exec_outcome
stringclasses 1
value | code_uid
stringlengths 32
32
| file_name
stringclasses 111
values | prob_desc_created_at
stringlengths 10
10
| prob_desc_description
stringlengths 63
3.8k
| prob_desc_memory_limit
stringclasses 18
values | source_code
stringlengths 117
65.5k
| lang_cluster
stringclasses 1
value | prob_desc_sample_inputs
stringlengths 2
802
| prob_desc_time_limit
stringclasses 27
values | prob_desc_sample_outputs
stringlengths 2
796
| prob_desc_notes
stringlengths 4
3k
⌀ | lang
stringclasses 5
values | prob_desc_input_from
stringclasses 3
values | tags
sequencelengths 0
11
| src_uid
stringlengths 32
32
| prob_desc_input_spec
stringlengths 28
2.37k
⌀ | difficulty
int64 -1
3.5k
⌀ | prob_desc_output_spec
stringlengths 17
1.47k
⌀ | prob_desc_output_to
stringclasses 3
values | hidden_unit_tests
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PASSED | 09d7665f2ffe8116d83978ab68c56d27 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.lang.*;
// import java.math.*;
import java.io.*;
import java.util.*;
public class Main{
public static int mod=(int)(1e9) + 7;
public static BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
public static PrintWriter ot=new PrintWriter(System.out);
public static int[] take_arr(int n){
int a[]=new int[n];
try {
String s[]=br.readLine().trim().split(" ");
for(int i=0;i<n;i++)
a[i]=Integer.parseInt(s[i]);
} catch (Exception e) {
e.printStackTrace();
}
return a;
}
public static void main (String[] args) throws java.lang.Exception
{
try{
int t=Integer.parseInt(br.readLine().trim());
int cno=1;
pre();
while(t-->0){
String s[]=br.readLine().trim().split(" ");
int n=Integer.parseInt(s[0]);
int m=Integer.parseInt(s[1]);
// int k=Integer.parseInt(s[2]);
// int a[]=take_arr(n);
// int b[]=take_arr(n);
// char ch[]=br.readLine().trim().toCharArray();
// long n=Long.parseLong(s[0]);
solve(n,m);
}
ot.close();
br.close();
}catch(Exception e){
e.printStackTrace();
return;
}
}
static void solve(int n, int m){
try{
ot.println(dp[n][m]);
} catch(Exception e){
e.printStackTrace();
return ;
}
}
static void pre(){
dp=new Integer[51][51];
boolean visited[][]=new boolean[51][51];
Queue<int[]> q=new LinkedList<>();
q.add(new int[]{0,0});
visited[0][0]=true;
int count=0;
while(!q.isEmpty()){
int size=q.size();
for(int x=0;x<size;x++){
int Temp[]=q.poll();
int xx=Temp[0];
int yy=Temp[1];
dp[xx][yy]=count;
for(int i=-50;i<=50;i++){
for(int j=-50;j<=50;j++){
int xi=xx+i;
int xj=yy+j;
if(xi<=50&&xj<=50&&xi>=0&&xj>=0){
double temp = (xi-xx)*(xi-xx)+(xj-yy)*(xj-yy);
temp=Math.sqrt(temp);
if((int)(temp)==temp&&!visited[xi][xj]){
q.add(new int[]{xi,xj});
visited[xi][xj]=true;
}
}
}
}
}
count++;
}
}
static Integer dp[][];
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 3c54259aba4a18f8634021185add3193 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | /* package codeforces; // don't place package name! */
// algo_messiah23 , NIT RKL ...
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
import static java.lang.System.*;
import java.util.stream.IntStream;
import java.util.Map;
import java.util.Map.Entry;
/* Name of the class has to be "Main" only if the class is public. */
public class CodeForces
{
static PrintWriter out=new PrintWriter((System.out));
static FastReader in = new FastReader();
static int INF = Integer.MAX_VALUE;
static int NINF = Integer.MIN_VALUE;
public static void main (String[] args) throws java.lang.Exception
{
// your code goes here
int t=i();
while(t-->0)
{
solve();
}
out.close();
}
public static void solve()
{
int x=i();
int y=i();
if(x==0 && y==0)
out.println("0");
else if(x==0 || y==0)
out.println(1);
else
{
int k=x*x + y*y;
if((double)Math.sqrt((double)k)%1==0)
out.println(1);
else
out.println(2);
}
}
static int[] input(int N){
int[] A=new int[N];
for(int i=0; i<N; i++)
A[i]=in.nextInt();
return A;
}
public static void print(int[] arr){
int n = arr.length;
for(int i = 0;i < n;i++){
out.print(arr[i] + " ");
}
out.println();
}
public static void sort(int[] arr){
ArrayList<Integer> ls = new ArrayList<>();
for(int x : arr){
ls.add(x);
}
Collections.sort(ls);
for(int i = 0;i < arr.length;i++){
arr[i] = ls.get(i);
}
}
public static void reverse(int[] arr){
int n = arr.length;
for(int i = 0;i < n/2;i++){
int temp = arr[i];
arr[i] = arr[n-1-i];
arr[n-1-i] = temp;
}
}
public static void reverse(long[] arr){
int n = arr.length;
for(int i = 0;i < n/2;i++){
long temp = arr[i];
arr[i] = arr[n-1-i];
arr[n-1-i] = temp;
}
}
public static void print(ArrayList<Integer> arr){
int n = arr.size();
for(int i = 0;i < n;i++){
out.print(arr.get(i) + " ");
}
out.println();
}
static int i()
{
return in.nextInt();
}
static long l()
{
return in.nextLong();
}
static char ich()
{
return in.next().charAt(0);
}
static String is()
{
return in.next();
}
static String isl()
{
return in.nextLine();
}
public static int max(int[] arr){
int max = -1;
int n = arr.length;
for(int i = 0;i < n;i++)
max = Math.max(max,arr[i]);
return max;
}
public static int min(int[] arr){
int min=INF;
int n=arr.length;
for(int i = 0;i< n;i++)
min=Math.min(min,arr[i]);
return min;
}
public static int gcd(int x, int y)
{
if (y==0){
return x;
}
return gcd(y,x%y);
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br=new BufferedReader(new InputStreamReader(System.in));
}
String next()
{
while(st==null || !st.hasMoreElements())
{
try
{
st=new StringTokenizer(br.readLine());
}
catch(IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str="";
try
{
str=br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 17a3162a397a3aca3401f15f83bf3a92 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
public class Solution {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while (t-- != 0) {
int x = sc.nextInt();
int y = sc.nextInt();
int res = (x*x) + (y*y);
int count = 0;
if(x==0 && y == 0)
System.out.println(0);
else if((x==0 && y>0 )|| (y==0 && x>0))
System.out.println(1);
else {
for (int i = 1; i < x+y; i++) {
if (res==i*i){
count = 1;
break;}
else
count =2;
}
System.out.println(count);
}
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | ea9d8cfbf23b020fe7eeea2370e3336a | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.Scanner;
public class IntegerMoves {
public static int Dist(int x1 , int y1 , int x2 , int y2){
double ans = Math.pow(Math.pow(x2-x1,2) + Math.pow(y2-y1,2),0.5);
int Ans = (int) ans;
// System.out.println(Ans);
if(Ans == 0){
return Ans;
}
if(ans%Ans == 0){
return Ans;
}
return -1;
}
public static int IntMoves(int x , int y){
if(Dist(0,0,x,y) == 0){
return 0;
}
else if(Dist(0,0,x,y)!=-1){
return 1;
}
return 2;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
for (int i = 0 ; i < t ; i++){
int x = sc.nextInt();
int y = sc.nextInt();
System.out.println(IntMoves(x,y));
}
// System.out.println(Dist(0,0,2,3));
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 6c6ec347c045f4317b8d85bc88921906 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes |
import java.io.*;
import java.math.*;
import java.util.*;
public class P03 {
static class FastReader{
BufferedReader br ;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while(st==null || !st.hasMoreElements()){try {st = new StringTokenizer(br.readLine());}catch(IOException e) {e.printStackTrace();}}
return st.nextToken();
}
int nextInt(){return Integer.parseInt(next());}
long nextLong(){return Long.parseLong(next());}
double nextDouble(){return Double.parseDouble(next());}
float nextFloat(){return Float.parseFloat(next());}
String nextLine(){
String str = "";
try {
str = br.readLine();
}catch(IOException e) {
e.printStackTrace();
}
return str ;
}
}
static class BPair {
Integer index;boolean value;
public BPair(Integer index, boolean value) {this.value =value;this.index =index;}
int getIndex() {return index;}
boolean getValue() {return value;}
}
static class Pair implements Comparable<Pair> {
Integer index,value;
public Pair(Integer index, Integer value) {this.value = value;this.index = index;}
@Override public int compareTo(Pair o){return value - o.value;}
int getValue(){ return value;}
int getindex(){return index;}
}
private static long gcd(long l, long m){
if(m==0) {return l;}
return gcd(m,l%m);
}
static void swap(long[] arr, int i, int j){long temp = arr[i];arr[i] = arr[j];arr[j] = temp;}
static int partition(long[] arr, int low, int high){
long pivot = arr[high];
int i = (low - 1);
for(int j = low; j <= high - 1; j++){
if (arr[j] < pivot){
i++;
swap(arr, i, j);
}
}
swap(arr, i + 1, high);
return (i + 1);
}
static void quickSort(long[] arr, int low, int high){
if (low < high){
int pi = partition(arr, low, high);
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);
}
}
static long M = 1000000007;
static long powe(long a,long b) {
long res =1;
while(b>0){
if((b&1)!=0) {
res=(res*a)&M;
}
a=(a*a)%M;
b>>=1;
}
return res;
}
static long power(long x, long y, long p) {
long res = 1;
x = x % p;
if (x == 0)
return 0;
while (y > 0){
if ((y & 1) != 0)
res = (res * x) % p;
y = y >> 1;
x = (x * x) % p;
}
return res;
}
static boolean [] seive(int n) {
boolean a[] = new boolean[n+1];
Arrays.fill(a, true);
a[0]=false;
a[1]=false;
for(int i =2;i<=Math.sqrt(n);i++) {
for(int j =2*i;j<=n;j+=i) {
a[j]=false;
}
}
return a;
}
private static void pa(char[] cs){for(int i =0;i<cs.length;i++){System.out.print(cs[i]+" ");}System.out.println();}
private static void pa(long[] b){for(int i =0;i<b.length;i++) {System.out.print(b[i]+" ");}System.out.println();}
private static void pm(Character[][] a){for(int i =0;i<a.length;i++){for(int j=0;j<a[i].length;j++){System.out.print(a[i][j]);}System.out.println();}}
private static void pm(int [][] a) {for(int i =0;i<a.length;i++) {for(int j=0;j<a[0].length;j++) {System.out.print(a[i][j]+" ");}System.out.println();}}
private static void pa(int[] a){for(int i =0;i<a.length;i++){System.out.print(a[i]+" ");}System.out.println();}
private static boolean isprime(int n){if (n <= 1) return false;else if (n == 2) return true;else if (n % 2 == 0) return false;for (int i = 3; i <= Math.sqrt(n); i += 2){if (n % i == 0) return false;}return true;}
static int lb(long[] b, long a){
int l=-1,r=b.length;
while(l+1<r) {
int m=(l+r)>>>1;
if(b[m]>=a) r=m;
else l=m;
}
return r;
}
static int ub(long a[], long x){
int l=-1,r=a.length;
while(l+1<r) {
int m=(l+r)>>>1;
if(a[m]<=x) l=m;
else r=m;
}
return l+1;
}
static void rec(String digits,ArrayList<String> ans,String temp,int in ,HashMap<Integer,String>hm,int l){
if(temp.length()==l){
ans.add(temp);
return ;
}
String s = hm.get(digits.charAt(in)-'0');
int n = s.length();
for(int i =0;i<n;i++){
rec(digits,ans,temp+s.charAt(i),in+1,hm,l);
}
}
public static int longestCommonSubsequence(String text1, String text2) {
int n = text1.length();
int m = text2.length();
int dp [][]= new int [n+1][m+1];
for(int i =0;i<=n;i++){
for(int j =0;j<=m;j++){
if(i==0||j==0)dp[i][j]=0;
else if(text1.charAt(i-1)==text2.charAt(j-1)){
dp[i][j]=1+dp[i-1][j-1];
}
else dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1]);
}
}
return dp[n][m];
}
static //MAIN FUNCTION ------->
ArrayList<String> alpos = new ArrayList<>();
public static void main(String[] args) throws IOException {
long start2 = System.currentTimeMillis();
// FastReader fs = new FastReader();
Scanner fs = new Scanner (System.in);
int t = fs.nextInt();
// int t =1;
while(t-->0) {
int x = fs.nextInt();
int y = fs.nextInt();
double ans = x*x + y*y ;
if(x==0||y==0) {
if(x==0&&y==0)System.out.println("0");
else System.out.println(1);
}
else if((int)Math.sqrt(ans)==Math.sqrt(ans)) {
System.out.println(1);
}
else {
System.out.println(2);
}
}
long end2 = System.currentTimeMillis();
// System.out.println("time :"+(end2-start2));
// sc.close();
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 9d358e7520add23e52e148d4cfd7ef37 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
import java.lang.*;
public class Main{
public static void main(String args[]){
Scanner inp=new Scanner(System.in);
int t=inp.nextInt();
for(int i=0;i<t;i++){
int x2=inp.nextInt();
int y2=inp.nextInt();
if(x2==0 && y2==0){
System.out.println(0);
continue;
}
else{
int n1=x2*x2;
int n2=y2*y2;
int n3=n1+n2;
double sqrt=Math.sqrt(n3);
int sqrt1=(int) sqrt;
// System.out.println(sqrt-sqrt1);
if(Math.abs(sqrt-sqrt1)==0){
System.out.println(1);
continue;
}
else{
System.out.println(2);
continue;
}
}
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 4e5f3f06e7c1f6e6da5c82500f776c7b | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.Scanner;
public class cf{
public static void main(String[] args ){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
for(int i = 0; i<n;i++){
int x = sc.nextInt();
int y = sc.nextInt();
if(x+y==0){
System.out.println(0);
}
else{
if(Math.sqrt(x*x+y*y)==(int)Math.sqrt(x*x+y*y)){
System.out.println(1);
}
else{
System.out.println(2);
}
}
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | e4b0e8353a4e758ee21667e70564a3eb | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes |
import java.util.*;
public class sol {
public static void main(String arg[])
{
Scanner sc=new Scanner(System.in);
int t = sc.nextInt();
while(t-->0){
int x=sc.nextInt();
int y=sc.nextInt();
if(x==0&&y==0){
System.out.println(0);
continue;
}
int v=x*x+y*y;
double squareRoot = Math.sqrt(v);
long val=(long)(squareRoot+0.5);
if(v==val*val){
System.out.println(1);
}
else{
System.out.println(2);
}
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 76be52b9b5093bbeb1b0b5dd713740a6 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
public class moves
{
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int ans[]=new int[n];
for(int i=0;i<n;i++){
int n1=sc.nextInt();
int n2=sc.nextInt();
double num=Math.sqrt(Math.pow(n1,2)+Math.pow(n2,2));
if(n1==0 && n2==0){
ans[i]=0;
}
else if(num%1==0)
{
ans[i]=1;
}
else
{
ans[i]=2;
}
}
for(int i=0;i<n;i++){
System.out.println(ans[i]);
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 16214616f6c17ccb04a49517ab933401 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
public class moves
{
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int ans[]=new int[n];
for(int i=0;i<n;i++){
int n1=sc.nextInt();
int n2=sc.nextInt();
double num=Math.pow(n1,2)+Math.pow(n2,2);
num=Math.sqrt(num);
double num1=(int)num;
if(n1==0 && n2==0){
ans[i]=0;
}
else if(num-num1==0)
{
ans[i]=1;
}
else
{
ans[i]=2;
}
}
for(int i=0;i<n;i++){
System.out.println(ans[i]);
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | adc400ac6def1c210f5766676fb5e036 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.*;
import java.time.Instant;
import java.util.*;
import static java.lang.Math.*;
//-------------------------------///////////////****/////////******//////////
//------------------------------------///**********//*****//********//*****//
//-----------------------------------///**********//*****//********//*****//
//----------------------------------///**********//*****//********//*****//
//---------------------------------///**********//*****//********//*****//
//--------------------------------///**********//*****//********//*****//
//--------------------------///**///**********//*****//********//*****//
//---------------------------/////***********/////////*******//////////
public class CodeForces {
final static String no = "NO";
final static String yes = "YES";
static long count = 0;
static public OutputWriter w = new OutputWriter(System.out);
static public IO sc = new IO();
static HashMap<Integer, Integer> map = new HashMap<>();
static Scanner fc = new Scanner(System.in);
//*******************************************Be SANSA***********************************
//************************************Don't stick to single approach********************
//*****************************************You are a slow learner But you learn*********
//***************************************Don't fall in rating trap**********************
//**********************************Pain in temporary, regret remains forever***********
////////////////////////////////////////////////////////////////////////////////////////////
public static void main(String[] args) {
int t = sc.nextInt();
in:
while(t-->0) {
int a = sc.nextInt();
int b = sc.nextInt();
if(a==b && a==0) {
w.writer.println(0);
continue in;
}
double x ,y;
x =y= sqrt(pow(a,2)+pow(b,2));
if(Math.ceil(x)!=Math.floor(y)) {
w.writer.println(2);
}else {
w.writer.println(1);
}
}
w.writer.flush();
}
static boolean res(long sum, TreeMap<Long,Integer> tm) {
int val = tm.getOrDefault(sum, 0);
if(val>0) {
tm.put(sum, tm.get(sum)-1);
return true;
}else if(sum==1) {
return false;
}
else {
return res(sum/2,tm)&&res((sum+1)/2, tm);
}
}
//////////////////////////////////////////////////////////////////////////////////////////
static int floorPowerOf2(int n) {
int p = (int)(Math.log(n) /
Math.log(2));
return (int)Math.pow(2, p);
}
static int ceilPowerOf2(int n) {
int p = (int)(Math.log(n) /
Math.log(2));
return (int)Math.pow(2, p+1);
}
static List<Integer> printDivisors(int n) {
// Note that this loop runs till square root
List<Integer> sl = new ArrayList<>();
for (int i = 1; i <= Math.sqrt(n); i++) {
if (n % i == 0) {
// If divisors are equal, print only one
if (n / i == i)
sl.add(i);
else // Otherwise print both
{
sl.add(i);
sl.add(n / i);
}
}
}
return sl;
}
static class Pair {
int x, y,z;
Pair(int x,int y){
this.x = x;
this.y = y;
}
Pair(int x, int y,int z) {
this.x = x;
this.y = y;
this.z = z;
}
}
static int gcd(int a, int b) {
if (a == 0)
return b;
return gcd(b % a, a);
}
static long gcd(long a, long b) {
if (a == 0)
return b;
return gcd(b % a, a);
}
static long lcm(long a, long b) {
return (a / gcd(a, b)) * b;
}
static void sort(int[] arr) {
Random rand = new Random();
int n = arr.length;
for (int i = 0; i < n; i++) {
int idx = rand.nextInt(n);
if (idx == i)
continue;
arr[i] ^= arr[idx];
arr[idx] ^= arr[i];
arr[i] ^= arr[idx];
}
Arrays.sort(arr);
}
static void sort(long[] arr) {
Random rand = new Random();
int n = arr.length;
for (int i = 0; i < n; i++) {
int idx = rand.nextInt(n);
if (idx == i)
continue;
arr[i] ^= arr[idx];
arr[idx] ^= arr[i];
arr[i] ^= arr[idx];
}
Arrays.sort(arr);
}
static void sortDec(int[] arr) {
Random rand = new Random();
int n = arr.length;
for (int i = 0; i < n; i++) {
int idx = rand.nextInt(n);
if (idx == i)
continue;
arr[i] ^= arr[idx];
arr[idx] ^= arr[i];
arr[i] ^= arr[idx];
}
Arrays.sort(arr);
int l = 0;
int r = n - 1;
while (l < r) {
arr[l] ^= arr[r];
arr[r] ^= arr[l];
arr[l] ^= arr[r];
l++;
r--;
}
}
static void sortDec(long[] arr) {
Random rand = new Random();
int n = arr.length;
for (int i = 0; i < n; i++) {
int idx = rand.nextInt(n);
if (idx == i)
continue;
arr[i] ^= arr[idx];
arr[idx] ^= arr[i];
arr[i] ^= arr[idx];
}
Arrays.sort(arr);
int l = 0;
int r = n - 1;
while (l < r) {
arr[l] ^= arr[r];
arr[r] ^= arr[l];
arr[l] ^= arr[r];
l++;
r--;
}
}
static class IO {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
long[] longArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
double nextDouble() {
return Double.parseDouble(next());
}
}
static public class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | ca2d4815266713b5ee287616a22a2e2e | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
import java.io.*;
import java.time.*;
import static java.lang.Math.*;
@SuppressWarnings("unused")
public class A {
static boolean DEBUG = false;
static Reader fs;
static PrintWriter pw;
static TreeSet<Integer> p_square = new TreeSet<>();
static void solve() {
int x = fs.nextInt();
int y = fs.nextInt();
if (x == 0 && y == 0) {
pw.println(0);
return;
}
if (p_square.contains(x * x + y * y)) {
pw.println(1);
} else {
pw.println(2);
}
}
public static void main(String[] args) throws IOException {
for (int i = 1; i <= 1000; i++) {
p_square.add(i * i);
}
if (args.length == 2) {
System.setIn(new FileInputStream("D:\\program\\javaCPEclipse\\CodeForces\\src\\input.txt"));
System.setErr(new PrintStream("D:\\program\\javaCPEclipse\\CodeForces\\src\\error.txt"));
DEBUG = true;
}
Instant start = Instant.now();
fs = new Reader();
pw = new PrintWriter(System.out);
int t = fs.nextInt();
while (t-- > 0) {
solve();
}
Instant end = Instant.now();
if (DEBUG) {
pw.println(Duration.between(start, end));
}
pw.close();
}
static void sort(int a[]) {
ArrayList<Integer> l = new ArrayList<Integer>();
for (int x : a)
l.add(x);
Collections.sort(l);
for (int i = 0; i < a.length; i++) {
a[i] = l.get(i);
}
}
public static void print(long a, long b, long c, PrintWriter pw) {
pw.println(a + " " + b + " " + c);
return;
}
static class Reader {
BufferedReader br;
StringTokenizer st;
public Reader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] readArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
int[][] read2Array(int n, int m) {
int a[][] = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
a[i][j] = nextInt();
}
}
return a;
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 8abf6a4c2dd51f9fd17d6665d7ba4da1 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.Scanner;
public class CodeForcesTest{
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int t = s.nextInt();
for (int i = 0; i < t; i++) {
double x = s.nextInt();
double y = s.nextInt();
if(x==0 && y==0)
System.out.println("0");
else if(Math.pow(x*x + y*y,0.5)%1==0)
System.out.println("1");
else
System.out.println("2");
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 482c3201a088ef0eb5bd67af7b119c88 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while (t > 0) {
int x = sc.nextInt();
int y = sc.nextInt();
int d = (x * x) + (y * y);
int r = 0;
while (r * r < d)
++r;
int ans = 2;
if (r * r == d) {
ans = 1;
}
if (x == 0 && y == 0) {
ans = 0;
}
System.out.println(ans);
t--;
}
sc.close();
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | a44ac23ff3e958bbe7506f919098c01c | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
import java.lang.Math;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while (t > 0) {
int x = sc.nextInt();
int y = sc.nextInt();
if (x == 0 && y == 0) {
System.out.println(0);
} else {
int x2 = x * x;
int y2 = y * y;
double ans = Math.sqrt(x2 + y2);
if ((ans - Math.floor(ans)) == 0) {
System.out.println(1);
} else {
System.out.println(2);
}
}
t--;
}
sc.close();
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 7a2062da12f40db8462eb1b7eeee20c7 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author JuniorAndrade
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
int solve(int x) {
for (int i = 0; i * i <= x; ++i) {
if (i * i == x) return 0;
}
return 1;
}
public void solve(int testNumber, InputReader in, OutputWriter out) {
int test = in.readInt();
while (test-- > 0) {
int x = in.readInt();
int y = in.readInt();
if (x == 0 && y == 0) {
out.printLine(0);
} else {
out.printLine(1 + solve(x * x + y * y));
}
}
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(int i) {
writer.println(i);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 96eeac444eb8d337db4a433a9cb3fd6c | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class MAIN {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static int eu (int x, int y){
if(x==0 && y ==0){
return 0;
}
else if (Math.sqrt((x*x)+(y*y))%1==0){
return 1;
}
else{
return 2;
}
}
public static void main(String[] args)
{
FastReader s = new FastReader();
int t = s.nextInt();
while(t>0) {
int x = s.nextInt();
int y = s.nextInt();
System.out.println(eu(x,y));
--t;
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 871874a7a4a3183d11212b0771ed5093 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.util.*;
import java.io.*;
public class Main {
// Graph
// prefix sums
//inputs
public static void main(String args[])throws Exception{
Input sc=new Input();
precalculates p=new precalculates();
StringBuilder sb=new StringBuilder();
int t=sc.readInt();
int dp[]=new int[5000+1];
for(int i=1;i<=5000;i++){
dp[i]=Integer.MAX_VALUE;
for(int j=1;j<=(int)Math.sqrt(i);j++){
dp[i]=Math.min(dp[i],dp[i-j*j]+1);
}
}
for(int f=0;f<t;f++){
int d[]=sc.readArray();
int a=d[0],b=d[1];
int tot=a*a;
tot=tot+(b*b);
boolean h=false;
for(int i=1;i<=52;i++){
if(i*i==tot){
h=true;
break;
}
}
if(h)
{
sb.append("1\n");
continue;
}
int count=0;
sb.append(dp[tot]+"\n");
}
System.out.print(sb);
}
}
class Input{
BufferedReader br;
StringTokenizer st;
Input(){
br=new BufferedReader(new InputStreamReader(System.in));
st=new StringTokenizer("");
}
public int[] readArray() throws Exception{
st=new StringTokenizer(br.readLine());
int a[]=new int[st.countTokens()];
for(int i=0;i<a.length;i++){
a[i]=Integer.parseInt(st.nextToken());
}
return a;
}
public long[] readArrayLong() throws Exception{
st=new StringTokenizer(br.readLine());
long a[]=new long[st.countTokens()];
for(int i=0;i<a.length;i++){
a[i]=Long.parseLong(st.nextToken());
}
return a;
}
public int readInt() throws Exception{
st=new StringTokenizer(br.readLine());
return Integer.parseInt(st.nextToken());
}
public long readLong() throws Exception{
st=new StringTokenizer(br.readLine());
return Long.parseLong(st.nextToken());
}
public String readString() throws Exception{
return br.readLine();
}
public int[][] read2dArray(int n,int m)throws Exception{
int a[][]=new int[n][m];
for(int i=0;i<n;i++){
st=new StringTokenizer(br.readLine());
for(int j=0;j<m;j++){
a[i][j]=Integer.parseInt(st.nextToken());
}
}
return a;
}
}
class precalculates{
public long gcd(long p, long q) {
if (q == 0) return p;
else return gcd(q, p % q);
}
public int[] prefixSumOneDimentional(int a[]){
int n=a.length;
int dp[]=new int[n];
for(int i=0;i<n;i++){
if(i==0)
dp[i]=a[i];
else
dp[i]=dp[i-1]+a[i];
}
return dp;
}
public int[] postSumOneDimentional(int a[]) {
int n = a.length;
int dp[] = new int[n];
for (int i = n - 1; i >= 0; i--) {
if (i == n - 1)
dp[i] = a[i];
else
dp[i] = dp[i + 1] + a[i];
}
return dp;
}
public int[][] prefixSum2d(int a[][]){
int n=a.length;int m=a[0].length;
int dp[][]=new int[n+1][m+1];
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
dp[i][j]=a[i-1][j-1]+dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1];
}
}
return dp;
}
public long pow(long a,long b){
long mod=998244353;
long ans=1;
if(b<=0)
return 1;
if(b%2==0){
ans=pow(a,b/2)%mod;
return ((ans%mod)*(ans%mod))%mod;
}else{
ans=pow(a,b-1)%mod;
return ((a%mod)*(ans%mod))%mod;
}
}
}
class GraphInteger{
HashMap<Integer,vertex> vtces;
class vertex{
HashMap<Integer,Integer> children;
public vertex(){
children=new HashMap<>();
}
}
public GraphInteger(){
vtces=new HashMap<>();
}
public void addVertex(int a){
vtces.put(a,new vertex());
}
public void addEdge(int a,int b,int cost){
if(!vtces.containsKey(a)){
vtces.put(a,new vertex());
}
if(!vtces.containsKey(b)){
vtces.put(b,new vertex());
}
vtces.get(a).children.put(b,cost);
// vtces.get(b).children.put(a,cost);
}
public boolean isCyclicDirected(){
boolean isdone[]=new boolean[vtces.size()+1];
boolean check[]=new boolean[vtces.size()+1];
for(int i=1;i<=vtces.size();i++) {
if (!isdone[i] && isCyclicDirected(i,isdone, check)) {
return true;
}
}
return false;
}
private boolean isCyclicDirected(int i,boolean isdone[],boolean check[]){
if(check[i])
return true;
if(isdone[i])
return false;
check[i]=true;
isdone[i]=true;
Set<Integer> set=vtces.get(i).children.keySet();
for(Integer ii:set){
if(isCyclicDirected(ii,isdone,check))
return true;
}
check[i]=false;
return false;
}
}
class union_find {
int n;
int[] sz;
int[] par;
union_find(int nval) {
n = nval;
sz = new int[n + 1];
par = new int[n + 1];
for (int i = 0; i <= n; i++) {
par[i] = i;
sz[i] = 1;
}
}
int root(int x) {
if (par[x] == x)
return x;
return par[x] = root(par[x]);
}
boolean find(int a, int b) {
return root(a) == root(b);
}
int union(int a, int b) {
int ra = root(a);
int rb = root(b);
if (ra == rb)
return 0;
if(a==b)
return 0;
if (sz[a] > sz[b]) {
int temp = ra;
ra = rb;
rb = temp;
}
par[ra] = rb;
sz[rb] += sz[ra];
return 1;
}
}
/*
static int mod=998244353;
private static int add(int x, int y) {
x += y;
return x % MOD;
}
private static int mul(int x, int y) {
int res = (int) (((long) x * y) % MOD);
return res;
}
private static int binpow(int x, int y) {
int z = 1;
while (y > 0) {
if (y % 2 != 0)
z = mul(z, x);
x = mul(x, x);
y >>= 1;
}
return z;
}
private static int inv(int x) {
return binpow(x, MOD - 2);
}
private static int devide(int x, int y) {
return mul(x, inv(y));
}
private static int C(int n, int k, int[] fact) {
return devide(fact[n], mul(fact[k], fact[n-k]));
}
*/
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 64d47871e5051a76144abaf811e6c839 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.Scanner;
public class integer_moves{
public static void main(String[] args) {
Scanner scanner=new Scanner(System.in);
int t=scanner.nextInt();
while(t!=0){
int x=scanner.nextInt();
int y=scanner.nextInt();
int count=0;
t--;
if(x==0 && y==0)
System.out.println(count);
else{
double result=Math.sqrt(Math.pow(x, 2)+Math.pow(y, 2));
if(result%1==0){
count++;
System.out.println(count);
}
else{
count=2;
System.out.println(count);
}
}
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | fd94e34a98fd7ce4ad90fc7521f14747 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
public class A {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int t = s.nextInt();
while(t-- > 0) {
int x = s.nextInt(), y = s.nextInt();
int ans = Math.sqrt((x*x)+(y*y)) == (int)Math.sqrt((x*x)+(y*y)) ? 1 : 2;
System.out.println(x == 0 && y == 0 ? 0 : ans);
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | e15db37a373baa4d51ff55a9549cc7bc | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
public class A {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int t = s.nextInt();
while(t-- > 0) {
int x = s.nextInt(), y = s.nextInt();
if(x == 0 && y == 0) {
System.out.println(0);
} else {
double r1 = Math.sqrt((x*x)+(y*y));
System.out.println(r1 == (int)r1 ? 1 : 2);
}
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 3a72a360e721588c348b8316aa96af9d | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class EDU125_A {
public static void main(String[] args) throws IOException{
try(BufferedReader br = new BufferedReader(new InputStreamReader(System.in))){
int tCases = Integer.parseInt(br.readLine());
while (tCases-- > 0) {
StringTokenizer st = new StringTokenizer(br.readLine().trim());
int x2 = Integer.parseInt(st.nextToken());
int y2 = Integer.parseInt(st.nextToken());
int x0 = 0;
int y0 = 0;
int cont = 0;
if (x2 == 0 && y2 == 0) System.out.println(0);
else
if (nextPoint(x0, y0, x2, y2))
System.out.println(1);
else {
/*for(int i = 1; i < x2; i++) {
for(int j = 1; j < y2; j++) {
if (nextPoint(x0, y0, i, j)) {
x0 = i;
y0 = j;
cont++;
if (nextPoint(x0, y0, x2, y2)) {
cont++;
i = x2+1;
j = y2+1;
}else cont = 0;
}
}
}*/
System.out.println(2);
}
}
}
}
static boolean nextPoint(int x1, int y1, int x2, int y2) {
boolean resultado = false;
double x = Math.sqrt( Math.pow((x1 - x2), 2) + Math.pow((y1 - y2), 2) );
if(x==(int)x)
resultado = true;
return resultado;
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 849b3f717f2610dccf5448b7f1d60517 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes |
import java.io.*;
import java.math.*;
import java.util.*;
/*
author : Multi-Thread
*/
public class A {
//public class Main {
// static int INF = 998244353;
static int INF = (int) 1e9 + 7;
static int MAX = Integer.MAX_VALUE;
static int MIN = Integer.MIN_VALUE;
public static void main(String[] args) {
int test = fs.nextInt();
// int test = 1;
for (int cases = 0; cases < test; cases++) {
// solve();
final_answer.append(solve() + "\n");
}
out.print(final_answer.toString());
out.flush();
}
static StringBuilder final_answer = new StringBuilder();
static String solve() {
int x = fs.nextInt(), y = fs.nextInt();
if (x == 0 && y == 0)
return 0 + "";
int dist=x*x+y*y;
int sq=(int)Math.sqrt(dist);
if(sq*sq==dist)
return 1 + "";
return 2+"";
}
static void intSort(int[] a, boolean reverse) {
ArrayList<Integer> al = new ArrayList<Integer>();
for (int i : a)
al.add(i);
Collections.sort(al);
if (reverse) {
for (int i = 0; i < a.length; i++)
a[i] = al.get(a.length - i - 1);
} else {
for (int i = 0; i < a.length; i++)
a[i] = al.get(i);
}
}
static class Pair {
int first, second;
public Pair(int first, int second) {
this.first = first;
this.second = second;
}
public String toString() {
return "[" + first + "," + second + "]";
}
}
static class LongPair {
long first;
long second;
LongPair(long a, long b) {
this.first = a;
this.second = b;
}
public String toString() {
return "[" + first + "," + second + "]";
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void println() {
writer.print("\n");
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
public void flush() {
writer.flush();
}
}
private static final FastReader fs = new FastReader();
private static final OutputWriter out = new OutputWriter(System.out);
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 9ee6eb290287b5deac23f17063e30e1d | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Practice {
static boolean multipleTC = true;
final static int mod = 1000000007;
final static int mod2 = 998244353;
final double E = 2.7182818284590452354;
final double PI = 3.14159265358979323846;
int MAX = 1000000007;
void pre() throws Exception {
}
// All the best
void solve(int TC) throws Exception {
int x = ni(),y = ni();
if(x==0 && y==0) {
pn("0");
}else {
double sq = (x*x) + (y*y);
double sqrt = Math.sqrt(sq);
int s = (int)sqrt;
if(s== sqrt) {
pn("1");
}else {
pn("2");
}
}
}
double dist(int x1, int y1, int x2, int y2) {
double a = x1 - x2, b = y1 - y2;
return Math.sqrt((a * a) + (b * b));
}
int[] readArr(int n) throws Exception {
int arr[] = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = ni();
}
return arr;
}
void sort(int arr[], int left, int right) {
ArrayList<Integer> list = new ArrayList<>();
for (int i = left; i <= right; i++)
list.add(arr[i]);
Collections.sort(list);
for (int i = left; i <= right; i++)
arr[i] = list.get(i - left);
}
void sort(int arr[]) {
ArrayList<Integer> list = new ArrayList<>();
for (int i = 0; i < arr.length; i++)
list.add(arr[i]);
Collections.sort(list);
for (int i = 0; i < arr.length; i++)
arr[i] = list.get(i);
}
public long max(long... arr) {
long max = arr[0];
for (long itr : arr)
max = Math.max(max, itr);
return max;
}
public int max(int... arr) {
int max = arr[0];
for (int itr : arr)
max = Math.max(max, itr);
return max;
}
public long min(long... arr) {
long min = arr[0];
for (long itr : arr)
min = Math.min(min, itr);
return min;
}
public int min(int... arr) {
int min = arr[0];
for (int itr : arr)
min = Math.min(min, itr);
return min;
}
public long sum(long... arr) {
long sum = 0;
for (long itr : arr)
sum += itr;
return sum;
}
public long sum(int... arr) {
long sum = 0;
for (int itr : arr)
sum += itr;
return sum;
}
String bin(long n) {
return Long.toBinaryString(n);
}
String bin(int n) {
return Integer.toBinaryString(n);
}
static int bitCount(int x) {
return x == 0 ? 0 : (1 + bitCount(x & (x - 1)));
}
static void dbg(Object... o) {
System.err.println(Arrays.deepToString(o));
}
int bit(long n) {
return (n == 0) ? 0 : (1 + bit(n & (n - 1)));
}
int abs(int a) {
return (a < 0) ? -a : a;
}
long abs(long a) {
return (a < 0) ? -a : a;
}
void p(Object o) {
out.print(o);
}
void pn(Object o) {
out.println(o);
}
void pni(Object o) {
out.println(o);
out.flush();
}
void pn(int[] arr) {
int n = arr.length;
StringBuilder sb = new StringBuilder();
for (int i = 0; i < n; i++) {
sb.append(arr[i] + " ");
}
pn(sb);
}
void pn(long[] arr) {
int n = arr.length;
StringBuilder sb = new StringBuilder();
for (int i = 0; i < n; i++) {
sb.append(arr[i] + " ");
}
pn(sb);
}
String n() throws Exception {
return in.next();
}
String nln() throws Exception {
return in.nextLine();
}
int ni() throws Exception {
return Integer.parseInt(in.next());
}
long nl() throws Exception {
return Long.parseLong(in.next());
}
double nd() throws Exception {
return Double.parseDouble(in.next());
}
public static void main(String[] args) throws Exception {
new Practice().run();
}
FastReader in;
PrintWriter out;
void run() throws Exception {
in = new FastReader();
out = new PrintWriter(System.out);
int T = (multipleTC) ? ni() : 1;
pre();
for (int t = 1; t <= T; t++)
solve(t);
out.flush();
out.close();
}
class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) throws Exception {
br = new BufferedReader(new FileReader(s));
}
String next() throws Exception {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new Exception(e.toString());
}
}
return st.nextToken();
}
String nextLine() throws Exception {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
throw new Exception(e.toString());
}
return str;
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | a9f5984071dc8dcfd36e09c0f9e26c32 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | /* Created by Isaac Chen on 2022/03/24 19:06:12*/
import java.util.*;
import java.lang.*;
import java.io.*;
public class Solution
{
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int cas=sc.nextInt();
for(int z=0;z<cas;z++) {
int x=sc.nextInt(),y=sc.nextInt();
Double sq=Math.sqrt(x*x+y*y);
int sq1=sq.intValue();
if(x==0&&y==0) System.out.println(0);
else if(sq1*sq1==x*x+y*y) System.out.println(1);
else System.out.println(2);
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 2893c626c9ce9aa4d785614775c485d0 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | public class IntegerMoves {
private static final java.util.Scanner sc=new java.util.Scanner(System.in);
public void solve()
{
int t=sc.nextInt();
while (t>0)
{
int x=sc.nextInt();
int y=sc.nextInt();
int ans=Integer.MIN_VALUE;
double _temp=(Math.pow(x,2))+Math.pow(y,2);
int result=0;
while ((result*result)<_temp) ++result;
ans=2;
if ((result*result)==_temp)
ans=1;
if (x==0 && y==0)
ans=0;
System.out.println(ans);
t--;
}
sc.close();
}
public static void main(String[] args) {
new IntegerMoves().solve();
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | bf614794e22d5ff6ea1b0b1a11066548 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class Main {
private static void solve(InputScanner in, PrintWriter out) throws IOException {
int tests = in.nextInt();
for (int test = 0; test < tests; test++) {
int x = in.nextInt();
int y = in.nextInt();
int dist = x * x + y * y;
if (dist == 0) {
out.println(0);
} else {
int res = 0;
while (res * res < dist) {
res++;
}
if (res * res == dist) {
out.println(1);
} else {
out.println(2);
}
}
}
}
public static class InputScanner {
private BufferedReader in;
private StringTokenizer st;
public InputScanner(InputStream is) {
in = new BufferedReader(new InputStreamReader(is));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public void close() throws IOException {
in.close();
}
}
private static InputScanner in;
private static PrintWriter out;
private static void init() throws IOException {
in = new InputScanner(System.in);
out = new PrintWriter(System.out);
solve(in, out);
in.close();
out.close();
}
public static void main(String[] args) throws IOException {
init();
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | b40964e38c47443f3dd1f26d3561a312 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes |
import static java.util.Arrays.asList;
import java.io.BufferedReader;
import java.io.ByteArrayOutputStream;
import java.io.Closeable;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintStream;
import java.net.URISyntaxException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;
import java.util.StringTokenizer;
/**
* A. Integer Moves
* @see <a href="https://codeforces.com/contest/1657/problem/A">https://codeforces.com/contest/1657/problem/A</a>
*/
public class Main {
private final InputStream in;
private final PrintStream out;
public Main(
final Boolean sample, final InputStream in, final PrintStream out) {
this.in = in;
this.out = out;
}
private boolean isSquare(final int a, final int b) {
final double d = Double.valueOf(Math.sqrt(a * a + b * b));
return d == Math.floor(d) && !Double.isInfinite(d);
}
private void handleTestCase(final Integer i, final FastScanner sc) {
final int x = sc.nextInt();
final int y = sc.nextInt();
int ans = 2;
if (x == 0 && y == 0) {
ans = 0;
} else if (isSquare(x, y)) {
ans = 1;
}
this.out.println(ans);
}
public void solve() {
try (final FastScanner sc = new FastScanner(this.in)) {
final int numberOfTestCases = sc.nextInt();
for (int i = 0; i < numberOfTestCases; i++) {
handleTestCase(i, sc);
}
}
}
public static void main(final String[] args) throws IOException, URISyntaxException {
final boolean sample = isSample();
final InputStream is;
final PrintStream out;
final ByteArrayOutputStream baos = new ByteArrayOutputStream();
long timerStart = 0;
if (sample) {
is = Main.class.getResourceAsStream("sample.in");
out = new PrintStream(baos, true);
timerStart = System.nanoTime();
} else {
is = System.in;
out = System.out;
}
new Main(sample, is, out).solve();
out.flush();
if (sample) {
final long timeSpent = (System.nanoTime() - timerStart) / 1_000;
final double time;
final String unit;
if (timeSpent < 1_000) {
time = timeSpent;
unit = "µs";
} else if (timeSpent < 1_000_000) {
time = timeSpent / 1_000.0;
unit = "ms";
} else {
time = timeSpent / 1_000_000.0;
unit = "s";
}
final Path path
= Paths.get(Main.class.getResource("sample.out").toURI());
final List<String> expected = Files.readAllLines(path);
final List<String> actual = asList(baos.toString().split("\\r?\\n"));
if (!expected.equals(actual)) {
throw new AssertionError(String.format(
"Expected %s, got %s", expected, actual));
}
actual.forEach(System.out::println);
System.out.println(String.format("took: %.3f %s", time, unit));
}
}
private static boolean isSample() {
try {
return "sample".equals(System.getProperty("codeforces"));
} catch (final SecurityException e) {
return false;
}
}
private static final class FastScanner implements Closeable {
private final BufferedReader br;
private StringTokenizer st;
public FastScanner(final InputStream in) {
this.br = new BufferedReader(new InputStreamReader(in));
st = new StringTokenizer("");
}
public String next() {
while (!st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (final IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
@Override
public void close() {
try {
this.br.close();
} catch (final IOException e) {
// ignore
}
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | c6f218ffd928a6c483ef9f574ecabbfb | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.Scanner;
public class Main{
public static void main(String[] args){
Scanner in=new Scanner(System.in);
int t=in.nextInt();
for(int tt=0; tt<t; tt++){
int a=in.nextInt();
int b=in.nextInt();
if(a==0 && b==0) System.out.println(0);
else if((int)Math.sqrt(a*a+b*b)*(int)Math.sqrt(a*a+b*b)==a*a+b*b) System.out.println(1);
else System.out.println(2);
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | b3f9a75fc2f3f7518f5626d04ef5b516 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
public class cfintegermoves{
public static void main(String[] args) throws Exception{
Scanner scn=new Scanner(System.in);
int t=scn.nextInt();
while(t--!=0){
int x=scn.nextInt();
int y=scn.nextInt();
if(x==0 && y==0){
System.out.println(0);
continue;
}
else if(Math.sqrt(x*x+y*y)%1==0){
System.out.println(1);
continue;
}
System.out.println(2);
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 11c1f60753525b22b9cdfe258d055b8d | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes |
// * * * the goal is to be worlds best * * * //
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class first {
static class Pair implements Comparable<Pair> {
int a;
int b;
Pair(int a, int b) {
this.a = a;
this.b = b;
}
public int compareTo(Pair o) {
return this.a - o.a;
}
}
public static void main(String[] args) {
FastScanner sc = new FastScanner();
int t = sc.nextInt();
int T = t;
while (T-- > 0) {
int x = sc.nextInt();
int y = sc.nextInt();
int z = x * x + y * y;
if(z == 0) System.out.println(0);
else if(cp(z)) System.out.println(1);
else System.out.println(2);
}
}
static boolean cp(int n) {
// If ceil and floor are equal
// the number is a perfect
// square
if (Math.ceil((double) Math.sqrt(n)) == Math.floor((double) Math.sqrt(n))) {
return true;
} else {
return false;
}
}
static boolean pal(char ca[]) {
String ss = new String(ca);
int lrg = longe(ss);
if (lrg >= 5)
return true;
return false;
}
static int longe(String str) {
// get length of input string
int n = str.length();
// table[i][j] will be false if
// substring str[i..j] is not palindrome.
// Else table[i][j] will be true
boolean table[][] = new boolean[n][n];
// All substrings of length 1 are palindromes
int maxLength = 1;
for (int i = 0; i < n; ++i)
table[i][i] = true;
// check for sub-string of length 2.
int start = 0;
for (int i = 0; i < n - 1; ++i) {
if (str.charAt(i) == str.charAt(i + 1)) {
table[i][i + 1] = true;
start = i;
maxLength = 2;
}
}
// Check for lengths greater than 2.
// k is length of substring
for (int k = 3; k <= n; ++k) {
// Fix the starting index
for (int i = 0; i < n - k + 1; ++i) {
// Get the ending index of substring from
// starting index i and length k
int j = i + k - 1;
// checking for sub-string from ith index to
// jth index iff str.charAt(i+1) to
// str.charAt(j-1) is a palindrome
if (table[i + 1][j - 1]
&& str.charAt(i) == str.charAt(j)) {
table[i][j] = true;
if (k > maxLength) {
start = i;
maxLength = k;
}
}
}
}
return maxLength;
}
static long sum(long n) {
long temp = n;
long sum = 0;
while (temp > 0) {
sum += temp % 10;
temp /= 10;
}
return sum;
}
// Use this instead of Arrays.sort() on an array of ints. Arrays.sort() is n^2
// worst case since it uses a version of quicksort. Although this would never
// actually show up in the real world, in codeforces, people can hack, so
// this is needed.
static void ruffleSort(int[] a) {
// ruffle
int n = a.length;
Random r = new Random();
for (int i = 0; i < a.length; i++) {
int oi = r.nextInt(n), temp = a[i];
a[i] = a[oi];
a[oi] = temp;
}
// then sort
Arrays.sort(a);
}
// Use this to input code since it is faster than a Scanner
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String str = "";
String nextLine() {
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
long[] readLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
// use this to find the index of any element in the array +1 ///
// returns an array that corresponds to the index of the i+1th in the array a[]
// runs only for array containing different values enclosed btw 0 to n-1
static int[] indexOf(int[] a) {
int[] toRet = new int[a.length];
for (int i = 0; i < a.length; i++) {
toRet[a[i]] = i + 1;
}
return toRet;
}
static long gcd(long n, long l) {
if (l == 0)
return n;
return gcd(l, n % l);
}
static long sol(long a[], long b[], long x[]) {
int n = a.length;
long res = Math.abs(a[0] - b[0]) + Math.abs(a[n - 1] + b[n - 1]);
if (Math.abs(a[0] - b[0]) + x[1] + x[3] < res) {
res = Math.abs(a[0] - b[0]) + x[1] + x[3];
}
if (Math.abs(a[n - 1] - b[n - 1]) + x[0] + x[2] < res) {
res = Math.abs(a[n - 1] - b[n - 1]) + x[0] + x[2];
}
if (Math.abs(a[n - 1] - b[0]) + Math.abs(a[0] - b[n - 1]) < res) {
res = Math.abs(a[n - 1] - b[0]) + Math.abs(a[0] - b[n - 1]);
}
if (Math.abs(a[0] - b[n - 1]) + x[0] + x[3] < res) {
res = Math.abs(a[0] - b[n - 1]) + x[0] + x[3];
}
if (Math.abs(a[n - 1] - b[0]) + x[2] + x[1] < res) {
res = Math.abs(a[n - 1] - b[0]) + x[2] + x[1];
}
res = Math.min(res, x[0] + x[1] + x[2] + x[3]);
return res;
}
// generates all the prime numbers upto n
static void sieveOfEratosthenes(int n, ArrayList<Integer> al) {
boolean prime[] = new boolean[n + 1];
for (int i = 0; i <= n; i++)
prime[i] = true;
for (int p = 2; p * p <= n; p++) {
if (prime[p] == true) {
for (int i = p * p; i <= n; i += p)
prime[i] = false;
}
}
for (int i = 2; i <= n; i++) {
if (prime[i] == true)
al.get(i);
}
}
static final int mod = 100000000 + 7;
static final int max_val = 2147483647;
static final int min_val = max_val + 1;
// fastPow
static long fastPow(long base, long exp) {
if (exp == 0)
return 1;
long half = fastPow(base, exp / 2);
if (exp % 2 == 0)
return mul(half, half);
return mul(half, mul(half, base));
}
// multiply two long numbers
static long mul(long a, long b) {
return a * b % mod;
}
static int nCr(int n, int r) {
return fact(n) / (fact(r) *
fact(n - r));
}
// Returns factorial of n
static int fact(int n) {
int res = 1;
for (int i = 2; i <= n; i++)
res = res * i;
return res;
}
// to generate the lps array
// lps means longest preffix that is also a suffix
static void generateLPS(int lps[], String p) {
int l = 0;
int r = 1;
while (l < p.length() && l < r && r < p.length()) {
if (p.charAt(l) == p.charAt(r)) {
lps[r] = l + 1;
l++;
r++;
} else {
if (l > 0)
l = lps[l - 1];
else
r++;
}
}
}
// count sort --> it runs in O(n) time but compromises in space
static ArrayList<Integer> countSort(int a[]) {
int max = Integer.MIN_VALUE;
for (int i = 0; i < a.length; i++) {
max = Math.max(max, a[i]);
}
int posfre[] = new int[max + 1];
boolean negPres = false;
for (int i = 0; i < a.length; i++) {
if (a[i] >= 0) {
posfre[a[i]]++;
} else {
negPres = true;
}
}
ArrayList<Integer> res = new ArrayList<>();
if (negPres) {
int min = Integer.MAX_VALUE;
for (int i = 0; i < a.length; i++) {
min = Math.min(min, a[i]);
}
int negfre[] = new int[-1 * min + 1];
for (int i = 0; i < a.length; i++) {
if (a[i] < 0) {
negfre[-1 * a[i]]++;
}
}
for (int i = min; i < 0; i++) {
for (int j = 0; j < negfre[-1 * i]; j++) {
res.add(i);
}
}
for (int i = 0; i <= max; i++) {
for (int j = 0; j < posfre[i]; j++) {
res.add(i);
}
}
return res;
}
for (int i = 0; i <= max; i++) {
for (int j = 0; j < posfre[i]; j++) {
res.add(i);
}
}
return res;
}
// returns the index of the element which is just smaller than or
// equal to the tar in the given arraylist
static int lowBound(ArrayList<Integer> ll, long tar, int l, int r) {
if (l > r)
return l;
int mid = l + (r - l) / 2;
if (ll.get(mid) >= tar) {
return lowBound(ll, tar, l, mid - 1);
}
return lowBound(ll, tar, mid + 1, r);
}
// returns the index of the element which is just greater than or
// equal to the tar in the given arraylist
static int upBound(ArrayList<Integer> ll, long tar, int l, int r) {
if (l > r)
return l;
int mid = l + (r - l) / 2;
if (ll.get(mid) <= tar) {
return upBound(ll, tar, l, mid - 1);
}
return upBound(ll, tar, mid + 1, r);
}
static void swap(int i, int j, int a[]) {
int x = a[i];
int y = a[j];
a[j] = x;
a[i] = y;
}
// a -> z == 97 -> 122
// String.format("%.9f", ans) ,--> to get upto 9 decimal places , (ans is
// double)
// write
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 01035b29cc4a0e2bc0e6cdca3d94eb25 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
import java.lang.*;
import java.io.*;
public class Main
{
static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
static FastReader sc = new FastReader();
public static void main (String[] args) throws java.lang.Exception
{
int t = sc.nextInt();
while(t-->0){
solve(sc);
}
}
public static void solve(FastReader sc) throws IOException{
int x = i();
int y = i();
if(x==0&&y==0){
out.println(0);out.flush();return;
}
int num = (x*x) + (y*y);
double root = Math.sqrt(num);
boolean pf = false;
if(root - (Math.floor(root))==0){
pf=true;
}
out.println(pf ? 1 : 2);
out.flush();
}
/*
int [] arr = new int[n];
for(int i = 0;i<n;++i){
arr[i] = sc.nextInt();
}
*/
static void mysort(int[] arr) {
for(int i=0;i<arr.length;i++) {
int rand = (int) (Math.random() * arr.length);
int loc = arr[rand];
arr[rand] = arr[i];
arr[i] = loc;
}
Arrays.sort(arr);
}
static class Pair implements Comparable<Pair>{
int ind;int val;
Pair(int ind, int val){
this.ind=ind;
this.val=val;
}
public int compareTo(Pair o){
return this.val-o.val;
}
}
static int i() {
return sc.nextInt();
}
static String s() {
return sc.next();
}
static long l() {
return sc.nextLong();
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 25849f4bdb78f63320d5915a858df8a6 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
static class Edge{
int start;
int end;
Edge(int start,int end)
{
this.start = start;
this.end = end;
}
}
static boolean[] primecheck = new boolean[1000002];
static ArrayList<Long> lucky = new ArrayList<>();
public static void main(String[] args) throws IOException {
OutputStream outputStream = System.out;
FastReader in = new FastReader();
PrintWriter out = new PrintWriter(outputStream);
PROBLEM solver = new PROBLEM();
int t = in.nextInt();
while(t-->0)
solver.solve(in, out);
out.close();
}
public static void luckIsCalling(long n){
long a = n*10 + 4;
long b = n*10 + 7;
lucky.add(a);
lucky.add(b);
if(a<=4444444444L) luckIsCalling(a);
if(b<=4444444444L) luckIsCalling(b);
}
static class PROBLEM {
static class Pair{
int a;
int b;
Pair(int a,int b){
this.a = a;
this.b = b;
}
}
public void solve(FastReader sc, PrintWriter out) {
int x = sc.nextInt();
int y = sc.nextInt();
if(x==0&&y==0){
System.out.println(0);
return;
}
else if(isPerfectSquare(x*x+y*y)){
System.out.println(1);
return;
}
else{
System.out.println(2);
return;
}
}
public boolean isPerfectSquare(int x)
{
if (x >= 0) {
int sr = (int)Math.sqrt(x);
return ((sr * sr) == x);
}
return false;
}
public long sumPairs(long arr[],int n)
{
// final result
long sum = 0;
for (int i=n-1; i>=0; i--)
sum += i*arr[i] - (n-1-i)*arr[i];
return sum;
}
}
static int helper(ArrayList<Integer> lt ,int k)
{
int arr[] = new int[lt.size()];
arr[0]=lt.get(0);
for(int i=1;i<k&&i<arr.length;i++)
{
arr[i]=arr[i-1]+lt.get(i);
}
for(int i=k;i<arr.length;i++)
{
arr[i] = arr[i-1]+lt.get(i)-arr[i-k];
}
Arrays.sort(arr);
return arr[arr.length-1];
}
static boolean isPalindrome(char[] s) {
int flag = 1;
for (int i = 0; i < s.length; i++) {
if (s[i] != s[s.length - 1 - i]) {
flag = 0;
break;
}
}
if (flag == 1) return true;
else return false;
}
static long gcd(long a, long b) {
if (b == 0) return a;
return gcd(b, a % b);
}
static boolean isSquare(double a) {
boolean isSq = false;
double b = Math.sqrt(a);
double c = Math.sqrt(a) - Math.floor(b);
if (c == 0) isSq = true;
return isSq;
}
static int exponentMod(int A, int B, int C) {
// Base cases
if (A == 0)
return 0;
if (B == 0)
return 1;
// If B is even
long y;
if (B % 2 == 0) {
y = exponentMod(A, B / 2, C);
y = (y * y) % C;
}
else {
y = A % C;
y = (y * exponentMod(A, B - 1,
C) % C) % C;
}
return (int) ((y + C) % C);
}
public static class Pair<U extends Comparable<U>, V extends Comparable<V>> implements Comparable<Pair<U, V>> {
public U x;
public V y;
public Pair(U x, V y) {
this.x = x;
this.y = y;
}
public int hashCode() {
return (x == null ? 0 : x.hashCode() * 31) + (y == null ? 0 : y.hashCode());
}
public boolean equals(Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())
return false;
Pair<U, V> p = (Pair<U, V>) o;
return (x == null ? p.x == null : x.equals(p.x)) && (y == null ? p.y == null : y.equals(p.y));
}
public int compareTo(Pair<U, V> b) {
int cmpU = x.compareTo(b.x);
return cmpU != 0 ? cmpU : y.compareTo(b.y);
}
public String toString() {
return String.format("(%s, %s)", x.toString(), y.toString());
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
char nextChar() {
return next().charAt(0);
}
boolean nextBoolean() {
return !(nextInt() == 0);
}
// boolean nextBoolean(){return Boolean.parseBoolean(next());}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int[] readArray(int size) {
int[] array = new int[size];
for (int i = 0; i < size; i++) array[i] = nextInt();
return array;
}
}
private static int[] mergeSort(int[] array) {
if (array.length <= 1) {
return array;
}
int midpoint = array.length / 2;
int[] left = new int[midpoint];
int[] right;
if (array.length % 2 == 0) {
right = new int[midpoint];
} else {
right = new int[midpoint + 1];
}
for (int i = 0; i < left.length; i++) {
left[i] = array[i];
}
for (int i = 0; i < right.length; i++) {
right[i] = array[i + midpoint];
}
int[] result = new int[array.length];
left = mergeSort(left);
right = mergeSort(right);
result = merge(left, right);
return result;
}
private static int[] merge(int[] left, int[] right) {
int[] result = new int[left.length + right.length];
int leftPointer = 0, rightPointer = 0, resultPointer = 0;
while (leftPointer < left.length || rightPointer < right.length) {
if (leftPointer < left.length && rightPointer < right.length) {
if (left[leftPointer] < right[rightPointer]) {
result[resultPointer++] = left[leftPointer++];
} else {
result[resultPointer++] = right[rightPointer++];
}
} else if (leftPointer < left.length) {
result[resultPointer++] = left[leftPointer++];
} else {
result[resultPointer++] = right[rightPointer++];
}
}
return result;
}
public static void Sieve(int n) {
Arrays.fill(primecheck, true);
primecheck[0] = false;
primecheck[1] = false;
for (int i = 2; i * i < n + 1; i++) {
if (primecheck[i]) {
for (int j = i * 2; j < n + 1; j += i) {
primecheck[j] = false;
}
}
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 0fe6daf64f82d56279e8941aa6969ef3 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
public class Forces {
static int max=Integer.MIN_VALUE;
public static void main(String args[]) {
Scanner input=new Scanner(System.in);
int t=input.nextInt();
while (t-->0) {
int x=input.nextInt();
int y=input.nextInt();
double innerVal=(x*x)+(y*y);
double val= Math.sqrt(innerVal);
int floor=(int) val;
if(x==0 && y==0){
System.out.println(0);
}else if((val-floor)==0){
System.out.println(1);
}else{
System.out.println(2);
}
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 1ccef71f3f3de7b33ab545ff9102d84d | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
public class CFE125_A{
public static void main(String...k){
Scanner cs=new Scanner(System.in);
int t=cs.nextInt();
while(t-->0){
int x=cs.nextInt();
int y=cs.nextInt();
int p=(int)Math.sqrt(x*x+y*y);
if(x==0 && y==0) System.out.println(0);
else if(x*x+y*y==p*p){
System.out.println(1);
}
else System.out.println(2);
}
cs.close();
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | a5f61f9c0eba67ad4278d41e7fd10e0a | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Codeforces {
final static int mod = 1000000007;
final static String yes = "YES";
final static String no = "NO";
public static void main(String[] args) throws Exception {
FastReader sc = new FastReader();
int t = sc.nextInt();
HashSet<Integer> set = new HashSet<>();
for (int i = 1; i < 51; i++) {
set.add(i * i);
}
outer: while (t-- > 0) {
int x = sc.nextInt();
int y = sc.nextInt();
if (x == 0 && y == 0) {
System.out.println(0);
continue outer;
}
int sq = x * x + y * y;
double sqr = Math.sqrt(sq);
double rem = sqr - Math.floor(sqr);
System.out.println(rem == 0 ? 1 : 2);
}
}
static void sortLong(long[] a) // check for long
{
ArrayList<Long> l = new ArrayList<>();
for (long i : a)
l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++)
a[i] = l.get(i);
}
static void sortInt(Integer[] a) // check for int
{
ArrayList<Integer> l = new ArrayList<>();
for (int i : a)
l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++)
a[i] = l.get(i);
}
public static boolean isSorted(int[] nums, int n) {
for (int i = 1; i < n; i++) {
if (nums[i] < nums[i - 1])
return false;
}
return true;
}
public static boolean isPalindrome(String s) {
int i = 0, j = s.length() - 1;
while (i <= j) {
if (s.charAt(i) != s.charAt(j))
return false;
i++;
j--;
}
return true;
}
static long kadane(long A[]) {
long lsum = A[0], gsum = 0;
gsum = Math.max(gsum, lsum);
for (int i = 1; i < A.length; i++) {
lsum = Math.max(lsum + A[i], A[i]);
gsum = Math.max(gsum, lsum);
}
return gsum;
}
public static void sortByColumn(int arr[][], int col) {
Arrays.sort(arr, new Comparator<int[]>() {
@Override
public int compare(final int[] entry1,
final int[] entry2) {
// To sort in descending order revert
// the '>' Operator
if (entry1[col] > entry2[col])
return 1;
else
return -1;
}
});
}
public static void backtrack(String[] letters, int index, String digits, StringBuilder build, List<String> result) {
if (build.length() >= digits.length()) {
result.add(build.toString());
return;
}
char[] key = letters[digits.charAt(index) - '2'].toCharArray();
for (int j = 0; j < key.length; j++) {
build.append(key[j]);
backtrack(letters, index + 1, digits, build, result);
build.deleteCharAt(build.length() - 1);
}
}
public static String get(String s, int k) {
int n = s.length();
int rep = k % n == 0 ? k / n : k / n + 1;
s = s.repeat(rep);
return s.substring(0, k);
}
public static int diglen(Long y) {
int a = 0;
while (y != 0L) {
y /= 10;
a++;
}
return a;
}
static class FastReader {
BufferedReader br;
StringTokenizer st; // StringTokenizer() is used to read long strings
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public class Pair implements Comparable<Pair> {
public final int index;
public final int value;
public Pair(int index, int value) {
this.index = index;
this.value = value;
}
@Override
public int compareTo(Pair other) {
// multiplied to -1 as the author need descending sort order
return -1 * Integer.valueOf(this.value).compareTo(other.value);
}
}
static String reverseString(String str) {
StringBuilder input = new StringBuilder();
return input.append(str).reverse().toString();
}
static void printArray(int[] nums) {
for (int i = 0; i < nums.length; i++) {
System.out.print(nums[i] + "->");
}
System.out.println();
}
static long factorial(int n, int b) {
if (n == b)
return 1;
return n * factorial(n - 1, b);
}
static int lcm(int ch, int b) {
return ch * b / gcd(ch, b);
}
static int gcd(int ch, int b) {
return b == 0 ? ch : gcd(b, ch % b);
}
static double ceil(double n, double k) {
return Math.ceil(n / k);
}
static int sqrt(double n) {
return (int) Math.sqrt(n);
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 0f2efede12d5807cf52971a4016a8eb8 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.Scanner;
public class IntegerMoves {
public static void main(String[] args) {
Scanner scanner=new Scanner(System.in);
int t =scanner.nextInt();
int best=0;
for (int i = 0; i < t; i++) {
int x=scanner.nextInt();
int y=scanner.nextInt();
double p = Math.sqrt(x*x+y*y);
int counter=1;
if (x==0 && y==0) System.out.println(0);
else if (p == (int)p) System.out.println(1);
else{
System.out.println(2);
}
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 3f6b7630e660473ce16784b629dcb273 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.math.*;
import java.net.URL;
import java.util.*;
import java.lang.*;
import java.io.*;
//author **YOU KNOW WHO**
public class problemSolving {
public static void main(String[] args) throws ArrayIndexOutOfBoundsException {
Scanner input = new Scanner(System.in);
int n = input.nextInt();
int x1 = 0, y1 = 0, counter = 0;
for (int i = 1; i <= n; i++) {
int x2 = input.nextInt(), y2 = input.nextInt();
if (x2 == 0 && y2 == 0) {
counter = 0;
} else if (Math.sqrt(Math.pow((x1 - x2), 2) + Math.pow((y1 - y2), 2)) == (int) (Math.sqrt(Math.pow((x1 - x2), 2) + Math.pow((y1 - y2), 2)))) {
counter = 1;
} else {
counter = 2;
}
System.out.println(counter);
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 9a79c14ef4f9cafadc14a9d7c6a70772 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class practice{
public static void main(String[] args) {
FastReader sc = new FastReader();
int t=sc.nextInt();
for(int i=0;i<t;i++){
int a=sc.nextInt();
int b=sc.nextInt();
String s="";
if(a==0 && b==0){
System.out.println(0);
}
else{
double n=Math.sqrt((a*a+b*b));
int m=(int)n;
if(m*m==a*a+b*b){
System.out.println(1);
}
else {
System.out.println(2);
}
}
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 31f9323304411dc1685499cf296e1865 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
public class Main{
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
for(int i=0;i<t;i++){
int a=sc.nextInt();
int b=sc.nextInt();
if(a==0 && b==0){
System.out.println(0);
}
else{
double n=Math.sqrt((a*a+b*b));
int m=(int)n;
if(m*m==a*a+b*b){
System.out.println(1);
}
else {
System.out.println(2);
}
}
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | be7af75b99932fd7b91be2f904923982 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.Scanner;
import java.lang.Math;
public class questions {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
int t=sc.nextInt();
while(t-->0)
{
int x=sc.nextInt();
int y=sc.nextInt();
if(x==0 && y==0)
{
System.out.println("0");
continue;
}
float num=(float) Math.sqrt((x*x)+(y*y));
if(num%1==0) {
System.out.println("1");
}
else {
System.out.println("2");
}
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | d592991328e2a76edadcc042358099b2 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
import java.lang.*;
import java.io.*;
public class Main
{
public static void main (String[] args)
{
Scanner scan = new Scanner(System.in);
int t=scan.nextInt();
while(t>0){
int x=scan.nextInt();
int y=scan.nextInt();
int p=x*x+y*y;
int q=(int)Math.sqrt(p);
if(x==0 && y==0){
System.out.println("0");
}
else if(q*q==p){
System.out.println("1");
}
else{
System.out.println("2");
}
t--;
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 3b5ce6d8c2e1c4945e20b191c665241c | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.util.StringTokenizer;
/**
*
* @author eslam
*/
public class IceCave {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() throws FileNotFoundException {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) throws IOException {
FastReader input = new FastReader();
BufferedWriter log = new BufferedWriter(new OutputStreamWriter(System.out));
int t = input.nextInt();
loop:
while (t-- > 0) {
int x = input.nextInt();
int y = input.nextInt();
int d = (int) Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2));
if (x == 0 && y == 0) {
log.write("0\n");
} else if (d*d == x*x+y*y) {
log.write(1 + "\n");
} else {
log.write(2 + "\n");
}
}
log.flush();
}
static class pair {
int x;
int y;
public pair(int x, int y) {
this.x = x;
this.y = y;
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | b8ad7a95eaacd3153edc97215cc0e4ad | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.util.Arrays;
import java.util.Comparator;
import java.util.HashMap;
import java.util.PriorityQueue;
import java.util.StringTokenizer;
/**
*
* @author eslam
*/
public class IceCave {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() throws FileNotFoundException {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) throws IOException {
FastReader input = new FastReader();
BufferedWriter log = new BufferedWriter(new OutputStreamWriter(System.out));
int t = input.nextInt();
loop:
while (t-- > 0) {
int x = input.nextInt();
int y = input.nextInt();
double d = Math.sqrt(Math.pow(x, 2)+Math.pow(y, 2));
int z = (int)d;
if(x==0&&y==0){
log.write("0\n");
}
else if(z==d){
log.write(1+"\n");
}else{
log.write(2+"\n");
}
}
log.flush();
}
static class pair {
int x;
int y;
public pair(int x, int y) {
this.x = x;
this.y = y;
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | f6d3eb24e9fb04688036bffe752d98ec | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.Scanner;
public class IntegerMoves {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
for (int t = sc.nextInt(); t > 0; t--) {
int x = sc.nextInt(), y = sc.nextInt();
if (x == 0 && y == 0) {
System.out.println(0);
continue;
}
int tries = 1;
if (!canGoBul(x, y, 0, 0)) tries++;
System.out.println(tries);
}
}
// public static int canGo(int x, int y, int dx, int dy) {
// if (dx < 0 || dy < 0) return 0;
// int sqr = (dx - x) * (dx - x) + (dy - y) * (dy - y);
// double root = Math.sqrt(sqr);
// int res = 0;
// if (root * root == sqr) {
// res++;
// res += canGo(dx, dy, 0, 0);
// }
// int ys = canGo(x, y, dx, dy + 1);
// int xs = canGo(x, y, dx + 1, dy);
//
// }
public static boolean canGoBul(int x, int y, int dx, int dy) {
int sqr = (dx - x) * (dx - x) + (dy - y) * (dy - y);
double root = (int) Math.sqrt(sqr);
return (root * root == sqr);
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 3c110e5ad916cb8957577d7715b914f9 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Codeforces
{
public static void main (String[] args) throws java.lang.Exception
{
// your code goes here
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t-- > 0){
int x = sc.nextInt();
int y = sc.nextInt();
double z = Math.sqrt((x*x) + (y*y));
int value = (int)z;
if(x == 0 && y ==0){
System.out.println(0);
}else if(z == value){
System.out.println(1);
}else{
System.out.println(2);
}
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 8e5ab48dfbb79a16d314660e87dd1091 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class codeforce
{
public static void main(String Args[]) throws java.lang.Exception
{
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
for(int i=1;i<=t;i++)
{
int x=sc.nextInt();
int y=sc.nextInt();
double z=Math.sqrt((x*x+y*y));
if(x==0&&y==0)
System.out.println("0");
else if(z%1==0)
System.out.println("1");
else
System.out.println("2");
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | e7b7aca0913357a78bb14767faa99f6d | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | //Abhishek Mallick
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.text.CollationElementIterator;
import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args) throws IOException {
try {
/*--------------------------------------------------------------------------------------------------------------------------*/
// System.setIn(new FileInputStream("input.txt"));
// System.setOut(new PrintStream(new FileOutputStream("output.txt")));
Scanner sc = new Scanner(System.in);
int T;
T=sc.nextInt();
for(int i=1;i<=T;i++)
{
int x1=0,y1=0,count=0;
int x2,y2;
x2=sc.nextInt();
y2=sc.nextInt();
double dis=0;
dis=Math.sqrt((x2*x2)+(y2*y2));
if(x2==0 && y2==0)
count=0;
else if(dis%1==0)
count=1;
else
count=2;
System.out.println(count);
}
/*--------------------------------------------------------------------------------------------------------------------------*/
}
catch (Exception e)
{
System.err.println("Errorrr");
}
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 91239b1c25cca10f94cbb6770a7a8b8e | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.Scanner;
public class IntegerMoves{
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int t = scan.nextInt();
while(t-->0){
int a = scan.nextInt();
int b = scan.nextInt();
int x = a*a,y=b*b;
int sqrt = (int)Math.sqrt(x+y);
if(a==0 && b==0) System.out.println(0);
else{
if(sqrt*sqrt == x+y) System.out.println(1);
else System.out.println(2);
}
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 668b70156db8200f5daf1f7558f76949 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class check1 {
public static void main(String[] args) throws IOException{
Reader sc=new Reader();
PrintWriter out = new PrintWriter(System.out);
int t=sc.nextInt();
while(t-->0)
{
long a = sc.nextLong();
long b = sc.nextLong();
long c = a*a+b*b;
long d = (long) Math.sqrt(c);
long e = d*d;
int cnt=0;
if(a!=0) cnt++;
if(b!=0) cnt++;
if(c==e) cnt = Math.min(cnt,1);
else cnt = Math.min(cnt,2);
out.println(cnt);
}
out.flush();
}
public static long power(long x,long power)
{
if(power==0) return 1;
long ans1 = power(x,power/2);
ans1=ans1*ans1;
if(power%2==0) return ans1;
return x*ans1;
}
// (a*a_inverse) = 1(mod m)
// finding a_inverse
public static long modInverse(long a,long m)
{
// works only when m is prime
long g=gcd(a,m);
if(g==1) return power(a,m-2,m);
else return -1;
}
// (x^power)mod(m)
public static long power(long x,long power,long m)
{
if(power==0) return 1;
long p = power(x,power/2,m)%m;
p = (p*p)%m;
if(power%2==0) return p;
return (x*p)%m;
}
public static long gcd(long small,long large)
{
if(small==0) return large;
return gcd(large % small,small);
}
public static boolean isprime(long no)
{
if(no<=1) return false;
if(no<=3) return true;
if(no%2==0 || no%3==0) return false;
// 6k+1 6k+5 can be prime
for(long i=5;i*i<=no;i+=6)
{
if(no%(i)==0 || no%(i+2)==0)
return false;
}
return true;
}
// prime no smaller than or equal to n
public static boolean[] prime_nos_till_no(int no)
{
boolean prime[]=new boolean[no+1];
// prime[i]== true means prime
// prime[i]== false means not a prime
// initialize prime array as true
Arrays.fill(prime,true);
prime[0]=false;
for(int i=2;i*i<=no;i++)
{
if(prime[i]==true)
{
for(int j=i*i;j<=no;j+=i)
{
prime[j]=false;
}
}
}
return prime;
}
public static void shufflearray(long arr[])
{
int n=arr.length;
Random rand=new Random();
for(int i=0;i<n;i++)
{
long temp=arr[i];
int randomPos=i+rand.nextInt(n-i);
arr[i]=arr[randomPos];
arr[randomPos]=temp;
}
}
// Arrays.sort(arr, new Comparator<pair>() {
// //@Override
// public int compare(pair o1, pair o2) {
// long l1=o1.a-o2.a;
// if(l1<0L) return -1;
// if(l1==0) return 0;
// return 1;
// }
// });
static class Reader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String nextLine() throws IOException {
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() throws IOException{
int c = read();
while (isSpaceChar(c)) c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
if (din == null)
return;
din.close();
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 0a0ea071207c5569126371a1f9975d1f | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
public class Main{
public static void main(String args[]){
Scanner scan=new Scanner(System.in);
int t = scan.nextInt();
while(t-->0){
int a[]=new int[2];
a[0]=scan.nextInt();
a[1]=scan.nextInt();
System.out.println(solve(a[0],a[1]));
}
}
public static int solve(int a,int b){
if(a==0&&b==0) return 0;
else{
int x=a*a,y=b*b;
int t = (int)Math.sqrt(x+y);
if(t*t==x+y) return 1;
else return 2;
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 44a0c877dabb9ce158ff55a11c33417f | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Scanner;
import java.util.StringTokenizer;
import java.io.*;
import java.util.*;
import java.text.DecimalFormat;
import java.math.*;
public class Main {
static int mod = 1000000007;
/*****************code By Priyanshu *******************************************/
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
// this > other return +ve
// this < other return -ve
// this == other return 0
public static class Pair implements Comparable<Pair> {
long st;
long et;
public Pair(long st, long et) {
this.st = st;
this.et = et;
}
public int compareTo(Pair other) {
if (this.st != other.st) {
return (int)(this.st - other.st);
} else {
return (int)(this.et - other.et);
}
}
}
static long fastPower(long a, long b, int n) {
long res = 1;
while ( b > 0) {
if ( (b&1) != 0) {
res = (res * a % n) % n;
}
a = (a % n * a % n) % n;
b = b >> 1;
}
return res;
}
// function to find
// the rightmost set bit
static int PositionRightmostSetbit(int n)
{
// Position variable initialize
// with 1 m variable is used to
// check the set bit
int position = 1;
int m = 1;
while ((n & m) == 0) {
// left shift
m = m << 1;
position++;
}
return position;
}
// used for swapping ith and jth elements of array
// public static void swap(int[] arr, int i, int j) {
// int temp = arr[i];
// arr[i] = arr[j];
// arr[j] = temp;
// }
public static void swap(long i, long j) {
long temp = i;
i = j;
j = temp;
}
static boolean palindrome(String s) {
return new StringBuilder(s).reverse().toString().equals(s);
}
// static boolean isPerfectSquare(double x)
// {
// double sr = Math.sqrt(x);
// return ((sr * sr) == x);
// }
public static long gcd(long a, long b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
static int nod(long l) {
if(l>=1000000000000000000l) return 19;
if(l>=100000000000000000l) return 18;
if(l>=10000000000000000l) return 17;
if(l>=1000000000000000l) return 16;
if(l>=100000000000000l) return 15;
if(l>=10000000000000l) return 14;
if(l>=1000000000000l) return 13;
if(l>=100000000000l) return 12;
if(l>=10000000000l) return 11;
if(l>=1000000000) return 10;
if(l>=100000000) return 9;
if(l>=10000000) return 8;
if(l>=1000000) return 7;
if(l>=100000) return 6;
if(l>=10000) return 5;
if(l>=1000) return 4;
if(l>=100) return 3;
if(l>=10) return 2;
return 1;
}
// Arrays.sort(a,(c,d) -> Integer.compare(c[0],d[0]));
public static boolean areAllBitsSet(int n )
{
// all bits are not set
if (n == 0)
return false;
// if true, then all bits are set
if (((n + 1) & n) == 0)
return true;
// else all bits are not set
return false;
}
public static long[] sort(long[] arr) {
List<Long> temp = new ArrayList();
for (long i : arr) temp.add(i);
Collections.sort(temp);
int start = 0;
for (long i : temp) arr[start++] = i;
return arr;
}
public static int[] radixSort2(int[] a)
{
int n = a.length;
int[] c0 = new int[0x101];
int[] c1 = new int[0x101];
int[] c2 = new int[0x101];
int[] c3 = new int[0x101];
for(int v : a) {
c0[(v&0xff)+1]++;
c1[(v>>>8&0xff)+1]++;
c2[(v>>>16&0xff)+1]++;
c3[(v>>>24^0x80)+1]++;
}
for(int i = 0;i < 0xff;i++) {
c0[i+1] += c0[i];
c1[i+1] += c1[i];
c2[i+1] += c2[i];
c3[i+1] += c3[i];
}
int[] t = new int[n];
for(int v : a)t[c0[v&0xff]++] = v;
for(int v : t)a[c1[v>>>8&0xff]++] = v;
for(int v : a)t[c2[v>>>16&0xff]++] = v;
for(int v : t)a[c3[v>>>24^0x80]++] = v;
return a;
}
public static void print( int arr[] ){
Arrays.stream(arr).forEach(str -> System.out.print(str + " "));
}
static boolean isPowerOfTwo (int x)
{
/* First x in the below expression is
for the case when x is 0 */
return x!=0 && ((x&(x-1)) == 0);
}
static boolean isPerfectSquare(int x)
{
if (x >= 0) {
// Find floating point value of
// square root of x.
int sr = (int)Math.sqrt(x);
// if product of square root
// is equal, then
// return T/F
return ((sr * sr) == x);
}
return false;
}
public static void main(
String[] args)
{
try {
System.setIn(new FileInputStream("input.txt"));
System.setOut(new PrintStream(new FileOutputStream("output.txt")));
} catch (Exception e) {
System.err.println("Error");
}
FastReader sc = new FastReader();
int t = Integer.parseInt(sc.next());
// int t = 1;
// StringBuilder ans = new StringBuilder();
// ArrayList<Integer> a = new ArrayList<>();
// int l = 1;
while(t-->0){
// int n = sc.nextInt();
// int b = sc.nextInt();
// int x = sc.nextInt();
// int y = sc.nextInt();
// long a[] = new long[n+1];
// for(int i = 1;i<=n;i++){
// if(a[i-1] + x <= b){
// a[i] = a[i-1] + x;
// }else{
// a[i] = a[i-1] -y;
// }
// }
// long sum = 0;
// for(long i:a){
// sum += i;
// }
// System.out.println(sum);
//que 1
int x = sc.nextInt();
int y = sc.nextInt();
int val = (x*x) + (y*y);
if(x == 0 && y == 0){
System.out.println("0");
}else if(isPerfectSquare(val)){
System.out.println("1");
}else{
System.out.println("2");
}
}
}
}
//code By Priyanshu
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | ddbeca850bf249424b264a483a32e748 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
public class tp1 {
static boolean check_sq(int x, int y)
{
double a=x*x+y*y;
return((Math.sqrt(a)-Math.floor(Math.sqrt(a))==0));
}
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
int[] x=new int[t];
int[] y=new int[t];
for(int i=0;i<t;i++)
{
x[i]=sc.nextInt();
y[i]=sc.nextInt();
}
for(int i=0;i<t;i++)
{
if(x[i]==0 && y[i]==0)
{
System.out.println("0");
continue;
}
if(x[i]==0 && y[i]!=0)
{
System.out.println("1");
continue;
}
if(x[i]!=0 && y[i]==0)
{
System.out.println("1");
continue;
}
if(check_sq(x[i], y[i]))
{
System.out.println("1");
}
else
{
System.out.println("2");
}
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 2d85488b98316659622a26ab88568368 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes |
import java.util.*;
import java.io.*;
public class Main {
static class FastReader{
BufferedReader br;
StringTokenizer st;
FastReader(){
br=new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while(st==null||!st.hasMoreElements()) {
try {
st=new StringTokenizer(br.readLine());
}catch(IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str="";
try {
str=br.readLine();
} catch(IOException e) {
e.printStackTrace();
}
return str;
}
}
static class Pair implements Comparable<Pair> {
int x;
int y;
Pair(int x,int y){
this.x=x;
this.y=y;
}
@Override
public int compareTo(Pair o) {
return this.y-o.y;
}
}
static int gcd(int a,int b) {
if(b==0) return a;
else
return gcd(b,a%b);
}
static List primeFactors(int n){
List<Integer> ar=new ArrayList<>();
int ct=0;
for(int i=2;i*i<=n;i++) {
if(n%i==0) {
ar.add(i);
ct++;
while(n%i==0) {
n/=i;
}
}
}
if(n>1) {
ct++;
ar.add(n);
}
return ar;
}
static int lb(ArrayList<Integer>ar,int k) {
int s=0;
int e=ar.size();
while(s!=e) {
int mid=s+e>>1;
if(ar.get(mid)<k)
s=mid+1;
else
e=mid;
}
if(s==ar.size())
return -1;
return ar.get(s);
}
static long powM(long x,long y,long mod) {
if(y==0)
return 1;
long k=powM(x,y/2,mod);
if(y%2==1) {
return (((((long)1*k*k)%mod)*x)%mod);
}
else {
return (((long)1*k*k)%mod);
}
}
static int ub(ArrayList<Integer>ar,int k) {
int s=0;
int e=ar.size();
while(s!=e) {
int mid=s+e>>1;
if(ar.get(mid)<=k)
s=mid+1;
else
e=mid;
}
if(s==ar.size())
return -1;
return s;
}
static boolean isPrime(long n) {
boolean flag=true;
if(n<2)
flag=false;
else {
for(int i=2;i*i<=n;i++){
if(n%i==0) {
flag=false;
break;
}
}
}
return flag;
}
static void pArray(int a[]) {
for(int i=0;i<a.length;i++) {
System.out.print(a[i]+" ");
}
System.out.println();
}
static String sort(String s) {
char ch[]=s.toCharArray();
Arrays.sort(ch);
return new String(ch);
}
// static int[] dij(int n,int src, ArrayList<Edge> ar[]) {
// PriorityQueue<Pair>pq=new PriorityQueue<>();
// pq.add(new Pair(src,0));
// Set<Integer>vis=new HashSet<>();
// int dist[]=new int[n+1];
// dist[src]=0;
// Arrays.fill(dist, Integer.MAX_VALUE);
//
// while(pq.size()>0) {
//
// Pair cur=pq.poll();
// if(!vis.contains(cur.x)){
//
// vis.add(cur.x);
//
// dist[cur.x]=cur.y;
//
// for(Edge e:ar[cur.x]) {
// if(!vis.contains(e.dest)&&dist[e.dest]>cur.y+e.w )
// pq.add(new Pair(e.dest,cur.y+e.w));
// }
// }
// }
// return dist;
// }
//
public static String addCharToString(String str, char c,
int pos)
{
StringBuffer stringBuffer = new StringBuffer(str);
stringBuffer.insert(pos, c);
return stringBuffer.toString();
}
static int BigMod(String num, int a)
{
int res = 0;
for (int i = 0; i < num.length(); i++)
res = (res * 10 + (int)num.charAt(i));
return res;
}
static boolean isSquare(int n) {
for(int i=1;i*i<=n;i++) {
if((i*i)==n)
return true;
}
return false;
}
public static void main(String[] args) {
try {
FastReader sc = new FastReader();
int t=sc.nextInt();
while(t-->0) {
int x=sc.nextInt();
int y=sc.nextInt();
if(x==0&&y==0) {
System.out.println("0");
continue;
}
if(isSquare((x*x)+(y*y)))
System.out.println("1");
else
System.out.println("2");
}
}catch(Exception e) {return;}
}
}
//https://www.codechef.com/MP3TO401?order=desc&sortBy=successful_submissions
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 73c8006b88829c26085209391734c724 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
public class integermovesmar22{
public static void main(String[] args) {
Scanner scn = new Scanner(System.in);
int n = scn.nextInt();
for(int i = 0 ; i < n ; i++){
int a = scn.nextInt();
int b = scn.nextInt();
checkPossibleMove(a,b);
}
}
public static void checkPossibleMove(int a , int b){
if(a == 0 && b == 0) System.out.println('0');
else if(Math.sqrt(a*a+b*b)%1==0){
System.out.println("1");
}
else{
System.out.println("2");
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | b765b876fefcd7593fc7e5dfb1309d22 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | //not all import are used to solve every problem .. but these are the most important one
import java.io.DataInputStream;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Random;
public class CodeforcesEducationalRound_125_A {
@SuppressWarnings("FieldCanBeLocal")
private static Reader in;
private static PrintWriter out;
private static void solve() throws IOException {
//Your Code Goes Here;
int n = in.nextInt(), m = in.nextInt();
int k = 0, l = 0;
double ans = Math.sqrt(Math.pow(k-n, 2) + Math.pow(l-m, 2));
int ansTwo = (int)ans;
if(n == 0 && m == 0){
System.out.println(0);
}
else if(ans == ansTwo){
System.out.println(1);
}
else{
System.out.println(2);
}
}
public static void main(String[] args) throws IOException {
//FastScaner fs = new FastScaner();//There is a class below .. uncomment that class to instantiate an object from that class;
//int t = fs.nextInt();//uncomment this line when you're using the fastscaner class;
in = new Reader();
out = new PrintWriter(new OutputStreamWriter(System.out));
int T = in.nextInt();
while(T-->0){
solve();
}
out.flush();
in.close();
out.close();
}
static final double INF = 1e18;
static final Random random = new Random();
static final int mod = 1_000_000_007;
//Taken From "Second Thread"
static void ruffleSort(int[] a){
int n = a.length;//shuffles, then sort;
for(int i=0; i<n; i++){
int oi = random.nextInt(n), temp = a[oi];
a[oi] = a[i]; a[i] = temp;
}
sort(a);
}
public static boolean primeFinder(int n){
int m = 0;
int flag = 0;
m = n / 2;
if(n == 0 ||n == 1){
return false;
}
else{
for(int i=2;i<=m;i++){
if(n % i == 0){
return false;
}
}
return true;
}
}
private static boolean[] sieveOfEratosthenes(long n) {
boolean prime[] = new boolean[(int)n + 1];
for (int i = 0; i <= n; i++) {
prime[i] = true;
}
for (long p = 2; p * p <= n; p++) {
if (prime[(int)p] == true) {
for (long i = p * p; i <= n; i += p)
prime[(int)i] = false;
}
}
return prime;
}
private static long add(long a, long b){
return (a + b) % mod;
}
private static int gcd(int a, int b) {
if (a == 0 || b == 0)
return 0;
while (b != 0) {
int tmp;
tmp = a % b;
a = b;
b = tmp;
}
return a;
}
private static long lcm(long a, long b){
return (a / gcd((int) a, (int) b) * b);
}
private static void sort(int[] a){
ArrayList<Integer> l = new ArrayList<>();
for(int i:a) l.add(i);
Collections.sort(l);
for(int i=0;i<a.length;i++)a[i] = l.get(i);
}
public static int[][] prefixSum( int n , int m , int[][] arr){
int[][] prefixSum = new int[n+1][m+1];
for( int i = 1 ;i <= n ;i++) {
for( int j = 1 ; j<= m ; j++) {
int toadd = 0;
if( arr[i-1][j-1] == 1) {
toadd = 1;
}
prefixSum[i][j] = toadd + prefixSum[i][j-1] + prefixSum[i-1][j] - prefixSum[i-1][j-1];
}
}
return prefixSum;
}
private static int sumOfArrayElements(int[] arr){
int sum = 0; // Initialize sum ;
//Iterate through all elements and add them to sum;
for(int i=0;i<arr.length;i++){
sum += arr[i];
}
return sum;
}
//call this method when you want to read an integer array;
private static int[] readArray(int len) throws IOException{
int[] a = new int[len];
for(int i=0;i<len;i++)a[i] = in.nextInt();
return a;
}
//call this method when you want to read an Long array;
private static long[] readLongArray(int len) throws IOException{
long[] a = new long[len];
for(int i=0;i<len;i++) a[i] = in.nextLong();
return a;
}
//call this method to print the integer array;
private static void printArray(int[] array){
for(int now : array) out.print(now);out.print(' ');out.close();
}
//call this method to print the long array;
private static void printLongArray(long[] array){
for(long now:array) out.print(now); out.print(' '); out.close();
}
/*Another way of Reading input...collected from a online blog
from here => https://codeforces.com/contest/1625/submission/144334744;*/
static class Reader {
private static final int BUFFER_SIZE = 1 << 16;
private final DataInputStream din;
private final byte[] buffer;
private int bufferPointer, bytesRead;
Reader() {//Constructor;
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException {//To take user input for String values;
final byte[] buf = new byte[1024]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') {
break;
}
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextSign() throws IOException {//For taking the signs like plus or minus ...
byte c = read();
while ('+' != c && '-' != c) {
c = read();
}
return '+' == c ? 0 : 1;
}
private static boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
public int skip() throws IOException {
int b;
// noinspection ALL
while ((b = read()) != -1 && isSpaceChar(b)) {
;
}
return b;
}
public char nc() throws IOException {
return (char) skip();
}
public String next() throws IOException {
int b = skip();
final StringBuilder sb = new StringBuilder();
while (!isSpaceChar(b)) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = read();
}
return sb.toString();
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) {
return -ret;
}
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg) {
return -ret;
}
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg) {
return -ret;
}
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) {
buffer[0] = -1;
}
}
private byte read() throws IOException {
if (bufferPointer == bytesRead) {
fillBuffer();
}
return buffer[bufferPointer++];
}
public void close() throws IOException {
din.close();
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | e41a59ed7380d3b88fb0d6dbb6bd5cd3 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class cf2 {
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int T=sc.nextInt();
while(T-->0){
int x=sc.nextInt();
int y=sc.nextInt();
double distance=Math.sqrt(Math.pow(0-x, 2)+Math.pow(0-y, 2));
if(x == 0 && y == 0){
System.out.println(0);
}else if(distance == (int)distance){
System.out.println(1);
}else{
System.out.println(2);
}
}
sc.close();
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 931b7719e76d6ea2e3806e9d622cb230 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Solution {
private static int solve(int x, int y){
if (x == 0 && y == 0) return 0;
if (x == 0 || y == 0 || isSquare(x, y)) return 1;
return 2;
}
private static boolean isSquare(int x, int y) {
int temp = (int)(Math.pow(x, 2) + Math.pow(y, 2));
return (int)Math.pow((int)Math.sqrt(temp), 2) == temp;
}
public static void main(String args[]) {
FastReader fs = new FastReader();
int t = fs.nextInt();
while(t-- >0) {
int x = fs.nextInt();
int y = fs.nextInt();
System.out.println(solve(x, y));
}
}
}
class FastReader{
BufferedReader br;
StringTokenizer st;
FastReader(){
br = new BufferedReader(new InputStreamReader(System.in));
}
String next(){
while(st == null || !st.hasMoreElements()){
try{
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt(){
return Integer.parseInt(next());
}
long nextLong(){
return Long.parseLong(next());
}
double nextDouble(){
return Double.parseDouble(next());
}
int[] nextArr(int n){
int[] a = new int[n];
for(int i=0; i<n; i++){
a[i] = nextInt();
}
return a;
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | ef227e2fe1b2184a63601f8399c4c418 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
public class read {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner s = new Scanner(System.in);
int t = s.nextInt();
while(t-->0) {
int a = s.nextInt();
int b = s.nextInt();
boolean check = true;
if(a==0 && b==0) {
System.out.println("0");
check = false;
}
if(check) {
double c = Math.sqrt(Math.pow(a, 2)+Math.pow(b, 2));
if(c == (int)c) {
System.out.println("1");
}
else {
System.out.println("2");
}
}
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 11 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 93b45695e18509ebd78c7dbf0743d675 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes |
import java.util.*;
public class cp1 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t=sc.nextInt();
for (int tt = 0; tt < t; tt++) {
int x =sc.nextInt();
int y =sc.nextInt();
double k = x*x+y*y;
double z = Math.sqrt(k);
if(x==0 &&y==0){
System.out.println("0");
continue;
}
if( x==0 ||y==0){
System.out.println("1");
continue;
}
if(isInteger(z)){
System.out.println("1");
}else{
System.out.println("2");
}
}
sc.close();
}
private static boolean isInteger(double x) {
if(Math.floor(x)==x){
return true;
}
return false;
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 17 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 731e664f5f0c97b1a2959ca38a41474f | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.PrintWriter;
import java.util.Scanner;
public class integerMoves {
public static void p(Object o) { PrintWriter p = new PrintWriter(System.out); p.println(o); p.flush(); }
public static Scanner sc = new Scanner(System.in);
public static void main(String[] args) {
int testCases = sc.nextInt();
while (testCases --> 0) {
int x = sc.nextInt() , y = sc.nextInt() , xy = (x*x)+(y*y) , z = (int) Math.sqrt(xy);
p( (x== 0 && y == 0) ? 0 : xy == z*z ? 1 : 2);
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 17 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | dadd2dce373cd3c2186f7bab71b71dff | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.Scanner;
public class code {
public static void main(String args[]){
Scanner s = new Scanner(System.in);
int t = s.nextInt();
while(t-->0){
int x = s.nextInt();
int y = s.nextInt();
double d1 = x*x+y*y;
if(d1==0){
System.out.println(0);
}else{
int val = (int)Math.sqrt(d1);
if(val*val==d1){
System.out.println(1);
}else{
System.out.println(2);
}
}
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 17 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | ddddd2d4bf90c125ab43d1aca03c0030 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | // package com.sameer;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class Main {
public static void main(String[] args) {
FastScanner fs=new FastScanner();
PrintWriter out=new PrintWriter(System.out);
int T= fs.nextInt();
for (int tt=0; tt<T; tt++) {
int x = fs.nextInt();
int y = fs.nextInt();
double distance = Math.sqrt(x * x + y * y);
if (distance != (int)distance) {
out.println(2);
} else if (distance == 0) {
out.println(0);
} else {
out.println(1);
}
}
out.close();
}
static final Random random=new Random();
static final int mod=1_000_000_007;
static void ruffleSort(int[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n), temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static long add(long a, long b) {
return (a+b)%mod;
}
static long sub(long a, long b) {
return ((a-b)%mod+mod)%mod;
}
static long mul(long a, long b) {
return (a*b)%mod;
}
static long exp(long base, long exp) {
if (exp==0) return 1;
long half=exp(base, exp/2);
if (exp%2==0) return mul(half, half);
return mul(half, mul(half, base));
}
static long[] factorials=new long[2_000_001];
static long[] invFactorials=new long[2_000_001];
static void precompFacts() {
factorials[0]=invFactorials[0]=1;
for (int i=1; i<factorials.length; i++) factorials[i]=mul(factorials[i-1], i);
invFactorials[factorials.length-1]=exp(factorials[factorials.length-1], mod-2);
for (int i=invFactorials.length-2; i>=0; i--)
invFactorials[i]=mul(invFactorials[i+1], i+1);
}
static long nCk(int n, int k) {
return mul(factorials[n], mul(invFactorials[k], invFactorials[n-k]));
}
static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 17 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 956180563386c5d1ecb1758ca6012403 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.math.BigInteger;
import java.util.*;
import static java.lang.Math.*;
import static java.lang.System.*;
import static java.util.Arrays.*;
import static java.util.stream.IntStream.iterate;
public class Template {
private static final FastScanner scanner = new FastScanner();
private static void solve() {
int a = i(), b = i();
if (a == 0 && b == 0) {
out.println(0);
} else {
int x = (a*a+b*b), sqrt = (int) sqrt(x);
if (sqrt*sqrt == x) out.println(1);
else out.println(2);
}
}
private static void swap(int[] a, int i, int j) {
int temp = a[i];
a[i] = a[j];
a[j] = temp;
}
public static void main(String[] args) {
int t = i();
while (t-->0) {
solve();
}
}
private static long fac(int n) {
long res = 1;
for (int i = 2; i<=n; i++) {
res*=i;
}
return res;
}
private static BigInteger factorial(int n) {
BigInteger res = BigInteger.valueOf(1);
for (int i = 2; i <= n; i++){
res = res.multiply(BigInteger.valueOf(i));
}
return res;
}
private static long l() {
return scanner.nextLong();
}
private static int i() {
return scanner.nextInt();
}
private static String s() {
return scanner.next();
}
private static void yes() {
out.println("YES");
}
private static void no() {
out.println("NO");
}
private static int toInt(char c) {
return Integer.parseInt(c+"");
}
private static void printArray(long[] a) {
StringBuilder builder = new StringBuilder();
for (long i : a)
builder.append(i).append(' ');
out.println(builder);
}
private static void printArray(int[] a) {
StringBuilder builder = new StringBuilder();
for (int i : a)
builder.append(i).append(' ');
out.println(builder);
}
private static int binPow(int a, int n) {
if (n == 0)
return 1;
if (n % 2 == 1)
return binPow(a, n-1) * a;
else {
int b = binPow(a, n/2);
return b * b;
}
}
private static boolean isPrime(long n) {
return iterate(2, i -> (long) i * i <= n, i -> i + 1).noneMatch(i -> n % i == 0);
}
private static int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
private static void stableSort(int[] a) {
List<Integer> list = stream(a).boxed().sorted().toList();
setAll(a, list::get);
}
private static int getKthMax(int[] a, int low, int high, int k) {
int pivot = low;
for (int j = low; j < high; j++) {
if (a[j] <= a[high]) {
swap(a, pivot++, j);
}
}
swap(a, pivot, high);
int count = high - pivot + 1;
if (count == k) return a[pivot];
if (count > k) return getKthMax(a, pivot + 1, high, k);
return getKthMax(a, low, pivot - 1, k - count);
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
long[] readLong(int n) {
long[] a = new long[n];
for (int i = 0; i<n; i++) a[i] = nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
static class SegmentTreeRMXQ {
static int getMid(int s, int e) {
return s + (e - s) / 2;
}
static int MaxUtil(int[] st, int ss, int se, int l, int r, int node) {
if (l <= ss && r >= se)
return st[node];
if (se < l || ss > r)
return -1;
int mid = getMid(ss, se);
return max(
MaxUtil(st, ss, mid, l, r,
2 * node + 1),
MaxUtil(st, mid + 1, se, l, r,
2 * node + 2));
}
static void updateValue(int[] arr, int[] st, int ss, int se, int index, int value, int node) {
if (index < ss || index > se) {
System.out.println("Invalid Input");
return;
}
if (ss == se) {
arr[index] = value;
st[node] = value;
} else {
int mid = getMid(ss, se);
if (index <= mid)
updateValue(arr, st, ss, mid,
index, value,
2 * node + 1);
else
updateValue(arr, st, mid + 1, se, index,
value, 2 * node + 2);
st[node] = max(st[2 * node + 1],
st[2 * node + 2]);
}
}
static int getMax(int[] st, int n, int l, int r) {
if (l < 0 || r > n - 1 || l > r) {
System.out.print("Invalid Input\n");
return -1;
}
return MaxUtil(st, 0, n - 1, l, r, 0);
}
static int constructSTUtil(int[] arr, int ss, int se, int[] st, int si) {
if (ss == se) {
st[si] = arr[ss];
return arr[ss];
}
int mid = getMid(ss, se);
st[si] = max(
constructSTUtil(arr, ss, mid,
st, si * 2 + 1),
constructSTUtil(arr, mid + 1,
se, st,
si * 2 + 2));
return st[si];
}
static int[] constructST(int[] arr, int n) {
int x = (int)Math.ceil(Math.log(n) / Math.log(2));
int max_size = 2 * (int)Math.pow(2, x) - 1;
int[] st = new int[max_size];
constructSTUtil(arr, 0, n - 1, st, 0);
return st;
}
}
static class SegmentTreeRMNQ {
int[] st;
int minVal(int x, int y) {
return min(x, y);
}
int getMid(int s, int e) {
return s + (e - s) / 2;
}
int RMQUtil(int ss, int se, int qs, int qe, int index) {
if (qs <= ss && qe >= se)
return st[index];
if (se < qs || ss > qe)
return Integer.MAX_VALUE;
int mid = getMid(ss, se);
return minVal(RMQUtil(ss, mid, qs, qe, 2 * index + 1),
RMQUtil(mid + 1, se, qs, qe, 2 * index + 2));
}
int RMQ(int n, int qs, int qe) {
if (qs < 0 || qe > n - 1 || qs > qe) {
System.out.println("Invalid Input");
return -1;
}
return RMQUtil(0, n - 1, qs, qe, 0);
}
int constructSTUtil(int[] arr, int ss, int se, int si) {
if (ss == se) {
st[si] = arr[ss];
return arr[ss];
}
int mid = getMid(ss, se);
st[si] = minVal(constructSTUtil(arr, ss, mid, si * 2 + 1),
constructSTUtil(arr, mid + 1, se, si * 2 + 2));
return st[si];
}
void constructST(int[] arr, int n) {
int x = (int) (Math.ceil(Math.log(n) / Math.log(2)));
int max_size = 2 * (int) Math.pow(2, x) - 1;
st = new int[max_size]; // allocate memory
constructSTUtil(arr, 0, n - 1, 0);
}
}
static class SegmentTreeRSQ
{
int[] st; // The array that stores segment tree nodes
/* Constructor to construct segment tree from given array. This
constructor allocates memory for segment tree and calls
constructSTUtil() to fill the allocated memory */
SegmentTreeRSQ(int[] arr, int n)
{
// Allocate memory for segment tree
//Height of segment tree
int x = (int) (Math.ceil(Math.log(n) / Math.log(2)));
//Maximum size of segment tree
int max_size = 2 * (int) Math.pow(2, x) - 1;
st = new int[max_size]; // Memory allocation
constructSTUtil(arr, 0, n - 1, 0);
}
// A utility function to get the middle index from corner indexes.
int getMid(int s, int e) {
return s + (e - s) / 2;
}
/* A recursive function to get the sum of values in given range
of the array. The following are parameters for this function.
st --> Pointer to segment tree
si --> Index of current node in the segment tree. Initially
0 is passed as root is always at index 0
ss & se --> Starting and ending indexes of the segment represented
by current node, i.e., st[si]
qs & qe --> Starting and ending indexes of query range */
int getSumUtil(int ss, int se, int qs, int qe, int si)
{
// If segment of this node is a part of given range, then return
// the sum of the segment
if (qs <= ss && qe >= se)
return st[si];
// If segment of this node is outside the given range
if (se < qs || ss > qe)
return 0;
// If a part of this segment overlaps with the given range
int mid = getMid(ss, se);
return getSumUtil(ss, mid, qs, qe, 2 * si + 1) +
getSumUtil(mid + 1, se, qs, qe, 2 * si + 2);
}
/* A recursive function to update the nodes which have the given
index in their range. The following are parameters
st, si, ss and se are same as getSumUtil()
i --> index of the element to be updated. This index is in
input array.
diff --> Value to be added to all nodes which have I in range */
void updateValueUtil(int ss, int se, int i, int diff, int si)
{
// Base Case: If the input index lies outside the range of
// this segment
if (i < ss || i > se)
return;
// If the input index is in range of this node, then update the
// value of the node and its children
st[si] = st[si] + diff;
if (se != ss) {
int mid = getMid(ss, se);
updateValueUtil(ss, mid, i, diff, 2 * si + 1);
updateValueUtil(mid + 1, se, i, diff, 2 * si + 2);
}
}
// The function to update a value in input array and segment tree.
// It uses updateValueUtil() to update the value in segment tree
void updateValue(int arr[], int n, int i, int new_val)
{
// Check for erroneous input index
if (i < 0 || i > n - 1) {
System.out.println("Invalid Input");
return;
}
// Get the difference between new value and old value
int diff = new_val - arr[i];
// Update the value in array
arr[i] = new_val;
// Update the values of nodes in segment tree
updateValueUtil(0, n - 1, i, diff, 0);
}
// Return sum of elements in range from index qs (query start) to
// qe (query end). It mainly uses getSumUtil()
int getSum(int n, int qs, int qe)
{
// Check for erroneous input values
if (qs < 0 || qe > n - 1 || qs > qe) {
System.out.println("Invalid Input");
return -1;
}
return getSumUtil(0, n - 1, qs, qe, 0);
}
// A recursive function that constructs Segment Tree for array[ss..se].
// si is index of current node in segment tree st
int constructSTUtil(int arr[], int ss, int se, int si)
{
// If there is one element in array, store it in current node of
// segment tree and return
if (ss == se) {
st[si] = arr[ss];
return arr[ss];
}
// If there are more than one elements, then recur for left and
// right subtrees and store the sum of values in this node
int mid = getMid(ss, se);
st[si] = constructSTUtil(arr, ss, mid, si * 2 + 1) +
constructSTUtil(arr, mid + 1, se, si * 2 + 2);
return st[si];
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 17 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 77a9cadd1a5dc758157f533cf0cb8822 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
public class MyClass {
public static void main(String args[]) {
Scanner sc = new Scanner(System.in);
int tc = sc.nextInt();
while(tc-- > 0){
int y = sc.nextInt();
int x = sc.nextInt();
int i = (x*x)+(y*y);
int j = (int)Math.sqrt(i);
if(x == 0 && y == 0){
System.out.println(0);
}else if(j*j == i){
System.out.println(1);
}else{
System.out.println(2);
}
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 17 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 399201ca3d6515e3e0fa7479a976fec7 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.*;
import java.util.Scanner;
public class myjava{
public static void main(String[] args)
{
try
{
System.setIn(new FileInputStream("input.txt"));
System.setOut(new PrintStream(new FileOutputStream("output.txt")));
}
catch (Exception e)
{
System.err.println("Error");
}
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t--!=0)
{
int x = sc.nextInt();
int y = sc.nextInt();
int sumofsqr = x*x + y*y;
int sqr = (int)Math.sqrt(sumofsqr);
if(x==0 && y==0)
{
System.out.println("0");
}
else if(sumofsqr==(sqr*sqr))
{
System.out.println("1");
}
else
{
System.out.println("2");
}
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 17 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 1c81d3e0c02ae9ae6ce6afcc7781ae24 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
import java.util.Scanner;
import java.io.*;
public class main{
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
int t;
t=sc.nextInt();
while(t-->0)
{
int x=sc.nextInt();
int y=sc.nextInt();
double z= Math.sqrt(Math.pow(0-x,2)+Math.pow(0-y,2));
if(x==0&&y==0)
{
System.out.println(0);
}
else if(z==(int)z)System.out.println(1);
else System.out.println(2);
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 05aacabc51a6d44220ac6cce6e0a4203 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.Scanner;
public class Moves {
public static void main(String[] args) throws Exception{
Scanner scanner=new Scanner(System.in);
int t=scanner.nextInt();
int x,y;
double sqrt;
while(t-->0){
x=scanner.nextInt();
y=scanner.nextInt();
sqrt=Math.sqrt(x*x+y*y);
if(x==0&&y==0){
System.out.println(0);
} else if((int)sqrt==Math.ceil(sqrt)){
System.out.println(1);
}else System.out.println(2);
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 5cbda5f9d664396fec8cddfcea202c3f | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class IntegerMoves {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while(st == null || !st.hasMoreElements()){
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) {
FastReader fr = new FastReader();
int T = fr.nextInt();
while(T--!= 0)
{
int a = fr.nextInt();
int b = fr.nextInt();
int sum = (int)Math.sqrt(a * a + b * b);
if( sum > 0) {
if (sum * sum == (a * a + b * b)) {
System.out.println("1");
} else {
System.out.println("2");
}
} else {
System.out.println("0");
}
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 056ff54e38bde82984f80a7308ae4676 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) {
FastReader sc = new FastReader();
int T = sc.nextInt();
while(T-- != 0) {
int a = sc.nextInt();
int b = sc.nextInt();
int sum = (int)Math.sqrt(a*a + b*b);
if(sum > 0) {
if ((sum*sum) == (a*a + b*b)) {
System.out.println("1");
} else {
System.out.println("2");
}
} else {
System.out.println("0");
}
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | c7c5fab98f39418f15d49a2b66680969 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class codeforces1657A {
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int numCases = Integer.parseInt(br.readLine());
for (int i = 0; i<numCases;i++)
{
StringTokenizer st = new StringTokenizer(br.readLine());
int X = Integer.parseInt(st.nextToken());
int Y = Integer.parseInt(st.nextToken());
if (X>0 || Y>0)
{
if (X==0 || Y==0)
{
System.out.println("1");
}
else
{
int distance = (int) (Math.pow(X,2)+Math.pow(Y,2));
boolean bo = false;
for (int a = 2; a<=71;a++)
{
if(a*a == distance)
{
bo = true;
break;
}
}
if (bo)
{
System.out.println("1");
}
else
{
System.out.println("2");
}
}
}
else
{
System.out.println("0");
}
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 0e30dce7ef5824e039ad4cb49c3a1862 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
public static void main(String[] args)throws IOException {
Scanner in = new Scanner(System.in);
int t = in.nextInt();
while(t-- > 0) {
int x = in.nextInt();
int y = in.nextInt();
int a = (int) (Math.pow(x, 2) + Math.pow(y, 2));
if(x == 0 && y == 0) System.out.println(0);
else if((int)Math.sqrt(a) * (int)Math.sqrt(a) == a) System.out.println(1);
else System.out.println(2);
}
}
public static void sort(int[] arr){
ArrayList<Integer> ls = new ArrayList<>();
for(int x : arr){
ls.add(x);
}
Collections.sort(ls);
for(int i = 0;i < arr.length;i++){
arr[i] = ls.get(i);
}
}
public static int binSearch(int[] arr,int a){
int l = 0;
int r = arr.length-1;
int mid = 0;
while (l <= r){
if(arr[mid] > a){
r = mid - 1;
}
else{
l = mid + 1;
}
mid = (r+l)/2;
}
return l;
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 5596cfb97d2109bf2c2f6a8d9c74eb70 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.math.BigDecimal;
import java.util.*;
public class Example{
public static void main(String args[]){
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t-- > 0) {
int x = sc.nextInt();
int y = sc.nextInt();
if (x == 0 && y == 0) {
System.out.println(0);
continue;
}
double c = Math.sqrt(Math.pow(x, 2) + Math.pow(y,2));
int i = BigDecimal.valueOf(c).scale();
if (i == 1) {
System.out.println(1);
} else {
System.out.println(2);
}
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | c5a7ed2b611e6352c1ce5b70cef57494 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class A {
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(System.out);
StringTokenizer st;
int t = Integer.parseInt(br.readLine());
while (t --> 0) {
st = new StringTokenizer(br.readLine());
int x = Integer.parseInt(st.nextToken());
int y = Integer.parseInt(st.nextToken());
if (x == 0 && y == 0) {
pw.println(0);
} else if (x == 0 || y == 0) {
pw.println(1);
} else if ((int) Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2)) == (double) Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2))) {
pw.println(1);
} else {
pw.println(2);
}
}
pw.close();
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | c7ef3b7779bd0a62fd7d8562cf9a3dec | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.PrintWriter;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Scanner;
import java.util.Set;
public class A {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = in.nextInt();
in.nextLine();
Set<Integer> squares = new HashSet<>();
for (int a = 1; a <= 250; a++) {
squares.add(a*a);
}
while (n-- > 0) {
int x = in.nextInt();
int y = in.nextInt(); in.nextLine();
ArrayDeque<List<Integer>> queue = new ArrayDeque<>();
if (x == 0 && y == 0) {
out.println(0);
} else if (squares.contains(x*x+y*y)) {
out.println(1);
} else {
out.println(2);
}
}
out.close();
in.close();
}
}
// 4 => 0&2
// 9 => 0&3
// 9 => 0&3
// 16 => 0&4
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 9225853ca70586211b122f8f296cfe31 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.util.Arrays;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.TreeSet;
import java.util.TreeMap;
import java.util.PriorityQueue;
import java.util.Collections;
import java.util.Stack;
import java.math.BigInteger;
import java.util.LinkedList;
import java.util.Iterator;
public class First {
public static void main(String[] args) {
FastScanner fs = new FastScanner();
int T = fs.nextInt();
set=new HashSet<>();
for(int i=1;i<=100;++i)
{
for(int j=1;j<=100;++j)
{
double val = Math.sqrt((i*i)+(j*j));
double ceil = Math.ceil(val);
double floor = Math.floor(val);
if(ceil==floor)
{
set.add((int)(val*val));
}
}
}
// System.out.println(set);
for (int tt = 0; tt < T; tt++) {
solve(fs);
}
}
static HashSet<Integer> set;
static void solve(FastScanner fs)
{
int x=fs.nextInt(), y=fs.nextInt();
if(x==0 && y==0)
{
pn(0);
return;
}
if(x==0 || y==0 || set.contains((x*x)+(y*y)))
{
pn(1);
}
else
pn(2);
}
static long MOD=(long)(1e9+7);
static long gcd(long a, long b)
{
if (a == 0)
return b;
return gcd(b%a, a);
}
static void pn(Object o) { System.out.println(o); }
static void p(Object o) { System.out.print(o); }
static void flush() { System.out.flush(); }
static void debugInt(int[] arr)
{
for(int i=0;i<arr.length;++i)
System.out.print(arr[i]+" ");
System.out.println();
}
static void debugIntInt(int[][] arr)
{
for(int i=0;i<arr.length;++i)
{
for(int j=0;j<arr[0].length;++j)
System.out.print(arr[i][j]+" ");
System.out.println();
}
System.out.println();
}
static void debugLong(long[] arr)
{
for(int i=0;i<arr.length;++i)
System.out.print(arr[i]+" ");
System.out.println();
}
static void debugLongLong(long[][] arr)
{
for(int i=0;i<arr.length;++i)
{
for(int j=0;j<arr[0].length;++j)
System.out.print(arr[i][j]+" ");
System.out.println();
}
System.out.println();
}
static long[] takeLong(int n, FastScanner fs)
{
long[] arr=new long[n];
for(int i=0;i<n;++i)
arr[i]=fs.nextLong();
return arr;
}
static long[][] takeLongLong(int m, int n, FastScanner fs)
{
long[][] arr=new long[m][n];
for(int i=0;i<m;++i)
for(int j=0;j<n;++j)
arr[i][j]=fs.nextLong();
return arr;
}
static int[] takeInt(int n, FastScanner fs)
{
int[] arr=new int[n];
for(int i=0;i<n;++i)
arr[i]=fs.nextInt();
return arr;
}
static int[][] takeIntInt(int m, int n, FastScanner fs)
{
int[][] arr=new int[m][n];
for(int i=0;i<m;++i)
for(int j=0;j<n;++j)
arr[i][j]=fs.nextInt();
return arr;
}
static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static int getDecimalFromBinary(String s)
{
long no=0;
for(int i=0;i<s.length();i++)
{
if(s.charAt(i)=='1')
no++;
no=no<<1;
}
return (int)(no>>1);
}
static String getBinaryFromDecimal(int x)
{
StringBuilder sb=new StringBuilder();
for(int i=0;i<31;++i)
{
if((x&1)==0)
sb.append('0');
else
sb.append('1');
x=x>>1;
}
return sb.reverse().toString();
}
static boolean[] sieve()
{
int size=(int)(1e5+5);
boolean[] isPrime=new boolean[size];
Arrays.fill(isPrime, true);
for(int i=2;i<size;++i)
for(int j=2*i;isPrime[i]==true && j<size;j+=i)
isPrime[j]=false;
return isPrime;
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
}
}
class Pair
{
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 3f8e9d827543a565aceee7ce536fbd2e | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes |
import java.util.*;
import java.util.stream.Collectors;
import java.io.*;
import java.math.*;
public class ER125_A{
public static FastScanner sc;
public static PrintWriter pw;
public static StringBuilder sb;
public static int MOD= 1000000007;
public static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
}
public static void printList(List<Long> al) {
System.out.println(al.stream().map(it -> it.toString()).collect(Collectors.joining(" ")));
}
public static void printList(Deque<Long> al) {
System.out.println(al.stream().map(it -> it.toString()).collect(Collectors.joining(" ")));
}
public static void printArr(long[] arr) {
System.out.println(Arrays.toString(arr).trim().replace("[", "").replace("]","").replace(","," "));
}
public static long gcd(long a, long b) {
if(b==0) return a;
return gcd(b,a%b);
}
public static long lcm(long a, long b) {
return((a*b)/gcd(a,b));
}
public static void decreasingOrder(ArrayList<Long> al) {
Comparator<Long> c = Collections.reverseOrder();
Collections.sort(al,c);
}
public static boolean[] sieveOfEratosthenes(int n) {
boolean isPrime[] = new boolean[n+1];
Arrays.fill(isPrime, true);
isPrime[0]=false;
isPrime[1]=false;
for(int i=2;i*i<n;i++) {
for(int j=2*i;j<n;j+=i) {
isPrime[j]=false;
}
}
return isPrime;
}
public static long nCr(long N, long R) {
double result=1;
for(int i=1;i<=R;i++) result=((result*(N-R+i))/i);
return (long) result;
}
public static long fastPow(long a, long b, int n) {
long result=1;
while(b>0) {
if((b&1)==1)
result=(result*a %n)%n;
a=(a%n * a%n)%n;
b>>=1;
}
return result;
}
public static int BinarySearch(long[] arr, long key) {
int low=0;
int high=arr.length-1;
while(low<=high) {
int mid=(low+high)/2;
if(arr[mid]==key)
return mid;
else if(arr[mid]>key)
high=mid-1;
else
low=mid+1;
}
return low; //High=low-1
}
public static void solve(int t) {
double x=sc.nextInt();
double y=sc.nextInt();
// 0,0 --> 0
// root(x^2 + y^2) perfect square -->1
// else -->2
if(x==0 && y==0) {
System.out.println(0);
}
else {
double temp=Math.sqrt((double)(x*x) +(double)(y*y));
if(temp==(int) temp) {
System.out.println(1);
}
else System.out.println(2);
}
}
public static void main(String[] args) {
sc = new FastScanner();
pw = new PrintWriter(new OutputStreamWriter(System.out));
sb= new StringBuilder("");
int t=sc.nextInt();
for(int i=1;i<=t;i++) solve(i);
System.out.println(sb);
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 403aac08b82cc2cca41d29774314f3a4 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
static FastReader scan = new FastReader();
// static Scanner scan= new Scanner(System.in);
static PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) {
int n = scan.nextInt();while (n-->0)
A();
out.close();
}
static void A(){
int n = scan.nextInt();
int m = scan.nextInt();
if(n==0 && m==0) out.println(0);
else if(asd(n,m)==0) out.println(1);
else out.println(2);
}
static int asd(int a , int b){
int m = a*a + (b*b);
int s = (int)Math.sqrt(m);
if(m == s*s)return 0;
return -1;
}
}
class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br=new BufferedReader(new InputStreamReader(System.in));
}
String next()
{
while(st==null || !st.hasMoreElements())
{
try
{
st=new StringTokenizer(br.readLine());
}
catch(IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str="";
try
{
str=br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 4b0e099fab4c72485fc5df27822f86e2 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class IntegerMoves {
public static void main(String[] args) throws IOException{
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int t = sc.nextInt();
HashSet<Integer> hs = new HashSet<>();
for(int i=0; i<=100 ;i++)
hs.add((int)Math.pow(i,2));
while(t-->0){
int x = sc.nextInt() , y = sc.nextInt();
int z = (int) Math.pow(x , 2) + (int) Math.pow(y,2);
if(hs.contains(z)){
if(x == 0 && y == 0)
pw.println(0);
else
pw.println(1);
}
else
pw.println(2);
}
pw.flush();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(String file) throws IOException {
br = new BufferedReader(new FileReader(file));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public String readAllLines(BufferedReader reader) throws IOException {
StringBuilder content = new StringBuilder();
String line;
while ((line = reader.readLine()) != null) {
content.append(line);
content.append(System.lineSeparator());
}
return content.toString();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 903af2fe0a61f2c441493b44b0f769c0 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class IntegerMoves {
public static long gcd(long a, long b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
public static void main(String[] args) throws IOException{
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int t = sc.nextInt();
while(t-->0){
int x = sc.nextInt() , y = sc.nextInt();
int z = (int) Math.sqrt(x*x + y*y);
if(x == 0 && y == 0)
pw.println(0);
else if(z*z == x*x+y*y)
pw.println(1);
else
pw.println(2);
}
pw.flush();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(String file) throws IOException {
br = new BufferedReader(new FileReader(file));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public String readAllLines(BufferedReader reader) throws IOException {
StringBuilder content = new StringBuilder();
String line;
while ((line = reader.readLine()) != null) {
content.append(line);
content.append(System.lineSeparator());
}
return content.toString();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 5912321e326301ebfdc16bc265a17214 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main implements Runnable {
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
public static void main(String[] args) {
new Thread(null, new Main(), "", 256 * (1L << 20)).start();
}
public void run() {
try {
long t1 = System.currentTimeMillis();
if (System.getProperty("ONLINE_JUDGE") != null) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
} else {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
Locale.setDefault(Locale.US);
solve();
in.close();
out.close();
long t2 = System.currentTimeMillis();
System.err.println("Time = " + (t2 - t1));
} catch (Throwable t) {
t.printStackTrace(System.err);
System.exit(-1);
}
}
String readString() throws IOException {
while (!tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
int readInt() throws IOException {
return Integer.parseInt(readString());
}
long readLong() throws IOException {
return Long.parseLong(readString());
}
double readDouble() throws IOException {
return Double.parseDouble(readString());
}
void solveTest() throws IOException {
int x2 = readInt();
int y2 = readInt();
int x1 = 0;
int y1 = 0;
int[] roots = new int[]{4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324,
361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225,
1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500,
2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481,3600, 3721, 3844, 3969, 4096, 4225,
4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329,};
int interior = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
boolean found = false;
if (interior == 0) {
out.println(0);
return;
}
if (x2 == 0 || y2 == 0) {
out.println(1);
return;
}
for (int i = 0; i < roots.length; i++) {
if (interior == roots[i]) {
out.println(1);
return;
}
}
out.println(2);
}
void solve() throws IOException {
int testCases = readInt();
for (int tests = 0; tests < testCases; tests++) {
solveTest();
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | fe6da97354d4d2d19805d1f097250a8c | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.Scanner;
public class PyTriplets {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
for(int i=0;i<t;i++){
int x=sc.nextInt();
int y=sc.nextInt();
if(x==0 && y==0)
System.out.println(0);
else if(x==0 && y!=0)
System.out.println(1);
else if(x!=0 && y==0)
System.out.println(1);
else{
double sum=Math.sqrt(x*x+y*y);
if(Math.floor(sum)==sum)
System.out.println(1);
else
System.out.println(2);
}
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 538f5197b44d372736d6c22d624e43f2 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class CodeForces {
public static void main(String[] args) throws FileNotFoundException {
FastScanner fs = new FastScanner();
int tt = fs.nextInt();
while(tt-- > 0) {
int x = fs.nextInt(), y = fs.nextInt();
if(x == 0 && y == 0) {
System.out.println(0);
}else {
double d = Math.sqrt(x*x + y*y);
if(d == (int)d && d*d == (x*x + y*y)) {
System.out.println(1);
}else {
System.out.println(2);
}
}
}
}
public static int gcd(int a, int b) {
if(b == 0) return a;
return gcd(b, a%b);
}
static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 07f113254c9d931cf224a23304097e2f | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | /* package codechef; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
/* Template created by Jabra Ram - @hack41 */
public class Solution
{
public static void main (String[] args) throws java.lang.Exception
{
// your code goes here
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String s = br.readLine();
int t = Integer.parseInt(s);
while(t-->0){
// int n = Integer.parseInt(br.readLine());
String [] str = br.readLine().split(" ");
// String [] array = br.readLine().split(" ");
int n = Integer.parseInt(str[0]);
int m = Integer.parseInt(str[1]);
// int b = Integer.parseInt(str[2]);
// int [] arr1 = new int[n];
// int [] arr2 = new int[n];
// for(int i=0;i<n;i++){
// arr1[i] = Integer.parseInt(str[i]);
// arr2[i] = Integer.parseInt(array[i]);
// }
if(n==0 && m==0){
System.out.println(0);
}
else if((int)Math.sqrt(n*n + m*m)*(int)Math.sqrt(n*n + m*m) == n*n + m*m){
System.out.println(1);
}
else {
System.out.println(2);
}
}
}
public static int gcd(int a, int b){
if(b>a){
return gcd(b,a);
}
if(b==0)
return a;
return gcd(b, a%b);
}
public static long factMod(int n, int mod){
long ans = 1;
for(long i=1;i<=n/2;i++){
ans = ans*i*i%mod;
ans = ans%mod;
}
return ans;
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 4fb2b7b7c4c72adbd35403f49ace8aec | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.*;
import java.lang.reflect.Array;
import java.util.*;
public class Main implements Runnable {
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
public static void main(String[] args) {
new Thread(null, new Main(), "", 256 * (1L << 20)).start();
}
public void run() {
try {
long t1 = System.currentTimeMillis();
if (System.getProperty("ONLINE_JUDGE") != null) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
} else {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
Locale.setDefault(Locale.US);
solve();
in.close();
out.close();
long t2 = System.currentTimeMillis();
System.err.println("Time = " + (t2 - t1));
} catch (Throwable t) {
t.printStackTrace(System.err);
System.exit(-1);
}
}
String readString() throws IOException {
while (!tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
int readInt() throws IOException {
return Integer.parseInt(readString());
}
long readLong() throws IOException {
return Long.parseLong(readString());
}
double readDouble() throws IOException {
return Double.parseDouble(readString());
}
void solve() throws IOException {
int n = readInt();
ArrayList<Integer> squares = new ArrayList<>();
for(int i = 0; i < n; i++) {
int x = readInt(), y = readInt(), moves = 0;
findSquares(squares, x, y);
int squareDistance = x * x + y * y;
if(squareDistance == 0)
out.print("0\n");
else if(x == 0 || y == 0)
out.print("1\n");
else if(squares.contains(squareDistance))
out.print("1\n");
else
out.print("2\n");
}
}
int binarySearch(ArrayList<Integer> arr, int x)
{
int l = 0, r = arr.size() - 1, smallest = arr.get(arr.size() - 1);
while (l <= r) {
int m = l + (r - l) / 2;
if (arr.get(m) == x)
return m;
if (arr.get(m) < x) {
smallest = m;
l = m + 1;
}
else {
r = m - 1;
}
}
return smallest;
}
void findSquares(ArrayList<Integer> squares, int x, int y) {
int max = x * x + y * y;
int squareSizePrev = squares.size();
for(int square = 0, i = squareSizePrev; square <= max; i++) {
square = i * i;
squares.add(square);
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 998533dbd2c37aff0093d36ca0b84dd4 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.PrintWriter;
import java.util.Scanner;
public class A {
public void solve(Scanner in, PrintWriter out) {
int t = in.nextInt();
for (int c = 0; c < t; c++) {
int goalI = in.nextInt();
int goalJ = in.nextInt();
int result;
if (goalI == 0 && goalJ == 0) {
result = 0;
} else {
double distance = Math.sqrt(goalI * goalI + goalJ * goalJ);
if ((int) distance == distance) {
result = 1;
} else {
result = 2;
}
}
out.println(result);
}
}
public void run() {
try (Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out)) {
solve(in, out);
}
}
public static void main(String[] args) {
new A().run();
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | a41169008a571cef68ae19958f35b126 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
public class Solution{
static Scanner sc = new Scanner(System.in);
public static void main(String args[]){
int t = sc.nextInt();
while(t-- > 0){
int x = sc.nextInt(), y = sc.nextInt();
int d = x * x + y * y;
int moves = 0;
if(x != 0 || y != 0)
if((int)Math.sqrt(d) * (int)Math.sqrt(d) == d)
moves = 1;
else
moves = 2;
System.out.println(moves);
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | dcf67d64d7e80cd3b150d922e649df44 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class cf {
public static void main (String[] args) throws java.lang.Exception
{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer stz;
double T = Integer.parseInt(br.readLine());
while(T-->0) {
stz = new StringTokenizer(br.readLine());
int x = Integer.parseInt(stz.nextToken());
int y = Integer.parseInt(stz.nextToken());
if(x==0 && y==0) {
System.out.println("0");
}
else {
int p = x*x;
int q = y*y;
int ans = (int)Math.sqrt(p+q);
if(ans*ans == p+q) {
System.out.println("1");
}
else {
System.out.println("2");
}
}
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | cccef9d2404e088387283a52bd85f1e2 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.lang.*;
import java.io.InputStreamReader;
import static java.lang.Math.*;
import static java.lang.System.out;
import java.util.*;
import java.io.File;
import java.io.PrintStream;
import java.io.PrintWriter;
import java.math.BigInteger;
public class Main {
/* 10^(7) = 1s.
* ceilVal = (a+b-1) / b */
static final int mod = 1000000007;
static final long temp = 998244353;
static final long MOD = 1000000007;
static final long M = (long)1e9+7;
static class Pair implements Comparable<Pair>
{
int first, second;
public Pair(int first, int second)
{
this.first = first;
this.second = second;
}
public int compareTo(Pair ob)
{
return (int)(first - ob.first);
}
}
static class Tuple implements Comparable<Tuple>
{
long first, second,third;
public Tuple(long first, long second, long third)
{
this.first = first;
this.second = second;
this.third = third;
}
public int compareTo(Tuple o)
{
return (int)(o.third - this.third);
}
}
public static class DSU
{
int count = 0;
int[] parent;
int[] rank;
public DSU(int n)
{
count = n;
parent = new int[n];
rank = new int[n];
Arrays.fill(parent, -1);
Arrays.fill(rank, 1);
}
public int find(int i)
{
return parent[i] < 0 ? i : (parent[i] = find(parent[i]));
}
public void union(int a, int b) //Union Find by Rank
{
a = find(a);
b = find(b);
if(a == b) return;
if(rank[a] < rank[b])
{
parent[a] = b;
}
else if(rank[a] > rank[b])
{
parent[b] = a;
}
else
{
parent[b] = a;
rank[a] = 1 + rank[a];
}
count--;
}
public int countConnected()
{
return count;
}
}
static class Reader
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) throws IOException {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long[] longReadArray(int n) throws IOException {
long[] a=new long[n];
for (int i=0; i<n; i++) a[i]=nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
public static int gcd(int a, int b)
{
if(b == 0)
return a;
else
return gcd(b,a%b);
}
public static long lcm(long a, long b)
{
return (a / LongGCD(a, b)) * b;
}
public static long LongGCD(long a, long b)
{
if(b == 0)
return a;
else
return LongGCD(b,a%b);
}
public static long LongLCM(long a, long b)
{
return (a / LongGCD(a, b)) * b;
}
//Count the number of coprime's upto N
public static long phi(long n) //euler totient/phi function
{
long ans = n;
// for(long i = 2;i*i<=n;i++)
// {
// if(n%i == 0)
// {
// while(n%i == 0) n/=i;
// ans -= (ans/i);
// }
// }
//
// if(n > 1)
// {
// ans -= (ans/n);
// }
for(long i = 2;i<=n;i++)
{
if(isPrime(i))
{
ans -= (ans/i);
}
}
return ans;
}
public static long fastPow(long x, long n)
{
if(n == 0)
return 1;
else if(n%2 == 0)
return fastPow(x*x,n/2);
else
return x*fastPow(x*x,(n-1)/2);
}
public static long powMod(long x, long y, long p)
{
long res = 1;
x = x % p;
while (y > 0)
{
if (y % 2 == 1)
{
res = (res * x) % p;
}
y = y >> 1;
x = (x * x) % p;
}
return res;
}
static long modInverse(long n, long p)
{
return powMod(n, p - 2, p);
}
// Returns nCr % p using Fermat's little theorem.
public static long nCrModP(long n, long r,long p)
{
if (n<r)
return 0;
if (r == 0)
return 1;
long[] fac = new long[(int)(n) + 1];
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = fac[i - 1] * i % p;
return (fac[(int)(n)] * modInverse(fac[(int)(r)], p)
% p * modInverse(fac[(int)(n - r)], p)
% p)
% p;
}
public static long fact(long n)
{
long[] fac = new long[(int)(n) + 1];
fac[0] = 1;
for (long i = 1; i <= n; i++)
fac[(int)(i)] = fac[(int)(i - 1)] * i;
return fac[(int)(n)];
}
public static long nCr(long n, long k)
{
long ans = 1;
for(long i = 0;i<k;i++)
{
ans *= (n-i);
ans /= (i+1);
}
return ans;
}
//Modular Operations for Addition and Multiplication.
public static long perfomMod(long x)
{
return ((x%M + M)%M);
}
public static long addMod(long a, long b)
{
return perfomMod(perfomMod(a)+perfomMod(b));
}
public static long subMod(long a, long b)
{
return perfomMod(perfomMod(a)-perfomMod(b));
}
public static long mulMod(long a, long b)
{
return perfomMod(perfomMod(a)*perfomMod(b));
}
public static boolean isPrime(long n)
{
if(n == 1)
{
return false;
}
//check only for sqrt of the number as the divisors
//keep repeating so only half of them are required. So,sqrt.
for(int i = 2;i*i<=n;i++)
{
if(n%i == 0)
{
return false;
}
}
return true;
}
public static List<Long> SieveList(int n)
{
boolean prime[] = new boolean[(int)(n+1)];
Arrays.fill(prime, true);
List<Long> l = new ArrayList<>();
for (long p = 2; p*p<=n; p++)
{
if (prime[(int)(p)] == true)
{
for(long i = p*p; i<=n; i += p)
{
prime[(int)(i)] = false;
}
}
}
for (long p = 2; p<=n; p++)
{
if (prime[(int)(p)] == true)
{
l.add(p);
}
}
return l;
}
public static int countDivisors(int x)
{
int c = 0;
for(int i = 1;i*i<=x;i++)
{
if(x%i == 0)
{
if(x/i != i)
{
c+=2;
}
else
{
c++;
}
}
}
return c;
}
public static long log2(long n)
{
long ans = (long)(log(n)/log(2));
return ans;
}
public static boolean isPow2(long n)
{
return (n != 0 && ((n & (n-1))) == 0);
}
public static boolean isSq(int x)
{
long s = (long)Math.round(Math.sqrt(x));
return s*s==x;
}
/*
*
* >= <=
0 1 2 3 4 5 6 7
5 5 5 6 6 6 7 7
lower_bound for 6 at index 3 (>=)
upper_bound for 6 at index 6(To get six reduce by one) (<=)
*/
public static int LowerBound(int a[], int x)
{
int l=-1,r=a.length;
while(l+1<r)
{
int m=(l+r)>>>1;
if(a[m]>=x) r=m;
else l=m;
}
return r;
}
public static int UpperBound(int a[], int x)
{
int l=-1, r=a.length;
while(l+1<r)
{
int m=(l+r)>>>1;
if(a[m]<=x) l=m;
else r=m;
}
return l+1;
}
public static void Sort(long[] a)
{
List<Long> l = new ArrayList<>();
for (long i : a) l.add(i);
Collections.sort(l);
// Collections.reverse(l); //Use to Sort decreasingly
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
public static void ssort(char[] a)
{
List<Character> l = new ArrayList<>();
for (char i : a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
public static void main(String[] args) throws Exception
{
Reader sc = new Reader();
PrintWriter fout = new PrintWriter(System.out);
int tt = sc.nextInt();
while(tt-- > 0)
{
int x = sc.nextInt(), y = sc.nextInt();
int par = x * x + y * y;
long dist = (int)(Math.round(Math.sqrt(par)));
if(x == 0 && y == 0)
{
fout.println(0);
}
else
{
fout.println((dist * dist == par) ? 1 : 2);
}
}
fout.close();
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 7a206f31a540b534e4156b2836c1d69a | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.Scanner;
public class Chip {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
for (int i = 0; i < n; i++) {
int x = in.nextInt();
int y = in.nextInt();
int b = (x*x)+(y*y);
if (x ==0 && y ==0) {
System.out.println("0");
continue;
}
if (Math.sqrt(b) % 1 == 0) {
System.out.println("1");
} else {
System.out.println("2");
}
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 7f9e63b4c9f73bd114000600f8531e2f | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Solution {
public static void main (String[] args) {
Scanner sc = new Scanner(System.in);
int t= sc.nextInt();
while(t-->0){
int x = sc.nextInt(),y=sc.nextInt();
int a = x*x + y*y;
double ans = Math.sqrt(a);
if(x==0 && y==0) System.out.println(0);
else if(ans == (int)ans) System.out.println(1);
else System.out.println(2);
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 169fc5be9139d5ea5c1c6031632583b3 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
static FastReader in=new FastReader();
static final Random random=new Random();
static long mod=1000000007L;
static HashMap<String,Integer>map=new HashMap<>();
public static void main(String[] args) {
int t=in.nextInt();
StringBuilder res=new StringBuilder();
loop:
while(t-->0){
int x=in.nextInt();
int y=in.nextInt();
if(x==y&&y==0){
res.append("0\n");
continue loop;
}
int sum=x*x+y*y;
boolean test =false;
int num=1;
while (num*num<=sum){
if(num*num==sum){
test=true;
}
num++;
}
if(test)
res.append(1+"\n");
else
res.append(2+"\n");
}
System.out.println(res);
}
static long calculateSum(long n)
{
if(n<0)
{
return 0;
}
return n*(n+1)/2;
}
static class Node implements Comparable<Node>{
int val;
char ch;
Node(int x,char y)
{
val=x;
ch=y;
}
@Override
public int compareTo(Node o) {
if(val>o.val)
{
return 1;
}
if(val==o.val)
{
return 0;
}
return -1;
}
}
static int max(int a, int b)
{
if(a<b)
return b;
return a;
}
static void ruffleSort(int[] a) {
int n=a.length;
for (int i=0; i<n; i++) {
int oi=random.nextInt(n), temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static < E > void print(E res)
{
System.out.println(res);
}
static int gcd(int a,int b)
{
if(b==0)
{
return a;
}
return gcd(b,a%b);
}
static int lcm(int a, int b)
{
return (a / gcd(a, b)) * b;
}
static int abs(int a)
{
if(a<0)
return -1*a;
return a;
}
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
int [] readintarray(int n) {
int res [] = new int [n];
for(int i = 0; i<n; i++)res[i] = nextInt();
return res;
}
long [] readlongarray(int n) {
long res [] = new long [n];
for(int i = 0; i<n; i++)res[i] = nextLong();
return res;
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 2842238359135a16cd914d2c33a26e20 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.Scanner;
public class Main {
public static void main(String[] args){
Scanner scanner = new Scanner(System.in);
int num = scanner.nextInt();
while(num > 0){
int x = scanner.nextInt();
int y = scanner.nextInt();
System.out.println(getMinStep(x,y));
num --;
}
}
private static int getMinStep(int x, int y){
// 在两个点之间移动,要求走的必须是整数步
if(x == 0 && y == 0){
return 0;
}else if(x == 0 || y == 0){
return 1;
}else {
int sq = (int) Math.sqrt(x*x + y*y);
if((sq*sq) == (x*x + y*y)){
return 1;
}else{
return 2;
}
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 943dfbed8e61bed064e9a2dee53909b3 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes |
import java.util.*;
import java.io.*;
import java.io.*;
import java.util.*;
import java.math.*;
import static java.lang.Math.sqrt;
import static java.lang.Math.floor;
public class Solution {
public static void main(String args[])throws IOException {
BufferedReader ob = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
int t = Integer.parseInt(ob.readLine());
while(t --> 0){
StringTokenizer st = new StringTokenizer(ob.readLine());
int x= Integer.parseInt(st.nextToken());
int y = Integer.parseInt(st.nextToken());
long a = (long)Math.pow(x,2) + (long)Math.pow(y,2);
long element = (long)Math.sqrt(a);
long f = a;
long ans = f;
if(x == 0 && y == 0) {
System.out.println(0);
}else if(element*element == a) {
System.out.println(1);
}else {
System.out.println(2);
}
}
}
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 1577cb95eda652e8993090f385e88e84 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes |
import java.util.*;
public class Main{
public static void main(String args[]) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
for(int i=1;i<=t;i++)
{
int x = sc.nextInt();
int y = sc.nextInt();
int temp = (int)Math.sqrt(x * x + y * y);
if(x == 0 && y == 0)
{
System.out.println(0);
}
else if(temp * temp == x * x + y * y)
{
System.out.println(1);
}
else{
System.out.println(2);
}
}
sc.close();
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 1456498ba52f2f8c02cc185e69bcb476 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Demo{
// public static long gcd(long a, long b) {
// if (b==0)
// return a;
// return gcd(b, a%b);
// }
// public static void pA(int n, int[] arr) {
// for (int i=0; i<n; i++) {
// System.out.print(arr[i]+" ");
// }
// System.out.println();
// }
static BufferedReader br;
public static void main(String args[]) throws IOException{
br = new BufferedReader(new InputStreamReader(System.in));
// Scanner s = new Scanner(System.in);
int t = Integer.parseInt(br.readLine());
// int t = s.nextInt();
while (t-->0){
// int n = Integer.parseInt(br.readLine());
long[] arr = readLongArr();
long aa = arr[0]*arr[0] + arr[1]*arr[1];
long x = (long)Math.sqrt(aa);
// System.out.println("x"+x);
boolean sss = x*x==aa;
if (arr[0]==0 && arr[1]==0){
System.out.println(0);
// }else if ((double)(Math.sqrt(arr[0]*arr[0]+arr[1]*arr[1])*Math.sqrt(arr[0]*arr[0]+arr[1]*arr[1])) == (double)(arr[0]*arr[0]+arr[1]*arr[1])){
// System.out.println(Math.sqrt(arr[0]*arr[0]+arr[1]*arr[1]));
// System.out.println(78.0064==78);
}else if (sss){
System.out.println(1);
}else{
System.out.println(2);
}
}
// s.close();
}
public static long[] readLongArr() throws IOException{
String[] integersInString = br.readLine().split(" ");
long a[] = new long[integersInString.length];
// List<Integer> al = new ArrayList<>(integersInString.length);
for (int i = 0; i < integersInString.length; i++) {
a[i]=(Long.parseLong(integersInString[i]));
}
return a;
}
public static int[] readIntArr() throws IOException{
String[] integersInString = br.readLine().split(" ");
int a[] = new int[integersInString.length];
// List<Integer> al = new ArrayList<>(integersInString.length);
for (int i = 0; i < integersInString.length; i++) {
a[i]=(Integer.parseInt(integersInString[i]));
}
return a;
}
// public static String sortString(String inputString) {
// // convert input string to char array
// char tempArray[] = inputString.toCharArray();
// // sort tempArray
// Arrays.sort(tempArray);
// // return new sorted string
// return new String(tempArray);
// }
// public static String getString(int n) {
// char[] buf = new char[(int) Math.floor(Math.log(25 * (n + 1)) / Math.log(26))];
// for (int i = buf.length - 1; i >= 0; i--) {
// n--;
// buf[i] = (char) ('a' + n % 26);
// n /= 26;
// }
// return new String(buf);
// }
}
| Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | c5f22b5d912bca37d686713a383c0562 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import static java.lang.Math.*;
import static java.lang.System.out;
import java.util.*;
import java.io.*;
public class Main {
static FastReader sc;
static StringBuilder sb = new StringBuilder();
static final long MOD = 998244353;
//sb.append("Case #"+(t+1)+": IMPOSSIBLE\n");
static boolean isPerfect(int n){
for(int i=1;i<n;i++){
if(n%i==0){
if(i*i==n)
return true;
}
}
return false;
}
public static void main(String args[]) throws InterruptedException {
sc = new FastReader();
int tc=sc.nextInt();
for(int t=0;t<tc;t++){
int x=sc.nextInt();
int y=sc.nextInt();
if(x==0&&y==0){
sb.append("0\n");
}else{
int z=x*x+y*y;
if(x==0||y==0||isPerfect(z)){
sb.append("1\n");
}else{
sb.append("2\n");
}
}
}
out.println(sb.toString());
}
public static void reverse(int[] b) {
int n=b.length;
int i=0,j=n-1;
while(i<j){
int k=b[i];
b[i]=b[j];
b[j]=k;
i++;
j--;
}
return;
}
public static boolean nextPermutation(int[]a){
int n=a.length;
if(n==0||n==1)return false;
int pos=-1;
for(int i=n-2;i>=0;i--){
if(a[i]<a[i+1]){
pos=i;
int rep=-1;
for(int j=i+1;j<n;j++){
if(a[j]>a[pos]){
rep=j;
}
}
int k=a[pos];
a[pos]=a[rep];
a[rep]=k;
break;
}
}
int i=pos+1,j=n-1;
while(i<j){
int k=a[i];
a[i]=a[j];
a[j]=k;
i++;
j--;
}
return (pos==-1)?false:true;
}
public static long powerMOD(long x, long y)
{
long res = 1L;
while (y > 0)
{
// If y is odd, multiply x with result
if ((y & 1) != 0){
x %= MOD;
res %= MOD;
res = (res * x)%MOD;
}
// y must be even now
y = y >> 1; // y = y/2
x%= MOD;
x = (x * x)%MOD; // Change x to x^2
}
return res%MOD;
}
public static long power(long x, long y)
{
long res = 1L;
while (y > 0)
{
// If y is odd, multiply x with result
if ((y & 1) != 0){
res = (res * x);
}
// y must be even now
y = y >> 1; // y = y/
x = (x * x);
}
return res;
}
public static void printArray(int[] a){
int n=a.length;
for(int i=0;i<n;i++){
System.out.print(a[i]+" ");
}
System.out.println();
}
public static int gcd(int a, int b){
if(b == 0)
return a;
return gcd(b , a%b);
}
static int cntBits(long n){
int cnt=0;
while(n>0){
if(n%2==1)
cnt++;
n/=2;
}
return cnt;
}
static double p_dist(long x1,long y1,long x2,long y2){
double dist=(x1-x2)*(x1-x2)+(y1-y2)*(y1-y2);
dist=Math.sqrt(dist);
return dist;
}
static void swap(int[]a,int i,int j){
int k=a[i];
a[i]=a[j];
a[j]=k;
}
static void printArray(char[]a){
int n=a.length;
for(int i=0;i<n;i++){
System.out.print(a[i]+" ");
}
System.out.println();
}
public static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
public static void sort(char[] a) {
ArrayList<Character> l=new ArrayList<>();
for (char i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
public static void sort(long[] a) {
ArrayList<Long> l=new ArrayList<>();
for (long i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static int log2(int N) {
int result = (int) (Math.log(N) / Math.log(2));
return result;
}
public static boolean isVowel(char c)
{
return (c=='a' || c=='A' || c=='e' || c=='E' || c=='i' || c=='I' || c=='o' || c=='O' || c=='u' || c=='U');
}
static int[] readArray(int N) {
int[] res = new int[N];
for (int i = 0; i < N; i++) {
res[i] = (int) sc.nextInt();
}
return res;
}
static long[] readArrayLong(int N) {
long[] res = new long[N];
for (int i = 0; i < N; i++) {
res[i] = sc.nextLong();
}
return res;
}
public static long gcd(long a, long b){
if(b == 0)
return a;
return gcd(b , a%b);
}
public static class Pair implements Comparable<Pair>{
public long a;
public long b;
Pair(long a , long b){
this.a = a;
this.b = b;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Pair pair = (Pair) o;
return (a == pair.a && b == pair.b);
}
@Override
public int hashCode() {
return Objects.hash(a,b);
}
@Override
public String toString(){
return "("+a + "," + b+")";
}
@Override
public int compareTo(Pair pair) {
if((a == pair.a && b == pair.b))
return 0;
return 1;
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
char nextChar(){
return next().charAt(0);
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 8b2a3e9868838212ab29030b456326c1 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while (t-->0){
double x=sc.nextDouble();
double y=sc.nextDouble();
if ((int) x==0&&(int) y==0){
System.out.println(0);
continue;
}
double sqrt = Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2));
if (sqrt==(int)sqrt)
System.out.println(1);
else
System.out.println(2);
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | 09bec8bc9d0fbb4e407bf051fe9dc3b7 | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.io.DataInputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
import java.util.StringTokenizer;
public class Integer_Moves
{
static class Reader
{
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(
new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') {
if (cnt != 0)
{
break;
}
else
{
continue;
}
}
buf[cnt++] = (byte)c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ')
{
c = read();
}
boolean neg = (c == '-');
if (neg)
{
c = read();
}
do
{
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
{
return -ret;
}
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
{
c = read();
}
boolean neg = (c == '-');
if (neg)
{
c = read();
}
do
{
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
{
return -ret;
}
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
{
c = read();
}
boolean neg = (c == '-');
if (neg)
{
c = read();
}
do
{
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.')
{
while ((c = read()) >= '0' && c <= '9')
{
ret += (c - '0') / (div *= 10);
}
}
if (neg)
{
return -ret;
}
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0,
BUFFER_SIZE);
if (bytesRead == -1)
{
buffer[0] = -1;
}
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
{
fillBuffer();
}
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
{
return;
}
din.close();
}
}
public static void main(String Args[]) throws java.lang.Exception
{
try
{
Scanner obj = new Scanner (System.in);
int t = obj.nextInt();
while (t > 0)
{
t--;
int x = obj.nextInt();
int y = obj.nextInt();
if (x == 0 && y == 0)
{
System.out.println ("0");
continue;
}
double d = Math.sqrt (x * x + y * y);
if (d % 1 == 0)
{
System.out.println ("1");
}
else
{
System.out.println ("2");
}
}
}catch(Exception e){
return;
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output | |
PASSED | b5d25f3a2f42b77f31a2a2731e1ebeee | train_110.jsonl | 1647960300 | There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class codeforces1657A {
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int numCases = Integer.parseInt(br.readLine());
while (numCases-->0)
{
StringTokenizer st = new StringTokenizer(br.readLine());
int x = Integer.parseInt(st.nextToken());
int y = Integer.parseInt(st.nextToken());
if (x==0 && y == 0)
{
System.out.println(0);
}
else
{
if (x*x + y*y == (int)Math.sqrt(x*x+y*y)* (int)Math.sqrt(x*x+y*y))
{
System.out.println(1);
}
else
{
System.out.println(2);
}
}
}
}
} | Java | ["3\n8 6\n0 0\n9 15"] | 2 seconds | ["1\n0\n2"] | NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers. | Java 8 | standard input | [
"brute force",
"math"
] | fce6d690c2790951f7e04c622c3c2d44 | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point. | 800 | For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$. | standard output |
Subsets and Splits