exec_outcome
stringclasses 1
value | code_uid
stringlengths 32
32
| file_name
stringclasses 111
values | prob_desc_created_at
stringlengths 10
10
| prob_desc_description
stringlengths 63
3.8k
| prob_desc_memory_limit
stringclasses 18
values | source_code
stringlengths 117
65.5k
| lang_cluster
stringclasses 1
value | prob_desc_sample_inputs
stringlengths 2
802
| prob_desc_time_limit
stringclasses 27
values | prob_desc_sample_outputs
stringlengths 2
796
| prob_desc_notes
stringlengths 4
3k
⌀ | lang
stringclasses 5
values | prob_desc_input_from
stringclasses 3
values | tags
sequencelengths 0
11
| src_uid
stringlengths 32
32
| prob_desc_input_spec
stringlengths 28
2.37k
⌀ | difficulty
int64 -1
3.5k
⌀ | prob_desc_output_spec
stringlengths 17
1.47k
⌀ | prob_desc_output_to
stringclasses 3
values | hidden_unit_tests
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PASSED | 94e4ad88984ab39912c2e46a250902e6 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.Scanner;
public class xy_sequence
{
public static void main(String[] args)
{
Scanner sc = new Scanner(System.in);
int t =sc.nextInt();
while(t--!=0)
{
long c = 0;
int n= sc.nextInt();
int b = sc.nextInt();
int x = sc.nextInt();
int y = sc.nextInt();
long ans = 0;
while(n--!=0)
{
if (c + x <= b)
c += x;
else
c -= y;
ans += c;
}
System.out.println(ans);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | f3666feb3e9bfe175b4cf08b972d43b8 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
public class Solution {
public static void main(String[] args) throws Exception{
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t-- > 0) {
int n = sc.nextInt();
int b = sc.nextInt();
int x = sc.nextInt();
int y = sc.nextInt();
long ans = 0;
long a = 0;
for(int i=0; i<n+1; i++) {
ans = ans + a;
if(a+x>b) {
a = a - y;
}
else {
a = a + x;
}
}
System.out.println(ans);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 6b585856cb4402830b12fd7940d3ec00 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.Scanner;
public class Main
{
static Scanner scanner = new Scanner(System.in);
public static void main(String[] args) throws Exception
{
int tc = scanner.nextInt();
while (tc > 0)
{
int n = scanner.nextInt();
int limit = scanner.nextInt();
int toAdd = scanner.nextInt();
int toSub = scanner.nextInt();
System.out.println(solve(n, limit, toAdd, toSub));
tc --;
}
}
static long solve(int n,int limit,int toAdd,int toSub)
{
long sum = 0;
int lastElement = 0;
for (int i=1; i<=n; i++)
{
if (lastElement + toAdd <= limit)
lastElement += toAdd;
else
lastElement -= toSub;
sum += lastElement;
}
return sum;
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 17f90143dac039fa3810606b832b2faa | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
public class Main{
public static void main(String[] args){
Scanner in=new Scanner(System.in);
int t=in.nextInt();
while(t--!=0){
int n=in.nextInt(),B=in.nextInt(),x=in.nextInt(),y=in.nextInt();
long cur=0,res=0;
while(n-->0){
if(cur+x<=B) cur+=x;
else cur-=y;
res+=cur;
}
System.out.println(res);
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 00a0e301ae22caecc13dc39e87050bf2 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.lang.*;
import java.util.*;
public class exam {
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0)
{
int n=sc.nextInt();
int B=sc.nextInt();
int x=sc.nextInt();
int y=sc.nextInt();
int arr[]=new int[n+1];
arr[0]=0;
long sum=0;
int b[]=new int[n+1];
for(int i=1;i<=n;i++)
{
int s=arr[i-1]+x;
int q=arr[i-1]-y;
if(s<=B || q<=B)
{
if(s>q && s<=B)
{
arr[i]=arr[i-1]+x;
sum=sum+arr[i];
}
else{
arr[i]=arr[i-1]-y;;
sum=sum+arr[i];
}
}
else{
if(s>q)
{
arr[i]=arr[i-1]+x;
i--;
}
else{
arr[i]=arr[i-1]-y;
i--;
}
}
}
System.out.println(sum);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 74d856e464e50f0ce9faa39fdeb5013e | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
import java.io.*;
public class Solution{
static class FastReader{
BufferedReader br;
StringTokenizer st;
public FastReader(){
br=new BufferedReader(new InputStreamReader(System.in));
}
String next(){
while(st==null || !st.hasMoreTokens()){
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt(){
return Integer.parseInt(next());
}
long nextLong(){
return Long.parseLong(next());
}
double nextDouble(){
return Double.parseDouble(next());
}
String nextLine(){
String str="";
try {
str=br.readLine().trim();
} catch (Exception e) {
e.printStackTrace();
}
return str;
}
}
static class FastWriter {
private final BufferedWriter bw;
public FastWriter() {
this.bw = new BufferedWriter(new OutputStreamWriter(System.out));
}
public void print(Object object) throws IOException {
bw.append("" + object);
}
public void println(Object object) throws IOException {
print(object);
bw.append("\n");
}
public void close() throws IOException {
bw.close();
}
}
static int[] string_to_array(String[] arr){
int[] ans=new int[arr.length];
for(int i=0;i<arr.length;i++){
ans[i]=Integer.parseInt(arr[i]);
}
return ans;
}
public static double distance(int x1,int x2){
return Math.sqrt(x1*x1+x2*x2);
}
public static void main(String[] args) {
try {
FastReader in=new FastReader();
FastWriter out = new FastWriter();
int testCases=in.nextInt();
List<String>answer=new ArrayList<>();
while(testCases-- > 0){
int[] inp=string_to_array(in.nextLine().split(" "));
int n,b,x,y;
n=inp[0];
b=inp[1];
x=inp[2];
y=inp[3];
int[] a=new int[n+1];
a[0]=0;
for(int i=1;i<n+1;i++){
boolean aa=a[i-1]+x<=b;
boolean bb=a[i-1]-y<=b;
if(aa && bb){
a[i]=Math.max(a[i-1]+x,a[i-1]-y);
continue;
}else if(aa){
a[i]=a[i-1]+x;
continue;
}else if(bb){
a[i]=a[i-1]-y;
continue;
}
}
double sum=0;
for(int i=0;i<n+1;i++){
//out.println(a[i]);
sum+=a[i];
}
//out.println(sum);
System.out.printf("%.0f\n",sum);
//answer.add(Integer.parseInt(sum));
}
for(String s:answer){
out.println(s);
}
out.close();
} catch (Exception e) {
return;
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 3c094a96194950eca6433f39bc80d8e5 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes |
import java.util.Scanner;
public class Problem1657B {
public static Scanner scanner = new Scanner(System.in);
public static void main(String[] args) {
int tc = scanner.nextInt();
while (tc-->0){
int n = scanner.nextInt();
int num = scanner.nextInt();
int x = scanner.nextInt();
int y = scanner.nextInt();
long sum =0;
int cnt =0;
while (n-->0){
if (cnt+x<=num){
cnt+=x;
}else {
cnt-=y;
}
sum+=cnt;
}
System.out.println(sum);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 5dc94851ab977659f78c6920e6e6e48a | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.math.BigInteger;
import java.util.Scanner;
public class Main {
public static void main (String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
BigInteger B = new BigInteger(sc.next()), x = new BigInteger(sc.next()), y = new BigInteger(sc.next());
BigInteger sum = new BigInteger("0");
BigInteger last = new BigInteger("0");
for (int i = 0; i < n; ++i) {
last = last.add(x);
if (last.compareTo(B) == 1) {
last = last.subtract(x);
last = last.subtract(y);
}
sum = sum.add(last);
}
System.out.println(sum);
}
sc.close();
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 14d49da911fe16c7feed007ab504de0c | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | //package com.company;
import java.io.DataInputStream;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Random;
public class CodeforcesEducationalRounds_125_B {
@SuppressWarnings("FieldCanBeLocal")
private static Reader in;
private static PrintWriter out;
private static int MinValue = 0;
private static void solve() throws IOException{
//Your Code Goes Here;
long n = in.nextLong(), m = in.nextLong(), o = in.nextLong(), p = in.nextLong();
long total = 0;
long[] arr = new long[(int) n + 1];
arr[0] = MinValue;
for(long i=1;i<=n;i++){
if(arr[(int)i-1] + o <= m){
arr[(int) i] = arr[(int) (i - 1)] + o;
}
else{
arr[(int) i] = arr[(int) (i - 1)] - p;
}
}
for(int i=0;i<=n;i++){
total += arr[(int)i];
}
System.out.print(total + "\n");
}
public static void main(String[] args) throws IOException {
//FastScaner fs = new FastScaner();//There is a class below .. uncomment that class to instantiate an object from that class;
//int t = fs.nextInt();//uncomment this line when you're using the fastscaner class;
in = new Reader();
out = new PrintWriter(new OutputStreamWriter(System.out));
int T = in.nextInt();
while(T-->0){
solve();
}
out.flush();
in.close();
out.close();
}
static final double INF = 1e18;
static final Random random = new Random();
static final int mod = 1_000_000_007;
//Taken From "Second Thread"
static void ruffleSort(int[] a){
int n = a.length;//shuffles, then sort;
for(int i=0; i<n; i++){
int oi = random.nextInt(n), temp = a[oi];
a[oi] = a[i]; a[i] = temp;
}
sort(a);
}
public static boolean primeFinder(int n){
int m = 0;
int flag = 0;
m = n / 2;
if(n == 0 ||n == 1){
return false;
}
else{
for(int i=2;i<=m;i++){
if(n % i == 0){
return false;
}
}
return true;
}
}
private static boolean[] sieveOfEratosthenes(long n) {
boolean prime[] = new boolean[(int)n + 1];
for (int i = 0; i <= n; i++) {
prime[i] = true;
}
for (long p = 2; p * p <= n; p++) {
if (prime[(int)p] == true) {
for (long i = p * p; i <= n; i += p)
prime[(int)i] = false;
}
}
return prime;
}
private static long add(long a, long b){
return (a + b) % mod;
}
private static int gcd(int a, int b) {
if (a == 0 || b == 0)
return 0;
while (b != 0) {
int tmp;
tmp = a % b;
a = b;
b = tmp;
}
return a;
}
private static long lcm(long a, long b){
return (a / gcd((int) a, (int) b) * b);
}
private static void sort(int[] a){
ArrayList<Integer> l = new ArrayList<>();
for(int i:a) l.add(i);
Collections.sort(l);
for(int i=0;i<a.length;i++)a[i] = l.get(i);
}
public static int[][] prefixSum( int n , int m , int[][] arr){
int[][] prefixSum = new int[n+1][m+1];
for( int i = 1 ;i <= n ;i++) {
for( int j = 1 ; j<= m ; j++) {
int toadd = 0;
if( arr[i-1][j-1] == 1) {
toadd = 1;
}
prefixSum[i][j] = toadd + prefixSum[i][j-1] + prefixSum[i-1][j] - prefixSum[i-1][j-1];
}
}
return prefixSum;
}
private static int sumOfArrayElements(int[] arr){
int sum = 0; // Initialize sum ;
//Iterate through all elements and add them to sum;
for(int i=0;i<arr.length;i++){
sum += arr[i];
}
return sum;
}
//call this method when you want to read an integer array;
private static int[] readArray(int len) throws IOException{
int[] a = new int[len];
for(int i=0;i<len;i++)a[i] = in.nextInt();
return a;
}
//call this method when you want to read an Long array;
private static long[] readLongArray(int len) throws IOException{
long[] a = new long[len];
for(int i=0;i<len;i++) a[i] = in.nextLong();
return a;
}
//call this method to print the integer array;
private static void printArray(int[] array){
for(int now : array) out.print(now);out.print(' ');out.close();
}
//call this method to print the long array;
private static void printLongArray(long[] array){
for(long now:array) out.print(now); out.print(' '); out.close();
}
/*Another way of Reading input...collected from a online blog
from here => https://codeforces.com/contest/1625/submission/144334744;*/
static class Reader {
private static final int BUFFER_SIZE = 1 << 16;
private final DataInputStream din;
private final byte[] buffer;
private int bufferPointer, bytesRead;
Reader() {//Constructor;
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException {//To take user input for String values;
final byte[] buf = new byte[1024]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') {
break;
}
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextSign() throws IOException {//For taking the signs like plus or minus ...
byte c = read();
while ('+' != c && '-' != c) {
c = read();
}
return '+' == c ? 0 : 1;
}
private static boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
public int skip() throws IOException {
int b;
// noinspection ALL
while ((b = read()) != -1 && isSpaceChar(b)) {
;
}
return b;
}
public char nc() throws IOException {
return (char) skip();
}
public String next() throws IOException {
int b = skip();
final StringBuilder sb = new StringBuilder();
while (!isSpaceChar(b)) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = read();
}
return sb.toString();
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) {
return -ret;
}
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg) {
return -ret;
}
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg) {
return -ret;
}
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) {
buffer[0] = -1;
}
}
private byte read() throws IOException {
if (bufferPointer == bytesRead) {
fillBuffer();
}
return buffer[bufferPointer++];
}
public void close() throws IOException {
din.close();
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | f1662fdaf9260b8c8cb9c81408ca0d2b | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
import java.math.*;
public class Solution{
public static final Scanner in= new Scanner(System.in);
public static long Solve(int n, Long B, Long x, Long y){
long array[] = new long[n+1];
array[0]=0;
for(int i=1; i<=n; i++){
if(array[i-1]+x<=B)
array[i] = array[i-1]+x;
else
array[i] = array[i-1]-y;
}
long sum = 0;
for(int i=0; i<=n; i++)
sum += array[i];
return sum;
}
public static void main(String[] args){
int cases=in.nextInt();
int n;
long B, x, y;
for(int i=0; i<cases; i++){
n = in.nextInt();
B = in.nextLong();
x = in.nextLong();
y = in.nextLong();
System.out.println(Solve(n, B, x, y));
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 32349a7a469e864ce848eafc11b95fa0 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
import java.math.*;
public class Solution{
public static final Scanner in= new Scanner(System.in);
public static long Solve(int n, Long B, Long x, Long y){
long array[] = new long[n+1];
array[0]=0;
for(int i=1; i<=n; i++){
if(array[i-1]+x<=B)
array[i] = array[i-1]+x;
else
array[i] = array[i-1]-y;
}
long sum = 0;
for(int i=0; i<=n; i++)
sum += array[i];
return sum;
}
public static void main(String[] args){
int cases=in.nextInt();
int n;
long B, x, y;
for(int i=0; i<cases; i++){
n = in.nextInt();
B = in.nextLong();
x = in.nextLong();
y= in.nextLong();
System.out.println(Solve(n, B, x, y));
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 23df45448f9c7d01f142e63f10b83f75 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
public class xysequence{
public static void main(String[] args) throws Exception{
Scanner scn=new Scanner(System.in);
int t=scn.nextInt();
while(t-->0){
int n=scn.nextInt();
int b=scn.nextInt();
int x=scn.nextInt();
int y=scn.nextInt();
int[] a=new int[n+1];
long sigma=0;
for(int i=1;i<a.length;i++){
int optionA=Integer.MIN_VALUE;
int optionB=Integer.MIN_VALUE;
if(a[i-1]+x<=b)
optionA=a[i-1]+x;
if(a[i-1]-y<=b)
optionB=a[i-1]-y;
// System.out.println("option a is: "+optionA);
// System.out.println("option b is: "+optionB);
// System.out.println("we will add to sigma: "+Math.max(optionA,optionB));
sigma+=Math.max(optionA,optionB);
// System.out.println("Sigma updated to "+sigma);
// System.out.println();
a[i]=Math.max(optionA,optionB);
}
// System.out.println();
// System.out.println();
System.out.println(sigma);
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | e3bbbbed12a1b0e73dfd7a09a8a1b396 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes |
// Java is like Alzheimer's, it starts off slow, but eventually, your memory is gone.
import java.io.*;
import java.util.*;
public class Aqueous {
static MyScanner sc = new MyScanner();
static PrintWriter pw = new PrintWriter(System.out);
public static void main(String[] args) {
int t =sc.nextInt();
while(t-->0) {
int n = sc.nextInt();
int b = sc.nextInt();
int x = sc.nextInt();
int y = sc.nextInt();
long num = 0;
long sum = 0;
for(int i=1; i<=n; i++) {
//pw.print(num+" ");
if(num+x>b) {
sum = sum + (num-y);
num = num-y;
}
else {
sum = sum + (num+x);
num += x;
}
}
//pw.println();
pw.println(sum);
}
pw.close();
}
static void ruffleSort(int a[]) {
int n = a.length;
Random r = new Random();
for (int i = 0; i < n; i++) {
int oi = r.nextInt(n);
int temp = a[oi];
a[oi] = a[i];
a[i] = temp;
}
Arrays.sort(a);
}
static void ruffleSort(long a[]) {
int n = a.length;
Random r = new Random();
for (int i = 0; i < n; i++) {
int oi = r.nextInt(n);
long temp = a[oi];
a[oi] = a[i];
a[i] = temp;
}
Arrays.sort(a);
}
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 32417108abb2651a2123dce91ac62681 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.StringTokenizer;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.lang.reflect.Array;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.math.BigInteger;
import java.util.Arrays;
import java.util.Collections;
import java.util.ArrayList;
public class p2
{
BufferedReader br;
StringTokenizer st;
BufferedWriter bw;
public static void main(String[] args)throws Exception
{
new p2().run();
}
void run()throws IOException
{
br = new BufferedReader(new InputStreamReader(System.in));
bw=new BufferedWriter(new OutputStreamWriter(System.out));
solve();
}
void solve() throws IOException
{
short t=ns();
while(t-->0)
{
int n=ni(),b=ni(),x=ni(),y=ni();
int a[]=new int[n+1];
for(int i=0;++i<n+1;)
{
if(a[i-1]+x<=b)
a[i]=a[i-1]+x;
else
a[i]=a[i-1]-y;
}
long sum=0;
for(int i=-1;++i<n+1;)
sum+=a[i];
System.out.println(sum);
}
}
public int gcd(int a, int b)
{
if(a==0)
return b;
else
return gcd(b%a,a);
}
int[] nai(int n) { int a[]=new int[n]; for(int i=-1;++i<n;)a[i]=ni(); return a;}
long[] nal(int n) { long a[]=new long[n]; for(int i=-1;++i<n;)a[i]=nl(); return a;}
char[] nac() {char c[]=nextLine().toCharArray(); return c;}
char [][] nmc(int n) {char c[][]=new char[n][]; for(int i=-1;++i<n;)c[i]=nac(); return c;}
int[][] nmi(int r, int c) {int a[][]=new int[r][c]; for(int i=-1;++i<r;)a[i]=nai(c); return a;}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int ni() { return Integer.parseInt(next()); }
byte nb() { return Byte.parseByte(next()); }
short ns() { return Short.parseShort(next()); }
long nl() { return Long.parseLong(next()); }
double nd() { return Double.parseDouble(next()); }
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
int countDigits(int l) {
if (l >= 1000000000) return 10;
if (l >= 100000000) return 9;
if (l >= 10000000) return 8;
if (l >= 1000000) return 7;
if (l >= 100000) return 6;
if (l >= 10000) return 5;
if (l >= 1000) return 4;
if (l >= 100) return 3;
if (l >= 10) return 2;
return 1;
}
int countDigits(long l) {
if (l >= 1000000000000000000L) return 19;
if (l >= 100000000000000000L) return 18;
if (l >= 10000000000000000L) return 17;
if (l >= 1000000000000000L) return 16;
if (l >= 100000000000000L) return 15;
if (l >= 10000000000000L) return 14;
if (l >= 1000000000000L) return 13;
if (l >= 100000000000L) return 12;
if (l >= 10000000000L) return 11;
if (l >= 1000000000L) return 10;
if (l >= 100000000L) return 9;
if (l >= 10000000L) return 8;
if (l >= 1000000L) return 7;
if (l >= 100000L) return 6;
if (l >= 10000L) return 5;
if (l >= 1000L) return 4;
if (l >= 100L) return 3;
if (l >= 10L) return 2;
return 1;
}
public int[] primeNO(long limit)
{
int size=(int)Math.sqrt(limit)+1;
int size1=size/2;
boolean composite[]=new boolean[size1];
int zz=(int)Math.sqrt(size-1);
for(int i=3;i<=zz;)
{
for(int j=(i*i)/2;j<size1;j+=i)
composite[j]=true;
for(i+=2;composite[i/2];i+=2);
}
int prime[]=new int[3401];
prime[0]=2;
int p=1;
for(int i=1;i<size1;i++)
{
if(!composite[i])
prime[p++]=2*i+1;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////
// System.out.println(p);
////////////////////////////////////////////////////////////////////////////////////////////////////////
prime=Arrays.copyOf(prime, p);
return prime;
}
public static class queue
{
public static class node
{
node next;
int val;
public node(int val)
{
this.val=val;
}
}
node head,tail;
public void add(int val)
{
node a=new node(val);
if(head==null)
{
head=tail=a;
return;
}
tail.next=a;
tail=a;
}
public int remove()
{
int a=head.val;
head=head.next;
if(head==null)
tail=null;
return a;
}
}
public static class stack
{
public static class node
{
node next;
int val;
public node(int val)
{
this.val=val;
}
}
node head;
public void add(int val)
{
node a=new node(val);
a.next=head;
head=a;
}
public int remove()
{
int a=head.val;
head=head.next;
return a;
}
}
public static class data
{
int a,b;
public data(int a, int b)
{
this.a=a;
this.b=b;
}
}
public data[] dataArray(int n)
{
data d[]=new data[n];
for(int i=-1;++i<n;)
d[i]=new data(ni(), ni());
return d;
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | b1cf5fb043f108ffd4d82674f9d0c9f9 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
/**
* B_XY_Sequence
*/
public class B_XY_Sequence {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) {
FastReader Obj = new FastReader();
int T = Obj.nextInt();
for (int i = 0; i < T; i++) {
Long N, B, X, Y;
N = Obj.nextLong();
B = Obj.nextLong();
X = Obj.nextLong();
Y = Obj.nextLong();
Long Sum = (long)0;
Long Current_Sum = (long)0;
for (int j = 1; j <= N; j++) {
if (Current_Sum + X <= B)
Current_Sum += X;
else {
Current_Sum -= Y;
}
Sum += Current_Sum;
}
System.out.println(Sum);
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 402692638dfd25cba0e61a45fc590783 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.Scanner;
public class codeforces {
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
int t=in.nextInt();
for (int i=0; i<t; i++){
int n=in.nextInt();
int B=in.nextInt();
int x=in.nextInt();
int y=in.nextInt();
long sum=0;
int arr[] = new int[n];
arr[0] = 0;
int a=0;
for (int k = 1; k <= n; k++)
{
if (a + x <= B)
{
a+=x;
}
else
{
a-=y;
}
sum+=a;
}
System.out.println(sum);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 29ae9591f086d85aaa683580fb27f933 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
public class Xyz
{
public static void main(String args[])
{
long n,B,a,b,t,i,s=0,j,m=0;
Scanner x=new Scanner(System.in);
t=x.nextInt();
while(t>0)
{
t--;
n=x.nextLong();
B=x.nextLong();
a=x.nextLong();
b=x.nextLong();
if(B>=a*n)
{
for(i=1;i<=n;i++)
{
s=s+a;
m=m+s;
}
System.out.println(m);
s=0;
m=0;
}
else
{
for(j=1;j<=n;j++)
{
if(s+a<=B)
s=s+a;
else
s=s-b;
m=m+s;
}
System.out.println(m);
s=0;
m=0;
}}}}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 5efca75e978abeabddaeb1a6d70afa3c | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
public class Main {
public static void main(String[] args) {
// write your code here
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
for(int i=0;i<t;i++)
{
// HashMap<Integer,Integer> m=new HashMap<>();
int n=sc.nextInt();
int b=sc.nextInt();
int x=sc.nextInt();
int y=sc.nextInt();
long sum=0;
int ans=0;
int[] a=new int[n+1];
a[0]=0;
for(int j=1;j<=n;j++)
{
if(((a[j-1]+x)>(a[j-1]-y)) && (a[j-1]+x)<=b)
{
ans=(a[j-1]+x);
//System.out.println(ans);
}
else
{
ans=(a[j-1]-y);
//System.out.println(ans);
}
a[j]=ans;
/* if(sum+x>sum-y )
{
// System.out.println("True");
if(sum+x<=b)
{
sum+=ans+x;
System.out.println(sum);
ans=sum;
}
else
{
System.out.println("False");
sum=0;
System.out.println(sum);
}
}
/* else if(sum+x<sum-y )
{
&& sum-y<=b
sum+=sum-y;
}
else
{
}
*/
}
for(int j=0;j<=n;j++)
{
sum+=a[j];
}
System.out.println(sum);
//System.out.println(ans);
/* if(a==0 && b==0)
{
System.out.println("0");
}
else if(a==0 || b==0)
{
System.out.println("1");
}
else
{
double x=Math.sqrt((a-0)*(a-0)+(b-0)*(b-0));
if (x == (int)x)
{
System.out.println("1");
}
else
{
System.out.println("2");
}
}
}
*/
}
}
long gcd(long a, long b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 791a544c7454dafd8e21b070734c7c3e | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
import java.io.*;
import java.lang.*;
import java.math.BigInteger;
public class B_XY_Sequence {
static Scanner t = new Scanner(System.in);
public static void kalingaisop() {
int n = t.nextInt();
Long B = t.nextLong();
Long x = t.nextLong();
Long y = t.nextLong();
long gg[] = new long[n + 1];
gg[0] = 0;
for (int kk = 1; kk <= n; kk++) {
if (gg[kk - 1] + x <= B)
gg[kk] = gg[kk - 1] + x;
else
gg[kk] = gg[kk - 1] - y;
}
long sum = 0;
for (int r = 1; r <= n; r++) {
sum += gg[r];
}
System.out.println(sum);
}
public static void main(String[] args) throws java.lang.Exception {
long tcs = t.nextLong();
while (tcs-- > 0) {
kalingaisop();
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 6d43417c5aed513d521a359ee951ebb2 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.*;
public class Solution {
static long res(int n, int b, int x, int y){
long prev = 0;
long curr ;
long sum = 0;
for(int i = 0; i<n; i++){
if(prev + x <= b){
curr = prev + x;
}else{
curr = prev - y;
}
sum += curr;
prev = curr;
}
return sum;
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int t = Integer.parseInt(br.readLine().trim());
while(t-- != 0){
String[] line = br.readLine().trim().split(" ");
int n = Integer.parseInt(line[0]);
int b = Integer.parseInt(line[1]);
int x = Integer.parseInt(line[2]);
int y = Integer.parseInt(line[3]);
long out = res(n, b, x, y);
System.out.println(out);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 0a4fa6cb61fe7c6b9283ce45f4fac532 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
public class xyseqmar22 {
public static void main(String[] args) {
Scanner scn = new Scanner(System.in);
int t = scn.nextInt();
for(int i = 0 ; i < t ; i++){
int n = scn.nextInt();
int B = scn.nextInt();
int x = scn.nextInt();
int y = scn.nextInt();
PossibleSequence(n,B,x,y);
}
}
public static void PossibleSequence(int n , int B , int x , int y){
int[] arr = new int[n+1];
arr[0] = 0;
long sum = 0;
for(int i = 1 ; i < arr.length ; i++){
if(arr[i-1] + x > B){
arr[i] = arr[i-1] - y;
}
else{
arr[i] = arr[i-1] + x ;
}
}
for(int i = 0 ; i < arr.length ; i++){
sum += arr[i];
}
System.out.println(sum);
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 51e7309fc13cb17c6102a7b418d3c9ec | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes |
import java.io.*;
import java.util.*;
public class C {
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
int b = sc.nextInt();
int x = sc.nextInt();
int y = sc.nextInt();
long sum = 0;
int cur = 0;
for (int i = 1; i <= n; i++) {
if (cur + x <= b) {
sum += cur + x;
cur += x;
} else {
sum += cur - y;
cur -= y;
}
}
pw.println(sum);
}
pw.close();
}
// --------------------sTufF ----------------------
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 5ae498aaaf00803cf099c6a84899acf1 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
import java.io.*;
public class Dd {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int T = sc.nextInt();
while(T-->0){
int n = sc.nextInt();
int B =sc.nextInt();
int x = sc.nextInt();
int y = sc.nextInt();
Long ans = 0L;
Long pre = 0L;
for(int i =1 ; i<=n ; i++){
long inc = Math.max(pre+x, pre-y);
long dec = Math.min(pre+x, pre-y);
if(inc <= B){
ans+=inc ;
pre = inc;
}
else{
ans+=dec;
pre= dec;
}
}
System.out.println(ans);
}
sc.close();
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 74202cd8cfc6e114974d19d8170d3807 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.Scanner;
public class XYSequence {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
for (int t = sc.nextInt(); t > 0; t--) {
int n = sc.nextInt();
int B = sc.nextInt();
int x = sc.nextInt();
int y = sc.nextInt();
long sum = 0;
int next = 0;
for (int i = 1; i <= n; i++) {
if (next + x > B) {
next -= y;
} else {
next += x;
}
sum += next;
}
System.out.println(sum);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 0a1a790652f1c3a2a48a02ed6c97b13b | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
public class tp {
static long max_sum(int n,long B,long x,long y)
{
long sum=0;
long a=0;
int i=0;
while(i<=n)
{
sum+=a;
i++;
if(a+x>B)
{
a=a-y;
}
else
{
a=a+x;
}
}
return sum;
}
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
int[] n=new int[t];
long[] B=new long[t];
long[] x=new long[t];
long[] y=new long[t];
for(int i=0;i<t;i++)
{
n[i]=sc.nextInt();
B[i]=sc.nextLong();
x[i]=sc.nextLong();
y[i]=sc.nextLong();
}
for(int i=0;i<t;i++)
{
System.out.println(max_sum(n[i],B[i],x[i],y[i]));
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 3306b70eed76144f7da842865dca3595 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
import java.io.*;
public class a {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String args[]) {
FastReader sc = new FastReader();
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
int B = sc.nextInt();
int x = sc.nextInt();
int y = sc.nextInt();
long sum = 0;
int a = 0;
for (int i = 0; i < n; i++) {
if (a + x <= B) {
a = a + x;
sum = sum + a;
} else {
a = a - y;
sum = sum + a;
}
}
System.out.println(sum);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | d7c84a85df3fff8e44a947347d94cea0 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.io.PrintWriter;
import java.util.Collections;
import java.util.ArrayList;
public class B {
static final FastReader sc = new FastReader();
static final PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) {
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
int b = sc.nextInt();
int x = sc.nextInt();
int y = sc.nextInt();
int[] a = new int[n + 1];
a[0] = 0;
for (int i = 1; i <= n; i++) {
if (a[i - 1] + x > b)
a[i] = a[i - 1] - y;
else
a[i] = a[i - 1] + x;
}
long s = 0;
for (int i = 1; i <= n; i++) {
s += 1L * a[i];
}
out.println(s);
}
out.close();
}
static int[] sort(int[] arr) {
ArrayList<Integer> a = new ArrayList<>();
for (int i : arr) {
a.add(i);
}
Collections.sort(a);
for (int i = 0; i < a.size(); i++) {
arr[i] = a.get(i);
}
return arr;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 66983823f1debd7403cc1d60305eb73b | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
import java.util.Map.Entry;
import java.math.*;
public class Simple{
final static int MAX = 10000003;
static long mod = 998244353 ;
static int[] prime = new int[MAX];
public static long gcd(long a, long b) {
if (b == 0) return a;
return gcd(b, a%b);
}
public static long lcm(long[] a, long n) {
long res = 1; int i=0;
for (i = 0; i < n; i++) {
res = ((res*a[i])/gcd(res, a[i]));
}
return res;
}
public static class Pair{
long x;
long y;
public Pair(long x,long y){
this.x = x;
this.y = y;
}
}
static Pair reduceFraction(long x, long y)
{
long d;
d = gcd(x, y);
x = x / d;
y = y / d;
return new Pair(x, y);
}
public static class Tuple{
long node;
Pair weight;
public Tuple(long x,long y,long z){
this.node = x;
this.weight = new Pair(y, z);
}
}
// Function to return a^n
public static long power(long a, long n)
{
if(n == 0)
return 1;
long p = power(a, n / 2) % mod;
p = (p * p) % mod;
if((n & 1) > 0)
p = (p * a) % mod;
return p;
}
// Function to find the smallest prime
// factors of numbers upto MAX
public static void sieve()
{
prime[0] = 1;
prime[1] = 1;
for(int i = 2; i < MAX; i++)
{
if(prime[i] == 0)
{
for(int j = i * 2;
j < MAX; j += i)
{
if(prime[j] == 0)
{
prime[j] = i;
}
}
prime[i] = i;
}
}
}
public static long lcmModuloM(long[] arr, int n)
{
HashMap<Integer,
Integer> maxMap = new HashMap<>();
for(int i = 0; i < n; i++)
{
HashMap<Integer,
Integer> temp = new HashMap<>();
long num = arr[i];
// Temp stores mapping of prime
// factor to its power for the
// current element
while(num > 1)
{
// Factor is the smallest prime
// factor of num
int factor = prime[(int)num];
if(temp.containsKey(factor))
temp.put(factor, temp.get(factor) + 1);
else
temp.put(factor, 1);
// Factor is the smallest prime
// factor of num
num = num / factor;
}
for(Map.Entry<Integer,
Integer> m : temp.entrySet())
{
if(maxMap.containsKey(m.getKey()))
{
int maxPower = Math.max(m.getValue(),
maxMap.get(
m.getKey()));
maxMap.put(m.getKey(), maxPower);
}
else
{
maxMap.put(m.getKey(),m.getValue());
}
}
}
long ans = 1;
for(Map.Entry<Integer,
Integer> m : maxMap.entrySet())
{
// LCM is product of primes to their
// highest powers modulo M
ans = (ans * power(m.getKey(),
m.getValue()) % mod);
}
return ans;
}
public static void main(String args[]){
//System.out.println("Hello Java");
Scanner s = new Scanner(System.in);
int t = s.nextInt();
for(int t1 = 1;t1<=t;t1++){
int n = s.nextInt();
long b = s.nextInt();
long x = s.nextInt();
long y = s.nextInt();
// if(x<y){
// long temp = x;
// x= y;
// y= temp;
// }
long ans =0;
long temp =0;
for(int i=0;i<n;i++){
if(temp+x<=b){
temp+=x;
}
else{
temp-=y;
}
ans+=temp;
}
// cx + by
// long lo = 0;
// long hi = n;
// long ans = Long.MIN_VALUE;
// while(lo<=hi){
// long mid = (lo+hi)/2;
// long max = mid*x + (n-mid)*y;
// long temp =0;
// long sum =0;
// if(max<=b){
// for(int i=0;i<(n-mid);i++){
// temp+=y;
// sum+=temp;
// }
// for(int i=0;i<mid;i++){
// temp+=x;
// sum+=temp;
// }
// ans = Math.max(ans,sum);
// lo = mid+1;
// }
// else{
// hi = mid-1;
// }
// }
System.out.println(ans);
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 48b3e6c5c64c90c816538d8e7ea227f4 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes |
import java.util.Scanner;
public class practice_359 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t-->0){
int n = sc.nextInt();
int b = sc.nextInt();
int x = sc.nextInt();
int y = sc.nextInt();
int g =0;
long sum=0;
for(int i=0;i<n;i++){
if(g+x<=b){
int a =g+x;
sum+=a;
g=a;
}
else{
int c=g-y;
sum+=c;
g=c;
}
}
System.out.println(sum);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | fa93e07b48152bc4a5c76adeee633e7e | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.*;
import java.util.Arrays;
public class Sets {
public static void main(String[] args) throws NumberFormatException, IOException {
BufferedReader br = new BufferedReader (new InputStreamReader (System.in));
int numberSets = Integer.parseInt(br.readLine());
for (int nos = 0; nos < numberSets; nos++) {
int [] data = Arrays.stream(br.readLine().split(" ")).mapToInt(Integer::parseInt).toArray();
int size = data[0];
int B = data [1];
int x = data [2];
int y = data [3];
int a = 0;
long sum = 0;
for (int i = 0; i < size; i++) {
if (a + x > B) {
a = a-y;
} else {
a = a+x;
}
sum+=a;
}
System.out.println(sum);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 76e66b030d3bdd7b4b5400c37b9af921 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.Scanner;
public class discrete {
public static void main(String[] args) {
Scanner input= new Scanner(System.in);
int t,n,B,x,y;
t=input.nextInt();
int ai=0;
long sum=0;
int aXi=0;
int aYi=0;
for(int i=0;i<t;i++) {
sum=0;
ai=0;
n=input.nextInt();
B=input.nextInt();
x=input.nextInt();
y=input.nextInt();
for(int j=1;j<=n;j++) {
if(ai<=B) {
aXi=ai+x;
aYi=ai-y;
if(aXi<=B) ai=aXi;
else ai=aYi;
}
sum+=ai;
}
System.out.println(sum);
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | b7abc38544dfa47fc6c840b58c02bfca | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.Scanner;
public class code {
/* public static void print(int[] arr){
int n = arr.length;
for(int i = 0;i<n;i++){
System.out.print(arr[i]+" ");
}
}*/
public static void main(String args[]){
Scanner s = new Scanner(System.in);
int t = s.nextInt();
while(t-->0){
int n = s.nextInt();
int B = s.nextInt();
int x = s.nextInt();
int y = s.nextInt();
int[] arr = new int[n+1];
arr[0] = 0;
long sum = 0;
for(int i = 1;i<n+1;i++){
if(arr[i-1]+x <=B){
arr[i] = arr[i-1]+x;
sum+=arr[i];
}else{
arr[i] = arr[i-1 ]-y;
sum+=arr[i];
}
}
//print(arr);
System.out.println(sum);
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 98afd816c7fef8424eb7512280bc739e | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.Scanner;
public class discrete {
public static void main(String[] args) {
Scanner input= new Scanner(System.in);
int t,n,B,x,y;
t=input.nextInt();
int ai=0;
long sum=0;
int aXi=0;
int aYi=0;
for(int i=0;i<t;i++) {
sum=0;
ai=0;
n=input.nextInt();
B=input.nextInt();
x=input.nextInt();
y=input.nextInt();
for(int j=1;j<=n;j++) {
if(ai<=B) {
aXi=ai+x;
aYi=ai-y;
if(aXi<=B) ai=aXi;
else ai=aYi;
}
sum+=ai;
}
System.out.println(sum);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 45fa19ec7be1c2914c462ed269fdb4a5 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
public class Main {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while (t-- > 0) {
long n = sc.nextLong();
long B = sc.nextLong();
long x = sc.nextLong();
long y = sc.nextLong();
ArrayList<Integer> a= new ArrayList();
long sum=0;
a.add(0);
for(int i=1;i<=n;i++) {
int temp=(int) (a.get(i-1)+x);
if(temp<=B) {
a.add(temp);
}else {
long temp2=(long) a.get(i-1)-y;
a.add((int) temp2);
}
sum+=(long) a.get(i);
}
System.out.println(sum);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 3b54115c868f04697aebd99c9942e29d | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | //Code By KB.
import java.beans.Visibility;
import java.io.*;
import java.lang.annotation.Target;
import java.lang.reflect.Array;
import java.nio.channels.AsynchronousCloseException;
import java.security.KeyStore.Entry;
import java.util.*;
import java.util.logging.*;
import java.io.*;
import java.util.logging.*;
import java.util.regex.*;
import javax.management.ValueExp;
import javax.print.DocFlavor.INPUT_STREAM;
import javax.swing.plaf.basic.BasicBorders.SplitPaneBorder;
import javax.swing.text.AbstractDocument.LeafElement;
import javax.xml.validation.Validator;
public class Codeforces {
public static void main(String[] args) {
FlashFastReader in = new FlashFastReader(System.in);
try(PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));)
{
new Codeforces().solution(in, out);
} catch (Exception e) {
System.out.println(e.getStackTrace());
}
}
public void solution(FlashFastReader in, PrintWriter out)
{
try {
int t = in.nextInt();
while (t-->0) {
int n =in.nextInt();
long B =in.nextLong();
long x = in.nextLong();
long y = in.nextLong();
long a []= new long[n+1];
for (int i = 1; i <=n; i++) {
if((a[i-1]+x)>B){
a[i]=a[i-1]-y;
} else {
a[i] = a[i-1]+x;
}
}
long s = 0;
for (int i = 0; i < a.length; i++) {
s+=a[i];
}
out.println(s);
}
} catch (Exception exception) {
out.println(exception);
}
}
public int countSquares(int[][] matrix) {
int dp [][] = new int [matrix.length+1][matrix[0].length+1];
for (int i = 1; i <=matrix.length; i++) {
for (int j = 1; j <=matrix[0].length; j++) {
if (matrix[i][j]==1) {
if (i>=1&&j>=1) {
dp[i][j] =1+ Math.min(dp[i-1][j], Math.min(dp[i-1][j-1], dp[i][j-1]) );
}
}
x+=dp[i][j];
}
}
return x;
}
HashMap<Integer, Integer> map = new HashMap<>();
public int totalNQueens(int n) {
if (n==1) {
return 1;
}
if (n==2||n==3) {
return 0;
}
dfsNqueens( map , 0 , n );
return x;
}
public void dfsNqueens( HashMap<Integer, Integer>map , int col , int n ) {
if (col == n) {
x++;
return;
}
for (int i = 0; i < n; i++) {
map.put(col, i);
boolean f = true;
for (int j = 0; j < n; j++) {
if (map.containsKey(j)) {
if (map.get(j)==i||Math.abs(col - j)==Math.abs(map.get(j)-i) ) {
f = false;
}
}
}
if (f) {
dfsNqueens(map, col+1, n);
}
}
}
public int[] minOperations(String boxes) {
int a [] = new int[boxes.length()];
for (int i = 0; i < boxes.length(); i++) {
StringBuilder sb = new StringBuilder(boxes);
int x = 0;
for (int j = 0; j < sb.length(); j++) {
if (sb.indexOf("1")<0) {
break;
}
x+=Math.abs(i - sb.indexOf("1"));
sb.setCharAt(sb.indexOf("1"), '0');
}
a[i] = x;
}
return a;
}
public List<List<Integer>> subsets(int[] nums) {
List<Integer> curr = new ArrayList<>();
subsetsGen(0, nums , curr);
return list;
}
public void subsetsGen(int j ,int[] n , List<Integer>curr) {
list.add(curr);
for (int i = j; i < n.length; i++) {
curr.add(n[i]);
subsetsGen(j+1, n, curr);
curr.remove(curr.size()-1);
}
}
boolean visited[]= new boolean[1000];
public int findCircleNum(int[][] isConnected) {
for (int i = 0; i < isConnected.length; i++) {
if (visited[i]!=true) {
x++;
dfsFindProvinces( i , isConnected );
}
}
return x;
}
public void dfsFindProvinces( int i ,int [][]isConnected ) {
visited[i]=true;
for (int j = 0; j < isConnected.length; j++) {
if (isConnected[i][j]==1&&visited[j]!=true) {
dfsFindProvinces(j, isConnected);
}
}
}
public int[] canSeePersonsCount(int[] heights) {
int ans [] = new int[heights.length];
Stack<Integer> stck = new Stack<>();
for (int i = 0; i < heights.length; i++) {
while(!stck.isEmpty()&&heights[stck.peek()]<heights[i]) {
ans[stck.pop()]++;
}
if (!stck.isEmpty()) {
ans[stck.peek()]++;
}
stck.push(i);
}
return ans;
}
public int pathSum(TreeNode root, int targetSum) {
List<Integer> path = new ArrayList<>();
dsfPathSum(root, targetSum , 0 ,path);
pathSum(root.left, targetSum);
pathSum(root.right, targetSum);
for (List<Integer> p : list) {
for (int i = 0; i < p.size() ; i++) {
System.out.print(p.get(i)+" ");
}
System.out.println();
}
return list.size();
}
public void dsfPathSum(TreeNode root , int t , long sum , List<Integer>path ) {
if (root==null) {
return;
}
sum+=root.val ;
path.add(root.val);
if (sum==t) {
list.add(path);
}
dsfPathSum(root.left, t, sum , path);
dsfPathSum(root.right, t, sum , path);
}
public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
ListNode l = new ListNode();
int a = 0;
int b =0;
l1 = reverseList(l1);
l2 = reverseList(l2);
while (l1!=null) {
a=a*10+l1.val;
l1=l1.next;
}
while (l2!=null) {
b=b*10+l2.val;
l2=l2.next;
}
a=a+b;
ListNode head = null;
while (a!=0) {
int r = a%10;
if(l==null) {
head= new ListNode(r);
l=head;
}else {
l.next = new ListNode(r);
l= l.next;
}
a/=10;
}
return head;
}
public ListNode reverseList(ListNode head) {
if(head==null || head.next==null)
return head;
ListNode nextNode=head.next;
ListNode newHead=reverseList(nextNode);
nextNode.next=head;
head.next=null;
return newHead;
}
int x=0;
public int uniquePathsIII(int[][] grid) {
int zeros = 0;
int sx=0;
int sy =0;
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[0].length; j++) {
if (grid[i][j]==0) {
zeros++;
} else if (grid[i][j]==1) {
sx=i;
sy=j;
}
}
}
dfsUniquePaths(zeros , sx , sy , grid);
return x;
}
public void dfsUniquePaths(int zeros ,int i ,int j , int g[][]) {
if (i<0||i>=g.length||j>=g[0].length||j<0||g[i][j]<0) {
System.out.println(i+" "+j);
return;
}
if (g[i][j]==2) {
if(zeros==0)
x++;
return;
}
g[i][j]=-2;
zeros--;
dfsUniquePaths(zeros, i+1, j, g);
dfsUniquePaths(zeros, i-1, j, g);
dfsUniquePaths(zeros, i, j+1, g);
dfsUniquePaths(zeros, i, j-1, g);
g[i][j]=0;
zeros++;
}
public TreeNode addOneRow(TreeNode root, int val, int depth) {
if (depth==1) {
TreeNode t = new TreeNode(val);
t.left=root;
return t;
}
dfsAddOneRow(root , 1 , val , depth);
return root;
}
public void dfsAddOneRow(TreeNode root , int currD , int val , int depth) {
if (root==null) {
return ;
}
if (currD==depth) {
TreeNode l = root.left;
root.left = new TreeNode(val);
root.left.left = l;
TreeNode r = root.right;
root.right = new TreeNode(val);
root.right.right = r;
}
currD++;
dfsAddOneRow(root.left, currD, val, depth);
dfsAddOneRow(root.right, currD, val, depth);
}
public List<List<Integer>> threeSum(int[] nums) {
int n = nums.length;
int sum =0;
HashSet<List<Integer>> h = new HashSet<List<Integer>>();
for (int i = 0; i < nums.length; i++) {
sum=nums[i];
for (int j = i+1; j < nums.length; j++) {
sum+=nums[j];
int k =j;
n = nums.length;
while (k<n) {
int mid = (k+n)/2;
if ((sum+nums[mid])==0) {
HashSet<Integer> m = new HashSet<>();
m.add(nums[i]);
m.add(nums[j]);
m.add(nums[mid]);
if (m.size()==3) {
List<Integer>x = new ArrayList<>();
x.add(nums[i]);
x.add(nums[j]);
x.add( nums[mid]);
h.add(x);
}
} else if ((sum+nums[mid])>0) {
n=mid;
} else {
k=mid;
}
}
}
}
return list;
}
public int uniquePaths(int m, int n) {
int dp[][]= new int [m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if(i==0&&j==0) {
dp[i][j]=1;
} else if (i==0) {
dp[i][j]=dp[i][j]+dp[i][j-1];
} else if (j==0) {
dp[i][j]=dp[i][j]+dp[i-1][j];
} else {
dp[i][j]+=dp[i][j-1]+dp[i-1][j];
}
}
}
return dp[m-1][n-1];
}
public int maxProfit(int[] prices) {
int p = -1;
return p ;
}
public int trap(int[] height) {
int n = height.length;
int left[] = new int [n];
int right[] = new int [n];
left[0] = height[0];
for (int i = 1; i <n; i++) {
left[i] = Math.max(height[i], left[i-1]);
}
right[n-1]=height[n-1];
for (int i = n-2; i>=0 ; i--) {
right[i] = Math.max(height[i], right[i+1]);
}
for (int i = 1; i < right.length-1; i++) {
int s =Math.min(left[i] , right[i])-height[i];
if (s>0) {
x+=s;
}
}
return x;
}
public int maxProduct(int[] nums) {
int maxSoFar = Integer.MIN_VALUE;
int maxTillEnd = 0;
for (int i = 0; i < nums.length; i++) {
maxTillEnd*=nums[i];
if (maxSoFar<maxTillEnd) {
maxSoFar=maxTillEnd;
}
if (maxTillEnd<=0) {
maxTillEnd=1;
}
}
return maxSoFar;
}
public int maximumScore(int[] nums, int[] multipliers) {
int n = multipliers.length;
int dp[] = new int[n+1];
for (int i = 1; i < multipliers.length; i++) {
for (int j = 1; j < nums.length; j++) {
dp[i] = Math.max(dp[j-1], multipliers[i-1]*nums[i-1]);
}
}
return dp[n];
}
public int islandPerimeter(int[][] grid) {
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[0].length; j++) {
if(grid[i][j]==1){
dfsIslandPerimeter(i , j , grid);
}
}
}
return x;
}
public void dfsIslandPerimeter(int i , int j , int[][] grid) {
if(i<0||i>=grid.length||j<0||j>grid[0].length) {
x++;
return;
}
if(grid[i][j]==0) {
x++;
return;
}
if(grid[i][j]==1) {
return;
}
dfsIslandPerimeter(i+1, j, grid);
dfsIslandPerimeter(i-1, j, grid);
dfsIslandPerimeter(i, j+1, grid);
dfsIslandPerimeter(i, j-1, grid);
}
public int[] findOriginalArray(int[] changed) {
int n =changed.length;
int m = n/2;
int a[] = new int[m];
if (n<2) {
return new int[]{};
}
if (n%2!=0) {
return new int[]{};
}
TreeMap<Integer , Integer> map = new TreeMap<>();
for (int i = 0; i < changed.length; i++) {
map.put(changed[i], map.getOrDefault(changed[i] ,0)+1);
}
int j =0;
for (Map.Entry<Integer , Integer> e : map.entrySet()) {
if (map.containsKey(e.getKey()*2)&&map.get(e.getKey()*2)>=1&&map.get(e.getKey())>=1) {
map.put(e.getKey(), map.get(e.getKey()) -1);
if(j==n-1)
break;
a[j++] = e.getKey();
}
}
return a;
}
public int jump(int[] nums) {
int n =nums.length;
int jumps =1;
int i =0;
int j =0;
while (i<n) {
int max =0;
for (j=i+1 ;j<=i+nums[i];j++) {
max = Math.max(max , nums[j]+j);
}
jumps++;
i=max;
}
return jumps;
}
static void sort(int[] arr) {
if (arr.length < 2) return;
int mid = arr.length / 2;
int[] left_half = new int[mid];
int[] right_half = new int[arr.length - mid];
// copying the elements of array into left_half
for (int i = 0; i < mid; i++) {
left_half[i] = arr[i];
}
// copying the elements of array into right_half
for (int i = mid; i < arr.length; i++) {
right_half[i - mid] = arr[i];
}
sort(left_half);
sort(right_half);
merge(arr, left_half, right_half);
}
static void merge(int[] arr, int[] left_half, int[] right_half) {
int i = 0, j = 0, k = 0;
while (i < left_half.length && j < right_half.length) {
if (left_half[i] < right_half[j]) {
arr[k++] = left_half[i++];
}
else {
arr[k++] = right_half[j++];
}
}
while (i < left_half.length) {
arr[k++] = left_half[i++];
}
while (j < right_half.length) {
arr[k++] = right_half[j++];
}
}
public int minCostClimbingStairs(int[] cost) {
int n = cost.length;
int dp[] = new int[n+1];
dp[1] = cost[0];
dp[2] = cost[1];
for (int i = 3; i <=n; i++) {
dp[i]=cost[i-1]+Math.min(dp[i-1], dp[i-2]);
}
return dp[n];
}
TreeNode newAns =null;
public TreeNode removeLeafNodes(TreeNode root, int target) {
newAns = root;
dfsRemoveNode(newAns , target);
return newAns;
}
public void dfsRemoveNode(TreeNode root , int t) {
if (root==null) {
return;
}
if (root.val==t) {
if (root.left!=null) {
root=root.left;
}else if (root.right!=null){
root=root.right;
} else {
root=null;
}
}
dfsRemoveNode(root.left, t);
dfsRemoveNode(root.right, t);
}
public int maxProfit(int k, int[] prices) {
int n = prices.length;
if (n <= 1)
return 0;
if (k >= n/2) {
return stocks(prices, n);
}
int[][] dp = new int[k+1][n];
for (int i = 1; i <=k; i++) {
int c= dp[i-1][0] - prices[0];
for (int j = 1; j < n; j++) {
dp[i][j] = Math.max(dp[i][j-1], prices[j] + c);
c = Math.max(c, dp[i-1][j] - prices[j]);
}
}
return dp[k][n-1];
}
public int stocks(int [] prices , int n ) {
int maxPro = 0;
for (int i = 1; i < n; i++) {
if (prices[i] > prices[i-1])
maxPro += prices[i] - prices[i-1];
}
return maxPro;
}
public List<List<Integer>> combine(int n, int k) {
List<Integer> x = new ArrayList<>();
combinations( n , k , 1 ,x);
return list;
}
public void combinations(int n , int k ,int startPos , List<Integer> x) {
if (k==x.size()) {
list.add(new ArrayList<>(x));
//x=new ArrayList<>();
return;
}
for (int i = startPos; i <=n; i++) {
x.add(i);
combinations(n, k, i+1, x);
x.remove(x.size()-1);
}
}
List<List<Integer>> list = new ArrayList<>();
public List<List<Integer>> permute(int[] a) {
List<Integer> x = new ArrayList<>();
permutations(a , 0 ,a.length ,x );
return list ;
}
public void permutations(int a[] , int startPos , int l , List<Integer>x) {
if (l==x.size()) {
list.add(new ArrayList<>(x));
//x=new ArrayList<>();
}
for (int i = 0; i <=l; i++) {
if (!x.contains(a[i])) {
x.add(a[i]);
permutations(a, i, l, x);
x.remove(x.size()-1);
}
}
}
List<String> str = new ArrayList<>();
public List<String> letterCasePermutation(String s) {
casePermutations(s , 0 , s.length() , "" );
return str;
}
public void casePermutations(String s ,int i , int l , String curr) {
if (curr.length()==l) {
str.add(curr);
return;
}
char b = s.charAt(i);
curr+=b;
casePermutations(s, i+1, l, curr);
curr = new StringBuilder(curr).deleteCharAt(curr.length()-1).toString();
if (Character.isAlphabetic(b)&&Character.isLowerCase(b)) {
curr+=Character.toUpperCase(b);
casePermutations(s, i+1, l, curr);
curr = new StringBuilder(curr).deleteCharAt(curr.length()-1).toString();
} else if (Character.isAlphabetic(b)) {
curr+=Character.toLowerCase(b);
casePermutations(s, i+1, l, curr);
curr = new StringBuilder(curr).deleteCharAt(curr.length()-1).toString();
}
}
TreeNode ans= null;
public TreeNode lcaDeepestLeaves(TreeNode root) {
dfslcaDeepestLeaves(root , 0 );
return ans;
}
public void dfslcaDeepestLeaves(TreeNode root , int level) {
if (root==null) {
return;
}
if (depth(root.left)==depth(root.right)) {
ans= root;
return;
} else if (depth(root.left)>depth(root.right)){
dfslcaDeepestLeaves(root.left, level+1);
} else {
dfslcaDeepestLeaves(root.right, level+1);
}
}
public int depth(TreeNode root) {
if (root==null) {
return 0;
}
return 1+Math.max(depth(root.left), depth(root.right));
}
TreeMap<Integer , Integer> m = new TreeMap<>();
public int maxLevelSum(TreeNode root) {
int maxlevel =0;
int mx = Integer.MIN_VALUE;
dfsMaxLevelSum(root , 0);
for (Map.Entry<Integer,Integer> e : m.entrySet()) {
if (e.getValue()>mx) {
mx=e.getValue();
maxlevel=e.getKey()+1;
}
}
return maxlevel;
}
public void dfsMaxLevelSum(TreeNode root , int currLevel) {
if (root==null) {
return;
}
if (!m.containsKey(currLevel)) {
m.put(currLevel, root.val);
} else {
m.put(currLevel, m.get(currLevel)+root.val);
}
dfsMaxLevelSum(root.left, currLevel+1);
dfsMaxLevelSum(root.right, currLevel+1);
}
int teampPerf = 0;
int teampSpeed = 0;
public int maxPerformance(int n, int[] speed, int[] efficiency, int k) {
int [][] map = new int[efficiency.length][2];
for (int i = 0; i < efficiency.length; i++) {
map[i][0] = efficiency[i];
map[i][1] = speed[i];
}
Arrays.sort(map , (e1 , e2 )-> (e2[0] - e1[0]));
PriorityQueue<Integer> pq = new PriorityQueue<>();
calmax(map , speed , efficiency , pq , k);
return teampPerf ;
}
public void calmax(int [][]map , int s[] , int e[] , PriorityQueue<Integer>pq , int k) {
for (int i = 0 ; i<n ; i++) {
if (pq.size()==k) {
int lowestSpeed =pq.remove();
teampSpeed-=lowestSpeed;
}
pq.add(map[i][1]);
teampSpeed+=map[i][1];
teampPerf=Math.max(teampPerf, teampSpeed*map[i][1]);
}
}
int maxRob = 0;
public int rob(int[] nums) {
int one = 0;
int two = 0;
for (int i = 0; i < nums.length; i++) {
if (i%2==0) {
one+=nums[i];
} else {
two+=nums[i];
}
}
return Math.max(one, two);
}
public int numberOfWeakCharacters(int[][] properties) {
int c =0;
Arrays.sort(properties, (a, b) -> (b[0] == a[0]) ? (a[1] - b[1]) : b[0] - a[0]);
PriorityQueue<Integer> pq = new PriorityQueue<>(Collections.reverseOrder());
pq.offer(0);
for (int i = 0; i < properties.length; i++) {
if (properties[i][1]<pq.peek()) {
c++;
}
pq.offer(properties[i][1]);
}
return c;
}
public boolean canFinish(int numCourses, int[][] prerequisites) {
boolean f = true ;
TreeMap <Integer,Integer> map = new TreeMap<>();
for (int i = 0; i < prerequisites.length; i++) {
if (map.get(prerequisites[i][1])!=null) {
return false;
}
map.put(prerequisites[i][0], prerequisites[i][1]);
}
return f;
}
int n =0;
public int dfsB(int i , int j , char [][]b , char [][]res) {
if (i<0||i>=b.length|j<0||j>=b[0].length||res[i][j]=='.') {
return 0;
}
if (res[i][j]=='X') {
return 1+dfsB(i+1, j, b, res)+dfsB(i, j+1, b, res);
}
return 0;
}
List<Integer> l = new ArrayList<>();
public List<Integer> rightSideView(TreeNode root) {
return dfsRightSideView(root);
}
public List<Integer> dfsRightSideView(TreeNode root) {
if (root!=null) {
l.add(root.val);
}
if (root==null) {
return l;
}
if (root.right==null) {
l.add(root.right.val);
}
dfsRightSideView(root.right);
return l;
}
public void dfsSumNumber(TreeNode root ,int sum , int l ) {
l=l*10 +root.val;
if (root.left!=null) {
dfsSumNumber(root.left,sum , l);
}
if (root.right!=null) {
dfsSumNumber(root.right , sum, l);
}
if (root.left==null && root.right==null) {
sum+=l;
}
// r=l*10+root.val;
l-=root.val;
l/=10;
}
//BFS SOLN
public int[][] updateMatrix(int[][] mat) {
int m =mat.length;
int n = mat[0].length;
Queue<int[]> q = new LinkedList<>();
for (int i = 0; i < mat.length; i++) {
for (int j = 0; j < mat[0].length; j++) {
if (mat[i][j]==0) {
q.offer(new int[] { i , j});
} else {
mat[i][j] = Integer.MAX_VALUE;
}
}
}
int dir[][] = {{1 , 0} , {-1 , 0} , {0 , 1} , { 0 , -1}};
while (!q.isEmpty()) {
int zeroPos[] = q.poll();
for (int[] d : dir) {
int r = zeroPos[0]+d[0];
int c = zeroPos[1]+d[1];
if (r<0||r>=mat.length || c<0||c>=mat[0].length||mat[r][c]<=mat[zeroPos[0]][zeroPos[1]]+1) {
continue;
}
q.add(new int[]{r,c});
mat[r][c] = mat[zeroPos[0]][zeroPos[1]]+1;
}
}
return mat;
}
// DFS SOLN
// public int[][] updateMatrix(int[][] mat) {
// int res [][] = new int[mat.length][mat[0].length];
// for (int i = 0; i < mat.length; i++) {
// for (int j = 0; j < mat.length; j++) {
// if (mat[i][j]==0) {
// Dis0(i, j, mat , res, 0);
// }
// }
// }
// return res;
// }
// public void Dis0(int i , int j , int [][]mat, int res[][] , int dist) {
// if (i<0||i>=mat.length||j>=mat[0].length||j<0) {
// return ;
// }
// if (dist==0 ||mat[i][j]==1&&(res[i][j]==0||res[i][j]>dist)) {
// res[i][j]= dist;
// Dis0(i+1, j, mat, res, dist+1);
// Dis0(i-1, j, mat, res, dist+1);
// Dis0(i, j+1, mat, res, dist+1);
// Dis0(i, j-1, mat, res, dist+1);
// }
// // return dist;
// }
public int maxDepth(TreeNode root) {
if (root==null) {
return 0;
}
return maxD(root , 0);
}
public int maxD(TreeNode root , int d ) {
if (root==null) {
return d;
}
return Math.max(maxD(root.left, d+1), maxD(root.right, d+1));
}
public int reverse(int x) {
int sign=x>0?1:-1;
//x=Math.abs(x);
long s= 0;
int r= 0;
int n=x;
while (n!=0) {
r=n%10;
s=s*10+r;
n/=10;
if (s>Integer.MAX_VALUE||s<Integer.MIN_VALUE) {
return 0;
}
}
return (int)s*sign;
}
public boolean checkInclusion(String s1, String s2) {
boolean f = false ;
if (s1.length()>s2.length()) {
return false;
}
for (int i = 0; i < s2.length(); i++) {
HashMap<Character ,Integer> c1 = new HashMap<>();
HashMap<Character ,Integer> c2 = new HashMap<>();
for (int j = 0; j < s1.length(); j++) {
char ch2 = s2.charAt(i+j);
char ch1 = s1.charAt(j);
// if (c1.get(key)) {
// }
}
}
return f;
}
public class ListNode {
int val;
ListNode next;
ListNode() {}
ListNode(int val) { this.val = val; }
ListNode(int val, ListNode next) { this.val = val; this.next = next; }
}
public ListNode middleNode(ListNode head) {
ListNode mid = head;
ListNode last = head;
int k =0;
while (last.next!=null&&last.next.next!=null) {
k++;
mid= mid.next;
last = last.next.next;
}
if (getLen(head)%2==0) {
return mid.next;
}
return mid;
}
public int getLen(ListNode mid) {
int l = 0;
ListNode p = mid;
while (p!=null) {
l++;
p=p.next;
}
return l;
}
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode() {}
TreeNode(int val) { this.val = val; }
TreeNode(int val, TreeNode left, TreeNode right) {
this.val = val;
this.left = left;
this.right = right;
}
}
public List<List<Integer>> verticalTraversal(TreeNode root) {
TreeMap<Integer, TreeMap<Integer, PriorityQueue<Integer>>> map = new TreeMap<>();
dfs(root, 0, 0, map);
List<List<Integer>> list = new ArrayList<>();
for (TreeMap<Integer, PriorityQueue<Integer>> ys : map.values()) {
list.add(new ArrayList<>());
for (PriorityQueue<Integer> nodes : ys.values()) {
while (!nodes.isEmpty()) {
// list.get(list.size() - 1).add(nodes.poll());
}
}
}
return list;
}
private void dfs(TreeNode root, int x, int y, TreeMap<Integer, TreeMap<Integer, PriorityQueue<Integer>>> map) {
if (root == null) {
return;
}
if (!map.containsKey(x)) {
map.put(x, new TreeMap<>());
}
if (!map.get(x).containsKey(y)) {
map.get(x).put(y, new PriorityQueue<>());
}
map.get(x).get(y).offer(root.val);
dfs(root.left, x - 1, y + 1, map);
dfs(root.right, x + 1, y + 1, map);
}
public long pow (int x ,int n ) {
long y = 1;
if (n==0) {
return y;
}
while (n>0) {
if (n%2!=0) {
y=y*x;
}
x*=x;
n/=2;
}
return y;
}
public long powrec (int x ,int n ) {
long y = 1;
if (n==0) {
return y;
}
y = powrec(x, n/2);
if (n%2==0) {
return y*y;
}
return y*y*x;
}
public int fib(int n) {
if (n==0||n==11) {
return n;
}
return fib(n-1)+fib(n-2);
}
public long gcd(long a , long b)
{
if (b%a==0) {
return a;
}
return gcd(b%a,a);
}
public int maximumElement(int a[])
{
int x = Integer.MIN_VALUE;
for (int i = 0; i < a.length; i++) {
if (a[i]>x) {
x=a[i];
}
}
return x;
}
public int minimumElement(int a[])
{
int x = Integer.MAX_VALUE;
for (int i = 0; i < a.length; i++) {
if (a[i]<x) {
x=a[i];
}
}
return x;
}
public boolean [] sieveOfEratosthenes(int n) {
boolean prime[] = new boolean[n + 1];
for (int i = 0; i <= n; i++)
prime[i] = true;
for (int p = 2; p * p <= n; p++) {
if (prime[p]) {
for (int i = p * p; i <= n; i += p)
prime[i] = false;
}
}
return prime;
}
// GFG arraylist function for referral
public ArrayList create2DArrayList(int n ,int k)
{
// Creating a 2D ArrayList of Integer type
ArrayList<ArrayList<Integer> > x
= new ArrayList<ArrayList<Integer> >();
// One space allocated for R0
// Adding 3 to R0 created above x(R0, C0)
//x.get(0).add(0, 3);
int xr = 0;
for (int i = 1; i <= n; i+=2) {
if ((i+k)*(i+1)%4==0) {
x.add(new ArrayList<Integer>());
x.get(xr).addAll(Arrays.asList(i , i+1));
}
else {
x.add(new ArrayList<Integer>());
x.get(xr).addAll(Arrays.asList(i+1 , i));
}
xr++;
}
// Creating R1 and adding values
// Note: Another way for adding values in 2D
// collections
// x.add(
// new ArrayList<Integer>(Arrays.asList(3, 4, 6)));
// // Adding 366 to x(R1, C0)
// x.get(1).add(0, 366);
// // Adding 576 to x(R1, C4)
// x.get(1).add(4, 576);
// // Now, adding values to R2
// x.add(2, new ArrayList<>(Arrays.asList(3, 84)));
// // Adding values to R3
// x.add(new ArrayList<Integer>(
// Arrays.asList(83, 6684, 776)));
// // Adding values to R4
// x.add(new ArrayList<>(Arrays.asList(8)));
// // Appending values to R4
// x.get(4).addAll(Arrays.asList(9, 10, 11));
// // Appending values to R1, but start appending from
// // C3
// x.get(1).addAll(3, Arrays.asList(22, 1000));
// This method will return 2D array
return x;
}
}
class FlashFastReader
{
BufferedReader in;
StringTokenizer token;
public FlashFastReader(InputStream ins)
{
in=new BufferedReader(new InputStreamReader(ins));
token=new StringTokenizer("");
}
public boolean hasNext()
{
while (!token.hasMoreTokens())
{
try
{
String s = in.readLine();
if (s == null) return false;
token = new StringTokenizer(s);
} catch (IOException e)
{
throw new InputMismatchException();
}
}
return true;
}
public String next()
{
hasNext();
return token.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
public int[] nextIntsInputAsArray(int n)
{
int[] res = new int[n];
for (int i = 0; i < n; i++)
res[i] = nextInt();
return res;
}
public long nextLong() {
return Long.parseLong(next());
}
public long[] nextLongsInputAsArray(int n)
{
long [] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public String nextString() {
return String.valueOf(next());
}
public String[] nextStringsInputAsArray(int n)
{
String [] a = new String[n];
for (int i = 0; i < n; i++)
a[i] = nextString();
return a;
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 36701b24160c7fbc553314616e1dc570 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
public class Main
{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
long x,y,i,n,B,sum,j,prev;
double d;
for(i=0;i<t;i++){
n=sc.nextInt();
B=sc.nextInt();
x=sc.nextInt();
y=sc.nextInt();
for(j=1,sum=0,prev=0;j<=n;j++){
if(prev+x <= B)
prev+=x;
else
prev-=y;
sum+=prev;
}
System.out.println(sum);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 014df9afef5697ae4da41adc9dddb1b4 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes |
import java.util.*;
public class Main {
public static void main(String[] args){
Scanner sc=new Scanner(System.in);
// System.out.println(sc.nextByte());
xysequence(sc);
}
private static void xysequence(Scanner scanner){
int testcase=scanner.nextInt();
for(int i=0;i<testcase;i++){
int turn=scanner.nextInt();
long limit=scanner.nextInt();
long add=scanner.nextInt();
long sub=scanner.nextInt();
long val=0;
long valsum=0;
for(int j=0;j<turn;j++){
if(val+add>limit){
val=val-sub;
valsum+=val;
}else{
val=val+add;
valsum+=val;
}
}
System.out.println(valsum);
}
}} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 9ca6a9e55a9c6e0587f645dba6ee207d | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.Scanner;
import java.util.Arrays;
import java.util.HashSet;
import java.util.HashMap;
import java.util.ArrayList;
import java.util.Random;
public class Solution{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int test_cases = sc.nextInt();
outer : for(int h=0;h<test_cases;h++){
//scan the input
int n = sc.nextInt();
int B = sc.nextInt();
int x = sc.nextInt();
int y = sc.nextInt();
long a[] = new long[n+1];
a[0] = 0;
//Logic
for(int i=1;i<n+1;i++){
if(a[i-1]+x<=B){
a[i] = a[i-1]+x;
}
else {
a[i] = a[i-1]-y;
}
}
long result = sum_array(a);
System.out.println(result);
}
}
public static void scan_array(int a[], int n, Scanner sc){
for(int i=0;i<n;i++){
a[i] = sc.nextInt();
}
}
public static void print_array(long a[]){
for(int i=0;i<a.length;i++){
if(i==a.length-1){
System.out.println(a[i]);
return;
}
System.out.print(a[i]+" ");
}
}
public static long sum_array(long a[]){
long sum = 0;
for(int i=0;i<a.length;i++){
sum+=a[i];
}
return sum;
}
public static boolean perfect_square(double num){
boolean isSq = false;
double b = Math.sqrt(num);
double c = Math.sqrt(num) - Math.floor(b);
if(c==0){
isSq=true;
}
return isSq;
}
public static boolean ispalindrome(String s){
int i=0, j =s.length()-1;
while(i<=j){
if(s.charAt(i)!=s.charAt(j)){
return false;
}
i++;
j--;
}
return true;
}
public static int calculate_gcd(int x,int y){
int gcd = 1;
if(x%y==0){
return y;
}
else if(y%x==0){
return x;
}
else{
for(int i=2;i<=x && i<=y;i++){
if(x%i==0 && y%i==0){
gcd = i;
}
}
return gcd;
}
}
public static long calculate_factorial(long x){
long ans = 1;
for(int i=1;i<=x;i++){
ans*=i;
}
return ans;
}
public static void swap(int a[], int b[], int index_a, int index_b){
int temp = a[index_a];
a[index_a] = b[index_b];
b[index_b] = temp;
}
public static long find_maximum(long a[]){
long max = Long.MIN_VALUE;
for(int i=0;i<a.length;i++){
max = Math.max(a[i], max);
}
return max;
}
public static long find_minimum(long a[]){
long min = Long.MAX_VALUE;
for(int i=0;i<a.length;i++){
min = Math.min(a[i], min);
}
return min;
}
public static void ruffleSort(int[] a) {
int n=a.length;//shuffle, then sort
Random random = new Random();
for (int i=0; i<n; i++) {
int oi=random.nextInt(n);
int temp=a[oi];
a[oi]=a[i];
a[i]=temp;
}
Arrays.sort(a);
}
public static int sum_of_digits(int n){
int s =0;
while(n!=0){
s+=n%10;
n/=10;
}
return s;
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 5a27d4c9f9352dc30914d7e279fb58da | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes |
import java.util.*;
import java.io.*;
public class XYSequence {
public static void main(String[] args){
FastReader sc = new FastReader();
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
int B = sc.nextInt();
int x = sc.nextInt();
int y = sc.nextInt();
LinkedList<Integer> a = new LinkedList();
a.add(0);
long suma = 0;
for(int i=1; i<=n; i++){
if((a.get(0) + x) <= B){
suma += a.get(0) + x;
a.add(a.get(0) + x);
a.removeFirst();
}
else{
suma += a.get(0) - y;
a.add(a.get(0) - y);
a.removeFirst();
}
}
System.out.println(suma);
}
}
static class Maths {
public static int gcd(int a, int b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
public static int lcm(int a, int b) {
return a * b / gcd(a, b);
}
}
static class NextPermutation {
// Function to swap the data
// present in the left and right indices
public static int[] swap(int data[], int left, int right)
{
// Swap the data
int temp = data[left];
data[left] = data[right];
data[right] = temp;
// Return the updated array
return data;
}
// Function to reverse the sub-array
// starting from left to the right
// both inclusive
public static int[] reverse(int data[], int left, int right)
{
// Reverse the sub-array
while (left < right) {
int temp = data[left];
data[left++] = data[right];
data[right--] = temp;
}
// Return the updated array
return data;
}
// Function to find the next permutation
// of the given integer array
public static boolean findNextPermutation(int data[])
{
// If the given dataset is empty
// or contains only one element
// next_permutation is not possible
if (data.length <= 1)
return false;
int last = data.length - 2;
// find the longest non-increasing suffix
// and find the pivot
while (last >= 0) {
if (data[last] < data[last + 1]) {
break;
}
last--;
}
// If there is no increasing pair
// there is no higher order permutation
if (last < 0)
return false;
int nextGreater = data.length - 1;
// Find the rightmost successor to the pivot
for (int i = data.length - 1; i > last; i--) {
if (data[i] > data[last]) {
nextGreater = i;
break;
}
}
// Swap the successor and the pivot
data = swap(data, nextGreater, last);
// Reverse the suffix
data = reverse(data, last + 1, data.length - 1);
// Return true as the next_permutation is done
return true;
}
}
static class UnionFind { // OOP style
private ArrayList<Integer> p, rank, setSize;
private int numSets;
public UnionFind(int N) {
p = new ArrayList<Integer>(N);
rank = new ArrayList<Integer>(N);
setSize = new ArrayList<Integer>(N);
numSets = N;
for (int i = 0; i < N; i++) {
p.add(i);
rank.add(0);
setSize.add(1);
}
}
public int findSet(int i) {
if (p.get(i) == i)
return i;
else {
int ret = findSet(p.get(i));
p.set(i, ret);
return ret;
}
}
public Boolean isSameSet(int i, int j) {
return findSet(i) == findSet(j);
}
public void unionSet(int i, int j) {
if (!isSameSet(i, j)) {
numSets--;
int x = findSet(i), y = findSet(j);
// rank is used to keep the tree short
if (rank.get(x) > rank.get(y)) {
p.set(y, x);
setSize.set(x, setSize.get(x) + setSize.get(y));
} else {
p.set(x, y);
setSize.set(y, setSize.get(y) + setSize.get(x));
if (rank.get(x) == rank.get(y))
rank.set(y, rank.get(y) + 1);
}
}
}
public int numDisjointSets() {
return numSets;
}
public int sizeOfSet(int i) {
return setSize.get(findSet(i));
}
}
static class Pair<A, B> {
A first;
B second;
// Constructor
public Pair(A first, B second) {
this.first = first;
this.second = second;
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
if (st.hasMoreTokens()) {
str = st.nextToken("\n");
} else {
str = br.readLine();
}
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
boolean hasNext() {
if (st != null && st.hasMoreTokens()) {
return true;
}
String tmp;
try {
br.mark(1000);
tmp = br.readLine();
if (tmp == null) {
return false;
}
br.reset();
} catch (IOException e) {
return false;
}
return true;
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | d3898d19d439a78a6242348485b047ce | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | //Utilities
import java.io.*;
import java.util.*;
public class a {
static int t;
static int n, b, x, y;
static long[] a;
static long res;
public static void main(String[] args) throws IOException {
t = in.iscan();
while (t-- > 0) {
n = in.iscan(); b = in.iscan(); x = in.iscan(); y = in.iscan();
res = 0;
a = new long[n];
for (int i = 0; i < n; i++) {
if (i == 0) {
if (x <= b) {
a[i] = x;
}
else {
a[i] = -y;
}
}
else {
if (a[i-1] + x <= b) {
a[i] = a[i-1] + x;
}
else {
a[i] = a[i-1] - y;
}
}
res += a[i];
}
out.println(res);
}
out.close();
}
static INPUT in = new INPUT(System.in);
static PrintWriter out = new PrintWriter(System.out);
private static class INPUT {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar, numChars;
public INPUT (InputStream stream) {
this.stream = stream;
}
public INPUT (String file) throws IOException {
this.stream = new FileInputStream (file);
}
public int cscan () throws IOException {
if (curChar >= numChars) {
curChar = 0;
numChars = stream.read (buf);
}
if (numChars == -1)
return numChars;
return buf[curChar++];
}
public int iscan () throws IOException {
int c = cscan (), sgn = 1;
while (space (c))
c = cscan ();
if (c == '-') {
sgn = -1;
c = cscan ();
}
int res = 0;
do {
res = (res << 1) + (res << 3);
res += c - '0';
c = cscan ();
}
while (!space (c));
return res * sgn;
}
public String sscan () throws IOException {
int c = cscan ();
while (space (c))
c = cscan ();
StringBuilder res = new StringBuilder ();
do {
res.appendCodePoint (c);
c = cscan ();
}
while (!space (c));
return res.toString ();
}
public double dscan () throws IOException {
int c = cscan (), sgn = 1;
while (space (c))
c = cscan ();
if (c == '-') {
sgn = -1;
c = cscan ();
}
double res = 0;
while (!space (c) && c != '.') {
if (c == 'e' || c == 'E')
return res * UTILITIES.fast_pow (10, iscan ());
res *= 10;
res += c - '0';
c = cscan ();
}
if (c == '.') {
c = cscan ();
double m = 1;
while (!space (c)) {
if (c == 'e' || c == 'E')
return res * UTILITIES.fast_pow (10, iscan ());
m /= 10;
res += (c - '0') * m;
c = cscan ();
}
}
return res * sgn;
}
public long lscan () throws IOException {
int c = cscan (), sgn = 1;
while (space (c))
c = cscan ();
if (c == '-') {
sgn = -1;
c = cscan ();
}
long res = 0;
do {
res = (res << 1) + (res << 3);
res += c - '0';
c = cscan ();
}
while (!space (c));
return res * sgn;
}
public boolean space (int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
public static class UTILITIES {
static final double EPS = 10e-6;
public static void sort(int[] a, boolean increasing) {
ArrayList<Integer> arr = new ArrayList<Integer>();
int n = a.length;
for (int i = 0; i < n; i++) {
arr.add(a[i]);
}
Collections.sort(arr);
for (int i = 0; i < n; i++) {
if (increasing) {
a[i] = arr.get(i);
}
else {
a[i] = arr.get(n-1-i);
}
}
}
public static void sort(long[] a, boolean increasing) {
ArrayList<Long> arr = new ArrayList<Long>();
int n = a.length;
for (int i = 0; i < n; i++) {
arr.add(a[i]);
}
Collections.sort(arr);
for (int i = 0; i < n; i++) {
if (increasing) {
a[i] = arr.get(i);
}
else {
a[i] = arr.get(n-1-i);
}
}
}
public static void sort(double[] a, boolean increasing) {
ArrayList<Double> arr = new ArrayList<Double>();
int n = a.length;
for (int i = 0; i < n; i++) {
arr.add(a[i]);
}
Collections.sort(arr);
for (int i = 0; i < n; i++) {
if (increasing) {
a[i] = arr.get(i);
}
else {
a[i] = arr.get(n-1-i);
}
}
}
public static int lower_bound (int[] arr, int x) {
int low = 0, high = arr.length, mid = -1;
while (low < high) {
mid = (low + high) / 2;
if (arr[mid] >= x)
high = mid;
else
low = mid + 1;
}
return low;
}
public static int upper_bound (int[] arr, int x) {
int low = 0, high = arr.length, mid = -1;
while (low < high) {
mid = (low + high) / 2;
if (arr[mid] > x)
high = mid;
else
low = mid + 1;
}
return low;
}
public static void updateMap(HashMap<Integer, Integer> map, int key, int v) {
if (!map.containsKey(key)) {
map.put(key, v);
}
else {
map.put(key, map.get(key) + v);
}
if (map.get(key) == 0) {
map.remove(key);
}
}
public static long gcd (long a, long b) {
return b == 0 ? a : gcd (b, a % b);
}
public static long lcm (long a, long b) {
return a * b / gcd (a, b);
}
public static long fast_pow_mod (long b, long x, int mod) {
if (x == 0) return 1;
if (x == 1) return b;
if (x % 2 == 0) return fast_pow_mod (b * b % mod, x / 2, mod) % mod;
return b * fast_pow_mod (b * b % mod, x / 2, mod) % mod;
}
public static long fast_pow (long b, long x) {
if (x == 0) return 1;
if (x == 1) return b;
if (x % 2 == 0) return fast_pow (b * b, x / 2);
return b * fast_pow (b * b, x / 2);
}
public static long choose (long n, long k) {
k = Math.min (k, n - k);
long val = 1;
for (int i = 0; i < k; ++i)
val = val * (n - i) / (i + 1);
return val;
}
public static long permute (int n, int k) {
if (n < k) return 0;
long val = 1;
for (int i = 0; i < k; ++i)
val = (val * (n - i));
return val;
}
// start of permutation and lower/upper bound template
public static void nextPermutation(int[] nums) {
//find first decreasing digit
int mark = -1;
for (int i = nums.length - 1; i > 0; i--) {
if (nums[i] > nums[i - 1]) {
mark = i - 1;
break;
}
}
if (mark == -1) {
reverse(nums, 0, nums.length - 1);
return;
}
int idx = nums.length-1;
for (int i = nums.length-1; i >= mark+1; i--) {
if (nums[i] > nums[mark]) {
idx = i;
break;
}
}
swap(nums, mark, idx);
reverse(nums, mark + 1, nums.length - 1);
}
public static void swap(int[] nums, int i, int j) {
int t = nums[i];
nums[i] = nums[j];
nums[j] = t;
}
public static void reverse(int[] nums, int i, int j) {
while (i < j) {
swap(nums, i, j);
i++;
j--;
}
}
static int lower_bound (int[] arr, int hi, int cmp) {
int low = 0, high = hi, mid = -1;
while (low < high) {
mid = (low + high) / 2;
if (arr[mid] >= cmp) high = mid;
else low = mid + 1;
}
return low;
}
static int upper_bound (int[] arr, int hi, int cmp) {
int low = 0, high = hi, mid = -1;
while (low < high) {
mid = (low + high) / 2;
if (arr[mid] > cmp) high = mid;
else low = mid + 1;
}
return low;
}
// end of permutation and lower/upper bound template
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 7d0376fc9670f6fe4d94dfeae883e177 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.Scanner;
public class Solution {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int t = in.nextInt();
int n, B, x, y;
for(int j = 0; j < t; j++) {
n = in.nextInt();
B = in.nextInt();
x = in.nextInt();
y = in.nextInt();
long result = 0;
int i = 1;
long s = 0;
while(i<=n) {
if(s+x<=B) s+=x;
else s-=y;
i++;
result+=s;
}
System.out.println(result);
}
in.close();
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | d558cbd3080033a54a51d614c1e60322 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
public class Main {
static Scanner sc = new Scanner (System.in);
public static void main(String[] args) {
int test = sc.nextInt();
for ( int t=0; t<test; t++){
int n = sc.nextInt();
long B= sc.nextInt();
long x = sc.nextInt();
long y = sc.nextInt();
long[] arr = new long[n+1];
arr[0 ]= 0;
for ( int i=1; i<n+1; i++){
long c=0,d=0;
c = arr[i-1]+x;
d = arr[i-1]-y;
if ( c>=d && c<=B)
arr[i] = c;
else if ( c>=d && d<=B)
arr[i] = d;
if ( d>=c && d<=B)
arr[i] = d;
else if ( d>=c && c<=B)
arr[i] = c;
}
long sum=0;
for ( int i=0; i<n+1; i++){
sum = sum + arr[i];
}
System.out.println(sum);
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | c664c599eec00bab4ae000b6925c816e | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.lang.*;
// import java.math.*;
import java.io.*;
import java.util.*;
public class Main{
public static int mod=(int)(1e9) + 7;
public static BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
public static PrintWriter ot=new PrintWriter(System.out);
public static int[] take_arr(int n){
int a[]=new int[n];
try {
String s[]=br.readLine().trim().split(" ");
for(int i=0;i<n;i++)
a[i]=Integer.parseInt(s[i]);
} catch (Exception e) {
e.printStackTrace();
}
return a;
}
public static void main (String[] args) throws java.lang.Exception
{
try{
int t=Integer.parseInt(br.readLine().trim());
int cno=1;
while(t-->0){
String s[]=br.readLine().trim().split(" ");
int n=Integer.parseInt(s[0]);
int b=Integer.parseInt(s[1]);
int x=Integer.parseInt(s[2]);
int y=Integer.parseInt(s[3]);
// int a[]=take_arr(n);
// int b[]=take_arr(n);
// char ch[]=br.readLine().trim().toCharArray();
// long n=Long.parseLong(s[0]);
solve(n,b,x,y);
}
ot.close();
br.close();
}catch(Exception e){
e.printStackTrace();
return;
}
}
static void solve(int n, int b, int x, int y){
try{
int a[]=new int[n+1];
a[0]=0;
for(int i=1;i<=n;i++){
if(a[i-1]+x>b){
a[i]=a[i-1]-y;
} else{
a[i]=a[i-1]+x;
}
}
long sum=0;
for(int xx:a) sum+=xx;
ot.println(sum);
} catch(Exception e){
e.printStackTrace();
return ;
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 62bbfa613c163654ca032f0d5eb2244f | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.ByteArrayInputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.security.cert.X509CRL;
import java.util.*;
import java.lang.*;
import java.util.stream.Collector;
import java.util.stream.Collectors;
@SuppressWarnings("unused")
public class Main {
static InputStream is;
static PrintWriter out;
static String INPUT = "";
static String OUTPUT = "";
//global
private final static long BASE = 998244353L;
private final static int ALPHABET = (int)('z') - (int)('a') + 1;
//private final static int BASE = 1000000007;
private final static int INF_I = (1<<31)-1;
private final static long INF_L = (1l<<63)-1;
private final static int MAXN = 100100;
private final static int MAXK = 31;
static void solve() {
int ntest = readInt();
for (int test=0;test<ntest;test++) {
int N = readInt();
int B = readInt();
int x = readInt(), y = readInt();
long last = 0;
long ans = 0;
for (int i=0;i<N;i++) {
if (last + x <= B) last += x;
else last -= y;
ans += last;
}
out.println(ans);
}
}
public static void main(String[] args) throws Exception
{
long S = System.currentTimeMillis();
if (INPUT=="") {
is = System.in;
} else {
File file = new File(INPUT);
is = new FileInputStream(file);
}
if (OUTPUT == "") out = new PrintWriter(System.out);
else out = new PrintWriter(OUTPUT);
solve();
out.flush();
long G = System.currentTimeMillis();
}
private static class Point<T extends Number & Comparable<T>> implements Comparable<Point<T>> {
private T x;
private T y;
public Point(T x, T y) {
this.x = x;
this.y = y;
}
public T getX() {return x;}
public T getY() {return y;}
@Override
public int compareTo(Point<T> o) {
int cmp = x.compareTo(o.getX());
if (cmp==0) return y.compareTo(o.getY());
return cmp;
}
}
private static class ClassComparator<T extends Comparable<T>> implements Comparator<T> {
public ClassComparator() {}
@Override
public int compare(T a, T b) {
return a.compareTo(b);
}
}
private static class ListComparator<T extends Comparable<T>> implements Comparator<List<T>> {
public ListComparator() {}
@Override
public int compare(List<T> o1, List<T> o2) {
for (int i = 0; i < Math.min(o1.size(), o2.size()); i++) {
int c = o1.get(i).compareTo(o2.get(i));
if (c != 0) {
return c;
}
}
return Integer.compare(o1.size(), o2.size());
}
}
private static boolean eof()
{
if(lenbuf == -1)return true;
int lptr = ptrbuf;
while(lptr < lenbuf)if(!isSpaceChar(inbuf[lptr++]))return false;
try {
is.mark(1000);
while(true){
int b = is.read();
if(b == -1){
is.reset();
return true;
}else if(!isSpaceChar(b)){
is.reset();
return false;
}
}
} catch (IOException e) {
return true;
}
}
private static byte[] inbuf = new byte[1024];
static int lenbuf = 0, ptrbuf = 0;
private static int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private static boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
// private static boolean isSpaceChar(int c) { return !(c >= 32 && c <= 126); }
private static int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private static double readDouble() { return Double.parseDouble(readString()); }
private static char readChar() { return (char)skip(); }
private static String readString()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private static char[] readChar(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private static char[][] readTable(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = readChar(m);
return map;
}
private static int[] readIntArray(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = readInt();
return a;
}
private static long[] readLongArray(int n) {
long[] a = new long[n];
for (int i=0;i<n;i++) a[i] = readLong();
return a;
}
private static int readInt()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private static long readLong()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private static void tr(Object... o) { if(INPUT.length() != 0)System.out.println(Arrays.deepToString(o)); }
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | b4c992e84c1d3b45aeaa5c5802f0b8b2 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
public class XYSequence {
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0)
{
int n=sc.nextInt();
long B=sc.nextLong();
int x=sc.nextInt();
int y=sc.nextInt();
long arr[]=new long[n+1];
arr[0]=0;
long sum=0;
for(int i=1;i<n+1;i++)
{
long b=arr[i-1]+x;
if(b<=B)
{
arr[i]=b;
}
else
{
long c=arr[i-1]-y;
arr[i]=c;
}
}
for(int i=0;i<n+1;i++)
{
sum=sum+arr[i];
}
System.out.println(sum);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 50af87ebe54e0bcf6e339404341cbe61 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import javax.swing.text.Segment;
import java.io.*;
import java.lang.reflect.Array;
import java.math.BigInteger;
import static java.lang.Math.*;
import java.util.*;
public class Main {
static public void main(String[] args){
out = new PrintWriter(new BufferedOutputStream(System.out));
in = new FastReader();
int t =in.nextInt();
while(t>0){
t--;
solve();
}
out.close();
}
static void solve(){
int a = in.nextInt();
long b = in.nextInt();
long x = in.nextInt();
long y = in.nextInt();
long now = 0;
long ans =0;
for(int i=0;i<a;i++){
if(now+x>b){
now = now - y;
ans+=now;
}else{
now = now +x;
ans+=now;
}
}
out.println(ans);
}
public static FastReader in;
public static PrintWriter out;
static class FastReader
{
BufferedReader br;
StringTokenizer str;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (str == null || !str.hasMoreElements())
{
try
{
str = new StringTokenizer(br.readLine());
}
catch (IOException lastMonthOfVacation)
{
lastMonthOfVacation.printStackTrace();
}
}
return str.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException lastMonthOfVacation)
{
lastMonthOfVacation.printStackTrace();
}
return str;
}
}
static long lcm(long a, long b) {
return (a * b) / gcd(a, b);
}
static long gcd(long a, long b) {
return (a % b == 0) ? b : gcd(b, a % b);
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 796b9ff8ecc13232c3dd85430a0cd81c | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
public class Solution {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while (t-- != 0) {
long n = sc.nextLong();
long b = sc.nextLong();
long x = sc.nextLong();
long y = sc.nextLong();
int[] arr = new int[(int) (n + 1)];
arr[0] = 0;
long sum = 0;
for (int i = 1; i < n + 1; i++) {
if ((arr[i-1]+x) <= b) {
arr[i] = (int) (arr[i - 1] + x);
} else
arr[i] = (int) (arr[i - 1] - y);
}
for (int i = 0; i < n+1 ; i++) {
sum += arr[i];;
}
System.out.println(sum);
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | e634ee470343b2b19f83b9f4deb4bcaf | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.Scanner;
public class XYSequence {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
for (int j = 0; j < t; j++) {
int n = sc.nextInt();
long b= sc.nextLong();
long x= sc.nextLong();
long y= sc.nextLong();
long sum =0;
long p =0;
long next;
for (int i = 1; i <=n ; i++) {
if ((p + x) > b){
next = p - y;
p = next;
sum += p;
}
else {
next = p + x;
p = next;
sum += p;
}
}
System.out.println(sum);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 5cc033df4cf19d89080333a63a3d66c9 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | /* package codechef; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Codechef {
public static void main (String[] args) throws java.lang.Exception {
Scanner scn = new Scanner(System.in);
int t = scn.nextInt();
while(t-- > 0){
long n = scn.nextLong(), B = scn.nextLong(), x = scn.nextLong(), y = scn.nextLong();
long sum = 0, cur = 0, idx = 1;
while(idx++ <= n){
if(cur + x <= B){
cur = cur + x;
}else{
cur = cur - y;
}
sum += cur;
}
System.out.println(sum);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 6c7d8a2c5f50651d90656cd55dcc5c60 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.util.Arrays;
public class Main {
public static void main(String[] args) throws IOException {
FastScanner in = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
//solve (in, out);
int tests = in.nextInt();
for (int i = 0;i < tests;i++) {
solve (in, out);
}
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
}
// main code ?
static void solve (FastScanner in, PrintWriter out) {
int n = in.nextInt(), b = in.nextInt(), x = in.nextInt(), y = in.nextInt();
int prev = 0;
long sum = 0;
for (int i = 0;i < n;++i) {
int add = prev + x, sub = prev - y;
prev = add > b ? sub : add;
sum += prev;
}
out.println(sum);
out.flush();
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | b823fae0c50867defc18f1c3d9b98c98 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class TaskB {
public static void main(String[] args) {
FastScanner in = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
int t = 1;
t = in.nextInt();
for (int tc = 1; tc <= t; tc++) {
// out.printf("Case #%d: ", tc);
TaskB s = new TaskB();
s.solve(in, out);
}
out.flush();
}
void solve(FastScanner in, PrintWriter out) {
int n = in.nextInt();
long b = in.nextLong(), x = in.nextLong(), y = in.nextLong();
long[] a = new long[n+1];
long sum = 0;
for (int i = 1; i <= n; i++) {
if (a[i-1] + x <= b) {
a[i] = a[i-1] + x;
} else {
a[i] = a[i-1] - y;
}
sum += a[i];
}
out.println(sum);
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
float nextFloat() { return Float.parseFloat(next()); }
double nextDouble() { return Double.parseDouble(next()); }
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 7394ae8a49dd2c2b8de4b51d474f3c1a | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.*;
import java.lang.reflect.Array;
import java.util.*;
import java.util.stream.IntStream;
import java.util.stream.Stream;
public class Main {
public static void main(String[] args) {
in = new MyScanner();
out = new PrintWriter(new BufferedOutputStream(System.out));
try {
int t = in.nextInt(); while(t-- > 0) { solve(); out.println();}
// solve();
} finally {
out.close();
}
return;
}
public static void solve() {
long n = in.nextLong(), B = in.nextLong(), x = in.nextLong(), y = in.nextLong();
long sum = 0;
long curr = 0;
for(int i = 1; i <= n; i++) {
if(curr + x <= B) {
curr += x;
} else {
curr -= y;
}
sum += curr;
}
out.print(sum);
return;
}
//-------------- Helper methods-------------------
public static int[] fillArray(int n) {
int[] array = new int[n];
for(int i = 0; i < n; i++) {
array[i] = in.nextInt();
}
return array;
}
public static char[] fillArray() {
char[] array = in.next().toCharArray();
return array;
}
//-----------PrintWriter for faster output---------------------------------
public static PrintWriter out;
public static MyScanner in;
//-----------MyScanner class for faster input----------
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static void shuffleArray(int[] arr){
int n = arr.length;
Random rnd = new Random();
for(int i=0; i<n; ++i){
int tmp = arr[i];
int randomPos = i + rnd.nextInt(n-i);
arr[i] = arr[randomPos];
arr[randomPos] = tmp;
}
}
//--------------------------------------------------------
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | f50dc49d07377ff8548f9a3664573157 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.*;
import java.lang.Math;
import java.lang.reflect.Array;
import java.util.*;
import javax.swing.text.DefaultStyledDocument.ElementSpec;
public final class Solution {
static BufferedReader br = new BufferedReader(
new InputStreamReader(System.in)
);
static BufferedWriter bw = new BufferedWriter(
new OutputStreamWriter(System.out)
);
static StringTokenizer st;
/*write your constructor and global variables here*/
static class sortCond implements Comparator<Pair<Integer, Integer>> {
@Override
public int compare(Pair<Integer, Integer> p1, Pair<Integer, Integer> p2) {
if (p1.a <= p2.a) {
return -1;
} else {
return 1;
}
}
}
static class Rec {
int a;
int b;
long c;
Rec(int a, int b, long c) {
this.a = a;
this.b = b;
this.c = c;
}
}
static class Pair<f, s> {
f a;
s b;
Pair(f a, s b) {
this.a = a;
this.b = b;
}
}
interface modOperations {
int mod(int a, int b, int mod);
}
static int findBinaryExponentian(int a, int pow, int mod) {
if (pow == 1) {
return a;
} else if (pow == 0) {
return 1;
} else {
int retVal = findBinaryExponentian(a, (int) pow / 2, mod);
return modMul.mod(
modMul.mod(retVal, retVal, mod),
(pow % 2 == 0) ? 1 : a,
mod
);
}
}
static int findPow(int a, int b, int mod) {
if (b == 1) {
return a % mod;
} else if (b == 0) {
return 1;
} else {
int res = findPow(a, (int) b / 2, mod);
return modMul.mod(res, modMul.mod(res, (b % 2 == 1 ? a : 1), mod), mod);
}
}
static int bleft(long ele, ArrayList<Long> sortedArr) {
int l = 0;
int h = sortedArr.size() - 1;
int ans = -1;
while (l <= h) {
int mid = l + (int) (h - l) / 2;
if (sortedArr.get(mid) < ele) {
l = mid + 1;
} else if (sortedArr.get(mid) >= ele) {
ans = mid;
h = mid - 1;
}
}
return ans;
}
static long gcd(long a, long b) {
long div = b;
long rem = a % b;
while (rem != 0) {
long temp = rem;
rem = div % rem;
div = temp;
}
return div;
}
static int log(int no) {
int i = 0;
while ((1 << i) <= no) {
i++;
}
if ((1 << (i - 1)) == no) {
return i - 1;
} else {
return i;
}
}
static modOperations modAdd = (int a, int b, int mod) -> {
return (a % mod + b % mod) % mod;
};
static modOperations modSub = (int a, int b, int mod) -> {
return (int) ((1l * a % mod - 1l * b % mod + 1l * mod) % mod);
};
static modOperations modMul = (int a, int b, int mod) -> {
return (int) ((1l * (a % mod) * 1l * (b % mod)) % (1l * mod));
};
static modOperations modDiv = (int a, int b, int mod) -> {
return modMul.mod(a, findBinaryExponentian(b, mod - 1, mod), mod);
};
static HashSet<Integer> primeList(int MAXI) {
int[] prime = new int[MAXI + 1];
HashSet<Integer> obj = new HashSet<>();
for (int i = 2; i <= (int) Math.sqrt(MAXI) + 1; i++) {
if (prime[i] == 0) {
obj.add(i);
for (int j = i * i; j <= MAXI; j += i) {
prime[j] = 1;
}
}
}
for (int i = (int) Math.sqrt(MAXI) + 1; i <= MAXI; i++) {
if (prime[i] == 0) {
obj.add(i);
}
}
return obj;
}
static int[] factorialList(int MAXI, int mod) {
int[] factorial = new int[MAXI + 1];
factorial[2] = 1;
for (int i = 3; i < MAXI + 1; i++) {
factorial[i] = modMul.mod(factorial[i - 1], i, mod);
}
return factorial;
}
static void put(HashMap<Integer, Integer> cnt, int key) {
if (cnt.containsKey(key)) {
cnt.replace(key, cnt.get(key) + 1);
} else {
cnt.put(key, 1);
}
}
static long arrSum(ArrayList<Long> arr) {
long tot = 0;
for (int i = 0; i < arr.size(); i++) {
tot += arr.get(i);
}
return tot;
}
static int ord(char b) {
return (int) b - (int) 'a';
}
static int optimSearch(int[] cnt, int lower_bound, int pow, int n) {
int l = lower_bound + 1;
int h = n;
int ans = 0;
while (l <= h) {
int mid = l + (h - l) / 2;
if (cnt[mid] - cnt[lower_bound] == pow) {
return mid;
} else if (cnt[mid] - cnt[lower_bound] < pow) {
ans = mid;
l = mid + 1;
} else {
h = mid - 1;
}
}
return ans;
}
static Pair<Long, Integer> ret_ans(ArrayList<Integer> ans) {
int size = ans.size();
int mini = 1000000000 + 1;
long tit = 0l;
for (int i = 0; i < size; i++) {
tit += 1l * ans.get(i);
mini = Math.min(mini, ans.get(i));
}
return new Pair<>(tit - mini, mini);
}
static int factorList(
HashMap<Integer, Integer> maps,
int no,
int maxK,
int req
) {
int i = 1;
while (i * i <= no) {
if (no % i == 0) {
if (i != no / i) {
put(maps, no / i);
}
put(maps, i);
if (maps.get(i) == req) {
maxK = Math.max(maxK, i);
}
if (maps.get(no / i) == req) {
maxK = Math.max(maxK, no / i);
}
}
i++;
}
return maxK;
}
static ArrayList<Integer> getKeys(HashMap<Integer, Integer> maps) {
ArrayList<Integer> vals = new ArrayList<>();
for (Map.Entry<Integer, Integer> map : maps.entrySet()) {
vals.add(map.getKey());
}
return vals;
}
static ArrayList<Integer> getValues(HashMap<Integer, Integer> maps) {
ArrayList<Integer> vals = new ArrayList<>();
for (Map.Entry<Integer, Integer> map : maps.entrySet()) {
vals.add(map.getValue());
}
return vals;
}
/*write your methods here*/
static int getMax(ArrayList<Integer> arr) {
int max = arr.get(0);
for (int i = 1; i < arr.size(); i++) {
if (arr.get(i) > max) {
max = arr.get(i);
}
}
return max;
}
static int getMin(ArrayList<Integer> arr) {
int max = arr.get(0);
for (int i = 1; i < arr.size(); i++) {
if (arr.get(i) < max) {
max = arr.get(i);
}
}
return max;
}
public static void main(String[] args) throws IOException {
int cases = Integer.parseInt(br.readLine()), n, b, x, y, i, j;
while (cases-- != 0) {
st = new StringTokenizer(br.readLine());
n = Integer.parseInt(st.nextToken());
b = Integer.parseInt(st.nextToken());
x = Integer.parseInt(st.nextToken());
y = Integer.parseInt(st.nextToken());
long tot = 0l;
long val = 0l;
for (i = 0; i < n; i++) {
if (val + 1l * x > b) {
val = val - 1l * y;
} else {
val = val + 1l * x;
}
tot += val;
}
bw.write(Long.toString(tot) + "\n");
}
bw.flush();
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 3357622040833b856523c46b59bc4231 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class Submit {
public static void main(String[] args) {
try (InputReader reader = new InputReader()) {
int t = reader.nextInt();
while (t-- > 0) {
int n = reader.nextInt();
int b = reader.nextInt();
int x = reader.nextInt();
int y = reader.nextInt();
long sum = 0;
int o1;
int o2;
int[] array = new int[n + 1];
for (int i = 1; i <= n; i++) {
o1 = array[i-1] + x;
o2 = array[i-1] - y;
if (o1 <= b) {
sum += o1;
array[i] = o1;
} else {
sum += o2;
array[i] = o2;
}
}
System.out.println(sum);
}
}
}
}
class InputReader implements AutoCloseable {
private BufferedReader bufferedReader;
private StringTokenizer tokenizer;
public InputReader() {
bufferedReader = new BufferedReader(new InputStreamReader(System.in));
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreElements()) {
try {
tokenizer = new StringTokenizer(bufferedReader.readLine());
} catch (IOException ex) {
ex.printStackTrace();
}
}
return tokenizer.nextToken();
}
public char nextChar() {
char character = ' ';
try {
character = (char) bufferedReader.read();
} catch (IOException e) {
e.printStackTrace();
}
return character;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
String line = "";
try {
line = bufferedReader.readLine();
} catch (IOException ex) {
ex.printStackTrace();
}
return line;
}
@Override
public void close() {
try {
this.bufferedReader.close();
} catch (IOException ex) {
ex.printStackTrace();
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 71de719b49e5ff34339fe1ad05360819 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
public class a2 {
public static void main(String [] args) {
Scanner s=new Scanner(System.in);
int k=s.nextInt();
while(k-->0) {
int n=s.nextInt();
int b=s.nextInt();
int x=s.nextInt();
int y=s.nextInt();
long sum=0;
long f=0;
for(int i=0;i<n;i++) {
if(f+x<=b) {
f=f+x;
sum+=f;
}
else {
f=f-y;
sum+=f;
}
}
System.out.println(sum+" ");
}
}
public static int gcd(int a,int b) {
return b==0?a:gcd(b,a%b);
}
public static int lcm(int a,int b) {
return a*b/gcd(a,b);
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 9bbb8ce2e093cecd527edb4a958b2e7f | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
import java.util.stream.*;
public class Sequence {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int t = scan.nextInt();
StringBuilder result = new StringBuilder();
for(int i = 0; i < t; i++) {
int n = scan.nextInt();
long B = scan.nextLong();
int x = scan.nextInt();
int y = scan.nextInt();
long sum = 0;
int j = 0;
long next = 0;
while(j < n) {
//System.out.println(j + " : " + next + " : " + sum);
if(next + x <= B) {
next += x;
} else {
next -= y;
}
sum += next;
j++;
}
result.append(sum + "\n");
}
System.out.println(result);
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 2f944243c05377910c8303debc4e3718 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | /*LoudSilence*/
import java.io.*;
import java.net.CookieHandler;
import java.util.*;
import static java.lang.Math.*;
public class Solution {
/*----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------*/
static FastScanner s = new FastScanner();
static FastWriter out = new FastWriter();
final static int mod = (int)1e9 + 7;
final static int INT_MAX = Integer.MAX_VALUE;
final static int INT_MIN = Integer.MIN_VALUE;
final static long LONG_MAX = Long.MAX_VALUE;
final static long LONG_MIN = Long.MIN_VALUE;
final static double DOUBLE_MAX = Double.MAX_VALUE;
final static double DOUBLE_MIN = Double.MIN_VALUE;
final static float FLOAT_MAX = Float.MAX_VALUE;
final static float FLOAT_MIN = Float.MIN_VALUE;
/*----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------*/
static class FastScanner{BufferedReader br;StringTokenizer st;
public FastScanner() {if(System.getProperty("ONLINE_JUDGE") == null){try {br = new BufferedReader(new FileReader("E:\\Competitive Coding\\input.txt"));}
catch (FileNotFoundException e) {br = new BufferedReader(new InputStreamReader(System.in));}}else{br = new BufferedReader(new InputStreamReader(System.in));}}
String next(){while (st == null || !st.hasMoreElements()){try{st = new StringTokenizer(br.readLine());}catch (IOException e){e.printStackTrace();}}return st.nextToken();}
int nextInt(){return Integer.parseInt(next());}
long nextLong(){return Long.parseLong(next());}
double nextDouble(){return Double.parseDouble(next());}
List<Integer> readIntList(int n){List<Integer> arr = new ArrayList<>(); for(int i = 0; i < n; i++) arr.add(s.nextInt()); return arr;}
List<Long> readLongList(int n){List<Long> arr = new ArrayList<>(); for(int i = 0; i < n; i++) arr.add(s.nextLong()); return arr;}
int[] readIntArr(int n){int[] arr = new int[n]; for (int i = 0; i < n; i++) arr[i] = s.nextInt(); return arr;}
long[] readLongArr(int n){long[] arr = new long[n]; for (int i = 0; i < n; i++) arr[i] = s.nextLong(); return arr;}
String nextLine(){String str = "";try{str = br.readLine();}catch (IOException e){e.printStackTrace();}return str;}}
static class FastWriter{private BufferedWriter bw;public FastWriter(){if(System.getProperty("ONLINE_JUDGE") == null){try {this.bw = new BufferedWriter(new FileWriter("E:\\Competitive Coding\\output.txt"));}
catch (IOException e) {this.bw = new BufferedWriter(new OutputStreamWriter(System.out));}}else{this.bw = new BufferedWriter(new OutputStreamWriter(System.out));}}
public void print(Object object) throws IOException{bw.append(""+ object);}
public void println(Object object) throws IOException{print(object);bw.append("\n");}
public void debug(int object[]) throws IOException{bw.append("["); for(int i = 0; i < object.length; i++){if(i != object.length-1){print(object[i]+", ");}else{print(object[i]);}}bw.append("]\n");}
public void debug(long object[]) throws IOException{bw.append("["); for(int i = 0; i < object.length; i++){if(i != object.length-1){print(object[i]+", ");}else{print(object[i]);}}bw.append("]\n");}
public void close() throws IOException{bw.close();}}
public static void println(Object str) throws IOException{out.println(""+str);}
public static void println(Object str, int nextLine) throws IOException{out.print(""+str);}
/*----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------*/
public static ArrayList<Integer> seive(int n){ArrayList<Integer> list = new ArrayList<>();int arr[] = new int[n+1];for(long i = 2; i <= n; i++) {if(arr[(int)i] == 1) {continue;}else {list.add((int)i);for(long j = i*i; j <= n; j = j + i) {arr[(int)j] = 1;}}}return list;}
public static long gcd(long a, long b){if(a > b) {a = (a+b)-(b=a);}if(a == 0L){return b;}return gcd(b%a, a);}
public static void swap(int[] arr, int i, int j) {arr[i] = arr[i] ^ arr[j]; arr[j] = arr[j] ^ arr[i]; arr[i] = arr[i] ^ arr[j];}
public static boolean isPrime(long n){if(n < 2){return false;}if(n == 2 || n == 3){return true;}if(n%2 == 0 || n%3 == 0){return false;}long sqrtN = (long)Math.sqrt(n)+1;for(long i = 6L; i <= sqrtN; i += 6) {if(n%(i-1) == 0 || n%(i+1) == 0) return false;}return true;}
public static long mod_add(long a, long b){ return (a%mod + b%mod)%mod;}
public static long mod_sub(long a, long b){ return (a%mod - b%mod + mod)%mod;}
public static long mod_mul(long a, long b){ return (a%mod * b%mod)%mod;}
public static long modInv(long a, long b){ return expo(a, b-2)%b;}
public static long mod_div(long a, long b){return mod_mul(a, modInv(b, mod));}
public static long expo (long a, long n){if(n == 0){return 1;}long recAns = expo(mod_mul(a,a), n/2);if(n % 2 == 0){return recAns;}else{return mod_mul(a, recAns);}}
/*----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------*/
// Pair class
public static class Pair<X extends Comparable<X>,Y extends Comparable<Y>> implements Comparable<Pair<X, Y>>{
X first;
Y second;
public Pair(X first, Y second){
this.first = first;
this.second = second;
}
public String toString(){
return "( " + first+" , "+second+" )";
}
@Override
public int compareTo(Pair<X, Y> o) {
int t = first.compareTo(o.first);
if(t == 0) return second.compareTo(o.second);
return t;
}
}
/*----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------*/
// Code begins
public static void solve() throws IOException {
int n = s.nextInt();
int b = s.nextInt();
int x = s.nextInt();
int y = s.nextInt();
long arr[] = new long[n+1];
arr[0] = 0l;
for(int i = 1; i < n+1; i++){
if(arr[i-1]+x > b){
arr[i] = arr[i-1]-y;
}else{
arr[i] = arr[i-1]+x;
}
}
long sum = 0l;
for(long ele : arr){
sum+= ele;
}
println(sum);
}
public static double dis(double x, double y, double x1, double y1){
return sqrt(pow((x-x1),2)+pow((y-y1),2));
}
/*----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------*/
public static void main(String[] args) throws IOException {
int test = s.nextInt();
for(int t = 1; t <= test; t++) {
solve();
}
out.close();
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 710d99db3b772b31dccd4d1d92d96bf4 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.sort;
public class Round12 {
public static void main(String[] args) {
FastReader fastReader = new FastReader();
PrintWriter out = new PrintWriter(System.out);
int t = fastReader.nextInt();
while (t-- > 0) {
int n = fastReader.nextInt();
int b = fastReader.nextInt();
int x = fastReader.nextInt();
int y = fastReader.nextInt();
long sum = 0;
long prev = 0;
while (n > 0) {
if (prev + x <= b) {
prev += x;
sum += prev;
} else {
prev -= y;
sum += prev;
}
n--;
}
out.println(sum);
}
out.close();
}
// constants
static final int IBIG = 1000000007;
static final int IMAX = 2147483647;
static final long LMAX = 9223372036854775807L;
static Random __r = new Random();
// math util
static int minof(int a, int b, int c) {
return min(a, min(b, c));
}
static int minof(int... x) {
if (x.length == 1) return x[0];
if (x.length == 2) return min(x[0], x[1]);
if (x.length == 3) return min(x[0], min(x[1], x[2]));
int min = x[0];
for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i];
return min;
}
static long minof(long a, long b, long c) {
return min(a, min(b, c));
}
static long minof(long... x) {
if (x.length == 1) return x[0];
if (x.length == 2) return min(x[0], x[1]);
if (x.length == 3) return min(x[0], min(x[1], x[2]));
long min = x[0];
for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i];
return min;
}
static int maxof(int a, int b, int c) {
return max(a, max(b, c));
}
static int maxof(int... x) {
if (x.length == 1) return x[0];
if (x.length == 2) return max(x[0], x[1]);
if (x.length == 3) return max(x[0], max(x[1], x[2]));
int max = x[0];
for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i];
return max;
}
static long maxof(long a, long b, long c) {
return max(a, max(b, c));
}
static long maxof(long... x) {
if (x.length == 1) return x[0];
if (x.length == 2) return max(x[0], x[1]);
if (x.length == 3) return max(x[0], max(x[1], x[2]));
long max = x[0];
for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i];
return max;
}
static int powi(int a, int b) {
if (a == 0) return 0;
int ans = 1;
while (b > 0) {
if ((b & 1) > 0) ans *= a;
a *= a;
b >>= 1;
}
return ans;
}
static long powl(long a, int b) {
if (a == 0) return 0;
long ans = 1;
while (b > 0) {
if ((b & 1) > 0) ans *= a;
a *= a;
b >>= 1;
}
return ans;
}
static int fli(double d) {
return (int) d;
}
static int cei(double d) {
return (int) ceil(d);
}
static long fll(double d) {
return (long) d;
}
static long cel(double d) {
return (long) ceil(d);
}
static int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
static int lcm(int a, int b) {
return (a / gcd(a, b)) * b;
}
static long gcd(long a, long b) {
return b == 0 ? a : gcd(b, a % b);
}
static long lcm(long a, long b) {
return (a / gcd(a, b)) * b;
}
static int[] exgcd(int a, int b) {
if (b == 0) return new int[]{1, 0};
int[] y = exgcd(b, a % b);
return new int[]{y[1], y[0] - y[1] * (a / b)};
}
static long[] exgcd(long a, long b) {
if (b == 0) return new long[]{1, 0};
long[] y = exgcd(b, a % b);
return new long[]{y[1], y[0] - y[1] * (a / b)};
}
static int randInt(int min, int max) {
return __r.nextInt(max - min + 1) + min;
}
static long mix(long x) {
x += 0x9e3779b97f4a7c15L;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9L;
x = (x ^ (x >> 27)) * 0x94d049bb133111ebL;
return x ^ (x >> 31);
}
public static boolean[] findPrimes(int limit) {
assert limit >= 2;
final boolean[] nonPrimes = new boolean[limit];
nonPrimes[0] = true;
nonPrimes[1] = true;
int sqrt = (int) Math.sqrt(limit);
for (int i = 2; i <= sqrt; i++) {
if (nonPrimes[i]) continue;
for (int j = i; j < limit; j += i) {
if (!nonPrimes[j] && i != j) nonPrimes[j] = true;
}
}
return nonPrimes;
}
// array util
static void reverse(int[] a) {
for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {
int swap = a[i];
a[i] = a[n - i - 1];
a[n - i - 1] = swap;
}
}
static void reverse(long[] a) {
for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {
long swap = a[i];
a[i] = a[n - i - 1];
a[n - i - 1] = swap;
}
}
static void reverse(double[] a) {
for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {
double swap = a[i];
a[i] = a[n - i - 1];
a[n - i - 1] = swap;
}
}
static void reverse(char[] a) {
for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {
char swap = a[i];
a[i] = a[n - i - 1];
a[n - i - 1] = swap;
}
}
static void shuffle(int[] a) {
int n = a.length - 1;
for (int i = 0; i < n; ++i) {
int ind = randInt(i, n);
int swap = a[i];
a[i] = a[ind];
a[ind] = swap;
}
}
static void shuffle(long[] a) {
int n = a.length - 1;
for (int i = 0; i < n; ++i) {
int ind = randInt(i, n);
long swap = a[i];
a[i] = a[ind];
a[ind] = swap;
}
}
static void shuffle(double[] a) {
int n = a.length - 1;
for (int i = 0; i < n; ++i) {
int ind = randInt(i, n);
double swap = a[i];
a[i] = a[ind];
a[ind] = swap;
}
}
static void rsort(int[] a) {
shuffle(a);
sort(a);
}
static void rsort(long[] a) {
shuffle(a);
sort(a);
}
static void rsort(double[] a) {
shuffle(a);
sort(a);
}
static int[] copy(int[] a) {
int[] ans = new int[a.length];
for (int i = 0; i < a.length; ++i) ans[i] = a[i];
return ans;
}
static long[] copy(long[] a) {
long[] ans = new long[a.length];
for (int i = 0; i < a.length; ++i) ans[i] = a[i];
return ans;
}
static double[] copy(double[] a) {
double[] ans = new double[a.length];
for (int i = 0; i < a.length; ++i) ans[i] = a[i];
return ans;
}
static char[] copy(char[] a) {
char[] ans = new char[a.length];
for (int i = 0; i < a.length; ++i) ans[i] = a[i];
return ans;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] ria(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = Integer.parseInt(next());
return a;
}
long nextLong() {
return Long.parseLong(next());
}
long[] rla(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) a[i] = Long.parseLong(next());
return a;
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 38c8bad864547f67ca80f5998a7eb7e0 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes |
import java.io.*;
import java.math.*;
import java.util.*;
public class P03 {
static class FastReader{
BufferedReader br ;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while(st==null || !st.hasMoreElements()){try {st = new StringTokenizer(br.readLine());}catch(IOException e) {e.printStackTrace();}}
return st.nextToken();
}
int nextInt(){return Integer.parseInt(next());}
long nextLong(){return Long.parseLong(next());}
double nextDouble(){return Double.parseDouble(next());}
float nextFloat(){return Float.parseFloat(next());}
String nextLine(){
String str = "";
try {
str = br.readLine();
}catch(IOException e) {
e.printStackTrace();
}
return str ;
}
}
static class BPair {
Integer index;boolean value;
public BPair(Integer index, boolean value) {this.value =value;this.index =index;}
int getIndex() {return index;}
boolean getValue() {return value;}
}
static class Pair implements Comparable<Pair> {
Integer index,value;
public Pair(Integer index, Integer value) {this.value = value;this.index = index;}
@Override public int compareTo(Pair o){return value - o.value;}
int getValue(){ return value;}
int getindex(){return index;}
}
private static long gcd(long l, long m){
if(m==0) {return l;}
return gcd(m,l%m);
}
static void swap(long[] arr, int i, int j){long temp = arr[i];arr[i] = arr[j];arr[j] = temp;}
static int partition(long[] arr, int low, int high){
long pivot = arr[high];
int i = (low - 1);
for(int j = low; j <= high - 1; j++){
if (arr[j] < pivot){
i++;
swap(arr, i, j);
}
}
swap(arr, i + 1, high);
return (i + 1);
}
static void quickSort(long[] arr, int low, int high){
if (low < high){
int pi = partition(arr, low, high);
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);
}
}
static long M = 1000000007;
static long powe(long a,long b) {
long res =1;
while(b>0){
if((b&1)!=0) {
res=(res*a)&M;
}
a=(a*a)%M;
b>>=1;
}
return res;
}
static long power(long x, long y, long p) {
long res = 1;
x = x % p;
if (x == 0)
return 0;
while (y > 0){
if ((y & 1) != 0)
res = (res * x) % p;
y = y >> 1;
x = (x * x) % p;
}
return res;
}
static boolean [] seive(int n) {
boolean a[] = new boolean[n+1];
Arrays.fill(a, true);
a[0]=false;
a[1]=false;
for(int i =2;i<=Math.sqrt(n);i++) {
for(int j =2*i;j<=n;j+=i) {
a[j]=false;
}
}
return a;
}
private static void pa(char[] cs){for(int i =0;i<cs.length;i++){System.out.print(cs[i]+" ");}System.out.println();}
private static void pa(long[] b){for(int i =0;i<b.length;i++) {System.out.print(b[i]+" ");}System.out.println();}
private static void pm(Character[][] a){for(int i =0;i<a.length;i++){for(int j=0;j<a[i].length;j++){System.out.print(a[i][j]);}System.out.println();}}
private static void pm(int [][] a) {for(int i =0;i<a.length;i++) {for(int j=0;j<a[0].length;j++) {System.out.print(a[i][j]+" ");}System.out.println();}}
private static void pa(int[] a){for(int i =0;i<a.length;i++){System.out.print(a[i]+" ");}System.out.println();}
private static boolean isprime(int n){if (n <= 1) return false;else if (n == 2) return true;else if (n % 2 == 0) return false;for (int i = 3; i <= Math.sqrt(n); i += 2){if (n % i == 0) return false;}return true;}
static int lb(long[] b, long a){
int l=-1,r=b.length;
while(l+1<r) {
int m=(l+r)>>>1;
if(b[m]>=a) r=m;
else l=m;
}
return r;
}
static int ub(long a[], long x){
int l=-1,r=a.length;
while(l+1<r) {
int m=(l+r)>>>1;
if(a[m]<=x) l=m;
else r=m;
}
return l+1;
}
static void rec(String digits,ArrayList<String> ans,String temp,int in ,HashMap<Integer,String>hm,int l){
if(temp.length()==l){
ans.add(temp);
return ;
}
String s = hm.get(digits.charAt(in)-'0');
int n = s.length();
for(int i =0;i<n;i++){
rec(digits,ans,temp+s.charAt(i),in+1,hm,l);
}
}
public static int longestCommonSubsequence(String text1, String text2) {
int n = text1.length();
int m = text2.length();
int dp [][]= new int [n+1][m+1];
for(int i =0;i<=n;i++){
for(int j =0;j<=m;j++){
if(i==0||j==0)dp[i][j]=0;
else if(text1.charAt(i-1)==text2.charAt(j-1)){
dp[i][j]=1+dp[i-1][j-1];
}
else dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1]);
}
}
return dp[n][m];
}
static //MAIN FUNCTION ------->
ArrayList<String> alpos = new ArrayList<>();
public static void main(String[] args) throws IOException {
long start2 = System.currentTimeMillis();
// FastReader fs = new FastReader();
Scanner fs = new Scanner (System.in);
int t = fs.nextInt();
// int t =1;
while(t-->0) {
int n = fs.nextInt();
long B = fs.nextLong();
long x = fs.nextLong();
long y = fs.nextLong();
long sum = 0;
long a [] = new long [n+1];
a[0]=0;
for(int i =1;i<=n;i++) {
if(a[i-1]+x>B) {
a[i]=a[i-1]-y;
}
else a[i]=a[i-1]+x;
sum+=a[i];
}
System.out.println(sum);
}
long end2 = System.currentTimeMillis();
// System.out.println("time :"+(end2-start2));
// sc.close();
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 64c05aa9741b6359f3175069ec8f5630 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class cf1657B {
public static void main(String[] args) {
FastReader sc = new FastReader();
int t = sc.nextInt();
while(t-->0) {
int n = sc.nextInt(); //n+1 numbers in array
int b = sc.nextInt(); //each a should not exceed b
int x = sc.nextInt(); //add x
int y = sc.nextInt(); //minus y
long sum = 0;
long prev = 0;
for(int i=1; i<=n; i++) {
if(prev + x <= b) { prev = prev + x; sum += prev; }
else { prev = prev - y; sum += prev; }
}
System.out.println(sum);
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble() { return Double.parseDouble(next()); }
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 43ae3182470225ba6559039a612d9297 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.*;
import java.util.Arrays;
import java.util.InputMismatchException;
/**
* Provide prove of correctness before implementation. Implementation can cost a lot of time.
* Anti test that prove that it's wrong.
* <p>
* Do not confuse i j k g indexes, upTo and length. Do extra methods!!! Write more informative names to simulation
* <p>
* Will program ever exceed limit?
* Try all approaches with prove of correctness if task is not obvious.
* If you are given formula/rule: Try to play with it.
* Analytic solution/Hardcoded solution/Constructive/Greedy/DP/Math/Brute force/Symmetric data
* Number theory
* Game theory (optimal play) that consider local and global strategy.
*/
public class B {
private void solveOne() {
int n = nextInt();
int B = nextInt();
int x = nextInt();
int y = nextInt();
long[] a = new long[n + 1];
long ans = 0;
for(int i = 1; i <= n; i++) {
if(a[i - 1] + x <= B) {
a[i] = a[i - 1] + x;
} else {
a[i] = a[i - 1] - y;
}
ans += a[i];
}
System.out.println(ans);
}
private void solve() {
int t = nextInt();
for (int tt = 0; tt < t; tt++) {
solveOne();
}
}
class AssertionRuntimeException extends RuntimeException {
AssertionRuntimeException(Object expected,
Object actual, Object... input) {
super("expected = " + expected + ",\n actual = " + actual + ",\n " + Arrays.deepToString(input));
}
}
private int nextInt() {
return System.in.readInt();
}
private long nextLong() {
return System.in.readLong();
}
private String nextString() {
return System.in.readString();
}
private int[] nextIntArr(int n) {
return System.in.readIntArray(n);
}
private long[] nextLongArr(int n) {
return System.in.readLongArray(n);
}
public static void main(String[] args) {
new B().run();
}
static class System {
private static FastInputStream in;
private static FastPrintStream out;
}
private void run() {
final boolean ONLINE_JUDGE = java.lang.System.getProperty("ONLINE_JUDGE") != null;
final boolean USE_IO = ONLINE_JUDGE;
if (USE_IO) {
System.in = new FastInputStream(java.lang.System.in);
System.out = new FastPrintStream(java.lang.System.out);
solve();
System.out.flush();
} else {
final String nameIn = "input.txt";
final String nameOut = "output.txt";
try {
System.in = new FastInputStream(new FileInputStream(nameIn));
System.out = new FastPrintStream(new PrintStream(nameOut));
solve();
System.out.flush();
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
}
private static class FastPrintStream {
private static final int BUF_SIZE = 8192;
private final byte[] buf = new byte[BUF_SIZE];
private final OutputStream out;
private int ptr = 0;
private FastPrintStream() {
this(java.lang.System.out);
}
public FastPrintStream(OutputStream os) {
this.out = os;
}
public FastPrintStream(String path) {
try {
this.out = new FileOutputStream(path);
} catch (FileNotFoundException e) {
throw new RuntimeException("FastWriter");
}
}
public FastPrintStream print(byte b) {
buf[ptr++] = b;
if (ptr == BUF_SIZE) innerflush();
return this;
}
public FastPrintStream print(char c) {
return print((byte) c);
}
public FastPrintStream print(char[] s) {
for (char c : s) {
buf[ptr++] = (byte) c;
if (ptr == BUF_SIZE) innerflush();
}
return this;
}
public FastPrintStream print(String s) {
s.chars().forEach(c -> {
buf[ptr++] = (byte) c;
if (ptr == BUF_SIZE) innerflush();
});
return this;
}
//can be optimized
public FastPrintStream print0(char[] s) {
if (ptr + s.length < BUF_SIZE) {
for (char c : s) {
buf[ptr++] = (byte) c;
}
} else {
for (char c : s) {
buf[ptr++] = (byte) c;
if (ptr == BUF_SIZE) innerflush();
}
}
return this;
}
//can be optimized
public FastPrintStream print0(String s) {
if (ptr + s.length() < BUF_SIZE) {
for (int i = 0; i < s.length(); i++) {
buf[ptr++] = (byte) s.charAt(i);
}
} else {
for (int i = 0; i < s.length(); i++) {
buf[ptr++] = (byte) s.charAt(i);
if (ptr == BUF_SIZE) innerflush();
}
}
return this;
}
private static int countDigits(int l) {
if (l >= 1000000000) return 10;
if (l >= 100000000) return 9;
if (l >= 10000000) return 8;
if (l >= 1000000) return 7;
if (l >= 100000) return 6;
if (l >= 10000) return 5;
if (l >= 1000) return 4;
if (l >= 100) return 3;
if (l >= 10) return 2;
return 1;
}
public FastPrintStream print(int x) {
if (x == Integer.MIN_VALUE) {
return print((long) x);
}
if (ptr + 12 >= BUF_SIZE) innerflush();
if (x < 0) {
print((byte) '-');
x = -x;
}
int d = countDigits(x);
for (int i = ptr + d - 1; i >= ptr; i--) {
buf[i] = (byte) ('0' + x % 10);
x /= 10;
}
ptr += d;
return this;
}
private static int countDigits(long l) {
if (l >= 1000000000000000000L) return 19;
if (l >= 100000000000000000L) return 18;
if (l >= 10000000000000000L) return 17;
if (l >= 1000000000000000L) return 16;
if (l >= 100000000000000L) return 15;
if (l >= 10000000000000L) return 14;
if (l >= 1000000000000L) return 13;
if (l >= 100000000000L) return 12;
if (l >= 10000000000L) return 11;
if (l >= 1000000000L) return 10;
if (l >= 100000000L) return 9;
if (l >= 10000000L) return 8;
if (l >= 1000000L) return 7;
if (l >= 100000L) return 6;
if (l >= 10000L) return 5;
if (l >= 1000L) return 4;
if (l >= 100L) return 3;
if (l >= 10L) return 2;
return 1;
}
public FastPrintStream print(long x) {
if (x == Long.MIN_VALUE) {
return print("" + x);
}
if (ptr + 21 >= BUF_SIZE) innerflush();
if (x < 0) {
print((byte) '-');
x = -x;
}
int d = countDigits(x);
for (int i = ptr + d - 1; i >= ptr; i--) {
buf[i] = (byte) ('0' + x % 10);
x /= 10;
}
ptr += d;
return this;
}
public FastPrintStream print(double x, int precision) {
if (x < 0) {
print('-');
x = -x;
}
x += Math.pow(10, -precision) / 2;
// if(x < 0){ x = 0; }
print((long) x).print(".");
x -= (long) x;
for (int i = 0; i < precision; i++) {
x *= 10;
print((char) ('0' + (int) x));
x -= (int) x;
}
return this;
}
public FastPrintStream println(int[] a, int from, int upTo, char separator) {
for (int i = from; i < upTo; i++) {
print(a[i]);
print(separator);
}
print('\n');
return this;
}
public FastPrintStream println(int[] a) {
return println(a, 0, a.length, ' ');
}
public FastPrintStream println(long[] a, int from, int upTo, char separator) {
for (int i = from; i < upTo; i++) {
print(a[i]);
print(separator);
}
print('\n');
return this;
}
public FastPrintStream println(long[] a) {
return println(a, 0, a.length, ' ');
}
public FastPrintStream println(char c) {
return print(c).println();
}
public FastPrintStream println(int x) {
return print(x).println();
}
public FastPrintStream println(long x) {
return print(x).println();
}
public FastPrintStream println(String x) {
return print(x).println();
}
public FastPrintStream println(double x, int precision) {
return print(x, precision).println();
}
public FastPrintStream println() {
return print((byte) '\n');
}
public FastPrintStream printf(String format, Object... args) {
return print(String.format(format, args));
}
private void innerflush() {
try {
out.write(buf, 0, ptr);
ptr = 0;
} catch (IOException e) {
throw new RuntimeException("innerflush");
}
}
public void flush() {
innerflush();
try {
out.flush();
} catch (IOException e) {
throw new RuntimeException("flush");
}
}
}
private static class FastInputStream {
private boolean finished = false;
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public FastInputStream(InputStream stream) {
this.stream = stream;
}
public double[] readDoubleArray(int size) {
double[] array = new double[size];
for (int i = 0; i < size; i++) {
array[i] = readDouble();
}
return array;
}
public String[] readStringArray(int size) {
String[] array = new String[size];
for (int i = 0; i < size; i++) {
array[i] = readString();
}
return array;
}
public char[] readCharArray(int size) {
char[] array = new char[size];
for (int i = 0; i < size; i++) {
array[i] = readCharacter();
}
return array;
}
public char[][] readTable(int rowCount, int columnCount) {
char[][] table = new char[rowCount][];
for (int i = 0; i < rowCount; i++) {
table[i] = this.readCharArray(columnCount);
}
return table;
}
public int[][] readIntTable(int rowCount, int columnCount) {
int[][] table = new int[rowCount][];
for (int i = 0; i < rowCount; i++) {
table[i] = readIntArray(columnCount);
}
return table;
}
public double[][] readDoubleTable(int rowCount, int columnCount) {
double[][] table = new double[rowCount][];
for (int i = 0; i < rowCount; i++) {
table[i] = this.readDoubleArray(columnCount);
}
return table;
}
public long[][] readLongTable(int rowCount, int columnCount) {
long[][] table = new long[rowCount][];
for (int i = 0; i < rowCount; i++) {
table[i] = readLongArray(columnCount);
}
return table;
}
public String[][] readStringTable(int rowCount, int columnCount) {
String[][] table = new String[rowCount][];
for (int i = 0; i < rowCount; i++) {
table[i] = this.readStringArray(columnCount);
}
return table;
}
public String readText() {
StringBuilder result = new StringBuilder();
while (true) {
int character = read();
if (character == '\r') {
continue;
}
if (character == -1) {
break;
}
result.append((char) character);
}
return result.toString();
}
public void readStringArrays(String[]... arrays) {
for (int i = 0; i < arrays[0].length; i++) {
for (int j = 0; j < arrays.length; j++) {
arrays[j][i] = readString();
}
}
}
public long[] readLongArray(int size) {
long[] array = new long[size];
for (int i = 0; i < size; i++) {
array[i] = readLong();
}
return array;
}
public int[] readIntArray(int size) {
int[] array = new int[size];
for (int i = 0; i < size; i++) {
array[i] = readInt();
}
return array;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int peek() {
if (numChars == -1) {
return -1;
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
return -1;
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar];
}
public int peekNonWhitespace() {
while (isWhitespace(peek())) {
read();
}
return peek();
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
if (Character.isValidCodePoint(c)) {
res.appendCodePoint(c);
}
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuilder buf = new StringBuilder();
int c = read();
while (c != '\n' && c != -1) {
if (c != '\r') {
buf.appendCodePoint(c);
}
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0) {
s = readLine0();
}
return s;
}
public String readLine(boolean ignoreEmptyLines) {
if (ignoreEmptyLines) {
return readLine();
} else {
return readLine0();
}
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
return (char) c;
}
public double readDouble() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E') {
return res * Math.pow(10, readInt());
}
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E') {
return res * Math.pow(10, readInt());
}
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public boolean isExhausted() {
int value;
while (isSpaceChar(value = peek()) && value != -1) {
read();
}
return value == -1;
}
public String next() {
return readString();
}
public SpaceCharFilter getFilter() {
return filter;
}
public void setFilter(SpaceCharFilter filter) {
this.filter = filter;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 367b52adc3a9f7c43ccd1faf05495f89 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
public class C_1_E {
public static void main(String[] args) {
Scanner input=new Scanner(System.in);
int t=input.nextInt();
for(int i=0;i<t;i++){
int n=input.nextInt(),B=input.nextInt(),x=input.nextInt(),y=input.nextInt();
long sum=0;
int a=0;
for(int j=1;j<=n;j++){
if(a+x>B){
a-=y;
}else{
a+=x;
}
sum+=a;
}
System.out.println(sum);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | f70d6958da43926913ed938e79edf9af | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.*;
import java.lang.reflect.Array;
import java.util.*;
public class Main {
static Kattio io;
static long mod = 998244353, inv2 = 499122177;
static {
io = new Kattio();
}
public static void main(String[] args) {
int t = io.nextInt();
for (int i = 0; i < t; i++) {
solve();
}
io.close();
}
private static void solve() {
int n = io.nextInt(), d = io.nextInt(), inc = io.nextInt(), dec = io.nextInt();
long curr = 0, prev = 0, ans = 0;
for (int i = 0; i < n; i++) {
if(curr+inc>d){
curr -= dec;
}else {
curr+=inc;
}
ans += curr;
}
io.println(ans);
}
static class pair implements Comparable<pair> {
private final int x;
private final int y;
int id;
public pair(final int x, final int y) {
this.x = x;
this.y = y;
}
@Override
public String toString() {
return "pair{" +
"x=" + x +
", y=" + y +
'}';
}
@Override
public boolean equals(final Object o) {
if (this == o) {
return true;
}
if (!(o instanceof pair)) {
return false;
}
final pair pair = (pair) o;
if (x != pair.x) {
return false;
}
if (y != pair.y) {
return false;
}
return true;
}
@Override
public int hashCode() {
int result = x;
result = (int) (31 * result + y);
return result;
}
@Override
public int compareTo(pair pair) {
return Integer.compare(pair.x, this.x);
}
}
static class Kattio extends PrintWriter {
private BufferedReader r;
private StringTokenizer st;
// standard input
public Kattio() {
this(System.in, System.out);
}
public Kattio(InputStream i, OutputStream o) {
super(o);
r = new BufferedReader(new InputStreamReader(i));
}
// USACO-style file input
public Kattio(String problemName) throws IOException {
super(new FileWriter(problemName + ".out"));
r = new BufferedReader(new FileReader(problemName + ".in"));
}
// returns null if no more input
public String next() {
try {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(r.readLine());
return st.nextToken();
} catch (Exception e) {}
return null;
}
public int nextInt() {
return Integer.parseInt(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 6a719b7f4fb1fbb9819ad919e3569ace | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
static int mod = (int) (1e9 + 7);
static StringBuilder sb=new StringBuilder();
static void solve() {
int n=i();
int b=i();
int x=i();
long ans=0;
int y=i();
int[]arr=new int[n+1];
for(int i=1;i<arr.length;i++){
int val=arr[i-1]+x;
if(val>b){
arr[i]=arr[i-1]-y;
}else{
arr[i]=val;
}
ans+=arr[i];
}
sb.append(ans+"\n");
}
public static void main(String[] args) {
int test = i();
while (test-- > 0) {
solve();
}
System.out.println(sb);
}
// -----> POWER ---> long power(long x, long y) <---- power
// -----> LCM ---> long lcm(long x, long y) <---- lcm
// -----> GCD ---> long gcd(long x, long y) <---- gcd
// -----> NCR ---> long ncr(int n, int r) <---- ncr
// -----> (SORTING OF LONG, CHAR,INT) -->long[] sortLong(long[] a2)<--
// -----> (INPUT OF INT,LONG ,STRING) -> int i() long l() String s()<-
// tempstart
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int Int() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String String() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return String();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static InputReader in = new InputReader(System.in);
public static int i() {
return in.Int();
}
public static long l() {
String s = in.String();
return Long.parseLong(s);
}
public static String s() {
return in.String();
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 9b876b2c82cc9b8c309af0bbe98641ff | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.awt.*;
import java.util.*;
public class Practice {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
int b = sc.nextInt();
int x = sc.nextInt();
int y = sc.nextInt();
long prev = 0;
long ans=0;
for (int i = 0; i < n; i++) {
if ( prev+x <= b ) {
prev+= x;
ans+=prev;
} else {
prev=prev-y;
ans += prev;
}
//System.out.println(ans);
}
System.out.println(ans);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 3062ec53188682cd19dfda75ddeb7b82 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int t = Integer.parseInt(st.nextToken());
for (int j = 0; j < t; j++) {
//System.out.println("j = " + j);
st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int b = Integer.parseInt(st.nextToken());
int x = Integer.parseInt(st.nextToken());
int y = Integer.parseInt(st.nextToken());
int curr = 0;
long sum = 0;
for (int i = 0; i < n; i++) {
if (curr + x <= b) {
curr += x;
} else {
curr -= y;
}
//System.out.println("i = " + i + ", curr = " + curr);
sum += curr;
}
System.out.println(sum);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | d3e68a08f309310347f97b1dffe8465b | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.Scanner;
public class X {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int t = scanner.nextInt();
while (t-- > 0) {
int n = scanner.nextInt();
int B = scanner.nextInt();
int x = scanner.nextInt();
int y = scanner.nextInt();
long sum = 0;
int a = 0;
for (int i = 1; i<=n; ++i) {
if(a + x <= B) {
a = a+x;
} else {
a = a-y;
}
sum = sum + a;
}
System.out.println(sum);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 05a3ee3f75a65bb680a5feb96efaa8b0 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.*;
import java.math.*;
import java.security.KeyStore.Entry;
import java.util.*;
public class code {
private static boolean[] vis;
private static long[] dist;
private static long mod = 1000000000 + 7;
public static void merge(int arr[], int l, int m, int r)
{
// Find sizes of two subarrays to be merged
int n1 = m - l + 1;
int n2 = r - m;
/* Create temp arrays */
int L[] = new int [n1];
int R[] = new int [n2];
/*Copy data to temp arrays*/
for (int i=0; i<n1; ++i)
L[i] = arr[l + i];
for (int j=0; j<n2; ++j)
R[j] = arr[m + 1+ j];
/* Merge the temp arrays */
// Initial indexes of first and second subarrays
int i = 0, j = 0;
// Initial index of merged subarry array
int k = l;
while (i < n1 && j < n2)
{
if (L[i] <= R[j])
{
arr[k] = L[i];
i++;
}
else
{
arr[k] = R[j];
j++;
}
k++;
}
/* Copy remaining elements of L[] if any */
while (i < n1)
{
arr[k] = L[i];
i++;
k++;
}
/* Copy remaining elements of R[] if any */
while (j < n2)
{
arr[k] = R[j];
j++;
k++;
}
}
public static void sort(int arr[], int l, int r)
{
if (l < r)
{
// Find the middle point
int m = (l+r)/2;
// Sort first and second halves
sort(arr, l, m);
sort(arr , m+1, r);
// Merge the sorted halves
merge(arr, l, m, r);
}
}
private static long gcd(long n, long l) {
if (l == 0)
return n;
return gcd(l, n % l);
}
private static int gcd(int n, int l) {
if (l == 0)
return n;
return gcd(l, n % l);
}
public static void dfs(ArrayList<Integer>[] gr,int v)
{
vis[v]=true;
ArrayList<Integer> arr=gr[v];
for(int i=0;i<arr.size();i++)
{
if(!vis[arr.get(i)])
{
dfs(gr,arr.get(i));
}
}
}
private static class Pairs implements Comparable<Pairs>{
String v;int i;int j;
public Pairs(String a,int b,int c){
v=a;
i=b;
j=c;
}
@Override
public int compareTo(Pairs arg0) {
if(!this.v.equals(arg0.v))
return this.v.compareTo(arg0.v);
else
return arg0.i-this.i;
}
}
private static class Pair implements Comparable<Pair>{
int v,i;Pair j;
public Pair(int a,int b){
v=a;
i=b;
}
public Pair(int a,Pair b)
{
v=a;
j=b;
}
@Override
public int compareTo(Pair arg0) {
{
if(this.i!=arg0.i)
return this.i-arg0.i;
else
return arg0.v-this.v;
}
}
}
public static long mmi(long a, long m)
{
long m0 = m;
long y = 0, x = 1;
if (m == 1)
return 0;
while (a > 1)
{
// q is quotient
long q = a / m;
long t = m;
// m is remainder now, process same as
// Euclid's algo
m = a % m; a = t;
t = y;
// Update y and x
y = x - q * y;
x = t;
}
// Make x positive
if (x < 0)
x += m0;
return x;
}
private static long pow(long a, long b, long c) {
if (b == 0)
return 1;
long p = pow(a, b / 2, c);
p = (p * p) % c;
return (b % 2 == 0) ? p : (a * p) % c;
}
public static int ub(ArrayList<Integer> array, int low,int high, int value) {
while (low < high) {
final int mid = (low + high) / 2;
if (value >= array.get(mid)) {
low = mid + 1;
} else {
high = mid;
}
}
return low;
}
public static void main(String[] args) throws Exception
{
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t-->0) {
int n = sc.nextInt()+1;
int b = sc.nextInt();
int x = sc.nextInt();
int y = sc.nextInt();
int[] arr =new int[n];
arr[0] = 0;
for(int i=1;i<n;i++) {
int a1 = arr[i-1] + x;
int a2 = arr[i-1] - y;
if(a1<=b) {
arr[i] = a1;
} else {
arr[i] = a2;
}
}
long sum =0;
for(int i=0;i<n;i++)
sum+=arr[i];
System.out.println(sum);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | cdfd490eb6a693f56e206a39c7ab9683 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.Arrays;
import java.util.Scanner;
import java.util.*;
public class A {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0) {
int n=sc.nextInt();
long B=sc.nextLong();
long x=sc.nextLong();
long y=sc.nextLong();
long []a=new long[n+1];
a[0]=0;
long sum=0;
for(int i=1;i<=n;i++) {
if(a[i-1]+x<=B) {
a[i]=a[i-1]+x;
}
else {
a[i]=a[i-1]-y;
}
sum+=a[i];
}
System.out.println(sum);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 1125f46c39c4db94cc85740fb45787a6 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes |
// Working program with FastReader
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class B1657 {
public static void main(String[] args) {
FastReader fs = new FastReader();
int t = fs.nextInt();
StringBuilder sb = new StringBuilder();
while (t-- > 0) {
long n = fs.nextLong(), B = fs.nextLong(), x = fs.nextLong(), y = fs.nextLong();
long sum = 0, max = (long) 1e9;
long start = 0;
while (n-- > 0) {
start += x;
if (start > B || start > max) {
start -= (x + y);
}
sum += start;
}
sb.append(sum).append("\n");
}
System.out.println(sb);
}
private static int lowerBound(long[] arr, long val, int start) {
int low = 0, high = arr.length - 1;
while (low <= high) {
int mid = (low + high) / 2;
if (arr[mid] >= val) {
high = mid - 1;
} else {
low = mid + 1;
}
}
return low;
}
private static int upperBound(long[] arr, long val, int start) {
int low = start, high = arr.length - 1;
while (low < high) {
int mid = (low + high) / 2;
if (arr[mid] <= val) {
low = mid + 1;
} else {
high = mid;
}
}
return low;
}
private static boolean isPrime(long num) {
if (num == 2L) {
return true;
}
for (long i = 2; i * i <= num; i++) {
if (num % i == 0) {
return false;
}
}
return true;
}
private static long getGcd(long a, long b) {
if (b == 0) return a;
return getGcd(b, a % b);
}
private static long binaryExponentiation(long a, long b) {
long res = 1;
while (b > 0) {
if ((b & 1) == 1) res = res * a;
a = a * a;
b >>= 1;
}
return res;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
long[] readArray(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) arr[i] = Integer.parseInt(next());
return arr;
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 7b11bbcf144839b3d94d6c4ca205c13a | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.Arrays;
import java.util.HashSet;
import java.util.Scanner;
import java.util.Set;
public class sol{
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0)
{int n=sc.nextInt();
long b=sc.nextLong();
long x=sc.nextLong();
long y=sc.nextLong();
long sum=0;
long a[]=new long[n+1];
a[0]=0;
for(int i=1;i<=n;i++)
{
if(a[i-1]+x<=b)
{a[i]=a[i-1]+x;}
else
a[i]=a[i-1]-y;
}
for(int i=0;i<=n;i++)
{
sum+=a[i];
}
System.out.println(sum);
}
sc.close();
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 2ed341abcd8470b9972c077f6135e6ec | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class Codeforces {
public static void main(String[] args) {
try {
FastScanner sc = new FastScanner();
int T = Integer.parseInt(sc.next());
while (T-- > 0) {
long n = (long) Integer.parseInt(sc.next());
long b = (long) Integer.parseInt(sc.next());
long x = (long) Integer.parseInt(sc.next());
long y = (long) Integer.parseInt(sc.next());
long sum = 0;
long lastNum = 0;
long MOD = 1000000007;
while (n > 0) {
if (lastNum + x <= b) {
lastNum = lastNum + x % MOD;
sum += lastNum;
} else if (lastNum - y <= b) {
lastNum = lastNum - y;
sum += lastNum;
}
n--;
}
System.out.println(sum);
}
} catch (Exception e) {
//
}
}
static void printArr(int arr[]) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
long[] readLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | a874c45917e15269edad391cfcdde352 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes |
import java.io.*;
import java.util.*;
public class Solution{
public static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void swap(int i, int j)
{
int temp = i;
i = j;
j = temp;
}
static class Pair{
int i,t;
Pair(int x, int y) {
i=x;
t= y;
}
}
static class Interval{
long st,e;
Interval(long x, long y) {
st=x;
e=y;
}
}
static long mod = 1000000007;
static boolean ans= false;
static StringBuffer sb = new StringBuffer("");
public static void main(String[] args) throws Exception
{
//Read input from user
//Scanner scn = new Scanner(System.in);
FastReader scn = new FastReader();
int t = scn.nextInt();
while(t>0) {
int n = scn.nextInt();
long b = scn.nextLong();
long x = scn.nextLong();
long y = scn.nextLong();
long p = 0;
long sum =0;
for(int i=1;i<=n;i++) {
if(p+x>b) {
p = p-y;
}else {
p= p+x;
}
sum+=p;
}
System.out.println(sum);
t--;
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 88c207d1477d79a88f0b375a03b53677 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class E {
private static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
double nextDouble() {
return Double.parseDouble(next());
}
}
public static void main(String[] args) {
FastReader in = new FastReader();
int t = in.nextInt();
StringBuilder sb = new StringBuilder();
while(t-- > 0) {
int n = in.nextInt();
long B = in.nextLong();
long x = in.nextLong();
long y = in.nextLong();
long sum = 0;
long [] arr = new long [n+1];
for (int i = 1; i <= n; i++) {
if (arr[i-1] + x <= B) {
arr[i] = arr[i-1] + x;
} else {
arr[i] = arr[i-1] - y;
}
sum += arr[i];
}
sb.append(sum+"\n");
}
System.out.println(sb);
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | cb51306e598f0c9a08b8833f72de6a98 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
public class Main
{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
int i;
while(t-- > 0){
int n = sc.nextInt();
long b = sc.nextLong();
long x = sc.nextLong();
long y = sc.nextLong();
long a[] = new long[n+1];
a[0] =0;
for(i=1;i<n+1;i++){
if(a[i-1] + x <= b){
a[i] = a[i-1] + x ;
}
else{
a[i] = a[i-1] - y ;
}
}
long sum = 0;
for(i=1;i<n+1;i++){
sum = sum + a[i];
}
System.out.println(sum);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | e77001fa7d19ae598f8c8d0a33b7e65b | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
public class Main{
public static void main(String args[]){
Scanner sc = new Scanner(System.in);
int t=sc.nextInt();
while(t-->0){
long n=sc.nextLong();
long b=sc.nextLong();
long x=sc.nextLong();
long y=sc.nextLong();
long count=0;
long prev=0;
for(long i=0;i<n;i++){
if(prev<=b-x){
prev+=x;
count+=prev;
}
else{
prev-=y;
count+=prev;
}
// System.out.println("count="+count+" prev="+prev);
}
System.out.println(count);
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 11 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 5c6734e03c61cc27ba83c559b5f527b6 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes |
import java.util.*;
public class cp1 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t=sc.nextInt();
for (int tt = 0; tt < t; tt++) {
int n=sc.nextInt();
int b=sc.nextInt();
int x =sc.nextInt();
int y =sc.nextInt();
long ans=0;
long sum=0;
for(int i=1;i<=n;i++){
if(ans+x<=b){
ans= ans+x;
}else{
ans=ans-y;
}
sum=sum+ans;
}
System.out.println(sum);
}
sc.close();
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 17 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 78ee4d03d151e4ded9339f01ac61343a | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.math.BigInteger;
import java.util.*;
import static java.lang.Math.*;
import static java.lang.System.*;
import static java.util.Arrays.*;
import static java.util.stream.IntStream.iterate;
public class Template {
private static final FastScanner scanner = new FastScanner();
private static void solve() {
int n = i(), B = i(), x = i(), y = i();
var a = new int[n+1];
for (int i = 1; i<=n; i++) {
if ((a[i-1]+x)>B) a[i] = a[i-1]-y;
else a[i] = a[i-1]+x;
}
out.println(stream(a).asLongStream().sum());
}
public static void main(String[] args) {
int t = i();
while (t-->0) {
solve();
}
}
private static long fac(int n) {
long res = 1;
for (int i = 2; i<=n; i++) {
res*=i;
}
return res;
}
private static BigInteger factorial(int n) {
BigInteger res = BigInteger.valueOf(1);
for (int i = 2; i <= n; i++){
res = res.multiply(BigInteger.valueOf(i));
}
return res;
}
private static long l() {
return scanner.nextLong();
}
private static int i() {
return scanner.nextInt();
}
private static String s() {
return scanner.next();
}
private static void yes() {
out.println("YES");
}
private static void no() {
out.println("NO");
}
private static int toInt(char c) {
return Integer.parseInt(c+"");
}
private static void printArray(long[] a) {
StringBuilder builder = new StringBuilder();
for (long i : a)
builder.append(i).append(' ');
out.println(builder);
}
private static void printArray(int[] a) {
StringBuilder builder = new StringBuilder();
for (int i : a)
builder.append(i).append(' ');
out.println(builder);
}
private static void swap(int[] a, int i, int j) {
int temp = a[i];
a[i] = a[j];
a[j] = temp;
}
private static int binPow(int a, int n) {
if (n == 0)
return 1;
if (n % 2 == 1)
return binPow(a, n-1) * a;
else {
int b = binPow(a, n/2);
return b * b;
}
}
private static boolean isPrime(long n) {
return iterate(2, i -> (long) i * i <= n, i -> i + 1).noneMatch(i -> n % i == 0);
}
private static int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
private static void stableSort(int[] a) {
List<Integer> list = stream(a).boxed().sorted().toList();
setAll(a, list::get);
}
private static int getKthMax(int[] a, int low, int high, int k) {
int pivot = low;
for (int j = low; j < high; j++) {
if (a[j] <= a[high]) {
swap(a, pivot++, j);
}
}
swap(a, pivot, high);
int count = high - pivot + 1;
if (count == k) return a[pivot];
if (count > k) return getKthMax(a, pivot + 1, high, k);
return getKthMax(a, low, pivot - 1, k - count);
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
long[] readLong(int n) {
long[] a = new long[n];
for (int i = 0; i<n; i++) a[i] = nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
static class SegmentTreeRMXQ {
static int getMid(int s, int e) {
return s + (e - s) / 2;
}
static int MaxUtil(int[] st, int ss, int se, int l, int r, int node) {
if (l <= ss && r >= se)
return st[node];
if (se < l || ss > r)
return -1;
int mid = getMid(ss, se);
return max(
MaxUtil(st, ss, mid, l, r,
2 * node + 1),
MaxUtil(st, mid + 1, se, l, r,
2 * node + 2));
}
static void updateValue(int[] arr, int[] st, int ss, int se, int index, int value, int node) {
if (index < ss || index > se) {
System.out.println("Invalid Input");
return;
}
if (ss == se) {
arr[index] = value;
st[node] = value;
} else {
int mid = getMid(ss, se);
if (index <= mid)
updateValue(arr, st, ss, mid,
index, value,
2 * node + 1);
else
updateValue(arr, st, mid + 1, se, index,
value, 2 * node + 2);
st[node] = max(st[2 * node + 1],
st[2 * node + 2]);
}
}
static int getMax(int[] st, int n, int l, int r) {
if (l < 0 || r > n - 1 || l > r) {
System.out.print("Invalid Input\n");
return -1;
}
return MaxUtil(st, 0, n - 1, l, r, 0);
}
static int constructSTUtil(int[] arr, int ss, int se, int[] st, int si) {
if (ss == se) {
st[si] = arr[ss];
return arr[ss];
}
int mid = getMid(ss, se);
st[si] = max(
constructSTUtil(arr, ss, mid,
st, si * 2 + 1),
constructSTUtil(arr, mid + 1,
se, st,
si * 2 + 2));
return st[si];
}
static int[] constructST(int[] arr, int n) {
int x = (int)Math.ceil(Math.log(n) / Math.log(2));
int max_size = 2 * (int)Math.pow(2, x) - 1;
int[] st = new int[max_size];
constructSTUtil(arr, 0, n - 1, st, 0);
return st;
}
}
static class SegmentTreeRMNQ {
int[] st;
int minVal(int x, int y) {
return min(x, y);
}
int getMid(int s, int e) {
return s + (e - s) / 2;
}
int RMQUtil(int ss, int se, int qs, int qe, int index) {
if (qs <= ss && qe >= se)
return st[index];
if (se < qs || ss > qe)
return Integer.MAX_VALUE;
int mid = getMid(ss, se);
return minVal(RMQUtil(ss, mid, qs, qe, 2 * index + 1),
RMQUtil(mid + 1, se, qs, qe, 2 * index + 2));
}
int RMQ(int n, int qs, int qe) {
if (qs < 0 || qe > n - 1 || qs > qe) {
System.out.println("Invalid Input");
return -1;
}
return RMQUtil(0, n - 1, qs, qe, 0);
}
int constructSTUtil(int[] arr, int ss, int se, int si) {
if (ss == se) {
st[si] = arr[ss];
return arr[ss];
}
int mid = getMid(ss, se);
st[si] = minVal(constructSTUtil(arr, ss, mid, si * 2 + 1),
constructSTUtil(arr, mid + 1, se, si * 2 + 2));
return st[si];
}
void constructST(int[] arr, int n) {
int x = (int) (Math.ceil(Math.log(n) / Math.log(2)));
int max_size = 2 * (int) Math.pow(2, x) - 1;
st = new int[max_size]; // allocate memory
constructSTUtil(arr, 0, n - 1, 0);
}
}
static class SegmentTreeRSQ
{
int[] st; // The array that stores segment tree nodes
/* Constructor to construct segment tree from given array. This
constructor allocates memory for segment tree and calls
constructSTUtil() to fill the allocated memory */
SegmentTreeRSQ(int[] arr, int n)
{
// Allocate memory for segment tree
//Height of segment tree
int x = (int) (Math.ceil(Math.log(n) / Math.log(2)));
//Maximum size of segment tree
int max_size = 2 * (int) Math.pow(2, x) - 1;
st = new int[max_size]; // Memory allocation
constructSTUtil(arr, 0, n - 1, 0);
}
// A utility function to get the middle index from corner indexes.
int getMid(int s, int e) {
return s + (e - s) / 2;
}
/* A recursive function to get the sum of values in given range
of the array. The following are parameters for this function.
st --> Pointer to segment tree
si --> Index of current node in the segment tree. Initially
0 is passed as root is always at index 0
ss & se --> Starting and ending indexes of the segment represented
by current node, i.e., st[si]
qs & qe --> Starting and ending indexes of query range */
int getSumUtil(int ss, int se, int qs, int qe, int si)
{
// If segment of this node is a part of given range, then return
// the sum of the segment
if (qs <= ss && qe >= se)
return st[si];
// If segment of this node is outside the given range
if (se < qs || ss > qe)
return 0;
// If a part of this segment overlaps with the given range
int mid = getMid(ss, se);
return getSumUtil(ss, mid, qs, qe, 2 * si + 1) +
getSumUtil(mid + 1, se, qs, qe, 2 * si + 2);
}
/* A recursive function to update the nodes which have the given
index in their range. The following are parameters
st, si, ss and se are same as getSumUtil()
i --> index of the element to be updated. This index is in
input array.
diff --> Value to be added to all nodes which have I in range */
void updateValueUtil(int ss, int se, int i, int diff, int si)
{
// Base Case: If the input index lies outside the range of
// this segment
if (i < ss || i > se)
return;
// If the input index is in range of this node, then update the
// value of the node and its children
st[si] = st[si] + diff;
if (se != ss) {
int mid = getMid(ss, se);
updateValueUtil(ss, mid, i, diff, 2 * si + 1);
updateValueUtil(mid + 1, se, i, diff, 2 * si + 2);
}
}
// The function to update a value in input array and segment tree.
// It uses updateValueUtil() to update the value in segment tree
void updateValue(int arr[], int n, int i, int new_val)
{
// Check for erroneous input index
if (i < 0 || i > n - 1) {
System.out.println("Invalid Input");
return;
}
// Get the difference between new value and old value
int diff = new_val - arr[i];
// Update the value in array
arr[i] = new_val;
// Update the values of nodes in segment tree
updateValueUtil(0, n - 1, i, diff, 0);
}
// Return sum of elements in range from index qs (query start) to
// qe (query end). It mainly uses getSumUtil()
int getSum(int n, int qs, int qe)
{
// Check for erroneous input values
if (qs < 0 || qe > n - 1 || qs > qe) {
System.out.println("Invalid Input");
return -1;
}
return getSumUtil(0, n - 1, qs, qe, 0);
}
// A recursive function that constructs Segment Tree for array[ss..se].
// si is index of current node in segment tree st
int constructSTUtil(int arr[], int ss, int se, int si)
{
// If there is one element in array, store it in current node of
// segment tree and return
if (ss == se) {
st[si] = arr[ss];
return arr[ss];
}
// If there are more than one elements, then recur for left and
// right subtrees and store the sum of values in this node
int mid = getMid(ss, se);
st[si] = constructSTUtil(arr, ss, mid, si * 2 + 1) +
constructSTUtil(arr, mid + 1, se, si * 2 + 2);
return st[si];
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 17 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 13e584244b4e9f4aa41ad923f6ecc89c | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Random;
import java.util.StringTokenizer;
import java.util.Scanner;
import java.util.HashSet;
import java.util.Set;
public class Main {
static Scanner sc = new Scanner(System.in);
public static void main(String[] args) {
int t = sc.nextInt();
while (t > 0) {
tinh();
t = t - 1;
}
}
public static void tinh() {
int n =sc.nextInt();
long B = sc.nextLong();
long x = sc.nextInt();
long y = sc.nextLong();
long [] A = new long [n+1];
A[0]=0;
long S=0;
for(int i =1; i<=n; i++){
if(A[i-1]+x <= B){
A[i] = A[i-1]+ x;
}else{
A[i] = A[i-1] - y;
}
}
for(int i=0; i<=n; i++){
S=S+A[i];
}
System.out.println(S);
}
public static int max(int a, int b){
if(a <b){
return b;
}else{
return a;
}
}
public static int min(int a, int b){
if(a > b){
return b;
}else{
return a;
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 17 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 842080218124ff6a0118c1053d309358 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
public class MyClass {
public static void main(String args[]) {
Scanner sc = new Scanner(System.in);
int tc = sc.nextInt();
while(tc-- > 0){
int n = sc.nextInt();
int b = sc.nextInt();
int x = sc.nextInt();
int y = sc.nextInt();
int pre = 0;
// int c = 0;
long ans = 0;
for(int i = 1; i <= n; i++){
if((pre+x) <= b){
pre = pre+x;
ans += (long)pre;
}else{
pre = pre-y;
ans += (long)pre;
}
}
System.out.println(ans);
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 17 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | bccbabae982b61fcd059694be0000ff3 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes |
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Scanner;
public class B {
public static void main(String[] args) throws java.lang.Exception {
BufferedReader read = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter write = new BufferedWriter(new OutputStreamWriter(System.out));
long TestCases = Long.parseLong(read.readLine().trim());
for (int tItr = 0; tItr < TestCases; tItr++) {
String[] str = read.readLine().toString().split(" ");
int n = Integer.parseInt(str[0]);
int b = Integer.parseInt(str[1]);
int x = Integer.parseInt(str[2]);
int y = Integer.parseInt(str[3]);
// String string = read.readLine();
long total =0 ;
int value = 0;
// write.write(value + " ");
for (int i = 0; i < n; i++) {
int count = value + x;
if(count <= b){
// write.write(count + " ");
total += count;
value = count;
}else{
// while((value + x) > b){
value -= y;
// }
// value += y;
total += value;
// write.write(value+" ");
}
}
write.write(total+"\n");
}
write.flush();
write.close();
read.close();
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 8 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | e79c4db53089ad790fc93166b2889cb5 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
import java.util.Scanner;
import java.io.*;
import java.math.BigInteger;
public class Main{
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
int t;
t=sc.nextInt();
while(t-->0)
{
int n=sc.nextInt();
int limit=sc.nextInt();
int plus=sc.nextInt();
int minus=sc.nextInt();
int[]ans=new int[n+1];
ans[0]=0;
BigInteger sum=BigInteger.valueOf(0);
for(int i=1;i<=n;i++)
{
if(ans[i-1]+plus<=limit)
{
ans[i]=ans[i-1]+plus;
}
else
{
ans[i]=ans[i-1]-minus;
}
}
for(int i=0;i<=n;i++)
{
sum=sum.add(BigInteger.valueOf(ans[i]));
}
System.out.println(sum);
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 8 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 6b235331f1313d9622fff787caa7e6d9 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int t = in.nextInt();
while (t-- > 0) {
int n = in.nextInt();
int b = in.nextInt();
int x = in.nextInt();
int y = in.nextInt();
long sum = 0;
for (int i = 0, s = 0; i < n; i++) {
s += x;
if (s > b) {
s -= x;
s -= y;
}
sum += s;
}
System.out.println(sum);
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 8 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 0de92de45f65b953c80041f6668cdb79 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.math.BigInteger;
import java.util.*;
import java.util.Map;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader cin = new BufferedReader(new InputStreamReader(System.in));
// Scanner sc = new Scanner(System.in);
int X = Integer.parseInt(cin.readLine());
for (int i = 0; i < X; i++) {
String[] s = cin.readLine().split(" ");
int n,B,x,y;
n = Integer.parseInt(s[0]);
B = Integer.parseInt(s[1]);
x = Integer.parseInt(s[2]);
y = Integer.parseInt(s[3]);
int[] arr = new int[n+1];
for (int j = 1; j <= n; j++) {
if (arr[j-1]+x<=B){
arr[j] = arr[j-1]+x;
}else {
arr[j] = arr[j-1]-y;
}
}
long sum = 0;
for (int j = 0; j <= n; j++) {
sum+=arr[j];
}
System.out.println(sum);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 8 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 6e48fa1e09eba487e36118f499d73018 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | //package hashcode;
import java.io.*;
//checkTriangle
import java.util.*;
//isSorted
//isPrime
//print
//sort
//input
public class G
{
static PrintWriter out = new PrintWriter(System.out);
static StringBuilder ans=new StringBuilder();
static FastReader in=new FastReader();
public static void main(String args[])throws IOException
{
int t=i();
outer:while(t-->0) {
long n = l();
long B= l();
long x=l();
long y=l();
//n=n+1;
long[] A = new long[(int)n+1];
A[0]=0;int i=1;
while(i<n+1) {
if(A[i-1]+x>B) {
A[i]=A[i-1]-y;
}
else {
A[i]=A[i-1]+x;
}
i++;
}
//print(A);
long sum = Sum(A);
out.println(sum);
}
out.close();
}
public static long Sum(long[] A) {
long sum=0;
for(int i=0;i<A.length;i++) {
sum+=A[i];
}
return sum;
}
public static int checkTriangle(long a,
long b, long c)
{
// check condition
if (a + b <= c || a + c <= b || b + c <= a)
return 0;
else
return 1;
}
static boolean isSorted(long A[])
{
for(int i=1; i<A.length; i++)if(A[i]<A[i-1])return false;
return true;
}
static int kadane(int A[])
{
int lsum=A[0],gsum=A[0];
for(int i=1; i<A.length; i++)
{
lsum=Math.max(lsum+A[i],A[i]);
gsum=Math.max(gsum,lsum);
}
return gsum;
}
static void print(char A[])
{
for(char c:A)System.out.print(c);
System.out.println();
}
static void print(boolean A[])
{
for(boolean c:A)System.out.print(c+" ");
System.out.println();
}
static void print(int A[])
{
for(int a:A)System.out.print(a+" ");
System.out.println();
}
static void print(long A[])
{
for(long i:A)System.out.print(i+ " ");
System.out.println();
}
static void print(ArrayList<Long> A)
{
for(long a:A)System.out.print(a+" ");
System.out.println();
}
static void sort(long[] a) //check for long
{
ArrayList<Long> l=new ArrayList<>();
for (long i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static boolean isPrime(long N)
{
if (N<=1) return false;
if (N<=3) return true;
if (N%2 == 0 || N%3 == 0) return false;
for (int i=5; i*i<=N; i=i+6)
if (N%i == 0 || N%(i+2) == 0)
return false;
return true;
}
static long GCD(long a,long b)
{
if(b==0)
{
return a;
}
else return GCD(b,a%b );
}
static int i()
{
return in.nextInt();
}
static long l()
{
return in.nextLong();
}
static String S() {
return in.next();
}
static int[] input(int N){
int A[]=new int[N];
for(int i=0; i<N; i++)
{
A[i]=in.nextInt();
}
return A;
}
static long[] inputLong(int N) {
long A[]=new long[N];
for(int i=0; i<A.length; i++)A[i]=in.nextLong();
return A;
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br=new BufferedReader(new InputStreamReader(System.in));
}
String next()
{
while(st==null || !st.hasMoreElements())
{
try
{
st=new StringTokenizer(br.readLine());
}
catch(IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str="";
try
{
str=br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 8 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 3f04e98e7a4641e7c9fca5af6b4c4438 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
public class Main{
private static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public static String readln() throws IOException{
String line = br.readLine();
return line;
}
public static void main(String[] args) throws IOException{
int testCases = Integer.parseInt(readln().split(" ")[0]);
for(int i=0; i<testCases; i++){
String[] input = readln().split(" ");
solve(Long.parseLong(input[0]), Long.parseLong(input[1]),Long.parseLong(input[2]), Long.parseLong(input[3]));
}
}
private static void solve(long n, long B,long x,long y){
long sum= 0;
long a = 0;
for(long i = 0 ; i<n ; i++){
if( x+a <= B){
a = a+x;
}
else{
a = a-y;
}
sum = sum +a;
}
System.out.println(sum);
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 8 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 8a07927aafabe97070c642fdb05b5735 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
public static void main (String[] args) throws Exception {
FastScanner sc=new FastScanner();
int t=sc.nextInt();
while(t-->0){
int n=sc.nextInt();
long b=sc.nextLong();
long x=sc.nextLong();
long y=sc.nextLong();
long[] arr=new long[n+1];
arr[0]=0;
for(int i=1;i<=n;i++){
if(arr[i-1]+x<=b){
arr[i]=arr[i-1]+x;
}else arr[i]=arr[i-1]-y;
}
long sum=0;
for(long v:arr) sum+=v;
System.out.println(sum);
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 8 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | f7ca8b78817df56f47aebab8a670f40e | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
public class sksss {
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
sksss ob=new sksss();
int t=sc.nextInt();
for(int i=0;i<t;i++)
{
long n=sc.nextLong();
long B=sc.nextLong();
long x=sc.nextLong();
long y=sc.nextLong();
System.out.println(ob.compute(n,B,x,y));
}
}
long compute(long n,long B,long x,long y)
{
long s=0,sum=0;
for(int i=0;i<n;i++){
s=s+x;
if(s>B)
s=s-(x+y);
sum+=s;
}
return sum;
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 8 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 9d9c0dc9b4d89db435098e14ae0fe269 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
public class handling {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner scn=new Scanner(System.in);
int t=scn.nextInt();
while(t>0) {
int n=scn.nextInt();
long b=scn.nextLong();
long x=scn.nextLong();
long y=scn.nextLong();
long ans=0;
long val=0;
for(int i=1; i<=n; i++) {
if(val+x<=b) {
val+=x;
ans+=val;
}else {
val-=y;
ans+=val;
}
}System.out.println(ans);
t--;
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 8 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 05cd1f1e838ee7e5af28df44efa090f5 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Random;
import java.util.StringTokenizer;
public class EduB {
static FastScanner sc=new FastScanner();
static PrintWriter out=new PrintWriter(System.out);
public static void main(String[] args) {
int T=sc.nextInt();
for (int tt=0; tt<T; tt++) {
solve();
}
}
private static void solve() {
// TODO Auto-generated method stub
int n = sc.nextInt();
int B = sc.nextInt();
int x = sc.nextInt();
int y = sc.nextInt();
ArrayList<Integer>ls = new ArrayList<>();
ls.add(0);
int idx =0;
while(n>0) {
if(ls.get(idx)+x<=B) {
ls.add(ls.get(idx)+x);
idx++;
}
else if(ls.get(idx)-y<=B) {
ls.add(ls.get(idx)-y);
idx++;
}
n--;
}
long sum =0;
for(int i=0;i<ls.size();i++) {
sum+=ls.get(i);
}System.out.println(sum);
}
static final Random random=new Random();
static final int mod=1_000_000_007;
static void ruffleSort(int[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n), temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static long add(long a, long b) {
return (a+b)%mod;
}
static long sub(long a, long b) {
return ((a-b)%mod+mod)%mod;
}
static long mul(long a, long b) {
return (a*b)%mod;
}
static long exp(long base, long exp) {
if (exp==0) return 1;
long half=exp(base, exp/2);
if (exp%2==0) return mul(half, half);
return mul(half, mul(half, base));
}
static long[] factorials=new long[2_000_001];
static long[] invFactorials=new long[2_000_001];
static void precompFacts() {
factorials[0]=invFactorials[0]=1;
for (int i=1; i<factorials.length; i++) factorials[i]=mul(factorials[i-1], i);
invFactorials[factorials.length-1]=exp(factorials[factorials.length-1], mod-2);
for (int i=invFactorials.length-2; i>=0; i--)
invFactorials[i]=mul(invFactorials[i+1], i+1);
}
static long nCk(int n, int k) {
return mul(factorials[n], mul(invFactorials[k], invFactorials[n-k]));
}
static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 8 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | dcc9d6b2402fe8293d98a60c953eb2c3 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.Scanner;
public class codeforces2 {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
for (int j = 0; j < t; j++) {
long n=sc.nextLong();
long B=sc.nextLong();
long x=sc.nextLong();
long y=sc.nextLong();
long[] arr=new long[(int) (n+1)];
arr[0]=0;
for (int i = 1; i < n+1; i++) {
if(B>=arr[i-1]+x)
arr[i]=arr[i-1]+x;
else
arr[i]=arr[i-1]-y;
}
long sum=0;
for (int i = 0; i < n+1; i++) {
sum+=arr[i];
}
System.out.println(sum);}}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 8 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 3a905278bdc0d71b24aa2309451b1716 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.*;
public class Main {
public static void main(String ar[]) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
int b = sc.nextInt();
int x = sc.nextInt();
int y = sc.nextInt();
long sum = 0;
int intial = 0;
for (int i = 0; i < n; i++) {
if (intial + x > b) {
intial -= y;
} else {
intial += x;
}
sum += intial;
}
System.out.println(sum);
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 8 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 68e445153b77b817ecdc66c7cc7a1f67 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | //package codeforces;
import java.util.*;
import java.io.*;
public class Solution {
public static void main(String [] args) throws Exception{
Scanner sc= new Scanner(System.in);
int t= sc.nextInt();
while(t-->0){
int n= sc.nextInt();
int B= sc.nextInt();
int x= sc.nextInt();
int y= sc.nextInt();
long[] arr= new long[n+1];
for(int i=1;i<=n;i++){
if(arr[i-1]+x <= B){
arr[i]=arr[i-1]+x;
}else{
arr[i]=arr[i-1]-y;
}
}
long sum = 0;
for(long cur:arr ) {
sum+=cur;
}
System.out.println(sum);
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 8 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 93acbddeb0ccf49191737dcd18113af6 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.lang.*;
import java.io.*;
import java.util.*;
public class My
{
public static void main(String[] args)
{
Scanner scn=new Scanner(System.in);
int t=scn.nextInt();
while(t-->0)
{
long sum=0;
long n=scn.nextLong();
long b=scn.nextLong();
long x=scn.nextLong();
long y=scn.nextLong();
if(b>=x)
{
long arr[]=new long[(int)n+1];
arr[0]=0;
for(int i=1;i<(n+1);i++)
{
if(arr[i-1]+x<=b)
{
arr[i]=arr[i-1]+x;
}
else{
arr[i]=arr[i-1]-y;
}
sum+=arr[i];
}
System.out.println(sum);
}
else{
long arr[]=new long [(int)n+1];
arr[0]=0;
for(int i=1;i<(n+1);i++)
{
if(arr[i-1]+x<=b)
{
arr[i]=arr[i-1]+x;
}
else{
arr[i]=arr[i-1]-y;
}
sum+=arr[i];
}
System.out.println(sum);
}
}
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 8 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | e8704e7cbdc9de9e52879447b413a15b | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.util.Scanner;
import java.util.StringTokenizer;
public class ThirdAttemptPORCODIO {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
StringTokenizer st;
int t = Integer.parseInt(scan.nextLine());
int n;
long b, x, y, prev;
long[] result = new long[t];
long[] summatory;
for(int i = 0; i < t; i++) {
prev = 0;
st = new StringTokenizer(scan.nextLine());
n = Integer.parseInt(st.nextToken());
b = Long.parseLong(st.nextToken());
x = Long.parseLong(st.nextToken());
y = Long.parseLong(st.nextToken());
summatory = new long[n];
for(int j = 0; j < n; j++) {
if(prev + x <= b) {
prev += x;
} else {
prev -= y;
}
summatory[j] = prev;
}
for(int j = 0; j < n; j++)
result[i] += summatory[j];
}
for(int i = 0; i < t; i++)
System.out.println(result[i]);
}
}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 8 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | b45c36ef89cd3321a459d07eb8d2dfdf | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.*;
public class Main {
///
// Two theorams are used to find ncrp
// Lucas theoram and the fermit theoram
// a^p-1=1(modp) example 2 and 3
// Lucas theoram
// ncr=ncr(n/mod,n/mod)*ncr1(n%p,r%mod);
static long max = Integer.MAX_VALUE;
//C0C2+C1C1+C2C0
static int catalanNumber(int n, int dp[]) {
if (n <= 2) {
return 1;
}
if (dp[n] != -1) {
return dp[n];
}
//C0C1+C1C2+C20
int answer = 0;
for (int i = 0; i < n; ++i) {
//01 //10
//This is the dynamic programming
answer += catalanNumber(i, dp) * catalanNumber(n - i - 1, dp);
// System.out.println(answer);
}
return dp[n] = answer;
}
static int printNthcatalanNumber(int n) {
int dp[] = new int[n + 1];
Arrays.fill(dp, -1);
return catalanNumber(n, dp);
}
static int power(int a, int b, int mod) {
int res = 1;
while (b > 0) {
if (b % 2 == 1) {
res *= a;
}
a *= a;
b >>= 1;
}
return res;
}
static int fermittheoram(int a, int mod) {
return power(a, mod - 2, mod);
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static PrintWriter out=new PrintWriter(System.out);
static FastReader scan=new FastReader();
static boolean check=false;
static class Pair{
int first;
int second;
long distance;
Pair(int first,int second,long distance){
this.first=first;
this.second=second;
this.distance=distance;
}
}
static long INF = (long) 1e17;
static long NINF = (long)INF*(-1);
static boolean check(int n){
return Math.ceil( Math.sqrt(n))==Math.floor(Math.sqrt(n));
}
static void solve() {
int t=scan.nextInt();
while(t-->0){
int n=scan.nextInt();
int b=scan.nextInt();
int x=scan.nextInt();
int y=scan.nextInt();
int arr[]=new int[n+1];
arr[0]=0;
long sum=0;
for(int i=1;i<=n;++i){
//either
if(arr[i-1]+x>b){
arr[i]=arr[i-1]-y;
}
else{
arr[i]=arr[i-1]+x;
}
sum+=arr[i];
}
System.out.println(sum);
}
}
public static void main(String[] args) {
solve();
out.close();
}}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 8 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | f194dd0afd700d67820c09d0488917ec | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.*;
public class Main {
///
// Two theorams are used to find ncrp
// Lucas theoram and the fermit theoram
// a^p-1=1(modp) example 2 and 3
// Lucas theoram
// ncr=ncr(n/mod,n/mod)*ncr1(n%p,r%mod);
static long max = Integer.MAX_VALUE;
//C0C2+C1C1+C2C0
static int catalanNumber(int n, int dp[]) {
if (n <= 2) {
return 1;
}
if (dp[n] != -1) {
return dp[n];
}
//C0C1+C1C2+C20
int answer = 0;
for (int i = 0; i < n; ++i) {
//01 //10
//This is the dynamic programming
answer += catalanNumber(i, dp) * catalanNumber(n - i - 1, dp);
// System.out.println(answer);
}
return dp[n] = answer;
}
static int printNthcatalanNumber(int n) {
int dp[] = new int[n + 1];
Arrays.fill(dp, -1);
return catalanNumber(n, dp);
}
static int power(int a, int b, int mod) {
int res = 1;
while (b > 0) {
if (b % 2 == 1) {
res *= a;
}
a *= a;
b >>= 1;
}
return res;
}
static int fermittheoram(int a, int mod) {
return power(a, mod - 2, mod);
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static PrintWriter out=new PrintWriter(System.out);
static FastReader scan=new FastReader();
static boolean check=false;
static class Pair{
int first;
int second;
long distance;
Pair(int first,int second,long distance){
this.first=first;
this.second=second;
this.distance=distance;
}
}
static long INF = (long) 1e17;
static long NINF = (long)INF*(-1);
static boolean check(int n){
return Math.ceil( Math.sqrt(n))==Math.floor(Math.sqrt(n));
}
static void solve() {
int t=scan.nextInt();
while(t-->0){
int n=scan.nextInt();
int b=scan.nextInt();
int x=scan.nextInt();
int y=scan.nextInt();
int arr[]=new int[n+1];
arr[0]=0;
long sum=0;
for(int i=1;i<=n;++i){
//either
if(arr[i-1]+x>b){
arr[i]=arr[i-1]-y;
}
else{
arr[i]=arr[i-1]+x;
}
sum+=arr[i];
}
System.out.println(sum);
}
}
public static void main(String[] args) {
solve();
out.close();
}}
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 8 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | efde998a0ecefd9cbddba5acb6e351dc | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
// static boolean[] prime = new boolean[10000000];
final static long mod = 998244353;
public static void main(String[] args) {
// sieve();
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
int t = in.nextInt();
while(t-- > 0){
int n = in.nextInt()+1, b = in.nextInt(), x = in.nextInt(), y = in.nextInt();
int k = 0;
long ans = 0;
while(n-- > 0){
ans += k;
if(k + x > b){
k -= y;
}else{
k += x;
}
}
out.println(ans);
}
out.flush();
}
static int gcd(int a, int b) {
int temp;
while (b > 0) {
a %= b;
temp = a;
a = b;
b = temp;
}
return a;
}
static Integer[] intInput(int n, InputReader in) {
Integer[] a = new Integer[n];
for (int i = 0; i < a.length; i++)
a[i] = in.nextInt();
return a;
}
static Long[] longInput(int n, InputReader in) {
Long[] a = new Long[n];
for (int i = 0; i < a.length; i++)
a[i] = in.nextLong();
return a;
}
static String[] strInput(int n, InputReader in) {
String[] a = new String[n];
for (int i = 0; i < a.length; i++)
a[i] = in.next();
return a;
}
// static void sieve() {
// for (int i = 2; i * i < prime.length; i++) {
// if (prime[i])
// continue;
// for (int j = i * i; j < prime.length; j += i) {
// prime[j] = true;
// }
// }
// }
}
class Data {
int ind;
double w;
Data(int val, double ind) {
this.ind = val;
this.w = ind;
}
}
class Graph {
ArrayList<ArrayList<Data>> g;
Graph(int n) {
g = new ArrayList<>();
for (int i = 0; i < n; i++) {
g.add(new ArrayList<>());
}
}
void addEdge(int i, int j, double x, double y) {
g.get(i).add(new Data(j, x / (x + y)));
g.get(j).add(new Data(i, y / (x + y)));
}
}
// class compareVal implements Comparator<Data> {
// @Override
// public int compare(Data o1, Data o2) {
// return (o1.val - o2.val);
// }
// }
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = reader.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 8 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | 6d0c5d8d66862ce36604f164348bec90 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | /*package whatever //do not write package name here */
import java.util.*;
public class GFG {
public static void main (String[] args) {
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
for(int o=0;o<t;o++){
int n=sc.nextInt();
int b=sc.nextInt();
int x=sc.nextInt();
int y=sc.nextInt();
int[] arr=new int[n+1];
arr[0]=0;
for(int i=1;i<n+1;i++){
int a=arr[i-1]+x;
if(a>b){
arr[i]=arr[i-1]-y;
}
else{
arr[i]=a;
}
}
long sum=0;
for(int i=0;i<n+1;i++){
sum+=arr[i];
//System.out.println(arr[i]);
}
System.out.println(sum);
}
}
} | Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 8 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output | |
PASSED | bdf513a3f6bc9c7457369c3797fab9a9 | train_110.jsonl | 1647960300 | You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible. | 256 megabytes | import java.io.*;
import java.lang.*;
import java.util.*;
public class solution {
public static void main (String[] args){
int t=sc.nextInt();
while(t--!=0) {
int n=sc.nextInt();long b=sc.nextLong();long x=sc.nextLong();long y=sc.nextLong();
long a[]=new long[n+1];long sum=0;
for(int i=1;i<n+1;i++) {
if(a[i-1]+x<=b) {
a[i]=a[i-1]+x;sum+=a[i];
}else {
a[i]=a[i-1]-y;sum+=a[i];
}
}
out.println(sum);
}
////////////////////////////////////////////////////////////////////
out.flush();out.close();
}//*END OF MAIN METHOD*
static final Random random = new Random();
static void sort(int arr[]) {
int n = arr.length;
for(int i = 0; i < n; i++) {
int j = random.nextInt(n),temp = arr[j];
arr[j] = arr[i];
arr[i] = temp;
}
Arrays.sort(arr);
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long[] readArrayL(int n) {
long a[]=new long[n];
for(int i=0;i<n;i++) a[i]=nextLong();
return a;
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
static PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));//PRINTLN METHOD
static FastScanner sc = new FastScanner();//FASTSCANNER OBJECT
}//*END OF MAIN CLASS*
| Java | ["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"] | 2 seconds | ["15\n4000000000\n-10"] | NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$. | Java 8 | standard input | [
"greedy"
] | 2c921093abf2c5963f5f0e96cd430456 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$. | 800 | For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$. | standard output |
Subsets and Splits