compare(this.b, o.b);
}else {
return Long.compare(this.a, o.a);
}
}
@Override
public String toString() {
return this.a + " " + this.b;
}
} | Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | 04a7549ae75d53399605aafac93ee4ab | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import java.util.*;
public class Solution{
public static void main(String[] args){
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while (t-->0){
int n=sc.nextInt();
boolean ok = true;
for(int i=1;i<=n;i++){
int x=sc.nextInt();
boolean found = false;
for(int j=i+1;j>=2;j--){
if (x%j!=0){
found=true;
break;
}
}
ok &= found;
}
if(ok)System.out.print("YES\n");
else System.out.print("NO\n");
}
}
} | Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | 3ffff5473aa65d1e6e4635aa97c184f9 | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import java.util.*;
public class Di_Visible_Confussion {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t-->0) {
int n = sc.nextInt();
boolean flag = true;
for(int i=1;i<=n;i++) {
int x = sc.nextInt();
boolean check = false;
for(int j=i+1;j>=2;j--) {
if(x%j!=0) {
check = true;
break;
}
}
flag &= check;
}
if(flag)
System.out.println("YES");
else
System.out.println("NO");
}
}
}
| Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | b72b8294a993a9937adcdc9c555a536e | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import java.io.*;
import java.util.*;
public class test {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pr = new PrintWriter(new OutputStreamWriter(System.out));
long t = Long.parseLong(br.readLine());
while (t-- != 0) {
StringTokenizer st = new StringTokenizer(br.readLine());
long n = Long.parseLong(st.nextToken());
long[] arr = new long[(int) n];
boolean ans = true;
st = new StringTokenizer(br.readLine());
for (int i = 0; i < n; i++) {
arr[i] = Long.parseLong(st.nextToken());
}
for (int i = 0; i <n ; i++) {
boolean notd = false;
for (int j = 2; j <= i+2 ; j++) {
if (arr[i]%j != 0){
notd = true;
break;
}
}
if(!notd)
{
ans = false;
}
}
if (ans){
pr.println("YES");
} else{
pr.println("NO");
}
}
pr.close();
}
} | Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | 4d27a796def0cca737342e10edb4eb8a | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import java.util.*;
public class Hello {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = Integer.parseInt(sc.nextLine());
while (t-- > 0) {
int n = Integer.parseInt(sc.nextLine());
boolean ok = true;
for (int i = 1; i <= n; i++) {
int x = sc.nextInt();
boolean found = false;
for (int j = i + 1; j >= 2; j--) {
if (x % j != 0) {
found = true;
break;
}
}
ok &= found;
}
System.out.println(ok ? "Yes" : "No");
sc.nextLine();
}
}
} | Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output | |
PASSED | ddf39362c182c15e3cd76e67d2de3503 | train_110.jsonl | 1635604500 | YouKn0wWho has an integer sequence $$$a_1, a_2, \ldots, a_n$$$. He will perform the following operation until the sequence becomes empty: select an index $$$i$$$ such that $$$1 \le i \le |a|$$$ and $$$a_i$$$ is not divisible by $$$(i + 1)$$$, and erase this element from the sequence. Here $$$|a|$$$ is the length of sequence $$$a$$$ at the moment of operation. Note that the sequence $$$a$$$ changes and the next operation is performed on this changed sequence.For example, if $$$a=[3,5,4,5]$$$, then he can select $$$i = 2$$$, because $$$a_2 = 5$$$ is not divisible by $$$i+1 = 3$$$. After this operation the sequence is $$$[3,4,5]$$$.Help YouKn0wWho determine if it is possible to erase the whole sequence using the aforementioned operation. | 256 megabytes | import java.util.*;
import java.lang.*;
import java.io.*;
public class Main
{
static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
public static void main (String[] args) throws java.lang.Exception
{
FastReader sc = new FastReader();
out.flush();
int t = sc.nextInt();
while(t-->0){
solve(sc);
}
}
public static void solve(FastReader sc){
int n = sc.nextInt();
boolean ans = true;
for(int i = 0;i<n;++i){
int val = sc.nextInt();
boolean found = false;
for(int j = i+2;j>1;--j){
if(val%j!=0){
found=true;
break;
}
}
if(!found){
ans=false;
}
}
if(ans) out.println("YES"); else out.println("NO") ;
//out.println(ans);
out.flush();
}
/*
int [] arr = new int[n];
for(int i = 0;i<n;++i){
arr[i] = sc.nextInt();
}
*/
static void mysort(int[] arr) {
for(int i=0;i<arr.length;i++) {
int rand = (int) (Math.random() * arr.length);
int loc = arr[rand];
arr[rand] = arr[i];
arr[i] = loc;
}
Arrays.sort(arr);
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
} | Java | ["5\n3\n1 2 3\n1\n2\n2\n7 7\n10\n384836991 191890310 576823355 782177068 404011431 818008580 954291757 160449218 155374934 840594328\n8\n6 69 696 69696 696969 6969696 69696969 696969696"] | 1 second | ["YES\nNO\nYES\nYES\nNO"] | NoteIn the first test case, YouKn0wWho can perform the following operations (the erased elements are underlined): $$$[1, \underline{2}, 3] \rightarrow [\underline{1}, 3] \rightarrow [\underline{3}] \rightarrow [\,].$$$In the second test case, it is impossible to erase the sequence as $$$i$$$ can only be $$$1$$$, and when $$$i=1$$$, $$$a_1 = 2$$$ is divisible by $$$i + 1 = 2$$$. | Java 11 | standard input | [
"constructive algorithms",
"math",
"number theory"
] | 080f29d4e2aa5bb9ee26d882362c8cd7 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$3 \cdot 10^5$$$. | 1,300 | For each test case, print "YES" (without quotes) if it is possible to erase the whole sequence using the aforementioned operation, print "NO" (without quotes) otherwise. You can print each letter in any register (upper or lower). | standard output |
Subsets and Splits