exec_outcome
stringclasses
1 value
code_uid
stringlengths
32
32
file_name
stringclasses
111 values
prob_desc_created_at
stringlengths
10
10
prob_desc_description
stringlengths
63
3.8k
prob_desc_memory_limit
stringclasses
18 values
source_code
stringlengths
117
65.5k
lang_cluster
stringclasses
1 value
prob_desc_sample_inputs
stringlengths
2
802
prob_desc_time_limit
stringclasses
27 values
prob_desc_sample_outputs
stringlengths
2
796
prob_desc_notes
stringlengths
4
3k
lang
stringclasses
5 values
prob_desc_input_from
stringclasses
3 values
tags
sequencelengths
0
11
src_uid
stringlengths
32
32
prob_desc_input_spec
stringlengths
28
2.37k
difficulty
int64
-1
3.5k
prob_desc_output_spec
stringlengths
17
1.47k
prob_desc_output_to
stringclasses
3 values
hidden_unit_tests
stringclasses
1 value
PASSED
d0ee27c2eb576078833c093d4bc19433
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; public class Main { static StringBuilder sb; static dsu dsu; static long fact[]; static int mod ; static int test; static int tc; static void solve() { int n=i(); String s=s(); int idx=0; int op=0; while(idx<n-1){ char c1=s.charAt(idx); char c2=s.charAt(idx+1); if(c1==')'&&c2=='('){ int didx=idx+1; while(didx<n&&s.charAt(didx)=='('){ didx++; } if(didx>=n||s.charAt(didx)!=')'){ break; } else { idx=didx+1; op++; } } else{ idx+=2; op++; } } int ans=n-idx; ans=Math.max(ans,0); sb.append(op+" "+ans+"\n"); } public static void main(String[] args) { sb = new StringBuilder(); test = i(); tc=1; while (test-- > 0) { solve(); tc++; } System.out.print(sb); } //**************NCR%P****************** static long ncr(int n, int r) { if (r > n) return (long) 0; long res = fact[n] % mod; // System.out.println(res); res = ((long) (res % mod) * (long) (p(fact[r], mod - 2) % mod)) % mod; res = ((long) (res % mod) * (long) (p(fact[n - r], mod - 2) % mod)) % mod; // System.out.println(res); return res; } static long p(long x, long y)// POWER FXN // { if (y == 0) return 1; long res = 1; while (y > 0) { if (y % 2 == 1) { res = (res * x) % mod; y--; } x = (x * x) % mod; y = y / 2; } return res; } //**************END****************** // *************Disjoint set // union*********// static class dsu { int parent[]; dsu(int n) { parent = new int[n]; for (int i = 0; i < n; i++) parent[i] = i; } int find(int a) { if (parent[a] ==a) return a; else { int x = find(parent[a]); parent[a] = x; return x; } } void merge(int a, int b) { a = find(a); b = find(b); if (a == b) return; parent[b] = a; } } //**************PRIME FACTORIZE **********************************// static TreeMap<Integer, Integer> prime(long n) { TreeMap<Integer, Integer> h = new TreeMap<>(); long num = n; for (int i = 2; i <= Math.sqrt(num); i++) { if (n % i == 0) { int nt = 0; while (n % i == 0) { n = n / i; nt++; } h.put(i, nt); } } if (n != 1) h.put((int) n, 1); return h; } //****CLASS PAIR ************************************************ static class Pair implements Comparable<Pair> { int v; int i; Pair(int v, int i) { this.v = v; this.i = i; } public int compareTo(Pair o) { return (int) (this.v - o.v); } } //****CLASS PAIR ************************************************** static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int Int() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String String() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return String(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } public void flush() { writer.flush(); } } static InputReader in = new InputReader(System.in); static OutputWriter out = new OutputWriter(System.out); public static long[] sort(long[] a2) { int n = a2.length; ArrayList<Long> l = new ArrayList<>(); for (long i : a2) l.add(i); Collections.sort(l); for (int i = 0; i < l.size(); i++) a2[i] = l.get(i); return a2; } public static char[] sort(char[] a2) { int n = a2.length; ArrayList<Character> l = new ArrayList<>(); for (char i : a2) l.add(i); Collections.sort(l); for (int i = 0; i < l.size(); i++) a2[i] = l.get(i); return a2; } public static long pow(long x, long y) { long res = 1; while (y > 0) { if (y % 2 != 0) { res = (res * x);// % modulus; y--; } x = (x * x);// % modulus; y = y / 2; } return res; } //GCD___+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ public static long gcd(long x, long y) { if (x == 0) return y; else return gcd(y % x, x); } // ******LOWEST COMMON MULTIPLE // ********************************************* public static long lcm(long x, long y) { return (x * (y / gcd(x, y))); } //INPUT PATTERN******************************************************** public static int i() { return in.Int(); } public static long l() { String s = in.String(); return Long.parseLong(s); } public static String s() { return in.String(); } public static int[] readArrayi(int n) { int A[] = new int[n]; for (int i = 0; i < n; i++) { A[i] = i(); } return A; } public static long[] readArray(long n) { long A[] = new long[(int) n]; for (int i = 0; i < n; i++) { A[i] = l(); } return A; } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
1c388073fde4247e847df3a5534fe401
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.*; import java.util.*; public class C { public static void main(String[] args) { while (N-- > 0) { solve(); } out.close(); } public static void solve() { int n = sc.nextInt(); String s = sc.nextLine(); int start = 0; int operations = 0; while (n - start > 1) { if (s.charAt(start) == ')' && s.charAt(start + 1) == '(') { int cur = start + 2; while (cur < n && s.charAt(cur) != ')') { cur++; } if (cur == n) { break; } else { start = cur + 1; operations++; } } else { operations++; start += 2; } } out.println(operations + " " + (n - start)); } private static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); private static MyScanner sc = new MyScanner(); private static int N = sc.nextInt(); private final static int MOD = 1000000007; @SuppressWarnings("unused") private static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
f66a243ae1bdd8b15cc90352719bb216
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.ArrayList; import java.util.Scanner; import java.util.Stack; public class pb1 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while (t-- > 0){ int n = sc.nextInt(); char[] str = sc.next().toCharArray(); int ind = 0 , start = -1; int count = 0; Stack<Character> st = new Stack<>(); ArrayList<Character> list = new ArrayList<>(); while (ind < n){ char ch = str[ind]; if (st.isEmpty() || ch == '(' || (st.peek() != '(')){ st.push(ch); } else{ st.pop(); if (st.isEmpty()){ list = new ArrayList<>(); start = ind; count++; ind++; continue; } } list.add(ch); if (list.size() > 1){ boolean flag = true; int len = list.size(); for (int i = 0 ; i <= len/2 ; i++){ if (list.get(i) != list.get(len - 1 - i)) { flag = false; break; } } if (flag){ st = new Stack<>(); list = new ArrayList<>(); count++; start = ind; } } ind++; } System.out.println(count + " " + (n-1-start)); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
a7cbd39d9d16c66561dd2d3a468d0968
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
//package prog_temps; import java.util.*; import java.io.*; public class Java_Template { static boolean[] primecheck = new boolean[1000002]; static int M = 1000000007; static int mn = Integer.MIN_VALUE; static int mx = Integer.MAX_VALUE; static int vis[]; static ArrayList<ArrayList<Integer>> list; public static char rev(char c){ int diff = c-'A'; char ans = (char)('Z' - diff); return ans; } public static void swap(int a[], int i,int j){ int temp = a[i]; a[i] = a[j]; a[j] = temp; } ArrayList<Integer> I = new ArrayList<>(); ArrayList<Integer> J = new ArrayList<>(); public static void solve(FastReader sc, PrintWriter w) throws Exception { int n = sc.nextInt(); char[] s = sc.nextLine().toCharArray(); int counter=0; int left=n; int i =0; for ( i = 0; i < n-1; i++) { if (s[i]=='(' || (s[i]=='(' && s[i+1]=='(')){ i++; left-=2; } else{ // ')' int d = i+1; ; while (d<n && s[d]!=')') { d++; left -= 1; } if (d==n){ break; } i = d; } counter++; } System.out.println(counter + " "+ (n-i)); } public static void main(String[] args) throws Exception { FastReader sc = new FastReader(); PrintWriter w = new PrintWriter(System.out); int t = 1; t = sc.nextInt(); while (t-- > 0) { solve(sc, w); } w.close(); } public static void merge( int[] a, int[] l, int[] r, int left, int right) { int i = 0, j = 0, k = 0; while (i < left && j < right) { if (l[i] <= r[j]) { a[k++] = l[i++]; } else { a[k++] = r[j++]; } } while (i < left) { a[k++] = l[i++]; } while (j < right) { a[k++] = r[j++]; } } public static void mergeSort(int[] a, int n) { if (n < 2) { return; } int mid = n / 2; int[] l = new int[mid]; int[] r = new int[n - mid]; for (int i = 0; i < mid; i++) { l[i] = a[i]; } for (int i = mid; i < n; i++) { r[i - mid] = a[i]; } mergeSort(l, mid); mergeSort(r, n - mid); merge(a, l, r, mid, n - mid); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } float nextFloat() { return Float.parseFloat(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } void readArr(int[] ar, int n) { for (int i = 0; i < n; i++) { ar[i] = nextInt(); } } } public static boolean perfectSqr(long a) { long sqrt = (long) Math.sqrt(a); if (sqrt * sqrt == a) { return true; } return false; } public static void Sieve(int n) { Arrays.fill(primecheck, true); primecheck[0] = false; primecheck[1] = false; for (int i = 2; i * i < n + 1; i++) { if (primecheck[i]) { for (int j = i * 2; j < n + 1; j += i) { primecheck[j] = false; } } } } public static long gcd(long a, long b) { if (b == 0) { return a; } return gcd(b, a % b); } public static long power(long x, long y) { long res = 1; // Initialize result while (y > 0) { // If y is odd, multiply x with result if ((y & 1) != 0) res = res * x; // y must be even now y = y >> 1; // y = y/2 x = x * x; // Change x to x^2 } return res; } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
ce294596dad763139f261b555bf62768
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.*; import java.util.InputMismatchException; public class A { static InputReader in; static OutputWriter out; public static void main(String[] args) throws FileNotFoundException{ in = new InputReader(System.in); out = new OutputWriter(System.out); if (System.getProperty("ONLINE_JUDGE") == null) { try { in = new InputReader(new FileInputStream("input.txt")); out = new OutputWriter(new FileOutputStream("output.txt")); } catch (Exception e) { } } int t = in.readInt(); for (int o = 1; o <= t; o++) { int n = in .readInt(); String s = in.readString(); solve(n, s); } out.flush(); out.close(); } public static void solve(int n, String s) { int c = 0, r = n; int i; for (i = 0; i < n - 1; i++) { if (s.charAt(i) == '(') { c++; i++; r -= 2; } else { int j = i + 1; while (j < n && s.charAt(j) != ')') { j++; } if (j < n) { c++; r -= j - i + 1; } i = j; } } out.printLine(c + " " + r); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } public void flush() { writer.flush(); } } class IOUtils { public static int[] readIntArray(InputReader in, int size) { int[] array = new int[size]; for (int i = 0; i < size; i++) array[i] = in.readInt(); return array; } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
536e80a2223b190952eecd5715781051
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; public class Main{ static HashSet<String>h=new HashSet<>(); static HashSet<String>h1=new HashSet<>(); static int gcd(int a,int b){ if(a==0){ return b; } if(b==0){ return a; } return gcd(b,a%b); } public static void main(String[] args){ Scanner sc=new Scanner(System.in); int t=sc.nextInt(); for(int j1=0;j1<t;j1++){ int n=sc.nextInt(); String s=sc.next(); //Stack<Character>St=new Stack<>(); int dp[]=new int[n+1]; Arrays.fill(dp,-1); for(int i=s.length()-1;i>=0;i--){ if(s.charAt(i)==')'){ dp[i]=i; }else{ dp[i]=dp[i+1]; } } /* for(int i=0;i<s.length();i++){ System.out.println(dp[i]); } */ int left=0; int c=0; int remove=0; for(int i=0;i<s.length();i++){ if(i+1<s.length() && s.charAt(i)=='(' && s.charAt(i+1)=='('){ i++; remove++; }else if(i+1<s.length() && s.charAt(i)=='(' && s.charAt(i+1)==')'){ i++; remove++; }else if(s.charAt(i)=='('){ left++; }else if(s.charAt(i)==')'){ int a=dp[i+1]; if(a==-1){ left=left+s.length()-i; break; }else{ remove++; i=dp[i+1]; } } } System.out.println(remove+" "+left); }}}
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
0d80e68bd849742c66d2a1cbf40e9c6a
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.*; import java.util.*; public class Solution{ public static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void swap(int i, int j) { int temp = i; i = j; j = temp; } static class Pair{ int i,t; Pair(int x, int y) { i=x; t= y; } } static class Interval{ long st,e; Interval(long x, long y) { st=x; e=y; } } static long mod = 1000000007; static boolean ans= false; static StringBuffer sb = new StringBuffer(""); public static void main(String[] args) throws Exception { //Read input from user //Scanner scn = new Scanner(System.in); FastReader scn = new FastReader(); int t = scn.nextInt(); while(t>0) { int n = scn.nextInt(); String s = scn.next(); int op=0; int i=0; int rem=0; while(i<s.length()) { if(s.charAt(i)==')') { int j = i+1; while(j<s.length() && s.charAt(j)=='(') { j++; } if(j==s.length()) { // System.out.println("rem "+i+" "+j); rem= j-i; break; }else { i=j; op++; } }else { op++; i++; if(i==s.length()) { rem=1; op--; } } i++; } System.out.println(op+" "+rem); t--; } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
05672f74fd0b5805f16bef37d1ed8b04
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; public class Test { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); sc.nextLine(); while (t > 0) { int n = sc.nextInt(); sc.nextLine(); String s = sc.nextLine(); int l = 0, cnt = 0; while (l + 1 < n) { if (s.charAt(l) == '(' || (s.charAt(l) == ')' && s.charAt(l + 1) == ')')) { l += 2; } else { int r = l + 1; while (r < n && s.charAt(r) != ')') { ++r; } if (r == n) { break; } l = r + 1; } ++cnt; } System.out.println(cnt + " " + (n - l)); t--; } sc.close(); } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
5aac84a34785e824a74b568f31f869e9
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); sc.nextLine(); while (t > 0) { int n = sc.nextInt(); sc.nextLine(); String s = sc.nextLine(); Stack<Character> st = new Stack<Character>(); st.push(s.charAt(0)); char start = s.charAt(0); int last = -1; int noOfOp = 0; for (int i = 1; i < n; ++i) { if (s.charAt(i) == start) { ++noOfOp; last = i; while (!st.empty()) { st.pop(); } start = '-'; continue; } if (st.empty()) { st.push(s.charAt(i)); start = s.charAt(i); continue; } else { if (st.peek() != s.charAt(i) && s.charAt(i) == ')') { st.pop(); } else { st.push(s.charAt(i)); } if (st.empty()) { last = i; ++noOfOp; start = '-'; } } } System.out.println(noOfOp + " " + (n - last - 1)); t--; } sc.close(); } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
4d2c1bd6afaafcbecd96d3b87e7e3339
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; public class Main { public static void main(String[] args) throws Exception { Scanner in = new Scanner(System.in); int t = in.nextInt(); while (t --> 0) { int n = in.nextInt(); String s = in.next(); int i = 0, left = 0, cnt = 0; while (i < n-1) { if (s.charAt(i) == ')' && s.charAt(i+1) == '(') { int j = i+2; while (j < n) { if (s.charAt(j) == ')') { i = j+1; cnt++; break; } j++; } if (j == n) break; } else { cnt++; i += 2; } } left = n-i; System.out.println(cnt+" "+left); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
956b16515af21a59e605168c19b4bd97
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.*; import java.util.*; import static java.lang.Math.*; //-------------------------------///////////////****/////////******////////// //------------------------------------///**********//*****//********//*****// //-----------------------------------///**********//*****//********//*****// //----------------------------------///**********//*****//********//*****// //---------------------------------///**********//*****//********//*****// //--------------------------------///**********//*****//********//*****// //--------------------------///**///**********//*****//********//*****// //---------------------------/////***********/////////*******////////// public class CodeForces { final static String no = "NO"; final static String yes = "YES"; static long count = 0; static public OutputWriter w = new OutputWriter(System.out); static public FastScanner sc = new FastScanner(); static HashMap<Integer, Integer> map = new HashMap<>(); static Scanner fc = new Scanner(System.in); //*******************************************Be SANSA*********************************** //************************************Don't stick to single approach******************** //*****************************************You are a slow learner But you learn********* //***************************************Don't fall in rating trap********************** //**********************************Pain in temporary, regret remains forever*********** //////////////////////////////////////////////////////////////////////////////////////////// public static void main(String[] args) { int t = sc.nextInt(); while(t-->0) { int n = sc.nextInt(); char[]ch = sc.next().toCharArray(); int cnt = 0; int i = 0; int rem = n; while(i<n) { if(ch[i]=='(') { if(i+1<n) { cnt++; i+=2; rem-=2; }else { break; } }else { int prev = i; i+=1; while(i < n&&ch[i]!=')') { i++; } if(i==n) { i = prev;break; }else { cnt++; i++; } } } w.writer.println(cnt+" "+(n-i)); } w.writer.flush(); } ////////////////////////////////////////////////////////////////////////////////////////// static ArrayList<Integer> primes = new ArrayList<>(); static boolean[]sieve = new boolean[(int)1e6+2]; static void sieve(int n) { sieve[0] = sieve[1] = true; primes.add(2); for(int i=3;i<(int)n;i+=2) { if(!sieve[i]) { primes.add(i); for(int j=i*2;j<(int)n;j+=i) { sieve[j]= true; } } } } static int floorPowerOf2(int n) { int p = (int)(Math.log(n) / Math.log(2)); return (int)Math.pow(2, p); } static int ceilPowerOf2(int n) { int p = (int)(Math.log(n) / Math.log(2)); return (int)Math.pow(2, p+1); } static int[] reverseArray(int[] arr, int begin, int end) { if (arr.length == 1) { return arr; } while (begin < end) { int tmp = arr[begin]; arr[begin++] = arr[end]; arr[end--] = tmp; } return arr; } static String reverse(String s) { return new StringBuilder(s).reverse().toString(); } static int printCubes(int a, int b) { // Find cube root of both a and b int acrt = (int) Math.cbrt(a); int bcrt = (int) Math.cbrt(b); int cnt = 0; // Print cubes between acrt and bcrt for (int i = acrt; i <= bcrt; i++) if (i * i * i >= a && i * i * i <= b && !(checkPerfectSquare(i))) cnt++; return cnt; } static double countSquares(int a, int b) { return (Math.floor(Math.sqrt(b)) - Math.ceil(Math.sqrt(a)) + 1); } static boolean checkPerfectSquare(int n) { // If ceil and floor are equal // the number is a perfect // square if (Math.ceil((double) Math.sqrt(n)) == Math.floor((double) Math.sqrt(n))) { return true; } else { return false; } } static boolean perfectCube(int N) { int cube_root; cube_root = (int) Math.round(Math.cbrt(N)); // If cube of cube_root is equals to N, // then print Yes Else print No if (cube_root * cube_root * cube_root == N) { //System.out.println("Yes"); return true; } else { // System.out.println("NO"); return false; } } static List<Integer> printDivisors(int n) { // Note that this loop runs till square root List<Integer> sl = new ArrayList<>(); for (int i = 1; i <= Math.sqrt(n); i++) { if (n % i == 0) { // If divisors are equal, print only one if (n / i == i) sl.add(i); else // Otherwise print both { sl.add(i); sl.add(n / i); } } } return sl; } static boolean isPrime(int n) { if (n <= 1) return false; else if (n == 2) return true; else if (n % 2 == 0) return false; for (int i = 3; i <= Math.sqrt(n); i += 2) { if (n % i == 0) return false; } return true; } static class Pair { int x, y,z; Pair(int x,int y){ this.x = x; this.y = y; } Pair(int x, int y,int z) { this.x = x; this.y = y; this.z = z; } } static public boolean checkBit(int n, int i) { if ((n >> i & 1) == 1) { return true; } else { return false; } } static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } static boolean isPowerOfTwo(long n) { if (n == 0) return false; return (long) (Math.ceil((Math.log(n) / Math.log(2)))) == (long) (Math.floor(((Math.log(n) / Math.log(2))))); } // method to return LCM of two numbers static long lcm(long a, long b) { return (a / gcd(a, b)) * b; } static long getPairsCount(long[] arr, long sum) { Map<Long, Long> hm = new HashMap<>(); int n = arr.length; long count = 0; for (int i = 0; i < n; i++) { if (hm.containsKey(sum - arr[i])) { count += hm.get(sum - arr[i]); } if (hm.get(arr[i]) != null) { hm.put(arr[i], hm.get(arr[i]) + 1); } else { hm.put(arr[i], 1l); } } return count; } static void sort(int[] arr) { Random rand = new Random(); int n = arr.length; for (int i = 0; i < n; i++) { int idx = rand.nextInt(n); if (idx == i) continue; arr[i] ^= arr[idx]; arr[idx] ^= arr[i]; arr[i] ^= arr[idx]; } Arrays.sort(arr); } static void sort(long[] arr) { Random rand = new Random(); int n = arr.length; for (int i = 0; i < n; i++) { int idx = rand.nextInt(n); if (idx == i) continue; arr[i] ^= arr[idx]; arr[idx] ^= arr[i]; arr[i] ^= arr[idx]; } Arrays.sort(arr); } static void sortDec(int[] arr) { Random rand = new Random(); int n = arr.length; for (int i = 0; i < n; i++) { int idx = rand.nextInt(n); if (idx == i) continue; arr[i] ^= arr[idx]; arr[idx] ^= arr[i]; arr[i] ^= arr[idx]; } Arrays.sort(arr); int l = 0; int r = n - 1; while (l < r) { arr[l] ^= arr[r]; arr[r] ^= arr[l]; arr[l] ^= arr[r]; l++; r--; } } static void sortDec(long[] arr) { Random rand = new Random(); int n = arr.length; for (int i = 0; i < n; i++) { int idx = rand.nextInt(n); if (idx == i) continue; arr[i] ^= arr[idx]; arr[idx] ^= arr[i]; arr[i] ^= arr[idx]; } Arrays.sort(arr); int l = 0; int r = n - 1; while (l < r) { arr[l] ^= arr[r]; arr[r] ^= arr[l]; arr[l] ^= arr[r]; l++; r--; } } static int[] countInversions(int[] arr, int low, int high) { if (low == high) { int base[] = new int[1]; base[0] = arr[low]; return base; } int mid = low + (high - low) / 2; int left[] = countInversions(arr, low, mid); int right[] = countInversions(arr, mid + 1, high); int[] merged = merge(left, right); return merged; } static int[] merge(int first[], int[] next) { int i = 0; int j = 0; int k = 0; int[] merged = new int[first.length + next.length]; while (j < first.length && k < next.length) { if (first[j] <= next[k]) { merged[i++] = first[j++]; } else { count += first.length - j; merged[i++] = next[k++]; } } while (j < first.length) { merged[i++] = first[j++]; } while (k < next.length) { merged[i++] = next[k++]; } return merged; } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } long[] longArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } double nextDouble() { return Double.parseDouble(next()); } } static public class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
d3b04fb0613ed60254898c8abfc1d74b
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class Main { static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static class TreeMultiSet<T> implements Iterable<T> { private final TreeMap<T,Integer> map; private int size; public TreeMultiSet(){map=new TreeMap<>(); size=0;} public TreeMultiSet(boolean reverse) { if(reverse) map=new TreeMap<>(Collections.reverseOrder()); else map=new TreeMap<>(); size=0; } public void clear(){map.clear(); size=0;} public int size(){return size;} public int setSize(){return map.size();} public boolean contains(T a){return map.containsKey(a);} public boolean isEmpty(){return size==0;} public Integer get(T a){return map.getOrDefault(a,0);} public void add(T a, int count) { int cur=get(a);map.put(a,cur+count); size+=count; if(cur+count==0) map.remove(a); } public void addOne(T a){add(a,1);} public void remove(T a, int count){add(a,Math.max(-get(a),-count));} public void removeOne(T a){remove(a,1);} public void removeAll(T a){remove(a,Integer.MAX_VALUE-10);} public T ceiling(T a){return map.ceilingKey(a);} public T floor(T a){return map.floorKey(a);} public T first(){return map.firstKey();} public T last(){return map.lastKey();} public T higher(T a){return map.higherKey(a);} public T lower(T a){return map.lowerKey(a);} public T pollFirst(){T a=first(); removeOne(a); return a;} public T pollLast(){T a=last(); removeOne(a); return a;} public Iterator<T> iterator() { return new Iterator<>() { private final Iterator<T> iter = map.keySet().iterator(); private int count = 0; private T curElement; public boolean hasNext(){return iter.hasNext()||count>0;} public T next() { if(count==0) { curElement=iter.next(); count=get(curElement); } count--; return curElement; } }; } } static long abs(long x){ if(x<0) x*=-1; return x; } static int sqrt(int x) { double t = Math.sqrt((double) x); return (int)t; } static boolean checkPalindorm(String x) { for(int i=0;i<x.length();i++) { if(x.charAt(i) != x.charAt(x.length() -1 - i)) { return false; } } return true; } public static void main(String[] args) { MyScanner scanner = new MyScanner(); int t = scanner.nextInt(); while(t-- != 0){ int n = scanner.nextInt(); String s = scanner.nextLine(); char left = '('; char right = ')'; if (n == 1){ System.out.println("0 1"); continue; } int i =1; int op = 0; while(i < n ) { if (s.charAt(i-1) == left && s.charAt(i) == right || s.charAt(i-1) == s.charAt(i)) { op ++; i = i +2; }else { int j =i; while ( i < n && s.charAt(i) == left){ i++; } if (i <n && s.charAt(i) == right) { op++; i += 2; }else { i = j; break; } } } if (i == n+1) { System.out.println(op + " "+ 0); }else { System.out.println(op + " "+(n-i +1)); } } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
482ca49ec16cbb8165bed71639afcfa5
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Collections; import java.util.Stack; import java.util.StringTokenizer; public class C { static final FastReader sc = new FastReader(); static final PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) { int t = sc.nextInt(); while (t-- > 0) { int n = sc.nextInt(); char[] s = sc.next().toCharArray(); int l = 0, c = 0; while (l < n - 1) { if (s[l] == '(' || s[l] == ')' && s[l + 1] == ')') { l += 2; } else { int r = l + 1; while (r < n && s[r] != ')') r++; if (r == n) break; l = r + 1; } c++; } out.println(c + " " + (n - l)); } out.close(); } static int[] sort(int[] arr) { ArrayList<Integer> a = new ArrayList<>(); for (int i : arr) { a.add(i); } Collections.sort(a); for (int i = 0; i < a.size(); i++) { arr[i] = a.get(i); } return arr; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
445bdf41f927ee1c5ceb6a546ae63776
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; public class Codeforces { public static void main(String[] args) { try { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while (t-->0) { long n = sc.nextLong(); String s = sc.next(); int i=0; int count=0; while(true){ if(i==s.length() || i==s.length()-1) break; if(s.charAt(i)=='('){ count++; i+=2; } else if(s.charAt(i)==')'){ int j=i+1; int flag=0; while(j<s.length()){ if(s.charAt(j)==')') { flag = 1; count++; i=j+1; break; } j++; } if(flag==0) break; if(i==s.length()) break; } } int len = i-s.length(); if(len>0) len=0; System.out.println(count+" "+Math.abs(len)); } } catch (Exception e) { return; } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
78dd44216b6f81522535f04df0ecb52b
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
//package Rishab; import java.io.*; import java.text.DecimalFormat; import java.util.*; import java.util.Map.Entry; public class Main { static int dirx[]= {-1,1,0,0};static int diry[]= {0,0,-1,1}; static final PrintWriter out = new PrintWriter(System.out, true); static final FastScanner sc = new FastScanner(); public static void main(String[] args) { int t=sc.nextInt(); while(t-->0) { solve(); } } static void solve() { int n=sc.nextInt(); String s=sc.next(); int ans=0; Stack<Integer>q=new Stack<>(); int i=0;int c=0; while(i<n-1) { if(s.charAt(i)=='(') { ans++; i+=2; }else { if(s.charAt(i+1)==')') { ans++; i+=2; continue; }else { int cnt=1; while(i+1<n && s.charAt(i+1)!=')') { i++; cnt++; } if(i+1<n && s.charAt(i+1)==')') { i+=2; ans++; continue; }else if(i+1>=n) { c+=cnt; i++; continue; } } } } if(i==n-1) { c++; out.println(ans+" "+c); }else { out.println(ans+" "+c); } } static long Cr(int n, int r,int mod,long fac[],long inv[]) { if(n<r) return 0L; return fac[n]*(inv[r]*inv[n - r]%mod)%mod; // long fac[]=new long[100000]; // long inv[]=new long[100000]; // fac[0]=fac[1]=1; // fac[i]=modmul(fac[i-1],i,m); // inv[i] =modpow(fac[i], m - 2,m); // long ans = 1; // ans *= (Cr(n-x,more,m,fac,inv)*fac[more])%m; // ans %= m; } static boolean [] sieveOfEratosthenes(int n){ boolean prime[] = new boolean[n + 1]; for (int i = 0; i <= n; i++) prime[i] = true; for (int p = 2; p * p <= n; p++) { if (prime[p] == true) { for (int i = p * p; i <= n; i += p) prime[i] = false; } } prime[1]=prime[0]=false; return prime; } static void divisors(int n,ArrayList a[]) { for(int i=1;i<=n;i++) { for(int j=i;j<=n;j+=i) { a[j].add(i); } } } static long modDivide(long a, long b, int m) { a = a % m; long inv = modInverse(b, m); if (inv == -1) return -1; else { long c = (inv * a) % m ; return c; } } static long modInverse(long a, int m){ long g = gcd(a, m); if (g != 1) return -1; else { return modpow(a,m-2,m); } } public static double logx(long m,int x){ double result = (double)(Math.log(m) / Math.log(x)); return result; } static double setPrecision(double ans,int k){ double y=Math.pow(10,k); return Math.round(ans*y)/y; } public static double log2(double m) { double result = (double)(Math.log(m) / Math.log(2)); return result; } static int countDivisors(int n) { int ans=0; for (int i=1; i<=Math.sqrt(n); i++) { if (n%i==0) { if (n/i == i) ans++; // System.out.print(" "+ i); else ans+=2; // System.out.print(i+" " + n/i + " " ); } } return ans; } static ArrayList<Integer> pyyy = new ArrayList<Integer>(); static void sieveppp(int MAX) { int[] isPrime=new int[MAX+1]; for (int i = 2; i<= MAX; i++) { if (isPrime[i] == 0) { pyyy.add(i); for (int j = 2; i * j<= MAX; j++) isPrime[i * j]= 1; } } } static int phi(int n) { /// call sieveppp(n) in main fn int res = n; for (int i=0; pyyy.get(i)*pyyy.get(i) <= n; i++) { if (n % pyyy.get(i)== 0) { res -= (res / pyyy.get(i)); while (n % pyyy.get(i)== 0) n /= pyyy.get(i); } } if (n > 1) res -= (res / n); return res; } public static void sort(long[] arr){//because Arrays.sort() uses quicksort which is in worst O(n^2) //Collections.sort() uses merge sort ArrayList<Long> ttttt = new ArrayList<Long>(); for(long y: arr)ttttt.add(y);Collections.sort(ttttt); for(int i=0; i < arr.length; i++)arr[i] = ttttt.get(i); } public static void sort(int[] arr){//because Arrays.sort() uses quicksort which is dumb //Collections.sort() uses merge sort ArrayList<Integer> ttttt = new ArrayList<>(); for(int y: arr)ttttt.add(y);Collections.sort(ttttt); for(int i=0; i < arr.length; i++)arr[i] = ttttt.get(i); } static boolean check(double[] a,double m,int n,int k) { int ans=0; for(int i=0;i<n;i++) { ans+=(Math.floor(a[i]/m)); if(ans>=k) return true; } return ans>=k; } static boolean isKthBitSet(long n, int k) { if ((n & (1 << (k - 1))) > 0) return true; else return false; } static long modpow(long a,long b,int m) { if(b==0) return 1; if(b==1) return a; long ans=0; long t=modpow(a,b/2,m); ans=modmul(t,t,m); if(b%2!=0) ans=modmul(a,ans,m); return ans; } static long modmul(long a,long b,int m) { return mod(mod(a,m)*mod(b,m),m); } static long mod(long x,int m) { return ((x%m)+m)%m; } static int octaltodecimal(int deciNum) { int octalNum = 0, countval = 1; int dNo = deciNum; while (deciNum != 0) { // decimals remainder is calculated int remainder = deciNum % 8; // storing the octalvalue octalNum += remainder * countval; // storing exponential value countval = countval * 10; deciNum /= 8; } return octalNum; } public static int floorSqrt(int x) { // Base Cases if (x == 0 || x == 1) return x; // Do Binary Search for floor(sqrt(x)) int start = 1, end = x, ans=0; while (start <= end) { int mid = (start + end) / 2; // If x is a perfect square if (mid*mid == x) return mid; // Since we need floor, we update answer when mid*mid is // smaller than x, and move closer to sqrt(x) if (mid*mid < x) { start = mid + 1; ans = mid; } else // If mid*mid is greater than x end = mid-1; } return ans; } static int div(int n,int b) { int g=-1; for(int i=2;i<=Math.sqrt(n);i++) { if(n%i==0&&i!=b) { g=i; break; } } return g; } public static long gcd(long a, long a2) { if (a == 0) return a2; return gcd(a2%a, a); } public static long lcm(long a, long b) { return (a*b)/gcd(a, b); } public static boolean isPrime(int n) { if (n <= 1) { return false; } if (n == 2) { return true; } if (n % 2 == 0) { return false; } for (int i = 3; i <= Math.sqrt(n) + 1; i = i + 2) { if (n % i == 0) { return false; } } return true; } static class FastScanner { BufferedReader input = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer strToken = new StringTokenizer(""); String next() { while (!strToken.hasMoreTokens()) { try { strToken = new StringTokenizer(input.readLine()); } catch (IOException e) { e.printStackTrace(); } } return strToken.nextToken(); } String nextLine() { String strrrrr = ""; try { strrrrr = input.readLine(); } catch (IOException e) { e.printStackTrace(); } return strrrrr; } int nextInt() { return Integer.parseInt(next()); } int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } long[] nextLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } double nextDouble() { return Double.parseDouble(next()); } } } class DisjointSet { private int[] parent; private int[] rank; public DisjointSet(int n) { if (n < 0) throw new IllegalArgumentException(); parent = new int[n]; for(int i=0;i<n;i++) parent[i]=i; rank = new int[n]; } public void reset(int x) { parent[x]=x; } public int find(int x) { if (parent[x] == x) return x; return parent[x] = find(parent[x]); // Path compression by halving. } // Return false if x, y are connected. public boolean union(int x, int y) { int rootX = find(x); int rootY = find(y); if (rootX == rootY) return false; // Make root of smaller rank point to root of larger rank. if (rank[rootX] < rank[rootY]) parent[rootX] = rootY; else if (rank[rootX] > rank[rootY]) parent[rootY] = rootX; else { parent[rootX] = rootY; rank[rootY]++; } return true; } } class Pair{ int value; int distance; Pair(int value,int distance){ this.value=value; this.distance=distance; } } class sortbydistance implements Comparator<Pair>{ @Override public int compare(Pair o1, Pair o2) { return o1.distance-o2.distance; } } class Solution { static int[] dijkstra(int n, ArrayList<ArrayList<ArrayList<Integer>>> adj,ArrayList<Integer>ans) { PriorityQueue<Pair>set=new PriorityQueue<>(new sortbydistance()); int dis[]=new int[n]; Arrays.fill(dis,Integer.MAX_VALUE); dis[0]=0; while(set.isEmpty()==false) { Pair p=set.poll(); int u=p.value; for(int i=0;i<adj.get(u).size();i++) { int v=adj.get(u).get(i).get(0); int wt=adj.get(u).get(i).get(1); if(dis[v]>dis[u]+wt) { if(dis[v]!=Integer.MAX_VALUE) { set.remove(new Pair(dis[v],v)); } dis[v]=dis[u]+wt; ans.add(v); set.add(new Pair(v,dis[v])); } } } return dis; } } /* Points- * * 1) when need max and min both use treeset if duplicates are there then use treeset<int []> and add a[1] as unique * number but imp is to make new TreeSet<>((x,y)->(x[0]==y[0])?(x[1]-y[1]):(x[0]-y[0])) in this x[0]==y[0] cond. * is important * * 2) n!/2 is not fac[n]/2 it is modmul(fac[n],inv[2],m) * * 3) if sorting can think of TreeSet also bro or want max and min use tree set as it has last and first function * * 4) if dp is not optimisable then think of changing the defination of dp states */ class pairs{ int a,b; pairs(int a,int b){ this.a=a;this.b=b; } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
76b6c1c826d65e9b6bb309e8188294d2
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
//package Algorithm; //package Algorithm; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; import java.util.Scanner; public class main { public static void main(String[] args) throws IOException{ // TODO Auto-generated method stub BufferedReader br = new BufferedReader( new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); while(t-->0) { // String s[] = br.readLine().split(" "); int n = Integer.parseInt(br.readLine()); String str = br.readLine(); int i=0,j=0; int cnt = 0; int ans = 0; StringBuilder pall = new StringBuilder(); boolean flag = false; while(i<n && j<n) { char ch = str.charAt(j); if(ch=='(') { if(j==n-1) { break; } ans++; j+=2; i=j; } else { j++; while(j<n && str.charAt(j)!=')') { j++; } if(j<n) { ans++; j++; i=j; } } } System.out.println(ans+" "+(n-i)); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
444ddcc67682805734bca4692581b620
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.*; import java.util.*; public class Main { static class JoinSet { int[] fa; JoinSet(int n) { fa = new int[n]; for (int i = 0; i < n; i++) fa[i] = i; } int find(int t) { if (t != fa[t]) fa[t] = find(fa[t]); return fa[t]; } void join(int x, int y) { x = find(x); y = find(y); fa[x] = y; } } static BufferedReader bf = new BufferedReader(new InputStreamReader(System.in)); static BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out)); static int mod = (int)1e9+7; static int[][] dir1 = new int[][]{{0,1},{0,-1},{1,0},{-1,0}}; static int[][] dir2 = new int[][]{{0,1},{0,-1},{1,0},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1}}; static boolean[] prime = new boolean[10]; static { for (int i = 2; i < prime.length; i++) prime[i] = true; for (int i = 2; i < prime.length; i++) { if (prime[i]) { for (int k = 2; i * k < prime.length; k++) { prime[i * k] = false; } } } } static long gcd(long a, long b) { return b == 0 ? a : gcd(b, a % b); } static long lcm(long a, long b) { return a * b / gcd(a, b); } static int get() throws Exception { String ss = bf.readLine(); if (ss.contains(" ")) ss = ss.substring(0, ss.indexOf(" ")); return Integer.parseInt(ss); } static long getx() throws Exception { String ss = bf.readLine(); if (ss.contains(" ")) ss = ss.substring(0, ss.indexOf(" ")); return Long.parseLong(ss); } static int[] getint() throws Exception { String[] s = bf.readLine().split(" "); int[] a = new int[s.length]; for (int i = 0; i < a.length; i++) { a[i] = Integer.parseInt(s[i]); } return a; } static long[] getlong() throws Exception { String[] s = bf.readLine().split(" "); long[] a = new long[s.length]; for (int i = 0; i < a.length; i++) { a[i] = Long.parseLong(s[i]); } return a; } static String getstr() throws Exception { return bf.readLine(); } static void println() throws Exception { bw.write("\n"); } static void print(int a) throws Exception { bw.write(a + "\n"); } static void print(long a) throws Exception { bw.write(a + "\n"); } static void print(String a) throws Exception { bw.write(a + "\n"); } static void print(int[] a) throws Exception { for (int i : a) { bw.write(i + " "); } println(); } static void print(long[] a) throws Exception { for (long i : a) { bw.write(i + " "); } println(); } static void print(int[][] a) throws Exception { for (int i[] : a) print(i); } static void print(long[][] a) throws Exception { for (long[] i : a) print(i); } static void print(char[] a) throws Exception { for (char i : a) { bw.write(i +""); } println(); } static long pow(long a, long b) { long ans = 1; while (b > 0) { if ((b & 1) == 1) { ans *= a; } a *= a; b >>= 1; } return ans; } static int powmod(long a, long b, int mod) { long ans = 1; while (b > 0) { if ((b & 1) == 1) { ans = ans * a % mod; } a = a * a % mod; b >>= 1; } return (int) ans; } static void sort(int[] a) { int n = a.length; Integer[] b = new Integer[n]; for (int i = 0; i < n; i++) b[i] = a[i]; Arrays.sort(b); for (int i = 0; i < n; i++) a[i] = b[i]; } static void sort(long[] a) { int n = a.length; Long[] b = new Long[n]; for (int i = 0; i < n; i++) b[i] = a[i]; Arrays.sort(b); for (int i = 0; i < n; i++) a[i] = b[i]; } static int max(int a, int b) { return Math.max(a,b); } static int min(int a, int b) { return Math.min(a,b); } static long max(long a, long b) { return Math.max(a,b); } static long min(long a, long b) { return Math.min(a,b); } static int max(int[] a) { int max = a[0]; for(int i : a) max = max(max,i); return max; } static int min(int[] a) { int min = a[0]; for(int i : a) min = min(min,i); return min; } static long max(long[] a) { long max = a[0]; for(long i : a) max = max(max,i); return max; } static long min(long[] a) { long min = a[0]; for(long i : a) min = min(min,i); return min; } static int abs(int a) { return Math.abs(a); } static long abs(long a) { return Math.abs(a); } public static void main(String[] args) throws Exception { int t = get(); while (t-- > 0){ int n = get(); String s = getstr(); int c = 0, i = 0; for(;i < n-1;){ if(s.charAt(i) == '(') i+=2; else{ int oi = i++; while(i < n && s.charAt(i) != ')') i++; if(i == n){ i = oi; break; } i++; } c++; } print(c+" "+(n-i)); } bw.flush(); } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
d7adcb967455cd01154351032034b25c
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; public class Codeforces { public static void main(String args[]) { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); while(t-->0) { int n=sc.nextInt(); String in=sc.next(); n = in.length(); int i = 0; int c = 0; while (i < n - 1) { if (in.charAt(i) == in.charAt(i+1)) { c++; i += 2; continue; } if (in.charAt(i) == '(' && in.charAt(i+1) == ')') { c++; i += 2; continue; } int index = -1; for (int k = i + 1; k < n; k++) { if (in.charAt(k) == ')') { c++; index = k; break; } } if (index == -1) break; i = index + 1; } int l = 0; if (i < n) { l = n - i; } System.out.println(c+" "+l); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
dc2b0fd7bfe7a05d9a6698a79f5fc448
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import static java.lang.Integer.parseInt; import static java.lang.Long.parseLong; import static java.lang.Double.parseDouble; import static java.lang.Math.PI; import static java.lang.Math.min; import static java.lang.System.arraycopy; import static java.lang.System.exit; import static java.util.Arrays.copyOf; import java.util.LinkedList; import java.util.List; import java.util.Iterator; import java.io.FileReader; import java.io.FileWriter; import java.math.BigInteger; import java.util.ArrayList; import java.util.Arrays; import java.util.HashSet; import java.util.Set; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.HashMap; import java.util.Map; import java.util.Map.Entry; import java.util.NoSuchElementException; import java.util.PriorityQueue; import java.util.Queue; import java.util.Stack; import java.util.StringTokenizer; import java.util.Comparator; import java.lang.StringBuilder; import java.util.Collections; import java.util.*; import java.text.DecimalFormat; public class Solution { static class Edge{ int u, v, w; Edge(int u, int v, int w){ this.u = u; this.v = v; this.w = w; } } static class Pair{ int first, second; Pair(int first, int second){ this.first = first; this.second = second; } } static class Tuple{ int first, second, third; Tuple(int first, int second, int third){ this.first = first; this.second =second; this.third = third; } } static class Point{ int x, y; Point(int x, int y){ this.x = x; this.y = y; } } static BufferedReader in; static PrintWriter out; static StringTokenizer tok; static int dx[] = {-1,0,1,0}; static int dy[] = {0,-1,0,1}; static int MOD = (int)1e9+7; static boolean vis[][]; static int xors[]; static ArrayList<Integer> adj[]; static int arr[]; static int parent[]; static int count; private static void solve() throws IOException{ int n = scanInt(); char str[] = scanString().toCharArray(); Stack<Character> stack = new Stack<>(); int moves = 0; for(char ch: str){ if(!stack.isEmpty()){ if(ch == stack.peek() && stack.size() == 1){ stack.pop(); ++moves; } else if(ch == ')' && stack.peek() == '('){ stack = new Stack<>(); ++moves; } else stack.push(ch); } else stack.push(ch); } out.println(moves+" "+stack.size()); } private static int[] inputArray(int n) throws IOException { int arr[] = new int[n]; for(int i=0; i<n; ++i) arr[i] = scanInt(); return arr; } public static void main(String[] args) { try { long startTime = System.currentTimeMillis(); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); //in = new BufferedReader(new FileReader("input.txt")); //out = new PrintWriter(new FileWriter("output.txt")); int test=scanInt(); for(int t=1; t<=test; t++){ // out.print("Case #"+t+": "); solve(); } long endTime = System.currentTimeMillis(); long totalTime = endTime - startTime; // out.println(totalTime+"---------- "+System.currentTimeMillis() ); in.close(); out.close(); } catch (Throwable e) { e.printStackTrace(); exit(1); } } static int scanInt() throws IOException { return parseInt(scanString()); } static long scanLong() throws IOException { return parseLong(scanString()); } static double scanDouble() throws IOException { return parseDouble(scanString()); } static String scanString() throws IOException { if (tok == null || !tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } static String scanLine() throws IOException { return in.readLine(); } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
b3284dea05dc576342d8a5970a853a7c
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import static java.lang.Integer.parseInt; import static java.lang.Long.parseLong; import static java.lang.Double.parseDouble; import static java.lang.Math.PI; import static java.lang.Math.min; import static java.lang.System.arraycopy; import static java.lang.System.exit; import static java.util.Arrays.copyOf; import java.util.LinkedList; import java.util.List; import java.util.Iterator; import java.io.FileReader; import java.io.FileWriter; import java.math.BigInteger; import java.util.ArrayList; import java.util.Arrays; import java.util.HashSet; import java.util.Set; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.HashMap; import java.util.Map; import java.util.Map.Entry; import java.util.NoSuchElementException; import java.util.PriorityQueue; import java.util.Queue; import java.util.Stack; import java.util.StringTokenizer; import java.util.Comparator; import java.lang.StringBuilder; import java.util.Collections; import java.util.*; import java.text.DecimalFormat; public class Solution { static class Edge{ int u, v, w; Edge(int u, int v, int w){ this.u = u; this.v = v; this.w = w; } } static class Pair{ int first, second; Pair(int first, int second){ this.first = first; this.second = second; } } static class Tuple{ int first, second, third; Tuple(int first, int second, int third){ this.first = first; this.second =second; this.third = third; } } static class Point{ int x, y; Point(int x, int y){ this.x = x; this.y = y; } } static BufferedReader in; static PrintWriter out; static StringTokenizer tok; static int dx[] = {-1,0,1,0}; static int dy[] = {0,-1,0,1}; static int MOD = (int)1e9+7; static boolean vis[][]; static int xors[]; static ArrayList<Integer> adj[]; static int arr[]; static int parent[]; static int count; private static void solve() throws IOException{ int n = scanInt(); char str[] = scanString().toCharArray(); Stack<Character> stack = new Stack<>(); int moves = 0; for(char ch: str){ if(!stack.isEmpty()){ if(ch == stack.peek() && stack.size() == 1){ stack.pop(); ++moves; } else if(ch == ')' && stack.peek() == '('){ stack.pop(); while(!stack.isEmpty()){ stack.pop(); } ++moves; } else stack.push(ch); } else stack.push(ch); } out.println(moves+" "+stack.size()); } private static int[] inputArray(int n) throws IOException { int arr[] = new int[n]; for(int i=0; i<n; ++i) arr[i] = scanInt(); return arr; } public static void main(String[] args) { try { long startTime = System.currentTimeMillis(); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); //in = new BufferedReader(new FileReader("input.txt")); //out = new PrintWriter(new FileWriter("output.txt")); int test=scanInt(); for(int t=1; t<=test; t++){ // out.print("Case #"+t+": "); solve(); } long endTime = System.currentTimeMillis(); long totalTime = endTime - startTime; // out.println(totalTime+"---------- "+System.currentTimeMillis() ); in.close(); out.close(); } catch (Throwable e) { e.printStackTrace(); exit(1); } } static int scanInt() throws IOException { return parseInt(scanString()); } static long scanLong() throws IOException { return parseLong(scanString()); } static double scanDouble() throws IOException { return parseDouble(scanString()); } static String scanString() throws IOException { if (tok == null || !tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } static String scanLine() throws IOException { return in.readLine(); } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
0047865e10ad5d0e7da902be44f5dfdf
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.FileNotFoundException; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.util.StringTokenizer; /** * * @author eslam */ public class IceCave { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() throws FileNotFoundException { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args) throws IOException { FastReader input = new FastReader(); BufferedWriter log = new BufferedWriter(new OutputStreamWriter(System.out)); int t = input.nextInt(); loop: while (t-- > 0) { int n = input.nextInt(); String w = input.next(); int size = n; int ans = 0; for (int i = 0; i < n; i++) { if (w.charAt(i) == '('&&i+1<n) { ans++; i++; size -= 2; } else if(w.charAt(i)==')') { int l = i + 1; boolean ca = false; while (l < w.length()) { if (w.charAt(l) == ')') { ca = true; break; } l++; } if (!ca) { break; } size -= (l - i + 1); i = l; ans++; } } log.write(ans+" "+size+"\n"); } log.flush(); } static class pair { int x; int y; public pair(int x, int y) { this.x = x; this.y = y; } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
d3d057a00ebb2bd78de08f504304d437
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.FileNotFoundException; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.util.StringTokenizer; /** * * @author eslam */ public class IceCave { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() throws FileNotFoundException { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args) throws IOException { FastReader input = new FastReader(); BufferedWriter log = new BufferedWriter(new OutputStreamWriter(System.out)); int t = input.nextInt(); loop: while (t-- > 0) { int n = input.nextInt(); String w = input.next(); int size = n; int ans = 0; for (int i = 0; i < n; i++) { if (w.charAt(i) == '('&&i+1<n) { ans++; i++; size -= 2; } else { int l = i + 1; boolean ca = false; while (l < w.length()) { if (w.charAt(l) == ')') { ca = true; break; } l++; } if (!ca) { break; } size -= (l - i + 1); i = l; ans++; } } log.write(ans+" "+size+"\n"); } log.flush(); } static class pair { int x; int y; public pair(int x, int y) { this.x = x; this.y = y; } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
2649ffeca4a63b24281ac4b0a8b98576
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.util.Arrays; import java.util.Random; import java.io.FileWriter; import java.io.PrintWriter; /* Solution Created: 21:21:26 22/03/2022 Custom Competitive programming helper. */ public class Main { public static void solve() { int n = in.nextInt(); char[] a = in.nca(); int lastNotTakenIdx = 0; int op = 0; for(int i = 0; i<n-1; i++) { if(a[i]=='(') { op++; lastNotTakenIdx = i+2; i++; }else { int j = i; while(j+1<n && a[j+1] == '(') j++; j++; if(j<n) { //we take from i to j op++; lastNotTakenIdx = j+1; i = j; }else break; } } out.println(op +" "+(n-lastNotTakenIdx)); } public static void main(String[] args) { in = new Reader(); out = new Writer(); int t = in.nextInt(); while(t-->0) solve(); out.exit(); } static Reader in; static Writer out; static class Reader { static BufferedReader br; static StringTokenizer st; public Reader() { this.br = new BufferedReader(new InputStreamReader(System.in)); } public Reader(String f){ try { this.br = new BufferedReader(new FileReader(f)); } catch (IOException e) { e.printStackTrace(); } } public int[] na(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public double[] nd(int n) { double[] a = new double[n]; for (int i = 0; i < n; i++) a[i] = nextDouble(); return a; } public long[] nl(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public char[] nca() { return next().toCharArray(); } public String[] ns(int n) { String[] a = new String[n]; for (int i = 0; i < n; i++) a[i] = next(); return a; } public int nextInt() { ensureNext(); return Integer.parseInt(st.nextToken()); } public double nextDouble() { ensureNext(); return Double.parseDouble(st.nextToken()); } public Long nextLong() { ensureNext(); return Long.parseLong(st.nextToken()); } public String next() { ensureNext(); return st.nextToken(); } public String nextLine() { try { return br.readLine(); } catch (Exception e) { e.printStackTrace(); return null; } } private void ensureNext() { if (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } } } static class Util{ private static Random random = new Random(); static long[] fact; public static void initFactorial(int n, long mod) { fact = new long[n+1]; fact[0] = 1; for (int i = 1; i < n+1; i++) fact[i] = (fact[i - 1] * i) % mod; } public static long modInverse(long a, long MOD) { long[] gcdE = gcdExtended(a, MOD); if (gcdE[0] != 1) return -1; // Inverted doesn't exist long x = gcdE[1]; return (x % MOD + MOD) % MOD; } public static long[] gcdExtended(long p, long q) { if (q == 0) return new long[] { p, 1, 0 }; long[] vals = gcdExtended(q, p % q); long tmp = vals[2]; vals[2] = vals[1] - (p / q) * vals[2]; vals[1] = tmp; return vals; } public static long nCr(int n, int r, long MOD) { if (r == 0) return 1; return (fact[n] * modInverse(fact[r], MOD) % MOD * modInverse(fact[n - r], MOD) % MOD) % MOD; } public static long nCr(int n, int r) { return (fact[n]/fact[r])/fact[n-r]; } public static long nPr(int n, int r, long MOD) { if (r == 0) return 1; return (fact[n] * modInverse(fact[n - r], MOD) % MOD) % MOD; } public static long nPr(int n, int r) { return fact[n]/fact[n-r]; } public static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } public static boolean[] getSieve(int n) { boolean[] isPrime = new boolean[n+1]; for (int i = 2; i <= n; i++) isPrime[i] = true; for (int i = 2; i*i <= n; i++) if (isPrime[i]) for (int j = i; i*j <= n; j++) isPrime[i*j] = false; return isPrime; } static long pow(long x, long pow, long mod){ long res = 1; x = x % mod; if (x == 0) return 0; while (pow > 0){ if ((pow & 1) != 0) res = (res * x) % mod; pow >>= 1; x = (x * x) % mod; } return res; } public static int gcd(int a, int b) { int tmp = 0; while(b != 0) { tmp = b; b = a%b; a = tmp; } return a; } public static long gcd(long a, long b) { long tmp = 0; while(b != 0) { tmp = b; b = a%b; a = tmp; } return a; } public static int random(int min, int max) { return random.nextInt(max-min+1)+min; } public static void dbg(Object... o) { System.out.println(Arrays.deepToString(o)); } public static void reverse(int[] s, int l , int r) { for(int i = l; i<=(l+r)/2; i++) { int tmp = s[i]; s[i] = s[r+l-i]; s[r+l-i] = tmp; } } public static void reverse(int[] s) { reverse(s, 0, s.length-1); } public static void reverse(long[] s, int l , int r) { for(int i = l; i<=(l+r)/2; i++) { long tmp = s[i]; s[i] = s[r+l-i]; s[r+l-i] = tmp; } } public static void reverse(long[] s) { reverse(s, 0, s.length-1); } public static void reverse(float[] s, int l , int r) { for(int i = l; i<=(l+r)/2; i++) { float tmp = s[i]; s[i] = s[r+l-i]; s[r+l-i] = tmp; } } public static void reverse(float[] s) { reverse(s, 0, s.length-1); } public static void reverse(double[] s, int l , int r) { for(int i = l; i<=(l+r)/2; i++) { double tmp = s[i]; s[i] = s[r+l-i]; s[r+l-i] = tmp; } } public static void reverse(double[] s) { reverse(s, 0, s.length-1); } public static void reverse(char[] s, int l , int r) { for(int i = l; i<=(l+r)/2; i++) { char tmp = s[i]; s[i] = s[r+l-i]; s[r+l-i] = tmp; } } public static void reverse(char[] s) { reverse(s, 0, s.length-1); } public static <T> void reverse(T[] s, int l , int r) { for(int i = l; i<=(l+r)/2; i++) { T tmp = s[i]; s[i] = s[r+l-i]; s[r+l-i] = tmp; } } public static <T> void reverse(T[] s) { reverse(s, 0, s.length-1); } public static void shuffle(int[] s) { for (int i = 0; i < s.length; ++i) { int j = random.nextInt(i + 1); int t = s[i]; s[i] = s[j]; s[j] = t; } } public static void shuffle(long[] s) { for (int i = 0; i < s.length; ++i) { int j = random.nextInt(i + 1); long t = s[i]; s[i] = s[j]; s[j] = t; } } public static void shuffle(float[] s) { for (int i = 0; i < s.length; ++i) { int j = random.nextInt(i + 1); float t = s[i]; s[i] = s[j]; s[j] = t; } } public static void shuffle(double[] s) { for (int i = 0; i < s.length; ++i) { int j = random.nextInt(i + 1); double t = s[i]; s[i] = s[j]; s[j] = t; } } public static void shuffle(char[] s) { for (int i = 0; i < s.length; ++i) { int j = random.nextInt(i + 1); char t = s[i]; s[i] = s[j]; s[j] = t; } } public static <T> void shuffle(T[] s) { for (int i = 0; i < s.length; ++i) { int j = random.nextInt(i + 1); T t = s[i]; s[i] = s[j]; s[j] = t; } } public static void sortArray(int[] a) { shuffle(a); Arrays.sort(a); } public static void sortArray(long[] a) { shuffle(a); Arrays.sort(a); } public static void sortArray(float[] a) { shuffle(a); Arrays.sort(a); } public static void sortArray(double[] a) { shuffle(a); Arrays.sort(a); } public static void sortArray(char[] a) { shuffle(a); Arrays.sort(a); } public static <T extends Comparable<T>> void sortArray(T[] a) { Arrays.sort(a); } public static int[][] rotate90(int[][] a){ int n = a.length, m = a[0].length; int[][] ans = new int[m][n]; for(int i = 0; i<n; i++) for(int j = 0; j<m; j++) ans[m-j-1][i] = a[i][j]; return ans; } public static char[][] rotate90(char[][] a){ int n = a.length, m = a[0].length; char[][] ans = new char[m][n]; for(int i = 0; i<n; i++) for(int j = 0; j<m; j++) ans[m-j-1][i] = a[i][j]; return ans; } } static class Writer { private PrintWriter pw; public Writer(){ pw = new PrintWriter(System.out); } public Writer(String f){ try { pw = new PrintWriter(new FileWriter(f)); } catch (IOException e) { e.printStackTrace(); } } public void yesNo(boolean condition) { println(condition?"YES":"NO"); } public void printArray(int[] a) { for(int i = 0; i<a.length; i++) print(a[i]+" "); } public void printlnArray(int[] a) { for(int i = 0; i<a.length; i++) print(a[i]+" "); pw.println(); } public void printArray(long[] a) { for(int i = 0; i<a.length; i++) print(a[i]+" "); } public void printlnArray(long[] a) { for(int i = 0; i<a.length; i++) print(a[i]+" "); pw.println(); } public void print(Object o) { pw.print(o.toString()); } public void println(Object o) { pw.println(o.toString()); } public void println() { pw.println(); } public void flush() { pw.flush(); } public void exit() { pw.close(); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
8c3015e4a282b99d9dfc0a30a828f846
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
//Break in nested for loops creates problem in java import java.util.*; import java.io.*; import java.lang.*; //import java.util.stream.*; public class A { static class FastReader{ BufferedReader br; StringTokenizer st; public FastReader(){ br=new BufferedReader(new InputStreamReader(System.in)); } String next(){ while(st==null || !st.hasMoreTokens()){ try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt(){ return Integer.parseInt(next()); } long nextLong(){ return Long.parseLong(next()); } double nextDouble(){ return Double.parseDouble(next()); } String nextLine(){ String str=""; try { str=br.readLine().trim(); } catch (Exception e) { e.printStackTrace(); } return str; } } static class FastWriter { private final BufferedWriter bw; public FastWriter() { this.bw = new BufferedWriter(new OutputStreamWriter(System.out)); } public void print(Object object) throws IOException { bw.append(" " + object); } public void println(Object object) throws IOException { print(object); bw.append("\n"); } public void close() throws IOException { bw.close(); } } static int mod=1000000007; //Power under mod (a ^ b) % mod static int modpow(int a, int b) { int ans = 1; int m=mod; while (b>0) { if (b%2!=0) { ans = (ans * a) % m; } b = b >> 1; a = (a * a) % m; } return ans; } static Boolean isSquare(int n) { int y= (int)Math.sqrt(n); return y*y==n; } static int highestPowerof2(int x) { x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; return x ^ (x >> 1); } static boolean check_pow (int x) { return x!=0 && ((x&(x-1)) == 0); } static int digits(int n) { if(n==0) return 1; return (int)(Math.floor(Math.log10(n))+1); } public static boolean IsPrime(long number) { if (number < 2) return false; if (number % 2 == 0) return (number == 2); int root = (int)Math.sqrt((double)number); for (int i = 3; i <= root; i += 2) { if (number % i == 0) return false; } return true; } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static long lcm(long a, long b) { return (a / gcd(a, b)) * b; } static boolean check(int i, int j, int n, int m,StringBuilder arr[]) { if(i<0 || i>=n || j<0 || j>=m) return false; if(arr[i].charAt(j)!='#') return false; return true; } static boolean isPalindrome(String str) { int i = 0, j = str.length() - 1; while (i < j) { if (str.charAt(i) != str.charAt(j)) return false; i++; j--; } return true; } static int upperbound(int arr[],int key) { int l=0,h=arr.length-1; int mid; while(h-l>1) { mid=(h+l)/2; if(arr[mid]<=key) l=mid+1; else h=mid; } if(arr[l]>key) return l; if(arr[h]>key) return h; return -1; } public static void main(String[] args) throws Exception{ // TODO Auto-generated method stub FastReader sc= new FastReader(); //FastWriter out = new FastWriter(); //StringBuilder sb= new StringBuilder(""); //PrintWriter out= new PrintWriter(System.out); //Collections.sort(A, (a, b) -> Integer.compare(b[1], a[1])); int t=sc.nextInt(); while(t-->0) { int n=sc.nextInt(); String s=sc.next(); List<Character> list = new ArrayList<>(); int i=0; list.add(s.charAt(0)); if(n==1) System.out.println(0+" "+1); else { int a=0; while(i+1<n) { if(s.charAt(i)==s.charAt(i+1) || (s.charAt(i)=='(' && s.charAt(i+1)==')')) { i+=2;a++; } else { int j=i+1; while(j<n && s.charAt(j)=='(') j++; if(j==n) break; a++; i=j+1;; } } System.out.println(a+" "+(n-i)); } } // out.close(); } } class Pair { int x; int y; public Pair(int x, int y) { this.x = x; this.y = y; } } class Compare { static void comparey(Pair arr[], int n) { Arrays.sort(arr, new Comparator<Pair>() { @Override public int compare(Pair p1, Pair p2) { return p1.y - p2.y; } }); } static void comparex(Pair arr[], int n) { Arrays.sort(arr, new Comparator<Pair>() { @Override public int compare(Pair p1, Pair p2) { return p1.x - p2.x; } }); } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
466787e5772808f0f185dd62406b2762
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class Main { private static boolean palin(String s,int l,int h){ while(l<h){ if(s.charAt(l)!=s.charAt(h)) return false; l++; h--; } return true; } public static void main (String[] args) throws java.lang.Exception { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while(t-->0){ int n = sc.nextInt(); String s = sc.next(); int l=0,opr=0,i=1; for(i=1;i<n;i++){ if(s.charAt(i-1)=='('&&s.charAt(i)==')'){ opr++; i++; l=i; } else{ if(palin(s,l,i)){ i++; opr++; l=i; } } } if(i<=n) System.out.println(opr+" "+ (n-l)); else System.out.println(opr+" 0"); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
8c89f486964731121a9427f9cce3593b
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; public class Main{ public static void main(String args[])throws IOException{ BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int t=Integer.parseInt(br.readLine()); while(t-->0){ int n=Integer.parseInt(br.readLine()); String st=br.readLine(); int i=0; int count=0; int opr=0; int rem=0; while(i<st.length()){ int j=i; // boolean flag=true; count=0; while(j<st.length()){ boolean flag=true; if(flag&&st.charAt(j)=='('){ // System.out.println(" open "+j); count++; // System.out.println(" open "+j+" "+count); }else if(flag&&st.charAt(j)==')'){ count--; if(count<0){ flag=false; } if(count==0){ rem+=(j-i+1); opr++; // count=0; // System.out.println(i+" "+ j+" "+ "valid"); // i=j+1; break; } } if(isPalin(st,i,j)){ rem+=(j-i+1); opr++; // i=j+1; // System.out.println(i+" "+ j+" "+ "palindrome"); break; } j++; } i=j+1; } System.out.println(opr+" "+ (n-rem)); } } public static boolean isPalin(String st,int i,int j){ if(i==j)return false; while(i<j){ if(st.charAt(i)!=st.charAt(j))return false; i++;j--; } return true; } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
9317e1b60a1ac1cd8e71ca63a68c994d
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; import java.math.*; public class Solution { static int mod=1000000007; static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args) { int start=(int) System.currentTimeMillis(); FastReader sc = new FastReader(); int tt=1; // tt = sc.nextInt(); // while (tt-->0) { int ans=0; int i=0; int n=sc.nextInt(); String s=sc.next(); // System.out.println(n+" "+s); while(i<n-1) { if(s.charAt(i)=='(') { ans++; i+=2; } else { int j=i+1; while(j<n&&s.charAt(j)=='(') { j++; } if(j==n)break; else { ans++; i=j+1; } } } int rem=n-i; System.out.println(ans+" "+rem); //while } // int end=(int) System.currentTimeMillis(); // end-=start; // System.out.println(); // System.out.println(); // System.out.println("time : "+end); //main } //class }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
756b8781ed89ad76c89ca82d760978a6
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class BracketSequenceDeletion { public static void main(String[] args)throws java.lang.Exception{ Scanner scn=new Scanner(System.in); long a=scn.nextLong(); while(a-->0){ long b=scn.nextLong(); scn.nextLine(); String str=scn.nextLine(); int count=0,i=0; while(i<str.length()-1){ if(str.charAt(i)=='(' && str.charAt(i+1)==')'){ count++; i+=2; continue; } if(str.charAt(i)==str.charAt(i+1)){ count++; i+=2; continue; } int index = -1; for (int k = i + 1; k < str.length(); k++) { if (str.charAt(k) == ')') { count++; index = k; break; } } if (index == -1) break; i = index + 1; } int l = 0; if (i < str.length()) { l = str.length() - i; } System.out.println(count+" "+l); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
207434fd39e54fac7de6ab1c58202a71
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; public class Play { public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while (t -- > 0) { int n = sc.nextInt(); sc.nextLine(); String expression = sc.nextLine(); Stack<Character> palindrome = new Stack<>(), good = new Stack<>(); int ans = 0; for (int i=0; i<n; i++) { Character c = expression.charAt(i); // System.out.println("c is " + c); if (palindrome.empty()) { palindrome.push(c); } else { if (palindrome.peek() == c) { palindrome.pop(); if (palindrome.isEmpty()) { ans++; good.clear(); continue; } } else if (palindrome.size() >= 2) { // System.out.println("palindrome cleared"); if (palindrome.get(palindrome.size() - 2) == c) { palindrome.pop(); palindrome.pop(); if (palindrome.isEmpty()) { ans++; good.clear(); continue; } } } else { palindrome.push(c); } } if (good.empty()) { good.push(c); } else { if (good.peek() == '(' && c == ')') { // System.out.println("goof popped in "+ i); good.pop(); if (good.isEmpty()) { ans++; palindrome.clear(); } } else { good.push(c); } } // System.out.println("palindrome " + palindrome); // System.out.println("good " + good); // System.out.println(); } System.out.println(ans + " " + good.size()); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
a0b1d0cbf428a699091cced31b9ae601
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
// package codeforce; import java.util.*; import java.util.stream.Collectors; import java.util.stream.IntStream; import java.io.*; public class A { static class Node { int id1; int id2; int ind ; Node(int v1, int w1, int i){ this.id1= v1; this.id2=w1; this.ind=i; } Node(){} } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next(){ while (st == null || !st.hasMoreElements()){ try { st = new StringTokenizer(br.readLine()); } catch (IOException e){ e.printStackTrace(); } } return st.nextToken(); } int nextInt(){ return Integer.parseInt(next()); } long nextLong(){ return Long.parseLong(next()); } double nextDouble(){ return Double.parseDouble(next()); } String nextLine(){ String str = ""; try{ str = br.readLine(); } catch (IOException e){ e.printStackTrace(); } return str; } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } } // static int[] ans = new int[101]; static boolean[] seiveofEratoSthenes(int n) { boolean[] isPrime= new boolean[n+1]; Arrays.fill(isPrime, true); isPrime[0]=false; isPrime[1]= false; for(int i=2;i*i<n;i++) { for(int j=2*i; j<=n;j++) { isPrime[j]= false; } } return isPrime; } static int i = 2; // Function check whether a number // is prime or not public static boolean isPrime(int n) { // Corner cases if (n == 0 || n == 1) { return false; } // Checking Prime if (n == i) return true; // Base cases if (n % i == 0) { return false; } i++; return isPrime(n); } static class SortingComparator implements Comparator<Node>{ @Override public int compare(Node p1, Node p2) { if(p1.id2<p2.id2) { return 1; } else if(p1.id2 > p2.id2) { return -1; } return p2.ind-p1.ind; } } public static void main(String[] args) { FastReader sc=new FastReader(); int t = sc.nextInt(); int mod = 1000000007; // boolean [] prime = seiveofEratoSthenes(1000000007); while(t--!=0) { int n = sc.nextInt(); String s = sc.next(); char[] in = s.toCharArray(); n = in.length; int i = 0; int c = 0; while (i < in.length - 1) { if (in[i] == in[i + 1]) { c++; i += 2; continue; } if (in[i] == '(' && in[i + 1] == ')') { c++; i += 2; continue; } int index = -1; for (int k = i + 1; k < n; k++) { if (in[k] == ')') { c++; index = k; break; } } if (index == -1) break; i = index + 1; } int l = 0; if (i < n) { l = n - i; } System.out.println(c+" "+l); } } static boolean palin (String s) { int i=0; int j = s.length()-1; while(i<j) { if(s.charAt(i)!=s.charAt(j))return false; i++; j--; } return true; } public static String longestPalindrome(String s) { if (s == null || s.length() < 1) return ""; int start = 0, end = 0; for (int i = 0; i < s.length(); i++) { int len1 = expandAroundCenter(s, i, i); int len2 = expandAroundCenter(s, i, i + 1); int len = Math.max(len1, len2); if (len > end - start) { start = i - (len - 1) / 2; end = i + len / 2; } } return s.substring(start, end + 1); } public static int expandAroundCenter(String s, int left, int right) { int L = left, R = right; while (L >= 0 && R < s.length() && s.charAt(L) == s.charAt(R)) { L--; R++; } return R - L - 1; } public static int longestValidParentheses(String s) { int left = 0, right = 0, maxlength = 0; for (int i = 0; i < s.length(); i++) { if (s.charAt(i) == '(') { left++; } else { right++; } if (left == right) { maxlength = Math.max(maxlength, 2 * right); } else if (right >= left) { left = right = 0; } } left = right = 0; for (int i = s.length() - 1; i >= 0; i--) { if (s.charAt(i) == '(') { left++; } else { right++; } if (left == right) { maxlength = Math.max(maxlength, 2 * left); } else if (left >= right) { left = right = 0; } } return maxlength; } static boolean recure(char[]arr, int i) { if(i==arr.length ) { boolean f = isPalindrome(arr, 0, arr.length-1); for(int j = 0; j<arr.length; j++) { for(int k = j+4; k<arr.length; k++) { f = ( f || isPalindrome(arr, j, k)); } } return f; } for(int j = i; j<arr.length; j++) { if(arr[j]=='?') { arr[j]='1'; if(recure(arr, j+1)==false) { return false; } arr[j]='0'; if(recure(arr, j+1)==false)return false; } } return true; } static boolean isPalindrome(char[] arr, int i, int j) { while(i<j) { if(arr[i]!=arr[j])return false; i++; j--; } return true; } static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } static int mind(int a, int[] b) { int min =Math.abs(b[0]-a); for(int j=0; j<b.length ; j++) { min = Math.min(min, Math.abs(b[j]-a)); } return min; } static int max =0; static void dfs(int i, boolean[] vis , ArrayList<ArrayList<Integer>> adj) { max = Math.max(max, i); vis[i]= true; for(int e: adj.get(i)) { if(vis[e]==false) { dfs(e, vis, adj); } } } static ArrayList<Node> al = new ArrayList<>(); static int[] gcd= {2, 11, 101, 1087, 15413, 100003, 1000003, 10000019, 999999937}; static long answer =0; //static void solve(int[] arr, int i, int s, int e) { // if(s>= arr.length || e<0 || e>=arr.length || s<0) return; // if(s>e)return; // int max = 0; // int ind =0; // for(int j=s; j<=e && e<arr.length; j++) { // if(max<arr[j]) { // max = arr[j]; // ind = j; // } // } // ans[ind] = i; // solve(arr, i+1, s, ind-1); // solve(arr, i+1, ind+1, e); // // } public static boolean isValid(int x, int y, char[][] arr , boolean[][] vis) { if(x<0 || y<0 || x>= arr.length || y>=arr.length || vis[x][y]==true || arr[x][y]=='1')return false; return true; } static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } static double pow(int a, int b) { long res= 1; while(b>0) { if((b&1)!=0) { res= (res*a); } a= (a*a); b= b>>1; } return res; } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
98a6a5cf581d88879b7032b31e65bf3d
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; public class C_Bracket_Sequence_Deletion{ public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while(t-->0){ int n =sc.nextInt(); String s = sc.next(); int ans =0; int x =0; int y =0; // HashSet<Integer> HS = new HashSet<>(); boolean isRegular = true; for(int i =0;i<n;i++){ if(s.charAt(i)=='('){ x++; }else{ y++; } if(x<y){ // then isRegular = false; } if(x==y && isRegular){ ans++; x = 0; y =0; isRegular = true; } if(y==2){ // then it will be concluded ans++; x = 0; y = 0; isRegular = true; } if(y==0 && x==2){ ans++; x = 0; y = 0; isRegular = true; } // if(x==0 && y==2){ // ans++; // x = 0; // y = 0; // } } System.out.println(ans+ " "+(x+y)); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
1e97f11534db3e30c1f491b34a95a812
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.*; import java.util.*; public class Codeforces { static final long MOD = (long)(1e9 + 7); static int stoi(String s) { return Integer.parseInt(s); } static long stol(String s) { return Long.parseLong(s); } public static void main(String[] args) throws IOException { try (BufferedReader br = new BufferedReader(new InputStreamReader(System.in))) { int t = stoi(br.readLine()); while (t-- > 0) { int n = stoi(br.readLine()); char[] s = br.readLine().toCharArray(); int i = 0, opr = 0; while (i < n-1) { if (s[i] == s[i+1]) { i += 2; opr++; } else if (s[i] == '(' && s[i+1] == ')') { i += 2; opr++; } else { int val = -1; for (int k = i + 1; k < n; k++) { if (s[k] == ')') { val = k+1; opr++; break; } } if (val == -1) break; i = val; } } System.out.println(opr + " " + (n - i)); } } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 11
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
810df9869fd4e25681e3070583f646f1
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.*; import java.util.*; public class Main implements Runnable { BufferedReader in; PrintWriter out; StringTokenizer tok = new StringTokenizer(""); public static void main(String[] args) { new Thread(null, new Main(), "").start(); } public void run() { try { long t1 = System.currentTimeMillis(); if (System.getProperty("ONLINE_JUDGE") != null) { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } else { in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } Locale.setDefault(Locale.US); solve(); in.close(); out.close(); long t2 = System.currentTimeMillis(); System.err.println("Time = " + (t2 - t1)); } catch (Throwable t) { t.printStackTrace(System.err); System.exit(-1); } } String readString() throws IOException { while (!tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } int readInt() throws IOException { return Integer.parseInt(readString()); } long readLong() throws IOException { return Long.parseLong(readString()); } double readDouble() throws IOException { return Double.parseDouble(readString()); } int[] readIntArray(int n) throws IOException { int [] a = new int[n]; for(int i = 0; i < n; i++) { a[i] = readInt(); } return a; } long[] readLongArray(int n) throws IOException { long [] a = new long[n]; for(int i = 0; i < n; i++) { a[i] = readLong(); } return a; } void solveTest() throws IOException { readInt(); String s = readString(); int i = 0; int ops = 0; while(i < s.length()-1) { if(s.charAt(i) == ')' && s.charAt(i+1) == '(') { // i += 2; int j = i + 2; while(j<s.length() && s.charAt(j) == '(') j++; if(j < s.length()) { ops++; i += j-i+1; } else { break; } } else { ops++; i += 2; } } out.println(ops + " " + (s.length()-i)); } void solve() throws IOException { int numTests = readInt(); while(numTests-->0) { solveTest(); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
862c324ff78d6cdf9f2ebb0a127655b8
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; public class Main { public static void main(String[] args) throws Exception { int t = sc.nextInt(); while (t-- > 0) { int n = sc.nextInt(); String s = sc.next(); char[] a = s.toCharArray(); Hash h = new Hash(s); int ind = -1; int cnt = 0; int sum = 0; boolean still = true; for (int i = 0; i < n; i++) { if (a[i] == '(') { sum++; } else { sum--; } if (sum < 0) { still = false; } if ((sum == 0 && still) || (ind + 1 != i && (h.query(ind + 1, i) == h.query(i, ind + 1)))) { cnt++; ind = i; sum = 0; still = true; } } pw.println(cnt + " " + (n - 1 - ind)); } pw.close(); } public static long RandomPick(long[] a) { int n = a.length; int r = rn.nextInt(n); return a[r]; } public static int RandomPick(int[] a) { int n = a.length; int r = rn.nextInt(n); return a[r]; } static class Hash { int[] HashsArraypre; int[] HashsArraysuf; static int[] prepow; static int HashsArrayInd = 0; static int prime = 61; static int mod; static int max = 1000009; int prelen; static final int[] mods = { 1000000007, 1000000009, 1000000021, 1000000033, 1000000087, 1000000093, 1000000097, 1000000103, 1000000123, 1000000181, 1000000207, 1000000223, 1000000241, 1000000271, 1000000289, 1000000297, 1000000321, 1000000349, 1000000363, 1000000403, 1000000409, 1000000411, 1000000427, 1000000433, 1000000439, 1000000447, 1000000453, 1000000459, 1000000483, 1000000513, 1000000531, 1000000579, 1000000607, 1000000613, 1000000637, 1000000663, 1000000711, 1000000753, 1000000787, 1000000801, 1000000829, 1000000861, 1000000871, 1000000891, 1000000901, 1000000919, 1000000931, 1000000933, 1000000993, 1000001011, 1000001021, 1000001053, 1000001087, 1000001099, 1000001137, 1000001161, 1000001203, 1000001213, 1000001237, 1000001263, 1000001269, 1000001273, 1000001279, 1000001311, 1000001329, 1000001333, 1000001351, 1000001371, 1000001393, 1000001413, 1000001447, 1000001449, 1000001491, 1000001501, 1000001531, 1000001537, 1000001539, 1000001581, 1000001617, 1000001621, 1000001633, 1000001647, 1000001663, 1000001677, 1000001699, 1000001759, 1000001773, 1000001789, 1000001791, 1000001801, 1000001803, 1000001819, 1000001857, 1000001887, 1000001917, 1000001927, 1000001957, 1000001963, 1000001969, 1000002043}; public Hash(String s) { prelen = s.length(); HashsArraypre = new int[prelen + 1]; HashsArraysuf = new int[prelen + 1]; if (HashsArrayInd == 0) { mod = RandomPick(mods); prime = (int)(Math.random()*(1e8)+1000); prepow = new int[max]; prepow[0] = 1; for (int i = 1; i < max; i++) { // prepow[i] = (int) (((1l * prepow[i - 1] << 7) - prepow[i - 1]) % mod); prepow[i] = (int) ((1l * prepow[i - 1] * prime) % mod); } } for (int i = 0; i < prelen; i++) { HashsArraypre[i + 1] = (int) ((HashsArraypre[i] + 1l * s.charAt(i) * prepow[i] % mod) % mod); } for (int i = 0; i < prelen; i++) { HashsArraysuf[i + 1] = (int) ((HashsArraysuf[i] + 1l * s.charAt(i) * prepow[max - 1 - i] % mod) % mod); } HashsArrayInd++; } public int query(int l, int r) { int val; if (l <= r) { val = (int) ((1l * HashsArraypre[r + 1] + mod - HashsArraypre[l]) % mod); val = (int) ((1l * val * prepow[max - 1 - l]) % mod); } else { val = (int) ((1l * HashsArraysuf[l + 1] + mod - HashsArraysuf[r]) % mod); val = (int) ((1l * val * prepow[l]) % mod); } return val; } } static Random rn = new Random(); static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public long[] nextlongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public Long[] nextLongArray(int n) throws IOException { Long[] a = new Long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public boolean ready() throws IOException { return br.ready(); } } static class pair implements Comparable<pair> { long x; long y; public pair(long x, long y) { this.x = x; this.y = y; } public String toString() { return x + " " + y; } public boolean equals(Object o) { if (o instanceof pair) { pair p = (pair) o; return p.x == x && p.y == y; } return false; } public int hashCode() { return new Long(x).hashCode() * 31 + new Long(y).hashCode(); } public int compareTo(pair other) { if (this.x == other.x) { return Long.compare(this.y, other.y); } return Long.compare(this.x, other.x); } } static class tuble implements Comparable<tuble> { int x; int y; int z; public tuble(int x, int y, int z) { this.x = x; this.y = y; this.z = z; } public String toString() { return x + " " + y + " " + z; } public int compareTo(tuble other) { if (this.x == other.x) { if (this.y == other.y) { return this.z - other.z; } return this.y - other.y; } else { return this.x - other.x; } } } static Scanner sc = new Scanner(System.in); static PrintWriter pw = new PrintWriter(System.out); }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
26bf2bb0386ccc9f2d1697d2b4a47586
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; public class Main { public static void main(String[] args) throws Exception { int t = sc.nextInt(); while (t-- > 0) { int n = sc.nextInt(); String s = sc.next(); char[] a = s.toCharArray(); hash h = new hash(s); int ind = -1; int cnt = 0; int sum = 0; boolean still = true; for (int i = 0; i < n; i++) { if (a[i] == '(') { sum++; } else { sum--; } if (sum < 0) { still = false; } if ((sum == 0 && still) || (ind + 1 != i && (h.query(ind + 1, i) == h.query(i, ind + 1)))) { cnt++; ind = i; sum = 0; still = true; } } pw.println(cnt + " " + (n - 1 - ind)); } pw.close(); } public static long RandomPick(long[] a) { int n = a.length; int r = rn.nextInt(n); return a[r]; } public static int RandomPick(int[] a) { int n = a.length; int r = rn.nextInt(n); return a[r]; } static class hash { int[] HashsArraypre; int[] HashsArraysuf; static int[] prepow; static int HashsArrayInd = 0; static int prime = 61; static int mod; static int max = 1000009; int prelen; static final int[] mods = { 1000000007, 1000000009, 1000000021, 1000000033, 1000000087, 1000000093, 1000000097, 1000000103, 1000000123, 1000000181, 1000000207, 1000000223, 1000000241, 1000000271, 1000000289, 1000000297, 1000000321, 1000000349, 1000000363, 1000000403, 1000000409, 1000000411, 1000000427, 1000000433, 1000000439, 1000000447, 1000000453, 1000000459, 1000000483, 1000000513, 1000000531, 1000000579, 1000000607, 1000000613, 1000000637, 1000000663, 1000000711, 1000000753, 1000000787, 1000000801, 1000000829, 1000000861, 1000000871, 1000000891, 1000000901, 1000000919, 1000000931, 1000000933, 1000000993, 1000001011, 1000001021, 1000001053, 1000001087, 1000001099, 1000001137, 1000001161, 1000001203, 1000001213, 1000001237, 1000001263, 1000001269, 1000001273, 1000001279, 1000001311, 1000001329, 1000001333, 1000001351, 1000001371, 1000001393, 1000001413, 1000001447, 1000001449, 1000001491, 1000001501, 1000001531, 1000001537, 1000001539, 1000001581, 1000001617, 1000001621, 1000001633, 1000001647, 1000001663, 1000001677, 1000001699, 1000001759, 1000001773, 1000001789, 1000001791, 1000001801, 1000001803, 1000001819, 1000001857, 1000001887, 1000001917, 1000001927, 1000001957, 1000001963, 1000001969, 1000002043}; public hash(String s) { prelen = s.length(); HashsArraypre = new int[prelen + 1]; HashsArraysuf = new int[prelen + 1]; if (HashsArrayInd == 0) { mod = RandomPick(mods); prime = (int)(Math.random()*(1e9)+100); prepow = new int[max]; prepow[0] = 1; for (int i = 1; i < max; i++) { // prepow[i] = (int) (((1l * prepow[i - 1] << 7) - prepow[i - 1]) % mod); prepow[i] = (int) ((1l * prepow[i - 1] * prime) % mod); } } for (int i = 0; i < prelen; i++) { HashsArraypre[i + 1] = (int) ((HashsArraypre[i] + 1l * s.charAt(i) * prepow[i] % mod) % mod); } for (int i = 0; i < prelen; i++) { HashsArraysuf[i + 1] = (int) ((HashsArraysuf[i] + 1l * s.charAt(i) * prepow[max - 1 - i] % mod) % mod); } HashsArrayInd++; } public int query(int l, int r) { int val; if (l <= r) { val = (int) ((1l * HashsArraypre[r + 1] + mod - HashsArraypre[l]) % mod); val = (int) ((1l * val * prepow[max - 1 - l]) % mod); } else { val = (int) ((1l * HashsArraysuf[l + 1] + mod - HashsArraysuf[r]) % mod); val = (int) ((1l * val * prepow[l]) % mod); } return val; } } static Random rn = new Random(); static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public long[] nextlongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public Long[] nextLongArray(int n) throws IOException { Long[] a = new Long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public boolean ready() throws IOException { return br.ready(); } } static class pair implements Comparable<pair> { long x; long y; public pair(long x, long y) { this.x = x; this.y = y; } public String toString() { return x + " " + y; } public boolean equals(Object o) { if (o instanceof pair) { pair p = (pair) o; return p.x == x && p.y == y; } return false; } public int hashCode() { return new Long(x).hashCode() * 31 + new Long(y).hashCode(); } public int compareTo(pair other) { if (this.x == other.x) { return Long.compare(this.y, other.y); } return Long.compare(this.x, other.x); } } static class tuble implements Comparable<tuble> { int x; int y; int z; public tuble(int x, int y, int z) { this.x = x; this.y = y; this.z = z; } public String toString() { return x + " " + y + " " + z; } public int compareTo(tuble other) { if (this.x == other.x) { if (this.y == other.y) { return this.z - other.z; } return this.y - other.y; } else { return this.x - other.x; } } } static Scanner sc = new Scanner(System.in); static PrintWriter pw = new PrintWriter(System.out); }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
d6a72de8230618d7db58864e92741d79
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; public class Main { public static void main(String[] args) throws Exception { int t = sc.nextInt(); while (t-- > 0) { int n = sc.nextInt(); String s = sc.next(); char[] a = s.toCharArray(); hash h = new hash(s); int ind = -1; int cnt = 0; int sum = 0; boolean still = true; for (int i = 0; i < n; i++) { if (a[i] == '(') { sum++; } else { sum--; } if (sum < 0) { still = false; } if ((sum == 0 && still) || (ind + 1 != i && (h.query(ind + 1, i) == h.query(i, ind + 1)))) { cnt++; ind = i; sum = 0; still = true; } } pw.println(cnt + " " + (n - 1 - ind)); } pw.close(); } public static long RandomPick(long[] a) { int n = a.length; int r = rn.nextInt(n); return a[r]; } public static int RandomPick(int[] a) { int n = a.length; int r = rn.nextInt(n); return a[r]; } static class hash { int[] HashsArraypre; int[] HashsArraysuf; static int[] prepow; static int HashsArrayInd = 0; static int prime = 61; static int mod; static int max = 1000009; int prelen; static final int[] mods = { 1000000007, 1000000009, 1000000021, 1000000033, 1000000087, 1000000093, 1000000097, 1000000103, 1000000123, 1000000181, 1000000207, 1000000223, 1000000241, 1000000271, 1000000289, 1000000297, 1000000321, 1000000349, 1000000363, 1000000403, 1000000409, 1000000411, 1000000427, 1000000433, 1000000439, 1000000447, 1000000453, 1000000459, 1000000483, 1000000513, 1000000531, 1000000579, 1000000607, 1000000613, 1000000637, 1000000663, 1000000711, 1000000753, 1000000787, 1000000801, 1000000829, 1000000861, 1000000871, 1000000891, 1000000901, 1000000919, 1000000931, 1000000933, 1000000993, 1000001011, 1000001021, 1000001053, 1000001087, 1000001099, 1000001137, 1000001161, 1000001203, 1000001213, 1000001237, 1000001263, 1000001269, 1000001273, 1000001279, 1000001311, 1000001329, 1000001333, 1000001351, 1000001371, 1000001393, 1000001413, 1000001447, 1000001449, 1000001491, 1000001501, 1000001531, 1000001537, 1000001539, 1000001581, 1000001617, 1000001621, 1000001633, 1000001647, 1000001663, 1000001677, 1000001699, 1000001759, 1000001773, 1000001789, 1000001791, 1000001801, 1000001803, 1000001819, 1000001857, 1000001887, 1000001917, 1000001927, 1000001957, 1000001963, 1000001969, 1000002043}; static final int[] primes = {59, 61, 67, 71, 73, 79, 83, 89, 97, 101}; public hash(String s) { prelen = s.length(); HashsArraypre = new int[prelen + 1]; HashsArraysuf = new int[prelen + 1]; if (HashsArrayInd == 0) { mod = RandomPick(mods); prime = RandomPick(primes); prepow = new int[max]; prepow[0] = 1; for (int i = 1; i < max; i++) { // prepow[i] = (int) (((1l * prepow[i - 1] << 7) - prepow[i - 1]) % mod); prepow[i] = (int) ((1l * prepow[i - 1] * prime) % mod); } } for (int i = 0; i < prelen; i++) { HashsArraypre[i + 1] = (int) ((HashsArraypre[i] + 1l * s.charAt(i) * prepow[i] % mod) % mod); } for (int i = 0; i < prelen; i++) { HashsArraysuf[i + 1] = (int) ((HashsArraysuf[i] + 1l * s.charAt(i) * prepow[max - 1 - i] % mod) % mod); } HashsArrayInd++; } public int query(int l, int r) { int val; if (l <= r) { val = (int) ((1l * HashsArraypre[r + 1] + mod - HashsArraypre[l]) % mod); val = (int) ((1l * val * prepow[max - 1 - l]) % mod); } else { val = (int) ((1l * HashsArraysuf[l + 1] + mod - HashsArraysuf[r]) % mod); val = (int) ((1l * val * prepow[l]) % mod); } return val; } } static Random rn = new Random(); static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public long[] nextlongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public Long[] nextLongArray(int n) throws IOException { Long[] a = new Long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public boolean ready() throws IOException { return br.ready(); } } static class pair implements Comparable<pair> { long x; long y; public pair(long x, long y) { this.x = x; this.y = y; } public String toString() { return x + " " + y; } public boolean equals(Object o) { if (o instanceof pair) { pair p = (pair) o; return p.x == x && p.y == y; } return false; } public int hashCode() { return new Long(x).hashCode() * 31 + new Long(y).hashCode(); } public int compareTo(pair other) { if (this.x == other.x) { return Long.compare(this.y, other.y); } return Long.compare(this.x, other.x); } } static class tuble implements Comparable<tuble> { int x; int y; int z; public tuble(int x, int y, int z) { this.x = x; this.y = y; this.z = z; } public String toString() { return x + " " + y + " " + z; } public int compareTo(tuble other) { if (this.x == other.x) { if (this.y == other.y) { return this.z - other.z; } return this.y - other.y; } else { return this.x - other.x; } } } static Scanner sc = new Scanner(System.in); static PrintWriter pw = new PrintWriter(System.out); }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
10d4b5329a502c639a45d92ad9081133
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; public class Main { public static void main(String[] args) throws Exception { int t = sc.nextInt(); while (t-- > 0) { int n = sc.nextInt(); String s = sc.next(); char[] a = s.toCharArray(); hash h = new hash(s); int ind = -1; int cnt = 0; int sum = 0; boolean still = true; for (int i = 0; i < n; i++) { if (a[i] == '(') { sum++; } else { sum--; } if (sum < 0) { still = false; } if ((sum == 0 && still) || (ind + 1 != i && (h.query(ind + 1, i) == h.query(i, ind + 1)))) { cnt++; ind = i; sum = 0; still = true; } } pw.println(cnt + " " + (n - 1 - ind)); } pw.close(); } public static long RandomPick(long[] a) { int n = a.length; int r = rn.nextInt(n); return a[r]; } public static int RandomPick(int[] a) { int n = a.length; int r = rn.nextInt(n); return a[r]; } static class hash { int[] HashsArraypre; int[] HashsArraysuf; static int[] prepow; static int HashsArrayInd = 0; static int prime = 61; static int mod; static int max = 1000009; int prelen; static final int[] mods = { 1000000007, 1000000009, 1000000021, 1000000033, 1000000087, 1000000093, 1000000097, 1000000103, 1000000123, 1000000181, 1000000207, 1000000223, 1000000241, 1000000271, 1000000289, 1000000297, 1000000321, 1000000349, 1000000363, 1000000403, 1000000409, 1000000411, 1000000427, 1000000433, 1000000439, 1000000447, 1000000453, 1000000459, 1000000483, 1000000513, 1000000531, 1000000579, 1000000607, 1000000613, 1000000637, 1000000663, 1000000711, 1000000753, 1000000787, 1000000801, 1000000829, 1000000861, 1000000871, 1000000891, 1000000901, 1000000919, 1000000931, 1000000933, 1000000993, 1000001011, 1000001021, 1000001053, 1000001087, 1000001099, 1000001137, 1000001161, 1000001203, 1000001213, 1000001237, 1000001263, 1000001269, 1000001273, 1000001279, 1000001311, 1000001329, 1000001333, 1000001351, 1000001371, 1000001393, 1000001413, 1000001447, 1000001449, 1000001491, 1000001501, 1000001531, 1000001537, 1000001539, 1000001581, 1000001617, 1000001621, 1000001633, 1000001647, 1000001663, 1000001677, 1000001699, 1000001759, 1000001773, 1000001789, 1000001791, 1000001801, 1000001803, 1000001819, 1000001857, 1000001887, 1000001917, 1000001927, 1000001957, 1000001963, 1000001969, 1000002043}; // static final int[] primes = {59, 61, 67, 71, 73, 79, 83, 89, 97, 101}; public hash(String s) { prelen = s.length(); HashsArraypre = new int[prelen + 1]; HashsArraysuf = new int[prelen + 1]; if (HashsArrayInd == 0) { mod = RandomPick(mods); // prime = RandomPick(primes); prepow = new int[max]; prepow[0] = 1; for (int i = 1; i < max; i++) { prepow[i] = (int) (((1l * prepow[i - 1] << 7) - prepow[i - 1]) % mod); // prepow[i] = (int) ((1l * prepow[i - 1]*prime) % mod); } } for (int i = 0; i < prelen; i++) { HashsArraypre[i + 1] = (int) ((HashsArraypre[i] + 1l * s.charAt(i) * prepow[i] % mod) % mod); } for (int i = 0; i < prelen; i++) { HashsArraysuf[i + 1] = (int) ((HashsArraysuf[i] + 1l * s.charAt(i) * prepow[max - 1 - i] % mod) % mod); } HashsArrayInd++; } public int query(int l, int r) { int val; if (l <= r) { val = (int) ((1l * HashsArraypre[r + 1] + mod - HashsArraypre[l]) % mod); val = (int) ((1l * val * prepow[max - 1 - l]) % mod); } else { val = (int) ((1l * HashsArraysuf[l + 1] + mod - HashsArraysuf[r]) % mod); val = (int) ((1l * val * prepow[l]) % mod); } return val; } } static Random rn = new Random(); static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public long[] nextlongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public Long[] nextLongArray(int n) throws IOException { Long[] a = new Long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public boolean ready() throws IOException { return br.ready(); } } static class pair implements Comparable<pair> { long x; long y; public pair(long x, long y) { this.x = x; this.y = y; } public String toString() { return x + " " + y; } public boolean equals(Object o) { if (o instanceof pair) { pair p = (pair) o; return p.x == x && p.y == y; } return false; } public int hashCode() { return new Long(x).hashCode() * 31 + new Long(y).hashCode(); } public int compareTo(pair other) { if (this.x == other.x) { return Long.compare(this.y, other.y); } return Long.compare(this.x, other.x); } } static class tuble implements Comparable<tuble> { int x; int y; int z; public tuble(int x, int y, int z) { this.x = x; this.y = y; this.z = z; } public String toString() { return x + " " + y + " " + z; } public int compareTo(tuble other) { if (this.x == other.x) { if (this.y == other.y) { return this.z - other.z; } return this.y - other.y; } else { return this.x - other.x; } } } static Scanner sc = new Scanner(System.in); static PrintWriter pw = new PrintWriter(System.out); }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
ca373e7b825221ebf4e1ab747356e4a8
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; public class Main { public static void main(String[] args) throws Exception { int t = sc.nextInt(); while (t-- > 0) { int n = sc.nextInt(); String s = sc.next(); char[] a = s.toCharArray(); hash h = new hash(s); int ind = -1; int cnt = 0; int sum = 0; boolean still = true; for (int i = 0; i < n; i++) { if (a[i] == '(') { sum++; } else { sum--; } if (sum < 0) { still = false; } if ((sum == 0 && still) || (ind + 1 != i && (h.query(ind + 1, i) == h.query(i, ind + 1)))) { cnt++; ind = i; sum = 0; still = true; } } pw.println(cnt + " " + (n - 1 - ind)); } pw.close(); } public static long RandomPick(long[] a) { int n = a.length; int r = rn.nextInt(n); return a[r]; } public static int RandomPick(int[] a) { int n = a.length; int r = rn.nextInt(n); return a[r]; } static class hash { int[] HashsArraypre; int[] HashsArraysuf; static int[] prepow; static int HashsArrayInd = 0; static int prime = 61; static int mod; static int max=1000009; int prelen; static final int[] mods = { 1000000007, 1000000009, 1000000021, 1000000033, 1000000087, 1000000093, 1000000097, 1000000103, 1000000123, 1000000181, 1000000207, 1000000223, 1000000241, 1000000271, 1000000289, 1000000297, 1000000321, 1000000349, 1000000363, 1000000403, 1000000409, 1000000411, 1000000427, 1000000433, 1000000439, 1000000447, 1000000453, 1000000459, 1000000483, 1000000513, 1000000531, 1000000579, 1000000607, 1000000613, 1000000637, 1000000663, 1000000711, 1000000753, 1000000787, 1000000801, 1000000829, 1000000861, 1000000871, 1000000891, 1000000901, 1000000919, 1000000931, 1000000933, 1000000993, 1000001011, 1000001021, 1000001053, 1000001087, 1000001099, 1000001137, 1000001161, 1000001203, 1000001213, 1000001237, 1000001263, 1000001269, 1000001273, 1000001279, 1000001311, 1000001329, 1000001333, 1000001351, 1000001371, 1000001393, 1000001413, 1000001447, 1000001449, 1000001491, 1000001501, 1000001531, 1000001537, 1000001539, 1000001581, 1000001617, 1000001621, 1000001633, 1000001647, 1000001663, 1000001677, 1000001699, 1000001759, 1000001773, 1000001789, 1000001791, 1000001801, 1000001803, 1000001819, 1000001857, 1000001887, 1000001917, 1000001927, 1000001957, 1000001963, 1000001969, 1000002043}; // static final int[] primes = {59, 61, 67, 71, 73, 79, 83, 89, 97, 101}; public hash(String s) { prelen = s.length(); HashsArraypre = new int[prelen + 1]; HashsArraysuf = new int[prelen + 1]; if (HashsArrayInd == 0) { mod = RandomPick(mods); // prime = RandomPick(primes); prime=127; prepow = new int[max]; prepow[0] = 1; for (int i = 1; i < max; i++) { // prepow[i] = (int) (((1l * prepow[i - 1] << 7) - prepow[i - 1]) % mod); prepow[i] = (int) ((1l * prepow[i - 1]*prime) % mod); } } for (int i = 0; i < prelen; i++) { HashsArraypre[i + 1] = (int) ((HashsArraypre[i] + 1l * s.charAt(i) * prepow[i] % mod) % mod); } for (int i = 0; i < prelen; i++) { HashsArraysuf[i + 1] = (int) ((HashsArraysuf[i] + 1l * s.charAt(i) * prepow[max-1 - i] % mod) % mod); } HashsArrayInd++; } public int query(int l, int r) { int val; if (l <= r) { val = (int) ((1l * HashsArraypre[r + 1] + mod - HashsArraypre[l]) % mod); val = (int) ((1l * val * prepow[max-1 - l]) % mod); } else { val = (int) ((1l * HashsArraysuf[l + 1] + mod - HashsArraysuf[r]) % mod); val = (int) ((1l * val * prepow[l]) % mod); } return val; } } static Random rn = new Random(); static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public long[] nextlongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public Long[] nextLongArray(int n) throws IOException { Long[] a = new Long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public boolean ready() throws IOException { return br.ready(); } } static class pair implements Comparable<pair> { long x; long y; public pair(long x, long y) { this.x = x; this.y = y; } public String toString() { return x + " " + y; } public boolean equals(Object o) { if (o instanceof pair) { pair p = (pair) o; return p.x == x && p.y == y; } return false; } public int hashCode() { return new Long(x).hashCode() * 31 + new Long(y).hashCode(); } public int compareTo(pair other) { if (this.x == other.x) { return Long.compare(this.y, other.y); } return Long.compare(this.x, other.x); } } static class tuble implements Comparable<tuble> { int x; int y; int z; public tuble(int x, int y, int z) { this.x = x; this.y = y; this.z = z; } public String toString() { return x + " " + y + " " + z; } public int compareTo(tuble other) { if (this.x == other.x) { if (this.y == other.y) { return this.z - other.z; } return this.y - other.y; } else { return this.x - other.x; } } } static Scanner sc = new Scanner(System.in); static PrintWriter pw = new PrintWriter(System.out); }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
3f9e86eb5405cd8a39b3069639f8c109
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; public class Main { public static void main(String[] args) throws Exception { int t = sc.nextInt(); while (t-- > 0) { int n = sc.nextInt(); String s = sc.next(); char[] a = s.toCharArray(); hash h = new hash(s); int ind = -1; int cnt = 0; int sum = 0; boolean still = true; for (int i = 0; i < n; i++) { if (a[i] == '(') { sum++; } else { sum--; } if (sum < 0) { still = false; } if ((sum == 0 && still) || (ind + 1 != i && (h.query(ind + 1, i) == h.query(i, ind + 1)))) { cnt++; ind = i; sum = 0; still = true; } } pw.println(cnt + " " + (n - 1 - ind)); } pw.close(); } public static long RandomPick(long[] a) { int n = a.length; int r = rn.nextInt(n); return a[r]; } public static int RandomPick(int[] a) { int n = a.length; int r = rn.nextInt(n); return a[r]; } static class hash { int[] HashsArraypre; int[] HashsArraysuf; static int[] prepow; static int HashsArrayInd = 0; static int prime = 61; static int mod; static int max=1000009; int prelen; static final int[] mods = { 1000000007, 1000000009, 1000000021, 1000000033, 1000000087, 1000000093, 1000000097, 1000000103, 1000000123, 1000000181, 1000000207, 1000000223, 1000000241, 1000000271, 1000000289, 1000000297, 1000000321, 1000000349, 1000000363, 1000000403, 1000000409, 1000000411, 1000000427, 1000000433, 1000000439, 1000000447, 1000000453, 1000000459, 1000000483, 1000000513, 1000000531, 1000000579, 1000000607, 1000000613, 1000000637, 1000000663, 1000000711, 1000000753, 1000000787, 1000000801, 1000000829, 1000000861, 1000000871, 1000000891, 1000000901, 1000000919, 1000000931, 1000000933, 1000000993, 1000001011, 1000001021, 1000001053, 1000001087, 1000001099, 1000001137, 1000001161, 1000001203, 1000001213, 1000001237, 1000001263, 1000001269, 1000001273, 1000001279, 1000001311, 1000001329, 1000001333, 1000001351, 1000001371, 1000001393, 1000001413, 1000001447, 1000001449, 1000001491, 1000001501, 1000001531, 1000001537, 1000001539, 1000001581, 1000001617, 1000001621, 1000001633, 1000001647, 1000001663, 1000001677, 1000001699, 1000001759, 1000001773, 1000001789, 1000001791, 1000001801, 1000001803, 1000001819, 1000001857, 1000001887, 1000001917, 1000001927, 1000001957, 1000001963, 1000001969, 1000002043}; // static final int[] primes = {59, 61, 67, 71, 73, 79, 83, 89, 97, 101}; public hash(String s) { prelen = s.length(); HashsArraypre = new int[prelen + 1]; HashsArraysuf = new int[prelen + 1]; if (HashsArrayInd == 0) { mod = RandomPick(mods); // prime = RandomPick(primes); prepow = new int[max]; prepow[0] = 1; for (int i = 1; i < max; i++) { prepow[i] = (int) (((1l * prepow[i - 1] << 7) - prepow[i - 1]) % mod); } } for (int i = 0; i < prelen; i++) { HashsArraypre[i + 1] = (int) ((HashsArraypre[i] + 1l * s.charAt(i) * prepow[i] % mod) % mod); } for (int i = 0; i < prelen; i++) { HashsArraysuf[i + 1] = (int) ((HashsArraysuf[i] + 1l * s.charAt(i) * prepow[max-1 - i] % mod) % mod); } HashsArrayInd++; } public int query(int l, int r) { int val; if (l <= r) { val = (int) ((1l * HashsArraypre[r + 1] + mod - HashsArraypre[l]) % mod); val = (int) ((1l * val * prepow[max-1 - l]) % mod); } else { val = (int) ((1l * HashsArraysuf[l + 1] + mod - HashsArraysuf[r]) % mod); val = (int) ((1l * val * prepow[l]) % mod); } return val; } } static Random rn = new Random(); static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public long[] nextlongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public Long[] nextLongArray(int n) throws IOException { Long[] a = new Long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public boolean ready() throws IOException { return br.ready(); } } static class pair implements Comparable<pair> { long x; long y; public pair(long x, long y) { this.x = x; this.y = y; } public String toString() { return x + " " + y; } public boolean equals(Object o) { if (o instanceof pair) { pair p = (pair) o; return p.x == x && p.y == y; } return false; } public int hashCode() { return new Long(x).hashCode() * 31 + new Long(y).hashCode(); } public int compareTo(pair other) { if (this.x == other.x) { return Long.compare(this.y, other.y); } return Long.compare(this.x, other.x); } } static class tuble implements Comparable<tuble> { int x; int y; int z; public tuble(int x, int y, int z) { this.x = x; this.y = y; this.z = z; } public String toString() { return x + " " + y + " " + z; } public int compareTo(tuble other) { if (this.x == other.x) { if (this.y == other.y) { return this.z - other.z; } return this.y - other.y; } else { return this.x - other.x; } } } static Scanner sc = new Scanner(System.in); static PrintWriter pw = new PrintWriter(System.out); }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
3856e8a76ccc287a5726ea53eddca104
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; public class Main { public static void main(String[] args) throws Exception { int t = sc.nextInt(); while (t-- > 0) { int n = sc.nextInt(); String s = sc.next(); char[] a = s.toCharArray(); hash h = new hash(s); int ind = -1; int cnt = 0; int sum = 0; boolean still = true; for (int i = 0; i < n; i++) { if (a[i] == '(') { sum++; } else { sum--; } if (sum < 0) { still = false; } if ((sum == 0 && still) || (ind + 1 != i && (h.query(ind + 1, i) == h.query(i, ind + 1)))) { cnt++; ind = i; sum = 0; still = true; } } pw.println(cnt + " " + (n - 1 - ind)); } pw.close(); } public static long RandomPick(long[] a) { int n = a.length; int r = rn.nextInt(n); return a[r]; } public static int RandomPick(int[] a) { int n = a.length; int r = rn.nextInt(n); return a[r]; } static class hash { int[] HashsArraypre; int[] HashsArraysuf; static int[] prepow; static int HashsArrayInd = 0; static int prime = 61; static int mod; static int max=500009; int prelen; static final int[] mods = { 1000000007, 1000000009, 1000000021, 1000000033, 1000000087, 1000000093, 1000000097, 1000000103, 1000000123, 1000000181, 1000000207, 1000000223, 1000000241, 1000000271, 1000000289, 1000000297, 1000000321, 1000000349, 1000000363, 1000000403, 1000000409, 1000000411, 1000000427, 1000000433, 1000000439, 1000000447, 1000000453, 1000000459, 1000000483, 1000000513, 1000000531, 1000000579, 1000000607, 1000000613, 1000000637, 1000000663, 1000000711, 1000000753, 1000000787, 1000000801, 1000000829, 1000000861, 1000000871, 1000000891, 1000000901, 1000000919, 1000000931, 1000000933, 1000000993, 1000001011, 1000001021, 1000001053, 1000001087, 1000001099, 1000001137, 1000001161, 1000001203, 1000001213, 1000001237, 1000001263, 1000001269, 1000001273, 1000001279, 1000001311, 1000001329, 1000001333, 1000001351, 1000001371, 1000001393, 1000001413, 1000001447, 1000001449, 1000001491, 1000001501, 1000001531, 1000001537, 1000001539, 1000001581, 1000001617, 1000001621, 1000001633, 1000001647, 1000001663, 1000001677, 1000001699, 1000001759, 1000001773, 1000001789, 1000001791, 1000001801, 1000001803, 1000001819, 1000001857, 1000001887, 1000001917, 1000001927, 1000001957, 1000001963, 1000001969, 1000002043}; // static final int[] primes = {59, 61, 67, 71, 73, 79, 83, 89, 97, 101}; public hash(String s) { prelen = s.length(); HashsArraypre = new int[prelen + 1]; HashsArraysuf = new int[prelen + 1]; if (HashsArrayInd == 0) { mod = RandomPick(mods); // prime = RandomPick(primes); prepow = new int[max]; prepow[0] = 1; for (int i = 1; i < max; i++) { prepow[i] = (int) (((1l * prepow[i - 1] << 7) - prepow[i - 1]) % mod); } } for (int i = 0; i < prelen; i++) { HashsArraypre[i + 1] = (int) ((HashsArraypre[i] + 1l * s.charAt(i) * prepow[i] % mod) % mod); } for (int i = 0; i < prelen; i++) { HashsArraysuf[i + 1] = (int) ((HashsArraysuf[i] + 1l * s.charAt(i) * prepow[max-1 - i] % mod) % mod); } HashsArrayInd++; } public int query(int l, int r) { int val; if (l <= r) { val = (int) ((1l * HashsArraypre[r + 1] + mod - HashsArraypre[l]) % mod); val = (int) ((1l * val * prepow[max-1 - l]) % mod); } else { val = (int) ((1l * HashsArraysuf[l + 1] + mod - HashsArraysuf[r]) % mod); val = (int) ((1l * val * prepow[l]) % mod); } return val; } } static Random rn = new Random(); static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public long[] nextlongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public Long[] nextLongArray(int n) throws IOException { Long[] a = new Long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public boolean ready() throws IOException { return br.ready(); } } static class pair implements Comparable<pair> { long x; long y; public pair(long x, long y) { this.x = x; this.y = y; } public String toString() { return x + " " + y; } public boolean equals(Object o) { if (o instanceof pair) { pair p = (pair) o; return p.x == x && p.y == y; } return false; } public int hashCode() { return new Long(x).hashCode() * 31 + new Long(y).hashCode(); } public int compareTo(pair other) { if (this.x == other.x) { return Long.compare(this.y, other.y); } return Long.compare(this.x, other.x); } } static class tuble implements Comparable<tuble> { int x; int y; int z; public tuble(int x, int y, int z) { this.x = x; this.y = y; this.z = z; } public String toString() { return x + " " + y + " " + z; } public int compareTo(tuble other) { if (this.x == other.x) { if (this.y == other.y) { return this.z - other.z; } return this.y - other.y; } else { return this.x - other.x; } } } static Scanner sc = new Scanner(System.in); static PrintWriter pw = new PrintWriter(System.out); }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
8efdda97bf9243aff2a35db9c00f3cf4
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; public class Main { public static void main(String[] args) throws Exception { long[]mo=new long[1000000]; mo[0]=1; for(int i=1;i<1000000;i++){ mo[i]=mo[i-1]*3; mo[i]%=mod; } // for(int i=1;i<20;i++){ // pw.println(mo[i]); // } int t=sc.nextInt(); while(t-->0){ int n=sc.nextInt(); char[]a=sc.next().toCharArray(); long[]pre=new long[n+1]; long[]suf=new long[n+1]; long now=3; for(int i=1;i<=n;i++){ if(a[i-1]=='('){ pre[i]+=now; }else{ pre[i]+=2*now; } pre[i]+=pre[i-1]; pre[i]%=mod; now*=3; now%=mod; } now=3; for(int i=n-1;i>-1;i--){ if(a[i]=='('){ suf[i]+=now; }else{ suf[i]+=2*now; } suf[i]+=suf[i+1]; suf[i]%=mod; now*=3; now%=mod; } // pw.println(Arrays.toString(pre)); // pw.println(Arrays.toString(suf)); int ind=-1; int cnt=0; int sum=0; boolean still=true; for(int i=0;i<n;i++){ if(a[i]=='('){ sum++; }else{ sum--; } if(sum<0){ still=false; } // ind=48; // pw.println("# "+(ind+1)+" "+i+" "+(((pre[i+1]-pre[ind+1]+mod)*modinverse(mo[ind+1],mod))%mod)+" "+(((suf[ind+1]-suf[i+1]+mod)*modinverse(mo[n-i-1],mod))%mod)); if((sum==0&&still)||(ind+1!=i&& ((pre[i+1]-pre[ind+1]+mod)*modinverse(mo[ind+1],mod))%mod== ((suf[ind+1]-suf[i+1]+mod)*modinverse(mo[n-i-1],mod))%mod)){ cnt++; ind=i; sum=0; still=true; } } pw.println(cnt+" "+(n-1-ind)); } pw.close(); } static long Pow(long a, long e, long mod) // O(log e) { a %= mod; long res = 1l; while (e > 0) { if ((e & 1) == 1) res = (res * a) % mod; a = (a * a) % mod; e >>= 1l; } return res; } public static long modinverse(long a, long mod) { return Pow(a, mod - 2, mod); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public long[] nextlongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public Long[] nextLongArray(int n) throws IOException { Long[] a = new Long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public boolean ready() throws IOException { return br.ready(); } } static class pair implements Comparable<pair> { long x; long y; public pair(long x, long y) { this.x = x; this.y = y; } public String toString() { return x + " " + y; } public boolean equals(Object o) { if (o instanceof pair) { pair p = (pair) o; return p.x == x && p.y == y; } return false; } public int hashCode() { return new Long(x).hashCode() * 31 + new Long(y).hashCode(); } public int compareTo(pair other) { if (this.x == other.x) { return Long.compare(this.y, other.y); } return Long.compare(this.x, other.x); } } static class tuble implements Comparable<tuble> { int x; int y; int z; public tuble(int x, int y, int z) { this.x = x; this.y = y; this.z = z; } public String toString() { return x + " " + y + " " + z; } public int compareTo(tuble other) { if (this.x == other.x) { if (this.y == other.y) { return this.z - other.z; } return this.y - other.y; } else { return this.x - other.x; } } } static long mod = 1000000007; static Random rn = new Random(); static Scanner sc = new Scanner(System.in); static PrintWriter pw = new PrintWriter(System.out); }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
d07d6657434e4663cbc90fc3e803ca26
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; public class Main { /* A Java program to answer queries to check whether the substrings are palindrome or not efficiently */ // static int p = 101; // static int MOD = 1000000007; // // // Structure to represent a query. A query consists // // of (L, R) and we have to answer whether the substring // // from index-L to R is a palindrome or not // static class Query { // // int L, R; // // public Query(int L, int R) // { // this.L = L; // this.R = R; // } // }; // // // A function to check if a string str is palindrome // // in the ranfe L to R // static boolean isPalindrome(String str, int L, int R) // { // // Keep comparing characters while they are same // while (R > L) { // if (str.charAt(L++) != str.charAt(R--)) { // return (false); // } // } // return (true); // } // // // A Function to find pow (base, exponent) % MOD // // in log (exponent) time // static int modPow(int base, int exponent) // { // if (exponent == 0) { // return 1; // } // if (exponent == 1) { // return base; // } // // int temp = modPow(base, exponent / 2); // // if (exponent % 2 == 0) { // return (temp % MOD * temp % MOD) % MOD; // } // else { // return (((temp % MOD * temp % MOD) % MOD) // * base % MOD) // % MOD; // } // } // // // A Function to calculate // // Modulo Multiplicative Inverse of 'n' // static int findMMI(int n) // { // return modPow(n, MOD - 2); // } // // // A Function to calculate the prefix hash // static void computePrefixHash(String str, int n, // int prefix[], int power[]) // { // prefix[0] = 0; // prefix[1] = str.charAt(0); // // for (int i = 2; i <= n; i++) { // prefix[i] = (prefix[i - 1] % MOD // + (str.charAt(i - 1) % MOD // * power[i - 1] % MOD) // % MOD) // % MOD; // } // // return; // } // // // A Function to calculate the suffix hash // // Suffix hash is nothing but the prefix hash of // // the reversed string // static void computeSuffixHash(String str, int n, // int suffix[], int power[]) // { // suffix[0] = 0; // suffix[1] = str.charAt(n - 1); // // for (int i = n - 2, j = 2; i >= 0 && j <= n; i--, j++) { // suffix[j] = (suffix[j - 1] % MOD // + (str.charAt(i) % MOD // * power[j - 1] % MOD) // % MOD) // % MOD; // } // return; // } // // // A Function to answer the Queries // static void queryResults( // String str, Query q[], int m, int n, // int prefix[], int suffix[], int power[]) // { // for (int i = 0; i <= m - 1; i++) { // int L = q[i].L; // int R = q[i].R; // // // Hash Value of Substring [L, R] // long hash_LR // = ((prefix[R + 1] - prefix[L] + MOD) % MOD // * findMMI(power[L]) % MOD) // % MOD; // // // Reverse Hash Value of Substring [L, R] // long reverse_hash_LR // = ((suffix[n - L] - suffix[n - R - 1] + MOD) % MOD // * findMMI(power[n - R - 1]) % MOD) // % MOD; // // // If both are equal then the substring is a palindrome // if (hash_LR == reverse_hash_LR) { // if (isPalindrome(str, L, R) == true) { // System.out.printf("The Substring [%d %d] is a " // + "palindrome\n", // L, R); // } // else { // System.out.printf("The Substring [%d %d] is not a " // + "palindrome\n", // L, R); // } // } // else { // System.out.printf("The Substring [%d %d] is not a " // + "palindrome\n", // L, R); // } // } // // return; // } // // // A Dynamic Programming Based Approach to compute the // // powers of 101 // static void computePowers(int power[], int n) // { // // 101^0 = 1 // power[0] = 1; // // for (int i = 1; i <= n; i++) { // power[i] = (power[i - 1] % MOD * p % MOD) % MOD; // } // // return; // } // // /* Driver code */ // public static void main(String[] args) // { // String str = "abaaabaaaba"; // int n = str.length(); // // // A Table to store the powers of 101 // int[] power = new int[n + 1]; // // computePowers(power, n); // // // Arrays to hold prefix and suffix hash values // int[] prefix = new int[n + 1]; // int[] suffix = new int[n + 1]; // // // Compute Prefix Hash and Suffix Hash Arrays // computePrefixHash(str, n, prefix, power); // computeSuffixHash(str, n, suffix, power); // // Query q[] = { new Query(0, 10), new Query(5, 8), // new Query(2, 5), new Query(5, 9) }; // int m = q.length; // // queryResults(str, q, m, n, prefix, suffix, power); // } // public static void main(String[] args) throws Exception { long[]mo=new long[1000000]; long p=27; mo[0]=1; for(int i=1;i<1000000;i++){ mo[i]=mo[i-1]*p; mo[i]%=mod; } int t=sc.nextInt(); while(t-->0){ int n=sc.nextInt(); char[]a=sc.next().toCharArray(); // long[]pre=new long[n+1]; // long[]suf=new long[n+1]; // long now=p; // for(int i=1;i<=n;i++){ // if(a[i-1]=='('){ // pre[i]+=2*now; // }else{ // pre[i]+=5*now; // } // pre[i]+=pre[i-1]; // pre[i]%=mod; // now*=p; // now%=mod; // } // // now=p; // for(int i=n-1;i>-1;i--){ // if(a[i]=='('){ // suf[i]+=2*now; // }else{ // suf[i]+=5*now; // } // suf[i]+=suf[i+1]; // suf[i]%=mod; // now*=p; // now%=mod; // } // pw.println(Arrays.toString(pre)); // pw.println(Arrays.toString(suf)); int ind=-1; int cnt=0; int sum=0; boolean still=true; for(int i=0;i<n;i++){ if(a[i]=='('){ sum++; }else{ sum--; } if(sum<0){ still=false; } // pw.println("# "+(ind+1)+" "+i+" "+(((pre[i+1]-pre[ind+1])*modinverse(mo[ind+1],mod))%mod)+" "+(((suf[ind+1]-suf[i+1])*modinverse(mo[n-i-1],mod))%mod)); if((sum==0&&still)||(ind+1!=i&&a[ind+1]==a[i])){ cnt++; ind=i; sum=0; still=true; } } pw.println(cnt+" "+(n-1-ind)); } pw.close(); } static long Pow(long a, long e, long mod) // O(log e) { a %= mod; long res = 1l; while (e > 0) { if ((e & 1) == 1) res = (res * a) % mod; a = (a * a) % mod; e >>= 1l; } return res; } public static long modinverse(long a, long mod) { return Pow(a, mod - 2, mod); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public long[] nextlongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public Long[] nextLongArray(int n) throws IOException { Long[] a = new Long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public boolean ready() throws IOException { return br.ready(); } } static class pair implements Comparable<pair> { long x; long y; public pair(long x, long y) { this.x = x; this.y = y; } public String toString() { return x + " " + y; } public boolean equals(Object o) { if (o instanceof pair) { pair p = (pair) o; return p.x == x && p.y == y; } return false; } public int hashCode() { return new Long(x).hashCode() * 31 + new Long(y).hashCode(); } public int compareTo(pair other) { if (this.x == other.x) { return Long.compare(this.y, other.y); } return Long.compare(this.x, other.x); } } static class tuble implements Comparable<tuble> { int x; int y; int z; public tuble(int x, int y, int z) { this.x = x; this.y = y; this.z = z; } public String toString() { return x + " " + y + " " + z; } public int compareTo(tuble other) { if (this.x == other.x) { if (this.y == other.y) { return this.z - other.z; } return this.y - other.y; } else { return this.x - other.x; } } } static long mod = 1000000007; static Random rn = new Random(); static Scanner sc = new Scanner(System.in); static PrintWriter pw = new PrintWriter(System.out); }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
856cd2ef780d16b6a7083da87b1072d8
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; public class C1657 { public static void main(String[] args) throws IOException { BufferedReader r = new BufferedReader(new InputStreamReader(System.in)); int T = Integer.parseInt(r.readLine()); for(int i = 0; i < T; i++) { int n=Integer.parseInt(r.readLine()); String str = r.readLine();//original String s = "";//current analyzed int open=0; int closed=0; int end=0; int count=0; boolean works=true; String[] possible = new String[n]; String last=""; for(int j = 1; j < n; j++) { //)( would count in this, which is false if((str.charAt(end)=='(' && str.charAt(j)==')' )|| str.charAt(end)==str.charAt(j)) { count++; end=j+1;j=end; } } System.out.println(count + " " + (n-end)); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
63e328fb06137c814c4d1ea316b2a030
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.*; import java.util.*; public class Program { public static void println(Object str) { System.out.println(str); } public static void printArr(Object[] arr) { for(int i=0;i<arr.length;i++) { System.out.print(arr[i]+" "); } System.out.println(""); } public static void printArr2(Object[][] arr) { int n = arr.length; int m = arr[0].length; for(int i=0;i<n;i++) { for(int j=0;j<m;j++) { System.out.print(arr[i][j]+" "); } System.out.println(""); } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args){ try { System.setIn(new FileInputStream("input.txt")); System.setOut(new PrintStream(new FileOutputStream("output.txt"))); } catch (Exception e) { System.err.println("Error"); } // code FastReader sc = new FastReader(); int t = sc.nextInt(); for(int tt=0; tt<t; tt++) { int n = sc.nextInt(); String s = sc.next(); start = 0; int result = find(n, s); System.out.println(result+ " "+(n-start)); // String xx = "(("; // println(isPalindrome(xx, 0, xx.length()-1)); } return; } static int start = 0; public static int find(int n, String s) { if(n<2) return 0; int sum = 0; while(start<n) { // println(start+"start"); if(n-start>=2) { if(s.charAt(start)==')' && s.charAt(start+1)=='(') { boolean isPal = false; for(int i=start+2; i<n;i++) { if(isPalindrome(s, start, i)) { start = i+1; sum+=1; isPal = true; break; } } if(!isPal) { return sum; } } else { start+=2; sum+=1; } } else { break; } } return sum; } public static boolean isPalindrome(String s, int start,int end) { if(end-start<1) return false; int mid = (start+end)/2; for(int i=start;i<=mid;i++) { if(s.charAt(i)!=s.charAt(end+start-i)) { return false; } } return true; } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
bae235b28711cfc2b84b1882e2e2a0db
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.*; import java.util.*; public class Program { public static void println(Object str) { System.out.println(str); } public static void printArr(Object[] arr) { for(int i=0;i<arr.length;i++) { System.out.print(arr[i]+" "); } System.out.println(""); } public static void printArr2(Object[][] arr) { int n = arr.length; int m = arr[0].length; for(int i=0;i<n;i++) { for(int j=0;j<m;j++) { System.out.print(arr[i][j]+" "); } System.out.println(""); } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args){ try { System.setIn(new FileInputStream("input.txt")); System.setOut(new PrintStream(new FileOutputStream("output.txt"))); } catch (Exception e) { System.err.println("Error"); } // code FastReader sc = new FastReader(); int t = sc.nextInt(); for(int tt=0; tt<t; tt++) { int n = sc.nextInt(); String s = sc.next(); start = 0; int result = find(n, s); System.out.println(result+ " "+(n-start)); // String xx = "(("; // println(isPalindrome(xx, 0, xx.length()-1)); } return; } static int start = 0; public static int find(int n, String s) { if(n<2) return 0; int sum = 0; while(start<n) { // println(start+"start"); if(n-start>=2) { if(s.charAt(start)==')' && s.charAt(start+1)=='(') { boolean isPal = false; for(int i=start+2; i<n;i++) { if(isPalindrome(s, start, i)) { start = i+1; sum+=1; isPal = true; break; } } if(!isPal) { return sum; } } else { start+=2; sum+=1; } } else { break; } } return sum; } static boolean isPalindrome(String str, int start, int end) { if(end-start<1) return false; // Pointers pointing to the beginning // and the end of the string int i = start, j = end; // While there are characters to compare while (i < j) { // If there is a mismatch if (str.charAt(i) != str.charAt(j)) return false; // Increment first pointer and // decrement the other i++; j--; } // Given string is a palindrome return true; } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
b59e481eb517e1eb5f23f0ca6a6a7041
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import static java.lang.Math.max; import static java.lang.Math.min; import static java.lang.Math.abs; import static java.lang.System.currentTimeMillis; import static java.lang.System.out; import java.util.*; import java.io.*; public class P_1657_C { static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } public static void main(String[] args) throws Exception { // long before = currentTimeMillis(); // final InputReader in = new InputReader(new FileInputStream("input.txt")); final InputReader in = new InputReader(System.in); // final out = new PrintStream(new BufferedOutputStream(new FileOutputStream("output.txt"))); final PrintStream out = new PrintStream(new BufferedOutputStream(System.out)); solve(in, out); // long after = currentTimeMillis(); // out.println("time : " + (after - before)); out.close(); } private static void solve(InputReader ir, PrintStream ps) { int t = ir.nextInt(); for (int j = 0; j < t; j++) { int len = ir.nextInt(); String seq = ir.next(); if (len == 1) { ps.println("0 1"); continue; } int prev = 0; int i = 1; int removals = 0; while (i < len) { char prevChar = seq.charAt(prev); char currentChar = seq.charAt(i); if ((prevChar == currentChar) || (prevChar == '(' && currentChar == ')')) { removals++; prev += 2; i += 2; } else { // )( while (currentChar == '(' && (i < len - 1)) { i++; currentChar = seq.charAt(i); } if (currentChar == ')') { removals++; prev = i+1; i+=2; } else if (i == len - 1) { i++; } } } ps.println(removals + " " + (len - prev)); } } public static boolean isPrime(long n) { if (n < 2) return false; if (n == 2 || n == 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; long sqrtN = (long) Math.sqrt(n) + 1; for (long i = 6L; i <= sqrtN; i += 6) { if (n % (i - 1) == 0 || n % (i + 1) == 0) return false; } return true; } public static long gcd(long a, long b) { if (a > b) a = (a + b) - (b = a); if (a == 0L) return b; return gcd(b % a, a); } public static ArrayList<Integer> findDiv(int N) { //gens all divisors of N ArrayList<Integer> ls1 = new ArrayList<Integer>(); ArrayList<Integer> ls2 = new ArrayList<Integer>(); for (int i = 1; i <= (int) (Math.sqrt(N) + 0.00000001); i++) if (N % i == 0) { ls1.add(i); ls2.add(N / i); } Collections.reverse(ls2); for (int b : ls2) if (b != ls1.get(ls1.size() - 1)) ls1.add(b); return ls1; } public static void sort(int[] arr) { //because Arrays.sort() uses quicksort which is dumb //Collections.sort() uses merge sort ArrayList<Integer> ls = new ArrayList<Integer>(); for (int x : arr) ls.add(x); Collections.sort(ls); for (int i = 0; i < arr.length; i++) arr[i] = ls.get(i); } public static long power(long x, long y, long p) { //0^0 = 1 long res = 1L; x = x % p; while (y > 0) { if ((y & 1) == 1) res = (res * x) % p; y >>= 1; x = (x * x) % p; } return res; } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
d550040dfc91494ec2afe597eedb104a
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.*; import java.util.*; //import javafx.util.*; public class Main { static PrintWriter out = new PrintWriter(System.out); static FastReader in = new FastReader(); public static void main (String[] args) throws java.lang.Exception { int t = i(); while(t-- > 0){ int n = i(); String s = in.nextLine(); int i = 0; int j = 1; int count = 0; while(i < n && j < n){ if(s.charAt(i) == ')' && s.charAt(j) == '('){ j++; }else{ i = j + 1; j += 2; count++; } } out.println(count + " " + (n - i)); } out.close(); } static String LongestPalindromicPrefix(String str) { // Create temporary String String temp = str + '?'; // Reverse the String str str = reverse(str); // Append String str to temp temp += str; // Find the length of String temp int n = temp.length(); // lps[] array for String temp int []lps = new int[n]; // Initialise every value with zero Arrays.fill(lps, 0); // Iterate the String temp for(int i = 1; i < n; i++) { // Length of longest prefix // till less than i int len = lps[i - 1]; // Calculate length for i+1 while (len > 0 && temp.charAt(len) != temp.charAt(i)) { len = lps[len - 1]; } // If character at current index // len are same then increment // length by 1 if (temp.charAt(i) == temp.charAt(len)) { len++; } // Update the length at current // index to len lps[i] = len; } // Print the palindromic String // of max_len return temp.substring(0, lps[n - 1]); } public static boolean isValid(String s) { if(s.length() <0) //If there is empty string return true; if(s.length()%2==1) // If input string has odd length return false; Stack<Character> stack = new Stack<Character>(); Stack<Character> stack1 = new Stack<Character>(); for(int i = 0 ; i<s.length() ; i++){ char ch = s.charAt(i); if(ch == '(' || ch == '{' || ch == '['){ stack.push(ch); //push character in the stach for open paraentheses. } else{ if(stack.empty()){return false;} //check stack is empty or not stack1.push(ch); //push character in the stack for closed paraentheses. // it helps to keep track the string whic is in format like "([{{])" if((ch == ')' && stack.peek() == '(') || (ch == '}' && stack.peek() == '{') || (ch == ']' && stack.peek() == '[') ) //validate the current closed paraentheses with the top value of stack. { stack.pop(); stack1.pop(); } } } return stack.empty() && stack1.empty(); } public static String reverse(String s){ char[] ch = s.toCharArray(); int n = s.length(); for(int i = 0;i < (n/2);i++){ char temp = ch[i]; ch[i] = ch[n-1-i]; ch[n - 1 - i] = temp; } return String.valueOf(ch); } public static void sort(int[] arr){ ArrayList<Integer> ls = new ArrayList<>(); for(int x : arr){ ls.add(x); } Collections.sort(ls); for(int i = 0;i < arr.length;i++){ arr[i] = ls.get(i); } } static int i() { return in.nextInt(); } static long l() { return in.nextLong(); } static int[] input(int N){ int A[]=new int[N]; for(int i=0; i<N; i++) { A[i]=in.nextInt(); } return A; } static long[] inputLong(int N) { long A[]=new long[N]; for(int i=0; i<A.length; i++)A[i]=in.nextLong(); return A; } } class Pair implements Comparable<Pair>{ int x; int y; Pair(int x, int y){ this.x = x; this.y = y; } @Override public int compareTo(Pair obj) { // we sort objects on the basis of Student Id return (this.x - obj.x); } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br=new BufferedReader(new InputStreamReader(System.in)); } String next() { while(st==null || !st.hasMoreElements()) { try { st=new StringTokenizer(br.readLine()); } catch(IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str=""; try { str=br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
d2a7b5aaf5cb83409892be8e88b80a19
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Random; import java.util.StringTokenizer; public class EduC { static FastScanner sc=new FastScanner(); static PrintWriter out=new PrintWriter(System.out); public static void main(String[] args) { int T=sc.nextInt(); for (int tt=0; tt<T; tt++) { solve(); } } private static void solve() { // TODO Auto-generated method stub int len=sc.nextInt(); String s=sc.next(); int i=0; int ans= 0; for(;i<len-1; i++){ if(s.charAt(i)=='('){ i++; ans++; } else{ int j=i+1; while(j<len){ if(s.charAt(j)==')') break; j++; } if(j<len){ ans++; i=j; } else break; } } System.out.println(ans+" "+(len-i)); } static final Random random=new Random(); static final int mod=1_000_000_007; static void ruffleSort(int[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static long add(long a, long b) { return (a+b)%mod; } static long sub(long a, long b) { return ((a-b)%mod+mod)%mod; } static long mul(long a, long b) { return (a*b)%mod; } static long exp(long base, long exp) { if (exp==0) return 1; long half=exp(base, exp/2); if (exp%2==0) return mul(half, half); return mul(half, mul(half, base)); } static long[] factorials=new long[2_000_001]; static long[] invFactorials=new long[2_000_001]; static void precompFacts() { factorials[0]=invFactorials[0]=1; for (int i=1; i<factorials.length; i++) factorials[i]=mul(factorials[i-1], i); invFactorials[factorials.length-1]=exp(factorials[factorials.length-1], mod-2); for (int i=invFactorials.length-2; i>=0; i--) invFactorials[i]=mul(invFactorials[i+1], i+1); } static long nCk(int n, int k) { return mul(factorials[n], mul(invFactorials[k], invFactorials[n-k])); } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
b776338280cb4bc94a885a6a7d6f8740
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; public class C{ static MyScanner sc; static PrintWriter out; static { sc = new MyScanner(); out = new PrintWriter(System.out); } public static boolean isPalindrom(int x,int y,String s){ while(x<=y){ if(s.charAt(x++)!=s.charAt(y--)) return false; } return true; } public static void solve(){ int n = sc.nextInt(); String s = sc.next(); ArrayList<Integer> a = new ArrayList<>(); for(int i=0;i<s.length();i++){ if(s.charAt(i)==')') a.add(i); } //System.out.println(a); int x=0; int y=0; int ans=0; int i; for(i=0;i<s.length()-1;i++){ if(s.charAt(i)==')'){ if(s.charAt(i+1)==')'){ ans+=1; i+=1; y+=2; } else{ if(y+1<a.size() && isPalindrom(a.get(y),a.get(y+1),s)){i=a.get(y+1); ans+=1; y+=2;} else break; } } else{ if(s.charAt(i+1)==')') y+=1; ans+=1; i+=1; } } System.out.println(ans+" "+(s.length()-i)); } public static void main(String args[]){ int t = sc.nextInt(); while(t-->0) solve(); } } class MyScanner{ BufferedReader br; StringTokenizer tok; MyScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); } catch(Exception e) { System.out.println(e); } tok = new StringTokenizer(""); } public String next() { try { while(!tok.hasMoreTokens()) tok = new StringTokenizer(br.readLine()); } catch(Exception e) { System.out.println(e); } return tok.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
ea0cd91d8c712bb7ca53addc239907f4
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.*; import java.util.*; public class cp{ public static void main(String[] args)throws Exception{ BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int t=Integer.parseInt(br.readLine()); StringBuilder sb=new StringBuilder(); while(t-->0){ int n=Integer.parseInt(br.readLine()); String str=br.readLine(); int ans=0; int i=0,j=1; while(i<n&&j<n){ if(str.charAt(i)==')'&&str.charAt(j)=='('){ j++; }else{ i=j+1; j=j+2; ans++; } } sb.append(ans+" "+(n-i)+"\n"); } System.out.println(sb); } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
2955ed3b88087d2f8805334c939c1308
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; public class BracketSequenceDeletion { static boolean chk(LinkedList s){ if(s.size() == 1) return false; for(int i=0 , j = s.size()-1; j>i ;i++,j--) if(s.get(i) != s.get(j)) return false; return true; } public static void main(String[] args) throws IOException{ Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); int t = sc.nextInt(); while(t-->0) { int n = sc.nextInt(); String s = sc.next(); LinkedList<Character> l = new LinkedList<>(); for (int i = 0; i < n; i++) l.add(s.charAt(i)); int cnt = 0; int c = 0; while(l.size() > 1){ char c1 = l.pollFirst() , c2 = l.pollFirst(); if(c1 == c2) cnt++; else if(c1 == '(' && c2 == ')') cnt++; else{ LinkedList<Character> l2 = new LinkedList<>(); l2.add(c1); l.addFirst(c2); while(l.size()>0 && l.peekFirst() != c1){ l2.add(l.pollFirst()); } if(l.size()>0 &&l2.peekFirst() == l.peekFirst()) { cnt++; l.pollFirst(); } else { c = l2.size(); break; } } } pw.println(cnt+" "+(l.size()+c)); } pw.flush(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(String file) throws IOException { br = new BufferedReader(new FileReader(file)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public String readAllLines(BufferedReader reader) throws IOException { StringBuilder content = new StringBuilder(); String line; while ((line = reader.readLine()) != null) { content.append(line); content.append(System.lineSeparator()); } return content.toString(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public long[] nextlongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public Long[] nextLongArray(int n) throws IOException { Long[] a = new Long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public boolean ready() throws IOException { return br.ready(); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
dbeee2c0c40a9b1b640c53ba1a265d48
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; public class BracketSequenceDeletion { static boolean chk(LinkedList s){ if(s.size() == 1) return false; for(int i=0 , j = s.size()-1; j>i ;i++,j--) if(s.get(i) != s.get(j)) return false; return true; } public static void main(String[] args) throws IOException{ Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); int t = sc.nextInt(); while(t-->0) { int n = sc.nextInt(); String s = sc.next(); LinkedList<Character> l = new LinkedList<>(); for (int i = 0; i < n; i++) l.add(s.charAt(i)); int cnt = 0; while(l.size() > 1){ char c1 = l.pollFirst() , c2 = l.pollFirst(); if(c1 == c2) cnt++; else if(c1 == '(' && c2 == ')') cnt++; else{ LinkedList<Character> l2 = new LinkedList<>(); l2.add(c1); l.addFirst(c2); while(l.size()>0 && l.peekFirst() != c1){ l2.add(l.pollFirst()); } if(l.size()>0 &&l2.peekFirst() == l.peekFirst()) { cnt++; l.pollFirst(); } else{ l.addAll(l2); break; } } } pw.println(cnt+" "+l.size()); } pw.flush(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(String file) throws IOException { br = new BufferedReader(new FileReader(file)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public String readAllLines(BufferedReader reader) throws IOException { StringBuilder content = new StringBuilder(); String line; while ((line = reader.readLine()) != null) { content.append(line); content.append(System.lineSeparator()); } return content.toString(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public long[] nextlongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public Long[] nextLongArray(int n) throws IOException { Long[] a = new Long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public boolean ready() throws IOException { return br.ready(); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
0a8add23159af6727608718afa82c3f2
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; public class BracketSequenceDeletion { static int c; static boolean chk(LinkedList l){ if(l.size() == 1) return false; for(int i=0 , j = l.size()-1; j>i ;i++,j--) if(l.get(i) != l.get(j)) return false; return true; } static boolean chk2(LinkedList<Character> l){ LinkedList<Character> l2 = new LinkedList<>(); l2.add(l.pollFirst()); while(l.size()>0 && l.peekFirst() == l2.peekLast()) l2.add(l.pollFirst()); int tmp = l2.size(); c = tmp; if(l.size()>0) l2.add(l.pollFirst()); while(l.size()>0 && l2.peekLast() == l.peekFirst() && tmp>0){ l2.add(l.pollFirst()); tmp--; c++; } return tmp == 0; } static boolean chk3(LinkedList<Character> l){ LinkedList<Character> l2 = new LinkedList<>(); char c1 = l.pollFirst(); l2.add(c1); c = 1; while (l.size()>0 && c1 != l.peekFirst()) { l2.add(l.pollFirst()); } if(l.size()>0) { l.pollFirst(); return true; } l.addAll(l2); return false; } public static void main(String[] args) throws IOException{ Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); int t = sc.nextInt(); while(t-->0) { int n = sc.nextInt(); String s = sc.next(); LinkedList<Character> l = new LinkedList<>(); for (int i = 0; i < n; i++) l.add(s.charAt(i)); int cnt = 0; while(l.size() > 1){ char c1 = l.get(0) , c2 = l.get(1); if(c1 == '(' && c2 == ')') { cnt++; l.pollFirst(); l.pollFirst(); } else if(c1 == c2) { cnt++; l.pollFirst(); l.pollFirst(); } else if(chk3(l)) cnt++; else break; } pw.println(cnt+" "+l.size()); } pw.flush(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(String file) throws IOException { br = new BufferedReader(new FileReader(file)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public String readAllLines(BufferedReader reader) throws IOException { StringBuilder content = new StringBuilder(); String line; while ((line = reader.readLine()) != null) { content.append(line); content.append(System.lineSeparator()); } return content.toString(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public long[] nextlongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public Long[] nextLongArray(int n) throws IOException { Long[] a = new Long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public boolean ready() throws IOException { return br.ready(); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
cb95184566ba36f75f2a44d7dd8f363b
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; public class CodeForces { public static void main(String[] args) throws FileNotFoundException { FastScanner fs = new FastScanner(); int tt = fs.nextInt(); while(tt-- > 0) { int n = fs.nextInt(); char[] a = fs.next().toCharArray(); int i = 0; int counter = 0; while(i < n) { if(a[i] == '(') { if(i + 1 >= n) break; i+=2; counter++; }else { if(i + 1 < n && a[i + 1] == ')') { i+=2; counter++; }else { boolean flag = false; for(int j = i+2; j < n; j++) { if(a[j] == ')') { flag = true; counter++; i = j + 1; break; } } if(!flag) break; } } } System.out.println(counter + " " + (n-i)); /* * * 2 0 0 4 2 0 2 0 1 2 1 1 1 2 1 2 2 0 1 0 2 0 2 0 2 0 1 1 2 0 2 0 2 1 0 5 2 1 * */ } } public static int gcd(int a, int b) { if(b == 0) return a; return gcd(b, a%b); } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
ca1930d4bb8f2002f799e9284be6f2ce
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; public class C { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void swap(long[] a, int i, int j) { long temp = a[i]; a[i] = a[j]; a[j] = temp; } public static void main(String[] args) { // TODO Auto-generated method stub FastReader t = new FastReader(); PrintWriter o = new PrintWriter(System.out); int test = t.nextInt(); while (test-- > 0) { long m = t.nextLong(); long max = Integer.MIN_VALUE, min = Integer.MAX_VALUE; // int n = t.nextInt(); // long[] a = new long[n]; // for (int i = 0; i < n; ++i) { // a[i] = t.nextLong(); // } String s = t.next(); long i = 0, j =0 , k =0, oo = 0, l = 0, r = 0; boolean can = true; char f = 'a'; for (char c : s.toCharArray()) { if (c == '(') { l++; oo++; if (f == 'a') f = 'b'; } else { r ++; oo--; if (f == 'a') f = 'c'; } if (oo == 0 && can) { j++; k = i; l = 0; r = 0; f = 'a'; } if (oo <0 ) can = false; if ((f == 'b' && l == 2) || (f == 'c' && r == 2)) { can = true; oo = 0 ; j++; k = i; l = 0; r = 0; f = 'a'; } i++; } if (j == 0) o.println(j + " "+(s.length()-k)); else o.println(j + " "+(s.length()-k-1)); } o.flush(); o.close(); } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
461401e00a6efc76f8397ba4d8d2223b
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.awt.*; import java.util.*; import java.io.*; public class Codeforces { static FScanner sc = new FScanner(); static PrintWriter out = new PrintWriter(System.out); static final Random random = new Random(); static long mod = 1000000007L; static HashMap<String, Integer> map = new HashMap<>(); static boolean[] sieve = new boolean[1000000]; static double[] fib = new double[1000000]; public static boolean palindrome(char[] c,int st,int en) { for(int i=st;i<=(en-st)/2;i++) { if(c[i]!=c[en-i]) return false; } return true; } public static boolean balanced(char[] c,int st,int en) { if(c[st]!='('||c[en]!=')') return false; int cnt1=0; for(int i=st;i<=en;i++) { if(c[i]=='(') cnt1++; else { if(cnt1==0) return false; else cnt1--; } } return cnt1==0; } public static String removePrefix(String s) { char[] c=s.toCharArray(); int n=c.length; if(n<2) return s; int i=0; for(i=1;i<n;i++) { if(balanced(c,0,i)||palindrome(c,0,i)) { break; } } if(i==n) return s; return s.substring(i+1); } public static void main(String args[]) throws IOException { int T = sc.nextInt(); while (T-- > 0) { int n=sc.nextInt(); String s=sc.next(); int op=0; int cl=0; char[] c=s.toCharArray(); int i=0; int st=0; while(i<c.length) { st=i; if(i+1>=c.length) { // st=i+1; break; } if(c[i]=='(') { i+=2; st=i; } else { i++; while(i<c.length&&c[i]!=')') i++; if(i==c.length) break; else i++; st=i; } // if(i+1>=c.length) // { // break; // } op++; } cl=c.length-st; out.println(op+" "+cl); } out.close(); } // TemplateCode static void fib() { fib[0] = 0; fib[1] = 1; for (int i = 2; i < fib.length; i++) fib[i] = fib[i - 1] + fib[i - 2]; } static void primeSieve() { for (int i = 0; i < sieve.length; i++) sieve[i] = true; for (int i = 2; i * i <= sieve.length; i++) { if (sieve[i]) { for (int j = i * i; j < sieve.length; j += i) { sieve[j] = false; } } } } static int max(int a, int b) { if (a < b) return b; return a; } static int min(int a, int b) { if (a < b) return a; return b; } static void ruffleSort(int[] a) { int n = a.length; for (int i = 0; i < n; i++) { int oi = random.nextInt(n), temp = a[oi]; a[oi] = a[i]; a[i] = temp; } Arrays.sort(a); } static <E> void print(E res) { System.out.println(res); } static int gcd(int a, int b) { if (b == 0) { return a; } return gcd(b, a % b); } static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } static int abs(int a) { if (a < 0) return -1 * a; return a; } static class FScanner { BufferedReader br; StringTokenizer st; public FScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[] readintarray(int n) { int res[] = new int[n]; for (int i = 0; i < n; i++) res[i] = nextInt(); return res; } long[] readlongarray(int n) { long res[] = new long[n]; for (int i = 0; i < n; i++) res[i] = nextLong(); return res; } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
f0acf53312f39be88a11d1b2f87f5f92
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.util.*; public class Main { /// // Two theorams are used to find ncrp // Lucas theoram and the fermit theoram // a^p-1=1(modp) example 2 and 3 // Lucas theoram // ncr=ncr(n/mod,n/mod)*ncr1(n%p,r%mod); static long max = Integer.MAX_VALUE; //C0C2+C1C1+C2C0 static int catalanNumber(int n, int dp[]) { if (n <= 2) { return 1; } if (dp[n] != -1) { return dp[n]; } //C0C1+C1C2+C20 int answer = 0; for (int i = 0; i < n; ++i) { //01 //10 //This is the dynamic programming answer += catalanNumber(i, dp) * catalanNumber(n - i - 1, dp); // System.out.println(answer); } return dp[n] = answer; } static int printNthcatalanNumber(int n) { int dp[] = new int[n + 1]; Arrays.fill(dp, -1); return catalanNumber(n, dp); } static int power(int a, int b, int mod) { int res = 1; while (b > 0) { if (b % 2 == 1) { res *= a; } a *= a; b >>= 1; } return res; } static int fermittheoram(int a, int mod) { return power(a, mod - 2, mod); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static PrintWriter out=new PrintWriter(System.out); static FastReader scan=new FastReader(); static boolean check=false; static class Pair{ int first; int second; long distance; Pair(int first,int second,long distance){ this.first=first; this.second=second; this.distance=distance; } } static long INF = (long) 1e17; static long NINF = (long)INF*(-1); static boolean pallindrom(char ch[],int start,int end){ while(start<end){ if(ch[end]==ch[start]){ --end; ++start; } else{ return false; } } return true; } static boolean check(int n){ return Math.ceil( Math.sqrt(n))==Math.floor(Math.sqrt(n)); } //0011 static void solve() { int t=scan.nextInt(); while(t-->0){ int n=scan.nextInt(); String m=scan.next(); int first=0; int second=0; for(int i=0;i<m.length();++i){ if(m.charAt(i)=='('){ //Starting with the opening bracket if(i==m.length()-1){ ++second; } else{ ++first; i++; } } else{ //Now this is hte closing bracket if(i==m.length()-1){ ++second; break; } int j=i+1; //)(((() while(j<m.length()){ if(m.charAt(j)=='('){ ++j; continue; } else{ break; } } if(j==m.length()){ //This is ending position we didn't get any point second+=(m.length()-i); break; } else{ ++first; i=j; // System.out.println(i); } } } System.out.println(first+" "+second); } } public static void main(String[] args) { solve(); out.close(); }}
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
49212448fc87e03e7893c6325c8ff1b3
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.lang.*; import java.io.InputStreamReader; import static java.lang.Math.*; import static java.lang.System.out; import java.util.*; import java.io.File; import java.io.PrintStream; import java.io.PrintWriter; import java.math.BigInteger; public class Main { /* 10^(7) = 1s. * ceilVal = (a+b-1) / b */ static final int mod = 1000000007; static final long temp = 998244353; static final long MOD = 1000000007; static final long M = (long)1e9+7; static class Pair implements Comparable<Pair> { int first, second; public Pair(int first, int second) { this.first = first; this.second = second; } public int compareTo(Pair ob) { return (int)(first - ob.first); } } static class Tuple implements Comparable<Tuple> { long first, second,third; public Tuple(long first, long second, long third) { this.first = first; this.second = second; this.third = third; } public int compareTo(Tuple o) { return (int)(o.third - this.third); } } public static class DSU { int count = 0; int[] parent; int[] rank; public DSU(int n) { count = n; parent = new int[n]; rank = new int[n]; Arrays.fill(parent, -1); Arrays.fill(rank, 1); } public int find(int i) { return parent[i] < 0 ? i : (parent[i] = find(parent[i])); } public void union(int a, int b) //Union Find by Rank { a = find(a); b = find(b); if(a == b) return; if(rank[a] < rank[b]) { parent[a] = b; } else if(rank[a] > rank[b]) { parent[b] = a; } else { parent[b] = a; rank[a] = 1 + rank[a]; } count--; } public int countConnected() { return count; } } static class Reader { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) throws IOException { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long[] longReadArray(int n) throws IOException { long[] a=new long[n]; for (int i=0; i<n; i++) a[i]=nextLong(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } public static int gcd(int a, int b) { if(b == 0) return a; else return gcd(b,a%b); } public static long lcm(long a, long b) { return (a / LongGCD(a, b)) * b; } public static long LongGCD(long a, long b) { if(b == 0) return a; else return LongGCD(b,a%b); } public static long LongLCM(long a, long b) { return (a / LongGCD(a, b)) * b; } //Count the number of coprime's upto N public static long phi(long n) //euler totient/phi function { long ans = n; // for(long i = 2;i*i<=n;i++) // { // if(n%i == 0) // { // while(n%i == 0) n/=i; // ans -= (ans/i); // } // } // // if(n > 1) // { // ans -= (ans/n); // } for(long i = 2;i<=n;i++) { if(isPrime(i)) { ans -= (ans/i); } } return ans; } public static long fastPow(long x, long n) { if(n == 0) return 1; else if(n%2 == 0) return fastPow(x*x,n/2); else return x*fastPow(x*x,(n-1)/2); } public static long powMod(long x, long y, long p) { long res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) { res = (res * x) % p; } y = y >> 1; x = (x * x) % p; } return res; } static long modInverse(long n, long p) { return powMod(n, p - 2, p); } // Returns nCr % p using Fermat's little theorem. public static long nCrModP(long n, long r,long p) { if (n<r) return 0; if (r == 0) return 1; long[] fac = new long[(int)(n) + 1]; fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % p; return (fac[(int)(n)] * modInverse(fac[(int)(r)], p) % p * modInverse(fac[(int)(n - r)], p) % p) % p; } public static long fact(long n) { long[] fac = new long[(int)(n) + 1]; fac[0] = 1; for (long i = 1; i <= n; i++) fac[(int)(i)] = fac[(int)(i - 1)] * i; return fac[(int)(n)]; } public static long nCr(long n, long k) { long ans = 1; for(long i = 0;i<k;i++) { ans *= (n-i); ans /= (i+1); } return ans; } //Modular Operations for Addition and Multiplication. public static long perfomMod(long x) { return ((x%M + M)%M); } public static long addMod(long a, long b) { return perfomMod(perfomMod(a)+perfomMod(b)); } public static long subMod(long a, long b) { return perfomMod(perfomMod(a)-perfomMod(b)); } public static long mulMod(long a, long b) { return perfomMod(perfomMod(a)*perfomMod(b)); } public static boolean isPrime(long n) { if(n == 1) { return false; } //check only for sqrt of the number as the divisors //keep repeating so only half of them are required. So,sqrt. for(int i = 2;i*i<=n;i++) { if(n%i == 0) { return false; } } return true; } public static List<Long> SieveList(int n) { boolean prime[] = new boolean[(int)(n+1)]; Arrays.fill(prime, true); List<Long> l = new ArrayList<>(); for (long p = 2; p*p<=n; p++) { if (prime[(int)(p)] == true) { for(long i = p*p; i<=n; i += p) { prime[(int)(i)] = false; } } } for (long p = 2; p<=n; p++) { if (prime[(int)(p)] == true) { l.add(p); } } return l; } public static int countDivisors(int x) { int c = 0; for(int i = 1;i*i<=x;i++) { if(x%i == 0) { if(x/i != i) { c+=2; } else { c++; } } } return c; } public static long log2(long n) { long ans = (long)(log(n)/log(2)); return ans; } public static boolean isPow2(long n) { return (n != 0 && ((n & (n-1))) == 0); } public static boolean isSq(int x) { long s = (long)Math.round(Math.sqrt(x)); return s*s==x; } /* * * >= <= 0 1 2 3 4 5 6 7 5 5 5 6 6 6 7 7 lower_bound for 6 at index 3 (>=) upper_bound for 6 at index 6(To get six reduce by one) (<=) */ public static int LowerBound(int a[], int x) { int l=-1,r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]>=x) r=m; else l=m; } return r; } public static int UpperBound(int a[], int x) { int l=-1, r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]<=x) l=m; else r=m; } return l+1; } public static void Sort(long[] a) { List<Long> l = new ArrayList<>(); for (long i : a) l.add(i); Collections.sort(l); // Collections.reverse(l); //Use to Sort decreasingly for (int i=0; i<a.length; i++) a[i]=l.get(i); } public static void ssort(char[] a) { List<Character> l = new ArrayList<>(); for (char i : a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } public static void main(String[] args) throws Exception { Reader sc = new Reader(); PrintWriter fout = new PrintWriter(System.out); int tt = sc.nextInt(); while(tt-- > 0) { int n = sc.nextInt(); char[] s = sc.next().toCharArray(); boolean upd = false; long ans = 0; int i = 0; long id1 = 0, id2 = 0; while(i+1 < n) { if(s[i] == ')' && s[i+1] == '(') { int j = i + 1; while(j < n && s[j] == '(') j++; if(j == n) { // i = j; id1 = ans; id2 = j - i; upd = true; break; } else { ans += 1; i = j + 1; } } else { ans += 1; i += 2; } } if(upd == false) { id1 = ans; id2 = n - i; } fout.println(id1 + " " + id2); } fout.close(); } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
83a2c13ae0415f8f24621186582c1822
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.lang.*; import java.io.InputStreamReader; import static java.lang.Math.*; import static java.lang.System.out; import java.util.*; import java.io.File; import java.io.PrintStream; import java.io.PrintWriter; import java.math.BigInteger; public class Main { /* 10^(7) = 1s. * ceilVal = (a+b-1) / b */ static final int mod = 1000000007; static final long temp = 998244353; static final long MOD = 1000000007; static final long M = (long)1e9+7; static class Pair implements Comparable<Pair> { int first, second; public Pair(int first, int second) { this.first = first; this.second = second; } public int compareTo(Pair ob) { return (int)(first - ob.first); } } static class Tuple implements Comparable<Tuple> { long first, second,third; public Tuple(long first, long second, long third) { this.first = first; this.second = second; this.third = third; } public int compareTo(Tuple o) { return (int)(o.third - this.third); } } public static class DSU { int count = 0; int[] parent; int[] rank; public DSU(int n) { count = n; parent = new int[n]; rank = new int[n]; Arrays.fill(parent, -1); Arrays.fill(rank, 1); } public int find(int i) { return parent[i] < 0 ? i : (parent[i] = find(parent[i])); } public void union(int a, int b) //Union Find by Rank { a = find(a); b = find(b); if(a == b) return; if(rank[a] < rank[b]) { parent[a] = b; } else if(rank[a] > rank[b]) { parent[b] = a; } else { parent[b] = a; rank[a] = 1 + rank[a]; } count--; } public int countConnected() { return count; } } static class Reader { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) throws IOException { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long[] longReadArray(int n) throws IOException { long[] a=new long[n]; for (int i=0; i<n; i++) a[i]=nextLong(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } public static int gcd(int a, int b) { if(b == 0) return a; else return gcd(b,a%b); } public static long lcm(long a, long b) { return (a / LongGCD(a, b)) * b; } public static long LongGCD(long a, long b) { if(b == 0) return a; else return LongGCD(b,a%b); } public static long LongLCM(long a, long b) { return (a / LongGCD(a, b)) * b; } //Count the number of coprime's upto N public static long phi(long n) //euler totient/phi function { long ans = n; // for(long i = 2;i*i<=n;i++) // { // if(n%i == 0) // { // while(n%i == 0) n/=i; // ans -= (ans/i); // } // } // // if(n > 1) // { // ans -= (ans/n); // } for(long i = 2;i<=n;i++) { if(isPrime(i)) { ans -= (ans/i); } } return ans; } public static long fastPow(long x, long n) { if(n == 0) return 1; else if(n%2 == 0) return fastPow(x*x,n/2); else return x*fastPow(x*x,(n-1)/2); } public static long powMod(long x, long y, long p) { long res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) { res = (res * x) % p; } y = y >> 1; x = (x * x) % p; } return res; } static long modInverse(long n, long p) { return powMod(n, p - 2, p); } // Returns nCr % p using Fermat's little theorem. public static long nCrModP(long n, long r,long p) { if (n<r) return 0; if (r == 0) return 1; long[] fac = new long[(int)(n) + 1]; fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % p; return (fac[(int)(n)] * modInverse(fac[(int)(r)], p) % p * modInverse(fac[(int)(n - r)], p) % p) % p; } public static long fact(long n) { long[] fac = new long[(int)(n) + 1]; fac[0] = 1; for (long i = 1; i <= n; i++) fac[(int)(i)] = fac[(int)(i - 1)] * i; return fac[(int)(n)]; } public static long nCr(long n, long k) { long ans = 1; for(long i = 0;i<k;i++) { ans *= (n-i); ans /= (i+1); } return ans; } //Modular Operations for Addition and Multiplication. public static long perfomMod(long x) { return ((x%M + M)%M); } public static long addMod(long a, long b) { return perfomMod(perfomMod(a)+perfomMod(b)); } public static long subMod(long a, long b) { return perfomMod(perfomMod(a)-perfomMod(b)); } public static long mulMod(long a, long b) { return perfomMod(perfomMod(a)*perfomMod(b)); } public static boolean isPrime(long n) { if(n == 1) { return false; } //check only for sqrt of the number as the divisors //keep repeating so only half of them are required. So,sqrt. for(int i = 2;i*i<=n;i++) { if(n%i == 0) { return false; } } return true; } public static List<Long> SieveList(int n) { boolean prime[] = new boolean[(int)(n+1)]; Arrays.fill(prime, true); List<Long> l = new ArrayList<>(); for (long p = 2; p*p<=n; p++) { if (prime[(int)(p)] == true) { for(long i = p*p; i<=n; i += p) { prime[(int)(i)] = false; } } } for (long p = 2; p<=n; p++) { if (prime[(int)(p)] == true) { l.add(p); } } return l; } public static int countDivisors(int x) { int c = 0; for(int i = 1;i*i<=x;i++) { if(x%i == 0) { if(x/i != i) { c+=2; } else { c++; } } } return c; } public static long log2(long n) { long ans = (long)(log(n)/log(2)); return ans; } public static boolean isPow2(long n) { return (n != 0 && ((n & (n-1))) == 0); } public static boolean isSq(int x) { long s = (long)Math.round(Math.sqrt(x)); return s*s==x; } /* * * >= <= 0 1 2 3 4 5 6 7 5 5 5 6 6 6 7 7 lower_bound for 6 at index 3 (>=) upper_bound for 6 at index 6(To get six reduce by one) (<=) */ public static int LowerBound(int a[], int x) { int l=-1,r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]>=x) r=m; else l=m; } return r; } public static int UpperBound(int a[], int x) { int l=-1, r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]<=x) l=m; else r=m; } return l+1; } public static void Sort(long[] a) { List<Long> l = new ArrayList<>(); for (long i : a) l.add(i); Collections.sort(l); // Collections.reverse(l); //Use to Sort decreasingly for (int i=0; i<a.length; i++) a[i]=l.get(i); } public static void ssort(char[] a) { List<Character> l = new ArrayList<>(); for (char i : a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } public static void main(String[] args) throws Exception { Reader sc = new Reader(); PrintWriter fout = new PrintWriter(System.out); int tt = sc.nextInt(); fr: while(tt-- > 0) { int n = sc.nextInt(); char[] s = sc.next().toCharArray(); int c = 0; int id1 = 0, id2 = 0; int i = 0; boolean ok = false; while(i + 1 < n) { if(s[i] == '(') { c++; i += 2; } else { int j = i + 1; while(j < n && s[j] == '(') j++; if(j == n) { id1 = c; id2 = j - i; ok = true; break; } else { c++; i = j + 1; } } } if(ok == false) { id1 = c; id2 = n - i; } fout.println(id1 + " " + id2); } fout.close(); } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
9f887652b994625960e25fbc514e4213
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.*; import java.util.*; public class Demo{ // public static long gcd(long a, long b) { // if (b==0) // return a; // return gcd(b, a%b); // } // public static void pA(int n, int[] arr) { // for (int i=0; i<n; i++) { // System.out.print(arr[i]+" "); // } // System.out.println(); // } static BufferedReader br; static int cnt; public static void main(String args[]) throws IOException{ br = new BufferedReader(new InputStreamReader(System.in)); // Scanner s = new Scanner(System.in); int t = Integer.parseInt(br.readLine()); // int t = s.nextInt(); while (t-->0){ cnt=0; int n = Integer.parseInt(br.readLine()); char[] str = br.readLine().toCharArray(); int i=0; while (i<n-1){ if (str[i]== str[i+1]){ cnt++; i += 2; }else if (str[i]=='(' && str[i+1]==')'){ cnt++; i += 2; }else{ int ini = i; i+=2; while (i<n && str[i] != ')'){ i++; } if (i<n){ cnt++; i++; // System.out.println(i+" i"); }else{ i=ini; break; } } } // System.out.println(i+" i"); // int x = util(str, 0); System.out.println(cnt+" "+(n-i)); } // s.close(); } // public static int util(char[] str, int i){ // int n = str.length-i; // if (n<2){ // return i; // } // if (str[0]== str[1]){ // cnt++; // return util(str, 2+i); // }else if (str[0]=='(' && str[1]==')'){ // cnt++; // return util(str, i+2); // } // int j=2+i; // while (j<n){ // if (str[j]=='('){ // j++; // }else{ // break; // } // } // if (j+i==n){ // return 0; // } // cnt++; // return util(str, j+1+i); // } public static long[] readLongArr() throws IOException{ String[] integersInString = br.readLine().split(" "); long a[] = new long[integersInString.length]; // List<Integer> al = new ArrayList<>(integersInString.length); for (int i = 0; i < integersInString.length; i++) { a[i]=(Long.parseLong(integersInString[i])); } return a; } public static int[] readIntArr() throws IOException{ String[] integersInString = br.readLine().split(" "); int a[] = new int[integersInString.length]; // List<Integer> al = new ArrayList<>(integersInString.length); for (int i = 0; i < integersInString.length; i++) { a[i]=(Integer.parseInt(integersInString[i])); } return a; } // public static String sortString(String inputString) { // // convert input string to char array // char tempArray[] = inputString.toCharArray(); // // sort tempArray // Arrays.sort(tempArray); // // return new sorted string // return new String(tempArray); // } // public static String getString(int n) { // char[] buf = new char[(int) Math.floor(Math.log(25 * (n + 1)) / Math.log(26))]; // for (int i = buf.length - 1; i >= 0; i--) { // n--; // buf[i] = (char) ('a' + n % 26); // n /= 26; // } // return new String(buf); // } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
b057962437540fd874c54bce1ba4c732
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.Stack; import java.util.StringTokenizer; public class C { public static void main(String[]args) throws IOException { Scanner sc=new Scanner(System.in); PrintWriter out=new PrintWriter(System.out); int t=sc.nextInt(); while(t-->0) { int n=sc.nextInt(); String s=sc.next(); Manacher mn=new Manacher(s); //out.println(Arrays.toString(mn.t)); //out.println(Arrays.toString(mn.p)); int cur=0; int idx=0; int cnt=0; boolean can=true; Stack<Character>st=new Stack<Character>(); for(int i=0;i<n;i++) { if(s.charAt(i)=='(') { st.add('('); } else { if(!st.isEmpty()&&st.peek()=='(') { st.pop(); } else can=false; } if(st.isEmpty()&&can) { can=true; cnt++; idx=i+1; continue; } int st1=(idx+1)*2,st2=(i+1)*2; int ln=mn.p[(st1+st2)/2]; if(ln>=i-idx+1&&i-idx+1>=2) { cnt++; idx=i+1; can=true; st.clear(); continue; } } out.println(cnt+" "+(n-idx)); } out.close(); } static class Manacher { private int[] p; // p[i] = length of longest palindromic substring of t, centered at i private String s; // original string private char[] t; // transformed string public Manacher(String s) { this.s = s; preprocess(); p = new int[t.length]; int center = 0, right = 0; for (int i = 1; i < t.length-1; i++) { int mirror = 2*center - i; if (right > i) p[i] = Math.min(right - i, p[mirror]); // attempt to expand palindrome centered at i while (t[i + (1 + p[i])] == t[i - (1 + p[i])]) p[i]++; // if palindrome centered at i expands past right, // adjust center based on expanded palindrome. if (i + p[i] > right) { center = i; right = i + p[i]; } } } // Transform s into t. // For example, if s = "abba", then t = "$#a#b#b#a#@" // the # are interleaved to avoid even/odd-length palindromes uniformly // $ and @ are prepended and appended to each end to avoid bounds checking private void preprocess() { t = new char[s.length()*2 + 3]; t[0] = '$'; t[s.length()*2 + 2] = '@'; for (int i = 0; i < s.length(); i++) { t[2*i + 1] = '#'; t[2*i + 2] = s.charAt(i); } t[s.length()*2 + 1] = '#'; } // longest palindromic substring public String longestPalindromicSubstring() { int length = 0; // length of longest palindromic substring int center = 0; // center of longest palindromic substring for (int i = 1; i < p.length-1; i++) { if (p[i] > length) { length = p[i]; center = i; } } return s.substring((center - 1 - length) / 2, (center - 1 + length) / 2); } // longest palindromic substring centered at index i/2 public String longestPalindromicSubstring(int i) { int length = p[i + 2]; int center = i + 2; return s.substring((center - 1 - length) / 2, (center - 1 + length) / 2); } // test client // public static void main(String[] args) { // String s = args[0]; // Manacher manacher = new Manacher(s); // System.println(manacher.longestPalindromicSubstring()); // for (int i = 0; i < 2*s.length(); i++) // StdOut.println(i + ": " + manacher.longestPalindromicSubstring(i)); // // } } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));} public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public boolean hasNext() {return st.hasMoreTokens();} public int nextInt() throws IOException {return Integer.parseInt(next());} public double nextDouble() throws IOException {return Double.parseDouble(next());} public long nextLong() throws IOException {return Long.parseLong(next());} public String nextLine() throws IOException {return br.readLine();} public boolean ready() throws IOException {return br.ready(); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
e6bcbfc2ad9bf84af43e2719a189599c
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.StringTokenizer; import java.util.*; import static java.lang.System.out; import static java.lang.Math.*; public class pre16 { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static class MultiSet<K> { TreeMap<K, Integer> map; MultiSet() { map = new TreeMap<>(); } void add(K a) { map.put(a, map.getOrDefault(a, 0) + 1); } boolean contains(K a) { return map.containsKey(a); } void remove(K a) { map.put(a, map.get(a) - 1); if (map.get(a) == 0) map.remove(a); } int occrence(K a) { return map.get(a); } K floor(K a) { return map.floorKey(a); } K ceil(K a) { return map.ceilingKey(a); } @Override public String toString() { ArrayList<K> set = new ArrayList<>(); for (Map.Entry<K, Integer> i : map.entrySet()) { for (int j = 1; j <= i.getValue(); j++) set.add(i.getKey()); } return set.toString(); } } static class Pair<K, V> { K value1; V value2; Pair(K a, V b) { value1 = a; value2 = b; } @Override public boolean equals(Object o) { if (this == o) return true; if (!(o instanceof Pair)) return false; Pair<?, ?> p = (Pair<?, ?>) o; return Objects.equals(this.value1, p.value1) && Objects.equals(this.value2, p.value2); } @Override public int hashCode() { int result = this.value1.hashCode(); result = 31 * result + this.value2.hashCode(); return result; } @Override public String toString() { return ("[" + value1 + " <=> " + value2 + "]"); } } static ArrayList<Integer> primes; static void setPrimes(int n) { boolean p[] = new boolean[n]; Arrays.fill(p, true); for (int i = 2; i < p.length; i++) { if (p[i]) { primes.add(i); for (int j = i * 2; j < p.length; j += i) p[j] = false; } } } static int mod = (int) (1e9 + 7); static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } public static void main(String args[]) { FastReader obj = new FastReader(); int tc = obj.nextInt(); while (tc-- != 000) { int n = obj.nextInt(); char str[] = obj.next().toCharArray(); Stack<Integer> open = new Stack<>(),close = new Stack<>(); for(int i=n-1;i>=0;i--){ if(str[i]=='(') open.add(i); else close.add(i); } int ans = 0,i = 0; for(;i<n-1;i++){ if(str[i]=='('){ ans++; if(str[i+1]==')') close.pop(); i++; }else if(str[i]==')'){ close.pop(); if(close.size()>0){ ans++; i = close.pop(); }else break; } } out.println(ans+" "+(n-i)); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
c48cbb8fe83ef40807bb942d741db835
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.*; import java.util.*; public class Main { public static void main(String[] args) { new Thread(null, () -> new Main().run(), "1", 1 << 23).start(); } private void run() { FastReader scan = new FastReader(); PrintWriter out = new PrintWriter(System.out); Solution solve = new Solution(); int t = scan.nextInt(); // int t = 1; for (int qq = 0; qq < t; qq++) { solve.solve(scan, out); //out.println(); } out.close(); } } class Solution { /* * think and coding */ double EPS = 0.000_0001; public void solve(FastReader scan, PrintWriter out) { int n = scan.nextInt(); char[] chars = scan.nextLine().toCharArray(); int ans = 0, cnt = 0, i = 0; while (i + 1 < n) { if (chars[i] == '(') { i += 2; ans++; cnt += 2; } else if (chars[i] == ')'){ int j = i + 1; while (j < n && chars[j++] != ')'); if (chars[j - 1] == ')') { ans++; cnt += j - i; } i = j; } } out.println(ans + " " + (n - cnt)); } static class Pair implements Comparable<Pair> { int a, b; public Pair(int a, int b) { this.a = a; this.b = b; } public Pair(Pair p) { this.a = p.a; this.b = p.b; } @Override public int compareTo(Pair p) { return Integer.compare(a, p.a); } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Pair pair = (Pair) o; return a == pair.a && b == pair.b; } @Override public int hashCode() { return Objects.hash(a, b); } @Override public String toString() { return "Pair{" + "a=" + a + ", b=" + b + '}'; } } } class FastReader { private final BufferedReader br; private StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s))); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
3e91388fdae6b8d4c882e872fd7678ff
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
// package com.company; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.List; import java.util.Map; import java.util.PriorityQueue; import java.util.Scanner; import java.util.Set; import java.util.Stack; public class Main { public static class Pair { int visits; int index; public Pair(int a, int b) { visits = a; index = b; } } public static boolean isPalindrome(String str) { int n = str.length(); if(n == 1) { return false; } int mid = n / 2; // System.out.println("len: " + str.length() + " mid: " + mid); StringBuilder temp = new StringBuilder(str.substring(0, mid)); if(n % 2 == 1) { mid++; } return temp.reverse().toString().equals(str.substring(mid)); } public static int[] solve(String str) { int ops = 0; int i = 0; int n = str.length(); boolean test = true; while(i < n-1) { char a = str.charAt(i); char b = str.charAt(i+1); if(a == b || a == '(') { i += 2; ops++; } else { int j = i+1; test = false; while(j < n-1) { if(str.charAt(j) == '(' && str.charAt(j+1) == ')') { if(isPalindrome(str.substring(i, j+2))) { ops++; i = j+2; test = true; break; } } j++; } if(!test) { break; } } } int[] res = new int[2]; res[0] = ops; res[1] = (!test || i < n) ? n - i : 0; return res; } public static void main(String[] args) { Scanner sc = new Scanner(System.in); int testcases = sc.nextInt(); for(int i=0; i<testcases; i++) { int n = sc.nextInt(); String str = sc.next(); int[] res = solve(str); System.out.println(res[0] + " " + res[1]); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
1b45d0dcd14fb8894d4afaed259dd295
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
/** * @Jai_Bajrang_Bali * @Har_Har_Mahadev */ import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.Scanner; public class practice2 { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); while (t-->0){ int n=sc.nextInt(); //sc.nextLine(); String str=sc.next(); int ans=0,i=0,j=1; while(i<n && j<n){ if(str.charAt(i)==')'&& str.charAt(j)=='(' ) j++; else{ i=j+1; j+=2; ans++; } } System.out.println(ans+" "+(n-i)); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
3208aadc57a2a89bf723fd2c0a2e8326
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.awt.image.ImageProducer; import java.util.*; public class Solution { static boolean prime[] = new boolean[1000001]; static Set<Long> cubes=new HashSet<>(); static { long N = 1000000000000L; // // // for(int i=1;i*i<=n;i++) // { // long x=i*i; // set.add(x); // } for (long i = 1; i * i * i <= N; i++) { cubes.add(i * i * i); } } public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while (t-- > 0) { int n = sc.nextInt(); sc.nextLine(); String s = sc.nextLine(); int a = 0; int b = 0; int step = 0; int ans = 0, i = 0, j = 1; while (i < n && j < n) { if (s.charAt(i) == ')' && s.charAt(j) == '(') { j++; } else { i = j + 1; j += 2; ans++; } } System.out.println(ans + " " + (n - i)); } } public static boolean isPal(String str) { for(int i=0;i<str.length()/2;i++) { if (str.charAt(i) != str.charAt(str.length() - 1 - i)) return false; } return true; } // public static int[] reverse(int arr[],int start,int end) // { // for(int i=start;i<=end;i++) // { // int temp=arr[i]; // arr[i]=arr[i+1]; // arr[i+1]=temp; // } // return arr; // } static boolean checkPerfectSquare(double number) { //calculating the square root of the given number double sqrt=Math.sqrt(number); //finds the floor value of the square root and comparing it with zero return ((sqrt - Math.floor(sqrt)) == 0); } static void sieveOfEratosthenes(int n) { for(int i=0;i<=n;i++) prime[i] = true; for(int p = 2; p*p <=n; p++) { if(prime[p] == true) { for(int i = p*p; i <= n; i += p) prime[i] = false; } } // Print all prime numbers // for(int i = 2; i <= n; i++) // { // if(prime[i] == true) // System.out.print(i + " "); // } } public static boolean isPrime(int n) { for(int i=2;i*i<=n;i++) { if(n%i==0) return false; } return true; } public static int gcd(int a,int b) { if(b==0) return a; return gcd(b,a%b); } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
fdca35d31c45da2645a98b12212f37df
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.PrintWriter; import java.util.ArrayList; import java.util.List; import java.util.Scanner; public class C { public void solve(Scanner in, PrintWriter out) { int t = in.nextInt(); for (int c = 0; c < t; c++) { int n = in.nextInt(); char[] seq = in.next().toCharArray(); int operations = 0; int lastPrefixIndex = -1; int oB = 0; boolean isGood = true; List<Character> lastPal = new ArrayList<>(); for (int i = 0; i < n; i++) { lastPal.add(seq[i]); if (seq[i] == '(') { oB++; } else { oB--; } if (oB < 0) isGood = false; boolean isPal = false; if (lastPal.get(0) == seq[i]) { isPal = checkPal(lastPal); } if (isGood && oB == 0 || isPal) { lastPal = new ArrayList<>(); isGood = true; lastPrefixIndex = i; operations++; oB = 0; } } out.println(operations + " " + (n - (lastPrefixIndex + 1))); } } public boolean checkPal(List<Character> sequence) { int n = sequence.size(); boolean isPal = true; if (n > 1) { for (int i = 0; i < n / 2; i++) { if (!sequence.get(i).equals(sequence.get(n - i - 1))) { isPal = false; break; } } } else { return false; } return isPal; } public void run() { try (Scanner in = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out)) { solve(in, out); } } public static void main(String[] args) { new C().run(); } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
48ea80115b05d719dc5e6d6ce2401997
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.*; import java.util.*; public class Pentagram { public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); int tc = sc.nextInt(); while(tc-->0){ int n = sc.nextInt(); char[] arr = sc.next().toCharArray(); HashMap<Character, Integer> freq = new HashMap<>(); int ans = 0; int temp = 0; int taken = 0; int prev = 0; for(int i = 0; i<n; i++){ if(temp >= 0){ if (arr[i] == '(') temp++; else temp -= 1; } if(temp == 0){ ans++; taken += i-prev + 1; prev = i + 1; freq.put('(', -1); freq.put(')', -1); continue; } if(freq.getOrDefault(arr[i], -1) != -1 && arr[i] == arr[prev]){ ans++; taken += i - freq.get(arr[i]) + 1; prev = i + 1; freq.put('(', -1); freq.put(')', -1); temp = 0; }else{ freq.put(arr[i], i); } } //System.out.println(taken); pw.println(ans + " " + (n - taken)); } pw.flush(); } static class Pair implements Comparable<Pair>{ long x; long y; public Pair(long x, long y){ this.x = x; this.y = y; } public int compareTo(Pair p){ if(x > p.x)return 1; if(x < p.x)return -1; if(y > p.y) return -1; if(y < p.y) return 1; return 0; } public String toString(){ return "(" + x + "," + y + ")"; } } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public long[] nextlongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public Long[] nextLongArray(int n) throws IOException { Long[] a = new Long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public boolean ready() throws IOException { return br.ready(); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
4058fbf268a7c2b8a16c8649a5553e43
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.*; import java.util.*; public class CodeforcesEdu125{ static long mod = 1000000007L; static MyScanner sc = new MyScanner(); static void solve(){ int a = sc.nextInt(); int b = sc.nextInt(); if(a==0 && b==0){ out.println(0); return; } double c = Math.sqrt((a*a)+(b*b)); if(c%(int)c==0){ out.println(1); }else{ out.println(2); } } static void solve2(){ int n = sc.nextInt(); int b = sc.nextInt(); int x = sc.nextInt(); int y = sc.nextInt(); int arr[] = new int[n+1]; for(int i = 1;i<=n;i++){ if(arr[i-1]+x>b){ arr[i] = arr[i-1]-y; }else{ arr[i] = arr[i-1]+x; } } long sum = 0; for(int i = 0;i<=n;i++){ sum += arr[i]; } out.println(sum); } static void solve3() { int n = sc.nextInt(); String str = sc.nextLine(); if(n==1){ out.println(0+" "+1); return; } int i = 0; int count = 0; boolean f = false; boolean ft = false; while(i<n){ if(str.charAt(i)=='('){ if(i!=n-1){ count++; }else{ ft = true; } i+=2; }else{ i++; boolean flag = false; for(;i<n;i++){ if(str.charAt(i)==')'){ flag = true; i++; count++; break; } } if(!flag){ f = true; } } } if(f){ for(int j = n-1;j>=0;j--){ if(str.charAt(j)==')'){ out.println(count+" "+(n-j)); return; } } }else{ if(ft){ out.println(count+" "+1); }else{ out.println(count+" "+0); } } } static boolean isPali(String str){ int i = 0; int j = str.length()-1; while(i<j){ if(str.charAt(i)!=str.charAt(j)){ return false; } i++; j--; } return true; } static long gcd(long a,long b){ if(b==0) return a; return gcd(b,a%b); } static String reverse(String str){ char arr[] = str.toCharArray(); int i = 0; int j = arr.length-1; while(i<j){ char temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; i++; j--; } String st = new String(arr); return st; } static boolean isprime(int n){ if(n==1) return false; if(n==3 || n==2) return true; if(n%2==0 || n%3==0) return false; for(int i = 5;i*i<=n;i+= 6){ if(n%i== 0 || n%(i+2)==0){ return false; } } return true; } static class Pair implements Comparable<Pair>{ int val; int ind; int ans; Pair(int v,int f){ val = v; ind = f; } public int compareTo(Pair p){ return p.val - this.val; } } public static void main(String[] args) { out = new PrintWriter(new BufferedOutputStream(System.out)); int t = sc.nextInt(); while(t-- >0){ // solve(); // solve2(); solve3(); } // Stop writing your solution here. ------------------------------------- out.close(); } //-----------PrintWriter for faster output--------------------------------- public static PrintWriter out; //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int[] readIntArray(int n){ int arr[] = new int[n]; for(int i = 0;i<n;i++){ arr[i] = Integer.parseInt(next()); } return arr; } int[] reverse(int arr[]){ int n= arr.length; int i = 0; int j = n-1; while(i<j){ int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; j--;i++; } return arr; } long[] readLongArray(int n){ long arr[] = new long[n]; for(int i = 0;i<n;i++){ arr[i] = Long.parseLong(next()); } return arr; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } private static void sort(int[] arr) { List<Integer> list = new ArrayList<>(); for (int i=0; i<arr.length; i++){ list.add(arr[i]); } Collections.sort(list); // collections.sort uses nlogn in backend for (int i = 0; i < arr.length; i++){ arr[i] = list.get(i); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
ed973458d719c903aeaa9da570ceae84
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; //import java.text.DecimalFormat; import java.util.*; import java.util.function.LongToIntFunction; public class Codeforces { static int mod= 998244353 ; public static void main(String[] args) throws Exception { PrintWriter out=new PrintWriter(System.out); FastScanner fs=new FastScanner(); int t=fs.nextInt(); outer:for(int time=1;time<=t;time++) { int n=fs.nextInt(); char arr[]=fs.next().toCharArray(); int ans=0; int rem=0; int next[]=new int[n+1]; next[n]=n; for(int i=n-1;i>=0;i--) { if(arr[i]==')') { next[i]=i; } else next[i]=next[i+1]; } int i=0; while(i<n-1) { if(arr[i]=='(') { i+=2; ans++; } else { int j= next[i+1]+1; if(j<n+1) { ans++; i=j; } else { break; } } } rem=Math.max(0, n-i); if(ans==0) rem=n; out.println(ans+" "+rem); } out.close(); } static long pow(long a,long b) { if(b<0) return 1; long res=1; while(b!=0) { if((b&1)!=0) { res*=a; res%=mod; } a*=a; a%=mod; b=b>>1; } return res; } static int gcd(int a,int b) { if(b==0) return a; return gcd(b,a%b); } static long nck(int n,int k) { if(k>n) return 0; long res=1; res*=fact(n); res%=mod; res*=modInv(fact(k)); res%=mod; res*=modInv(fact(n-k)); res%=mod; return res; } static long fact(long n) { // return fact[(int)n]; long res=1; for(int i=2;i<=n;i++) { res*=i; res%=mod; } return res; } static long modInv(long n) { return pow(n,mod-2); } static void sort(int[] a) { //suffle int n=a.length; Random r=new Random(); for (int i=0; i<a.length; i++) { int oi=r.nextInt(n); int temp=a[i]; a[i]=a[oi]; a[oi]=temp; } //then sort Arrays.sort(a); } static void sort(long[] a) { //suffle int n=a.length; Random r=new Random(); for (int i=0; i<a.length; i++) { int oi=r.nextInt(n); long temp=a[i]; a[i]=a[oi]; a[oi]=temp; } //then sort Arrays.sort(a); } // Use this to input code since it is faster than a Scanner static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long[] readArrayL(int n) { long a[]=new long[n]; for(int i=0;i<n;i++) a[i]=nextLong(); return a; } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
031c4a5134bf677030cfce855a795c51
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.math.BigInteger; import java.util.*; public class A { static ArrayList<Integer>[] adj; public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); for (int oo = 0; oo < t; oo++) { int n = sc.nextInt(); String s = sc.next(); char[] arr = s.toCharArray(); int begin = 0; int ans = 0; int last = 0; boolean prev = false; for (int i = 0; i < n; i++) { if (prev) { if (arr[i] == ')') { ans++; last = i; prev = false; } continue; } if (arr[i] == '(') { i++; if (i < n) { ans++; last = i; } } else { prev = true; } } System.out.print(ans + " "); System.out.println(last == 0 ? n : (n - last - 1)); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
d5aa893c02b093ca671ce0879e220d34
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; public class BracketDeletion { public static void main(String[] args) { try { FastReader in = new FastReader(); PrintWriter out = new PrintWriter(System.out); int testcases = in.nextInt(); while (testcases-- > 0) { int n = in.nextInt(); String s = in.nextLine(); int l = 0; int count = 0; // 2 pointer; editorial while (l + 1 < n) { // "() or ))" if (s.charAt(l) == '(' || s.charAt(l) == ')' && s.charAt(l + 1) == ')') { l = l + 2; } else { int r = l + 1; while (r < n && s.charAt(r) != ')') { ++r; } if (r == n) break; l = r + 1; } count++; } int remaining = n - l; out.println(count + " " + remaining); } out.close(); } catch ( Exception e) { // TODO: handle exception return; } } private static boolean isPalindrome(String temp) { boolean istrue = true; int n = temp.length(); if (n == 1) return false; for (int i = 0; i < temp.length(); i++) { if (temp.charAt(i) != temp.charAt(n - i - 1)) return false; } return istrue; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long[] readLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } String nextLine() { String str = ""; try { str = br.readLine().trim(); } catch (Exception e) { e.printStackTrace(); } return str; } } static boolean LOCAL = System.getProperty("ONLINE_JUDGE") == null; static void dbg(Object... o) { if (LOCAL) System.err.println(Arrays.deepToString(o)); } static final Random random = new Random(); static final int mod = 1_000_000_007; static void sortIntArray(int[] a) { int n = a.length;// shuffle, then sort for (int i = 0; i < n; i++) { int oi = random.nextInt(n), temp = a[oi]; a[oi] = a[i]; a[i] = temp; } Arrays.sort(a); } static void sortLongArray(long[] arr) { int n = arr.length; for (int i = 0; i < n; ++i) { long tmp = arr[i]; int randomPos = i + random.nextInt(n - i); arr[i] = arr[randomPos]; arr[randomPos] = tmp; } Arrays.sort(arr); } static void reverseSortLongArr(long[] arr) { int n = arr.length; for (int i = 0; i < n; ++i) { long tmp = arr[i]; int randomPos = i + random.nextInt(n - i); arr[i] = arr[randomPos]; arr[randomPos] = tmp; } Arrays.sort(arr); reverseLongArr(arr); } static void reverseSortIntArr(int[] a) { int n = a.length;// shuffle, then sort for (int i = 0; i < n; i++) { int oi = random.nextInt(n), temp = a[oi]; a[oi] = a[i]; a[i] = temp; } Arrays.sort(a); reverseIntArr(a); } public static void reverseLongArr(long[] arr) { int n = arr.length; for (int i = 0; i < n / 2; i++) { long temp = arr[i]; arr[i] = arr[n - i - 1]; arr[n - i - 1] = temp; } } public static void reverseIntArr(int[] array) { int n = array.length; for (int i = 0; i < n / 2; i++) { int temp = array[i]; array[i] = array[n - i - 1]; array[n - i - 1] = temp; } } static long add(long a, long b) { return (a + b) % mod; } static long sub(long a, long b) { return ((a - b) % mod + mod) % mod; } static long mul(long a, long b) { return (a * b) % mod; } static long exp(long base, long exp) { if (exp == 0) return 1; long half = exp(base, exp / 2); if (exp % 2 == 0) return mul(half, half); return mul(half, mul(half, base)); } static long[] factorials = new long[2_000_001]; static long[] invFactorials = new long[2_000_001]; static void precompFacts() { factorials[0] = invFactorials[0] = 1; for (int i = 1; i < factorials.length; i++) factorials[i] = mul(factorials[i - 1], i); invFactorials[factorials.length - 1] = exp(factorials[factorials.length - 1], mod - 2); for (int i = invFactorials.length - 2; i >= 0; i--) invFactorials[i] = mul(invFactorials[i + 1], i + 1); } static long nCk(int n, int k) { return mul(factorials[n], mul(invFactorials[k], invFactorials[n - k])); } static void sort(int[] a) { ArrayList<Integer> l = new ArrayList<>(); for (int i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } static void printArray(int arr[]) { for (int i : arr) { System.out.print(i + " "); } System.out.println(); } static void swap(int[] arr, int i, int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
b51a75f5f5170c16acf1664b9c0178b0
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.*; import java.util.*; public class cp { static PrintWriter w = new PrintWriter(System.out); static FastScanner s = new FastScanner(); static int mod = 1000000007; static class Edge { int src; int wt; int nbr; Edge(int src, int nbr, int et) { this.src = src; this.wt = et; this.nbr = nbr; } } class EdgeComparator implements Comparator<Edge> { @Override //return samllest elemnt on polling public int compare(Edge s1, Edge s2) { if (s1.wt < s2.wt) { return -1; } else if (s1.wt > s2.wt) { return 1; } return 0; } } static long gcd(long a, long b) { if (b == 0) { return a; } return gcd(b, a % b); } static void prime_till_n(boolean[] prime) { // Create a boolean array // "prime[0..n]" and // initialize all entries // it as true. A value in // prime[i] will finally be // false if i is Not a // prime, else true. for (int p = 2; p * p < prime.length; p++) { // If prime[p] is not changed, then it is a // prime if (prime[p] == true) { // Update all multiples of p for (int i = p * p; i < prime.length; i += p) { prime[i] = false; } } } // int l = 1; // for (int i = 2; i <= n; i++) { // if (prime[i]) { // w.print(i+","); // arr[i] = l; // l++; // } // } //Time complexit Nlog(log(N)) } static int noofdivisors(int n) { //it counts no of divisors of every number upto number n int arr[] = new int[n + 1]; for (int i = 1; i <= (n); i++) { for (int j = i; j <= (n); j = j + i) { arr[j]++; } } return arr[0]; } static char[] reverse(char arr[]) { char[] b = new char[arr.length]; int j = arr.length; for (int i = 0; i < arr.length; i++) { b[j - 1] = arr[i]; j = j - 1; } return b; } static long factorial(int n) { if (n == 0) { return 1; } long su = 1; for (int i = 1; i <= n; i++) { su *= (long) i; } return su; } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); public String next() { while (!st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } long[] readArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) { a[i] = nextLong(); } return a; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } static class Vertex { int x; int y; int wt; public Vertex(int x, int y) { this.x = x; this.y = y; } public Vertex(int x, int y, int wt) { this.x = x; this.y = y; this.wt = wt; } } public static long power(long x, int n) { if (n == 0) { return 1l; } long pow = power(x, n / 2) % mod; if ((n & 1) == 1) // if `y` is odd { return ((((x % mod) * (pow % mod)) % mod) * (pow % mod)) % mod; } // otherwise, `y` is even return ((pow % mod) * (pow % mod)) % mod; } public static void main(String[] args) { { int t = s.nextInt(); // int t = 1; while (t-- > 0) { solve(); } w.close(); } } public static void solve() { int n = s.nextInt(); String str = s.next(); char ch[]= str.toCharArray(); //int prev = ch[0]; int flag =2; if(n==1) { w.println(0+" 1");return; } int res1=0; int res2=n; for(int i=0;i<n;i++) { if(ch[i]=='('){ i++;res1++;res2-=2; } else { i++; int temp=1; while(i<n ) { temp++; if(ch[i]==')'){ flag=4;break;} i++; } if(flag==4) { res2-=temp;res1++; flag=3; } } if(i+1==n-1){ res2=1;break;} } w.println(res1+" "+res2); } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
6343b25e8616fb78e5c83cb98230a887
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; public class practice { public static void solve() { Reader sc = new Reader(); PrintWriter out = new PrintWriter(System.out); int t = sc.nextInt(); while(t-- > 0) { int n = sc.nextInt(); char[] arr = sc.next().toCharArray(); int operations = 0; int removed = 0; int i = 0; int j = i + 1; while(j < n) { if(i < n - 1 && arr[i] == '(') { operations++; i += 2; removed += 2; } else { while(j < n && arr[j] != ')') j++; if(j < n && arr[j] == ')') { operations++; removed += (j - i + 1); } i = j + 1; } j = i + 1; } out.println(operations + " " + (n - removed)); } out.flush(); } public static void main(String[] args) throws IOException { solve(); } static String[] sort(String[] arr,int n) { List<String> list = new ArrayList<>(); for(int i = 0;i < n;i++) list.add(arr[i]); Collections.sort(list); for(int i = 0;i < n;i++) arr[i] = list.get(i); return arr; } static class Reader { BufferedReader br; StringTokenizer st; public Reader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { if(st.hasMoreTokens()) str = st.nextToken("\n"); else str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
c932e92aa3d5a38a44223cda8c132370
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.Scanner; public class C1657 { public static void main(String[] args) { Scanner in = new Scanner(System.in); int T = in.nextInt(); for (int t = 0; t < T; t++) { int N = in.nextInt(); String S = in.next(); int steps = 0; int removedChars = 0; int lastEnd = 0; int depth = 0; int lastStart = 0; StringBuilder sb = new StringBuilder(); for (int n = 0; n < N; n++) { char c = S.charAt(n); sb.append(c); if (c == '(') { depth++; } else { depth--; if (depth == 0) { // valid bracket sequence steps++; removedChars += sb.length(); lastStart = n + 1; sb.setLength(0); continue; } } if (sb.length() >= 2 && n >= lastEnd) { String reversed = sb.reverse().toString(); sb.reverse(); int reverseStart = S.indexOf(reversed, lastStart); if (reverseStart == -1) { lastEnd = Integer.MAX_VALUE; } else { int reverseEnd = reverseStart + sb.length() - 1; if (reverseEnd == n) { steps++; removedChars += sb.length(); sb.setLength(0); lastStart = n + 1; depth = 0; } else { lastEnd = reverseEnd; } } } } System.out.println(steps + " " + (S.length() - removedChars)); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
35888d6bf5cd0e8b4a7090dccce67895
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; public class Main { public static void main(String[] args) { Scanner in = new Scanner(System.in); int t = in.nextInt(); while (t-- > 0) { int n = in.nextInt(); String str = in.next(); int sum = 0; int s = 0; for (int i = 1; i < n; ) { if (str.charAt(i) == '(') { if (str.charAt(s) == '(') { sum++; s = i + 1; i += 2; } else { i++; } } else { if (str.charAt(i) == '(') { i++; } else { sum++; s = i + 1; i += 2; } } } System.out.println(sum + " " + (n - s)); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
b0023a97a168e29f61dd0d061dabdcae
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.*; import java.util.*; public class BasicCode { static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(String file) throws FileNotFoundException { br = new BufferedReader(new FileReader(file)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public boolean ready() throws IOException { return br.ready(); } } public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); int t = sc.nextInt(); for(int l=0;l<t;l++) { int n = sc.nextInt(); String s = sc.next(); int c = 0; int r = n; boolean ws = false; for(int i=0;i<n;i++) { if(ws) { if(s.charAt(i)==')') { ws = false; c++; r = n-(i+1); } } else { if(s.charAt(i)==')') { ws = true; } else { if(i!=n-1) { c++; r = n-(i+2); i++; } } } } pw.print(c + " " + r + "\n"); } pw.close(); } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
828ad22f62bf92e0c6b8bd81aed27fbc
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Scanner; /** * Built using CHelper plug-in * Actual solution is at the top * * @author cpp */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); CBracketSequenceDeletion solver = new CBracketSequenceDeletion(); solver.solve(1, in, out); out.close(); } static class CBracketSequenceDeletion { public void solve(int testNumber, Scanner in, PrintWriter out) { int t = in.nextInt(); while (t-- > 0) { int n = in.nextInt(); String s = in.next(); printAns(n, s, out); } } private void printAns(int n, String s, PrintWriter out) { int count = 0; int index = 0; while (index + 1 < s.length()) { char first = s.charAt(index); if (first == '(') { count += 1; index += 2; } else { if (s.charAt(index + 1) == ')') { count += 1; index += 2; } else { int curr = index + 2; while (curr < s.length() && s.charAt(curr) != ')') { curr++; } if (curr < s.length()) { index = curr + 1; count++; } else { break; } } } } out.println(count + " " + (s.length() - index)); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
48e82261cf614003ea3ecc67c6954a94
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.Map; import java.util.PriorityQueue; import java.util.Queue; import java.util.Scanner; import java.util.Stack; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.TreeSet; public class Practice1 { static long[] sort(long[] arr) { int n=arr.length; ArrayList<Long> al=new ArrayList<>(); for(int i=0;i<n;i++) { al.add(arr[i]); } Collections.sort(al); for(int i=0;i<n;i++) { arr[i]=al.get(i); } return arr; } static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } static long nCr(int n, int r) { // int x=1000000007; long dp[][]=new long[2][r+1]; for(int i=0;i<=n;i++){ for(int j=0;j<=i&&j<=r;j++){ if(i==0||j==0||i==j){ dp[i%2][j]=1; }else { // dp[i%2][j]=(dp[(i-1)%2][j]+dp[(i-1)%2][j-1])%x; dp[i%2][j]=(dp[(i-1)%2][j]+dp[(i-1)%2][j-1]); } } } return dp[n%2][r]; } public static class UnionFind { private final int[] p; public UnionFind(int n) { p = new int[n]; for (int i = 0; i < n; i++) { p[i] = i; } } public int find(int x) { return x == p[x] ? x : (p[x] = find(p[x])); } public void union(int x, int y) { x = find(x); y = find(y); if (x != y) { p[x] = y; } } } public static boolean ispalin(String str) { int n=str.length(); for(int i=0;i<n/2;i++) { if(str.charAt(i)!=str.charAt(n-i-1)) { return false; } } return true; } static class Pair{ int val; int pos; Pair(int val,int pos){ this.val=val; this.pos=pos; } } static long power(long N,long R) { long x=1000000007; if(R==0) return 1; if(R==1) return N; long temp= power(N,R/2)%x; // (a*b)%p = (a%p*b%p)*p temp=(temp*temp)%x; if(R%2==0){ return temp%x; }else{ return (N*temp)%x; } } public static String binary(int n) { StringBuffer ans=new StringBuffer(); int a=4; while(a-->0) { int temp=(n&1); if(temp!=0) { ans.append('1'); }else { ans.append('0'); } n =n>>1; } ans=ans.reverse(); return ans.toString(); } public static int find(String[][] arr,boolean[][] vis,int dir,int i,int j) { if(i<0||i>=arr.length||j<0||j>=arr[0].length) return 0; if(vis[i][j]==true) return 0; if(dir==1&&arr[i][j].charAt(0)=='1') return 0; if(dir==2&&arr[i][j].charAt(1)=='1') return 0; if(dir==3&&arr[i][j].charAt(2)=='1') return 0; if(dir==4&&arr[i][j].charAt(3)=='1') return 0; vis[i][j]=true; int a=find(arr,vis,1,i+1,j); int b=find(arr,vis,2,i-1,j); int c=find(arr,vis,3,i,j+1); int d=find(arr,vis,4,i,j-1); return 1+a+b+c+d; } static ArrayList<Integer> allDivisors(int n) { ArrayList<Integer> al=new ArrayList<>(); int i=2; while(i*i<=n) { if(n%i==0) al.add(i); if(n%i==0&&i*i!=n) al.add(n/i); i++; } return al; } static int[] sort(int[] arr) { int n=arr.length; ArrayList<Integer> al=new ArrayList<>(); for(int i=0;i<n;i++) { al.add(arr[i]); } Collections.sort(al); for(int i=0;i<n;i++) { arr[i]=al.get(i); } return arr; } /** Code for Dijkstra's algorithm **/ public static class ListNode { int vertex, weight; ListNode(int v, int w) { vertex = v; weight = w; } int getVertex() { return vertex; } int getWeight() { return weight; } } public static int[] dijkstra( int V, ArrayList<ArrayList<ListNode> > graph, int source) { int[] distance = new int[V]; for (int i = 0; i < V; i++) distance[i] = Integer.MAX_VALUE; distance[0] = 0; PriorityQueue<ListNode> pq = new PriorityQueue<>( (v1, v2) -> v1.getWeight() - v2.getWeight()); pq.add(new ListNode(source, 0)); while (pq.size() > 0) { ListNode current = pq.poll(); for (ListNode n : graph.get(current.getVertex())) { if (distance[current.getVertex()] + n.getWeight() < distance[n.getVertex()]) { distance[n.getVertex()] = n.getWeight() + distance[current.getVertex()]; pq.add(new ListNode( n.getVertex(), distance[n.getVertex()])); } } } // If you want to calculate distance from source to // a particular target, you can return // distance[target] return distance; } public static void main (String[] args) { PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); // out.print(); //out.println(); FastReader sc=new FastReader(); int t=sc.nextInt(); while(t-->0) { int n=sc.nextInt(); String str=sc.nextLine(); int start=0,i=1; int count=0; while(i<n) { if(str.charAt(start)=='(') { start=i+1; i=start+1; count++; }else { if(str.charAt(i)==')') { count++; start=i+1; i=start+1; }else { i++; } } } out.println(count+" "+(n-start)); } out.close(); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
09498efdecfb059abfbd7dbc9720338f
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.*; import java.util.*; public class C{ public static void main(String[] args) { Scanner s=new Scanner(System.in); int t=s.nextInt(); while(t-->0){ int n=s.nextInt(); String S=s.next(); char c[]=S.toCharArray(); int op=0; int remaining=0; String A=""; String B=""; int closing=0; int q=0; for(int i=0;i<n;i++){ if(c[i]=='('){ if(i==n-1){ remaining=1; break; } op++; i++; } else{ int s1=i+1; int id=-1; for(int j=s1;j<n;j++){ if(c[j]==')') { id=j; break; } } if(id==-1){ remaining=n-i; break; } else{ i=id; op++; } } } System.out.println(op+" "+remaining); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
082b171c404afc539a4c97392217502f
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Pranay */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastReader in = new FastReader(inputStream); PrintWriter out = new PrintWriter(outputStream); CBracketSequenceDeletion solver = new CBracketSequenceDeletion(); int testCount = Integer.parseInt(in.next()); for (int i = 1; i <= testCount; i++) solver.solve(i, in, out); out.close(); } static class CBracketSequenceDeletion { public void solve(int testNumber, FastReader in, PrintWriter out) { int n = in.nextInt(); char[] c = in.next().toCharArray(); int opr = 0, ind = 0; while (ind + 1 < n) { if (c[ind] == ')' && c[ind + 1] == '(') { int tmp = ind + 1; while (tmp < n && c[tmp] == '(') tmp++; if (tmp == n) break; opr++; ind = tmp + 1; } else { ind += 2; opr++; } } out.println(opr + " " + (n - ind)); } } static class FastReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private FastReader.SpaceCharFilter filter; public FastReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
3ac3e669b5715bde79df60c2161ddb3f
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.*; import java.util.*; public class C { static int t,n,s,opt,size; static char c[]; static boolean ok; static Scanner sc=new Scanner(System.in); static BufferedReader bf=new BufferedReader(new InputStreamReader(System.in)); static StreamTokenizer in=new StreamTokenizer(bf); static PrintWriter out=new PrintWriter(new BufferedOutputStream(System.out)); public static void main(String[] args) throws IOException{ t=sc.nextInt(); while(t-->0) solve(); out.flush(); } static void solve() throws IOException { n=sc.nextInt(); size=n; c=sc.next().toCharArray(); s=0;opt=0; Deque<Character> deque=new ArrayDeque<>(); for(int i=0;i<size;++i){ boolean add=true; if(!deque.isEmpty()){ if(deque.peekFirst()=='('&&c[i]==')'){ deque.pollFirst(); add=false; } } if(add) deque.addFirst(c[i]); else if(deque.isEmpty()){ opt++; n-=i-s+1; s=i+1; } if(s<i&&c[s]==c[i]){ n-=i-s+1; s=i+1; opt++; deque.clear(); } } out.println(opt+" "+n); } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
b75910334fe1e7a64d18b10b86931302
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.*; import java.util.*; public class C { static int t,n,s,opt,size; static char c[]; static boolean ok; static Scanner sc=new Scanner(System.in); static BufferedReader bf=new BufferedReader(new InputStreamReader(System.in)); static StreamTokenizer in=new StreamTokenizer(bf); static PrintWriter out=new PrintWriter(new BufferedOutputStream(System.out)); public static void main(String[] args) throws IOException{ t=sc.nextInt(); while(t-->0) solve(); out.flush(); } static void solve() throws IOException { n=sc.nextInt(); size=n; c=sc.next().toCharArray(); s=0;opt=0; Deque<Character> deque=new ArrayDeque<>(); for(int i=0;i<size;++i){ boolean add=true; if(!deque.isEmpty()){ if(deque.peekFirst()=='('&&c[i]==')'){ deque.pollFirst(); add=false; } } if(add) deque.addFirst(c[i]); else if(deque.isEmpty()&&i>0){ opt++; n-=i-s+1; s=i+1; continue; } if(s<i&&check(i)){ opt++; deque.clear(); n-=i-s+1; s=i+1; } } out.println(opt+" "+n); } static boolean check(int end){ int l=s,r=end; while(l<r&&c[l]==c[r]){ l++; r--; } return l>=r; } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
0060d767f638c5aa240f102d7f14ac1e
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; public class Main{ public static void main(String args[]) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); for(int i=1;i<=t;i++) { int n = sc.nextInt(); String str = sc.next(); int firstIndex = 0; int lastIndex = 1; int opr = 0; int len = str.length(); while(lastIndex <= str.length() - 1) { if(str.charAt(firstIndex) == '(') { opr++;len -= 2;firstIndex = lastIndex + 1;lastIndex = firstIndex + 1; } else { while(lastIndex <= str.length() - 1 && str.charAt(lastIndex) != str.charAt(firstIndex)) { lastIndex++; } if(lastIndex <= str.length() - 1) { opr++;len -= lastIndex - firstIndex + 1;firstIndex = lastIndex + 1; lastIndex = firstIndex + 1; } else { break; } } } System.out.println(opr + " " + len); } sc.close(); } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
c9c4833b8104ae6da170a9727410d177
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.Scanner; import java.util.Stack; public class Main { public static void main(String[] args){ Scanner scanner = new Scanner(System.in); int num = scanner.nextInt(); while(num > 0){ int length = scanner.nextInt(); scanner.nextLine(); String s = scanner.nextLine(); System.out.println(getOpAndLast(length, s)); num --; } } private static String getOpAndLast(int length, String s){ // 括号字符串需要有效,或者为回文 // 每次要求的是最短,要么有效,要么是回文 // 超时,我理解是回文的判断超时了 Stack<Character> regularStack = new Stack<>(); int opCount = 0; int lastIdx = 0; for(int i=0;i<length;i++){ Character c = s.charAt(i); if(regularStack.isEmpty()){ regularStack.push(c); }else{ if(regularStack.peek() == '(' && c == ')'){ regularStack.pop(); }else{ regularStack.push(c); } // 任意一个条件成立均可 if(regularStack.isEmpty() || isPalindrome(s, lastIdx, i)){ opCount ++; lastIdx = i+1; regularStack.clear(); } } } StringBuilder sb = new StringBuilder(); sb.append(opCount); sb.append(' '); sb.append(opCount == 0 ? length : (length - lastIdx)); return sb.toString(); } private static boolean isPalindrome(String s, int start, int end){ while(start < end && s.charAt(start) == s.charAt(end)){ start ++; end --; } return (start == end) || (start == end + 1); } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
2921a7bedc0d1f0d67600f145439de25
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.ArrayList; import java.util.Scanner; import java.util.Stack; public class Solution { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while(t>0) { int n = sc.nextInt(); ArrayList<Character> a = new ArrayList<>(); String s = sc.next(); for (int i = 0; i < n; i++) { a.add(s.charAt(i)); } int charLeft = n; int ops = 0; boolean canBeRegular = true; int start = 0; int end = 0; Stack<Character> expression = new Stack<>(); for (int i = 0; i < n; i++) { if(a.get(i)=='(') { expression.add('('); } else { if(expression.size()==0) { canBeRegular=false; } else { expression.pop(); } } end = i; if(canBeRegular && expression.size()==0) { charLeft-=end-start+1; start=end+1; canBeRegular=true; expression.clear(); ops++; } else if(end-start>=1) { if(isPalin(a, start, end)) { charLeft-=end-start+1; start=end+1; canBeRegular=true; expression.clear(); ops++; } } } System.out.println(ops + " " + charLeft); t--; } } public static boolean isPalin(ArrayList<Character> a, int s, int e) { for (int i = s; i <= e; i++) { if(a.get(i)!=a.get(e-(i-s))) { return false; } } return true; } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
6d517faa98774f03b87f3849bec3947c
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; public class Main { public static void main (String[] args)throws IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int t=Integer.parseInt(br.readLine()); while(t-->0){ int n=Integer.parseInt(br.readLine()); String h=br.readLine(); char ch[]=h.toCharArray(); Stack<Character> stack=new Stack<>(); int ans=0; int pointer=-1; int i; // int n=h.length(); HashMap<Character,Integer> map=new HashMap<>(); //int ans=0; for(i=0;i<n;i++){ if(map.containsKey(ch[i])){ if((i-map.get(ch[i]))==1&&(!map.containsKey(reverse(ch[i])))){ pointer=i; map.clear(); stack.clear(); ans++; } else if(map.containsKey(ch[i])&&(i-map.get(ch[i]))!=1){ stack.clear(); map.clear(); pointer=i; ans++; } else{ map.put(ch[i],i); } } else{ map.put(ch[i],i); } if(pointer!=i){ if(ch[i]=='('){ stack.push('('); } else{ if(!stack.isEmpty()){ stack.pop(); if(stack.isEmpty()){ pointer=i; stack.clear(); map.clear(); ans++; } } } } } System.out.println(ans+" "+(n-1-pointer)); } } public static char reverse(char a){ if(a=='(') return ')'; return '('; } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
bd0819369fbf69a42d0b3f0eca02e964
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class Codechef { /* * Aim 1: Do 200 DP codeforces problems * Aim 2: Beat Sparsh in ratings before 2 june. * */ static long fans[] = new long[200001]; static long inv[] = new long[200001]; static long mod = 1000000007; static void init() { fans[0] = 1; inv[0] = 1; fans[1] = 1; inv[1] = 1; for (int i = 2; i < 200001; i++) { fans[i] = ((long) i * fans[i - 1]) % mod; inv[i] = power(fans[i], mod - 2); } } static long ncr(int n, int r) { return (((fans[n] * inv[n - r]) % mod) * (inv[r])) % mod; } public static void main(String[] args) throws java.lang.Exception { FastReader in = new FastReader(System.in); StringBuilder sb = new StringBuilder(); int t = 1; t = in.nextInt(); while (t > 0) { --t; int n = in.nextInt(); String s = in.next(); int op = 0; int st = 0; int fill[] = new int[n]; Arrays.fill(fill, -1); fillfill(fill,s); TreeSet<Integer> open = new TreeSet<>(); TreeSet<Integer> close = new TreeSet<>(); for(int i = 0;i<n;i++) { if(s.charAt(i) == '(') open.add(i); else close.add(i); } while(true) { int l1 = (fill[st] == -1?0:fill[st]-st+1); int l2 = longestpall(s,st,n,(s.charAt(st) == '('?open:close)); int max; if(l1!=0 && l2!=0) max = Math.min(l1, l2); else max = Math.max(l1, l2); if(max>0) { ++op; st = st + max; } if(max == 0 || st == s.length()) break; } int left = s.length() - st; sb.append(op+" "+left+"\n"); } System.out.print(sb); } static int longestpall(String s, int st,int n,TreeSet<Integer> set) { int len = 0; Integer val = set.higher(st); while(val!=null) { int j = val.intValue(); int i = st; boolean poss = true; while(i<j) { if(s.charAt(i)!=s.charAt(j)) { poss = false; break; } ++i; --j; } if(poss) return (val.intValue()-st+1); val = set.higher(val.intValue()); } return 0; } static void fillfill(int fill[],String s){ Stack<Integer> st = new Stack<>(); for(int i = 0;i<s.length();i++) { if(s.charAt(i) == '(') st.push(i); else { if(st.size()>0) { fill[st.pop()] = i; } } } } static long power(long x, long y) { long res = 1; // Initialize result while (y > 0) { // If y is odd, multiply x with result if ((y & 1) != 0) res = ((res % mod) * (x % mod)) % mod; // y must be even now y = y >> 1; // y = y/2 x = ((x % mod) * (x % mod)) % mod; // Change x to x^2 } return res; } static long[] generateArray(FastReader in, int n) throws IOException { long arr[] = new long[n]; for (int i = 0; i < n; i++) arr[i] = in.nextLong(); return arr; } static long[][] generatematrix(FastReader in, int n, int m) throws IOException { long arr[][] = new long[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { arr[i][j] = in.nextLong(); } } return arr; } static long gcd(long a, long b) { if (a == 0) return b; else return gcd(b % a, a); } static long lcm(long a, long b) { return (a / gcd(a, b)) * b; } static void sort(long[] a) { ArrayList<Long> l = new ArrayList<>(); for (long i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } } class FastReader { byte[] buf = new byte[2048]; int index, total; InputStream in; FastReader(InputStream is) { in = is; } int scan() throws IOException { if (index >= total) { index = 0; total = in.read(buf); if (total <= 0) { return -1; } } return buf[index++]; } String next() throws IOException { int c; for (c = scan(); c <= 32; c = scan()) ; StringBuilder sb = new StringBuilder(); for (; c > 32; c = scan()) { sb.append((char) c); } return sb.toString(); } String nextLine() throws IOException { int c; for (c = scan(); c <= 32; c = scan()) ; StringBuilder sb = new StringBuilder(); for (; c != 10 && c != 13; c = scan()) { sb.append((char) c); } return sb.toString(); } char nextChar() throws IOException { int c; for (c = scan(); c <= 32; c = scan()) ; return (char) c; } int nextInt() throws IOException { int c, val = 0; for (c = scan(); c <= 32; c = scan()) ; boolean neg = c == '-'; if (c == '-' || c == '+') { c = scan(); } for (; c >= '0' && c <= '9'; c = scan()) { val = (val << 3) + (val << 1) + (c & 15); } return neg ? -val : val; } long nextLong() throws IOException { int c; long val = 0; for (c = scan(); c <= 32; c = scan()) ; boolean neg = c == '-'; if (c == '-' || c == '+') { c = scan(); } for (; c >= '0' && c <= '9'; c = scan()) { val = (val << 3) + (val << 1) + (c & 15); } return neg ? -val : val; } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
3fb4c256ed44290b6c312680c45569f0
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
// package EDURound125; import java.io.*; import java.util.*; public class C { // GOGIGO!!! public static void main(String[] args) throws IOException { // all possible prefix to remove :- (( , )) ,)(),() ,))( // Scanner sc = new Scanner(new FileReader("input.in")); // PrintWriter pw = new PrintWriter(new FileWriter("")); Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); // int t = 1; int t = sc.nextInt(); while(t-->0){ int n = sc.nextInt(); char [] a = sc.nextLine().toCharArray(); int i = 0; int count = 0; int old=-1; boolean flag = false; while(i<a.length){ if(a[i]=='('){ if(i==n-1){ break; } i+=2; }else{ // staring --> ) if(i==n-1){ break; } else{ old = i; i++; while(a[i]!=')'){ if(i==n-1){ flag=true; break; } i++; } i++; } if(flag)break; } count++; } int len = n-i; if(flag) len = n-old; pw.println(count+" "+ len); } pw.close(); } // -------------------------------------------------------Basics---------------------------------------------------- //------------------------------------------------------ BINARYSEARCH ------------------------------------------------ // binary search // first occur // last occur public static int binarySearch(long x, Long [] a){ int i =0; int j = a.length-1; int mid ; while(i<=j){ mid = (i+j)/2; if(a[mid]<=x){ i=mid+1; }else{ j=mid-1; } } return i; } // ------------------------------------------------------- MATH ---------------------------------------------------- private static int gcd(int a, int b) { return (b == 0)? a : gcd(b, a % b); } private static long gcd(long a, long b) { return (b == 0)? a : gcd(b, a % b); } private static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } private static long lcm(long a, long b) { return (a / gcd(a, b)) * b; } // ------------------------------------------------------ Objects -------------------------------------------------- static class Pair implements Comparable<Pair>{ long x ; long y ; Pair(long x , long y){ this.x=x; this.y=y; } @Override public int compareTo(Pair o) { if(this.x==o.x)return 0; if(this.x>o.x)return 1; return -1; } @Override public String toString() { return x +" " + y ; } } static class Tuple implements Comparable<Tuple>{ int x; int y; int z; Tuple(int x, int y , int z){ this.x=x; this.y=y; this.z=z; } @Override public int compareTo(Tuple o) { if(this.x==o.x){ if(this.y==o.y)return this.z-o.z; return this.y-o.y; } return this.x-o.x; } @Override public String toString() { return x +" " + y + " " + z ; } } // -------------------------------------------------------Scanner--------------------------------------------------- static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public long[] nextlongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public Long[] nextLongArray(int n) throws IOException { Long[] a = new Long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public boolean ready() throws IOException { return br.ready(); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
68a1a665ede402025172552d24497f46
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.Scanner; public class cfContest1657 { public static void main(String[] args) { Scanner scan = new Scanner(System.in); int t = scan.nextInt(); StringBuilder sb = new StringBuilder(); while (t-- > 0) { int n = scan.nextInt(); String s = scan.next(); int k = 0; int count = 0; for (int i = 0; i < n; i++) { if (i + 1 < n && s.charAt(i) == '(' && s.charAt(i + 1) == ')') { k = i + 1; ++i; ++count; } else if (i + 1 < n && s.charAt(i) == '(' && s.charAt(i + 1) == '(') { k = i + 1; i += 1; ++count; } else if (i + 1 < n && s.charAt(i) == ')' && s.charAt(i + 1) == ')') { k = i + 1; ++i; ++count; } else { int p = i + 1; while (p < n && s.charAt(p) == '(') { ++p; } if (p < n && s.charAt(p) == ')') { i = p; k = p; ++count; } else { i = p; } } } if (count == 0) { sb.append(count + " " + (n) + "\n"); } else { sb.append(count + " " + (n - k - 1) + "\n"); } } System.out.println(sb); } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
6f8f68af4d3640875684990f47a31934
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.*; import java.util.*; import java.math.*; import java.math.BigInteger; public final class A { static PrintWriter out = new PrintWriter(System.out); static StringBuilder ans=new StringBuilder(); static FastReader in=new FastReader(); // static int g[][]; static ArrayList<Integer> g[]; static long mod=(long)998244353,INF=Long.MAX_VALUE; static boolean set[]; static int max=0; static int lca[][]; static int par[],col[],D[]; static long fact[]; static int size[],N; static long dp[][],sum[][],f[]; static int seg[]; public static void main(String args[])throws IOException { /* * star,rope,TPST * BS,LST,MS,MQ */ int T=i(); outer:while(T-->0) { int N=i(); char X[]=in.next().toCharArray(); int moves=0,left=N; for(int i=0; i<N-1; i++) { if(X[i]==X[i+1]) { moves++; left-=2; i++; } else if(X[i]=='(') { moves++; left-=2; i++; } else { boolean f=false; for(int j=i+1; j<N; j++) { if(X[j]==')') { moves++; left-=(j-i+1); i=j; f=true; break; } } if(!f)break; // break; } } ans.append(moves+" "+left+"\n"); } out.print(ans); out.close(); } static int [] prefix(char s[],int N) { // int n = (int)s.length(); // vector<int> pi(n); N=s.length; int pi[]=new int[N]; for (int i = 1; i < N; i++) { int j = pi[i-1]; while (j > 0 && s[i] != s[j]) j = pi[j-1]; if (s[i] == s[j]) j++; pi[i] = j; } return pi; } static int count(long N) { int cnt=0; long p=1L; while(p<=N) { if((p&N)!=0)cnt++; p<<=1; } return cnt; } static long kadane(long A[]) { long lsum=A[0],gsum=0; gsum=Math.max(gsum, lsum); for(int i=1; i<A.length; i++) { lsum=Math.max(lsum+A[i],A[i]); gsum=Math.max(gsum,lsum); } return gsum; } public static boolean pal(int i) { StringBuilder sb=new StringBuilder(); StringBuilder rev=new StringBuilder(); int p=1; while(p<=i) { if((i&p)!=0) { sb.append("1"); } else sb.append("0"); p<<=1; } rev=new StringBuilder(sb.toString()); rev.reverse(); if(i==8)System.out.println(sb+" "+rev); return (sb.toString()).equals(rev.toString()); } public static void reverse(int i,int j,int A[]) { while(i<j) { int t=A[i]; A[i]=A[j]; A[j]=t; i++; j--; } } public static int ask(int a,int b,int c) { System.out.println("? "+a+" "+b+" "+c); return i(); } static int[] reverse(int A[],int N) { int B[]=new int[N]; for(int i=N-1; i>=0; i--) { B[N-i-1]=A[i]; } return B; } static boolean isPalin(char X[]) { int i=0,j=X.length-1; while(i<=j) { if(X[i]!=X[j])return false; i++; j--; } return true; } static int distance(int a,int b) { int d=D[a]+D[b]; int l=LCA(a,b); l=2*D[l]; return d-l; } static int LCA(int a,int b) { if(D[a]<D[b]) { int t=a; a=b; b=t; } int d=D[a]-D[b]; int p=1; for(int i=0; i>=0 && p<=d; i++) { if((p&d)!=0) { a=lca[a][i]; } p<<=1; } if(a==b)return a; for(int i=max-1; i>=0; i--) { if(lca[a][i]!=-1 && lca[a][i]!=lca[b][i]) { a=lca[a][i]; b=lca[b][i]; } } return lca[a][0]; } static void dfs(int n,int p) { lca[n][0]=p; if(p!=-1)D[n]=D[p]+1; for(int c:g[n]) { if(c!=p) { dfs(c,n); } } } static int[] prefix_function(char X[])//returns pi(i) array { int N=X.length; int pre[]=new int[N]; for(int i=1; i<N; i++) { int j=pre[i-1]; while(j>0 && X[i]!=X[j]) j=pre[j-1]; if(X[i]==X[j])j++; pre[i]=j; } return pre; } static TreeNode start; public static void f(TreeNode root,TreeNode p,int r) { if(root==null)return; if(p!=null) { root.par=p; } if(root.val==r)start=root; f(root.left,root,r); f(root.right,root,r); } static int right(int A[],int Limit,int l,int r) { while(r-l>1) { int m=(l+r)/2; if(A[m]<Limit)l=m; else r=m; } return l; } static int left(int A[],int a,int l,int r) { while(r-l>1) { int m=(l+r)/2; if(A[m]<a)l=m; else r=m; } return l; } static void build(int v,int tl,int tr,int A[]) { if(tl==tr) { seg[v]=A[tl]; return; } int tm=(tl+tr)/2; build(v*2,tl,tm,A); build(v*2+1,tm+1,tr,A); seg[v]=seg[v*2]+seg[v*2+1]; } static void update(int v,int tl,int tr,int index) { if(index==tl && index==tr) { seg[v]--; } else { int tm=(tl+tr)/2; if(index<=tm)update(v*2,tl,tm,index); else update(v*2+1,tm+1,tr,index); seg[v]=seg[v*2]+seg[v*2+1]; } } static int ask(int v,int tl,int tr,int l,int r) { if(l>r)return 0; if(tl==l && r==tr) { return seg[v]; } int tm=(tl+tr)/2; return ask(v*2,tl,tm,l,Math.min(tm, r))+ask(v*2+1,tm+1,tr,Math.max(tm+1, l),r); } static boolean f(long A[],long m,int N) { long B[]=new long[N]; for(int i=0; i<N; i++) { B[i]=A[i]; } for(int i=N-1; i>=0; i--) { if(B[i]<m)return false; if(i>=2) { long extra=Math.min(B[i]-m, A[i]); long x=extra/3L; B[i-2]+=2L*x; B[i-1]+=x; } } return true; } static int f(int l,int r,long A[],long x) { while(r-l>1) { int m=(l+r)/2; if(A[m]>=x)l=m; else r=m; } return r; } static boolean f(long m,long H,long A[],int N) { long s=m; for(int i=0; i<N-1;i++) { s+=Math.min(m, A[i+1]-A[i]); } return s>=H; } static long ask(long l,long r) { System.out.println("? "+l+" "+r); return l(); } static long f(long N,long M) { long s=0; if(N%3==0) { N/=3; s=N*M; } else { long b=N%3; N/=3; N++; s=N*M; N--; long a=N*M; if(M%3==0) { M/=3; a+=(b*M); } else { M/=3; M++; a+=(b*M); } s=Math.min(s, a); } return s; } static int ask(StringBuilder sb,int a) { System.out.println(sb+""+a); return i(); } static void swap(char X[],int i,int j) { char x=X[i]; X[i]=X[j]; X[j]=x; } static int min(int a,int b,int c) { return Math.min(Math.min(a, b), c); } static long and(int i,int j) { System.out.println("and "+i+" "+j); return l(); } static long or(int i,int j) { System.out.println("or "+i+" "+j); return l(); } static int len=0,number=0; static void f(char X[],int i,int num,int l) { if(i==X.length) { if(num==0)return; //update our num if(isPrime(num))return; if(l<len) { len=l; number=num; } return; } int a=X[i]-'0'; f(X,i+1,num*10+a,l+1); f(X,i+1,num,l); } static boolean is_Sorted(int A[]) { int N=A.length; for(int i=1; i<=N; i++)if(A[i-1]!=i)return false; return true; } static boolean f(StringBuilder sb,String Y,String order) { StringBuilder res=new StringBuilder(sb.toString()); HashSet<Character> set=new HashSet<>(); for(char ch:order.toCharArray()) { set.add(ch); for(int i=0; i<sb.length(); i++) { char x=sb.charAt(i); if(set.contains(x))continue; res.append(x); } } String str=res.toString(); return str.equals(Y); } static boolean all_Zero(int f[]) { for(int a:f)if(a!=0)return false; return true; } static long form(int a,int l) { long x=0; while(l-->0) { x*=10; x+=a; } return x; } static int count(String X) { HashSet<Integer> set=new HashSet<>(); for(char x:X.toCharArray())set.add(x-'0'); return set.size(); } static int f(long K) { long l=0,r=K; while(r-l>1) { long m=(l+r)/2; if(m*m<K)l=m; else r=m; } return (int)l; } // static void build(int v,int tl,int tr,long A[]) // { // if(tl==tr) // { // seg[v]=A[tl]; // } // else // { // int tm=(tl+tr)/2; // build(v*2,tl,tm,A); // build(v*2+1,tm+1,tr,A); // seg[v]=Math.min(seg[v*2], seg[v*2+1]); // } // } static int [] sub(int A[],int B[]) { int N=A.length; int f[]=new int[N]; for(int i=N-1; i>=0; i--) { if(B[i]<A[i]) { B[i]+=26; B[i-1]-=1; } f[i]=B[i]-A[i]; } for(int i=0; i<N; i++) { if(f[i]%2!=0)f[i+1]+=26; f[i]/=2; } return f; } static int[] f(int N) { char X[]=in.next().toCharArray(); int A[]=new int[N]; for(int i=0; i<N; i++)A[i]=X[i]-'a'; return A; } static int max(int a ,int b,int c,int d) { a=Math.max(a, b); c=Math.max(c,d); return Math.max(a, c); } static int min(int a ,int b,int c,int d) { a=Math.min(a, b); c=Math.min(c,d); return Math.min(a, c); } static HashMap<Integer,Integer> Hash(int A[]) { HashMap<Integer,Integer> mp=new HashMap<>(); for(int a:A) { int f=mp.getOrDefault(a,0)+1; mp.put(a, f); } return mp; } static long mul(long a, long b) { return ( a %mod * 1L * b%mod )%mod; } static void swap(int A[],int a,int b) { int t=A[a]; A[a]=A[b]; A[b]=t; } static int find(int a) { if(par[a]<0)return a; return par[a]=find(par[a]); } static void union(int a,int b) { a=find(a); b=find(b); if(a!=b) { if(par[a]>par[b]) //this means size of a is less than that of b { int t=b; b=a; a=t; } par[a]+=par[b]; par[b]=a; } } static boolean isSorted(int A[]) { for(int i=1; i<A.length; i++) { if(A[i]<A[i-1])return false; } return true; } static boolean isDivisible(StringBuilder X,int i,long num) { long r=0; for(; i<X.length(); i++) { r=r*10+(X.charAt(i)-'0'); r=r%num; } return r==0; } static int lower_Bound(int A[],int low,int high, int x) { if (low > high) if (x >= A[high]) return A[high]; int mid = (low + high) / 2; if (A[mid] == x) return A[mid]; if (mid > 0 && A[mid - 1] <= x && x < A[mid]) return A[mid - 1]; if (x < A[mid]) return lower_Bound( A, low, mid - 1, x); return lower_Bound(A, mid + 1, high, x); } static String f(String A) { String X=""; for(int i=A.length()-1; i>=0; i--) { int c=A.charAt(i)-'0'; X+=(c+1)%2; } return X; } static void sort(long[] a) //check for long { ArrayList<Long> l=new ArrayList<>(); for (long i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static String swap(String X,int i,int j) { char ch[]=X.toCharArray(); char a=ch[i]; ch[i]=ch[j]; ch[j]=a; return new String(ch); } static int sD(long n) { if (n % 2 == 0 ) return 2; for (int i = 3; i * i <= n; i += 2) { if (n % i == 0 ) return i; } return (int)n; } // static void setGraph(int N,int nodes) // { //// size=new int[N+1]; // par=new int[N+1]; // col=new int[N+1]; //// g=new int[N+1][]; // D=new int[N+1]; // int deg[]=new int[N+1]; // int A[][]=new int[nodes][2]; // for(int i=0; i<nodes; i++) // { // int a=i(),b=i(); // A[i][0]=a; // A[i][1]=b; // deg[a]++; // deg[b]++; // } // for(int i=0; i<=N; i++) // { // g[i]=new int[deg[i]]; // deg[i]=0; // } // for(int a[]:A) // { // int x=a[0],y=a[1]; // g[x][deg[x]++]=y; // g[y][deg[y]++]=x; // } // } static long pow(long a,long b) { //long mod=1000000007; long pow=1; long x=a; while(b!=0) { if((b&1)!=0)pow=(pow*x)%mod; x=(x*x)%mod; b/=2; } return pow; } static long toggleBits(long x)//one's complement || Toggle bits { int n=(int)(Math.floor(Math.log(x)/Math.log(2)))+1; return ((1<<n)-1)^x; } static int countBits(long a) { return (int)(Math.log(a)/Math.log(2)+1); } static long fact(long N) { long n=2; if(N<=1)return 1; else { for(int i=3; i<=N; i++)n=(n*i)%mod; } return n; } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static boolean isPrime(long N) { if (N<=1) return false; if (N<=3) return true; if (N%2 == 0 || N%3 == 0) return false; for (int i=5; i*i<=N; i=i+6) if (N%i == 0 || N%(i+2) == 0) return false; return true; } static void print(char A[]) { for(char c:A)System.out.print(c+" "); System.out.println(); } static void print(boolean A[]) { for(boolean c:A)System.out.print(c+" "); System.out.println(); } static void print(int A[]) { for(int a:A)System.out.print(a+" "); System.out.println(); } static void print(long A[]) { for(long i:A)System.out.print(i+ " "); System.out.println(); } static void print(boolean A[][]) { for(boolean a[]:A)print(a); } static void print(long A[][]) { for(long a[]:A)print(a); } static void print(int A[][]) { for(int a[]:A)print(a); } static void print(ArrayList<Integer> A) { for(int a:A)System.out.print(a+" "); System.out.println(); } static int i() { return in.nextInt(); } static long l() { return in.nextLong(); } static int[] input(int N){ int A[]=new int[N]; for(int i=0; i<N; i++) { A[i]=in.nextInt(); } return A; } static long[] inputLong(int N) { long A[]=new long[N]; for(int i=0; i<A.length; i++)A[i]=in.nextLong(); return A; } static long GCD(long a,long b) { if(b==0) { return a; } else return GCD(b,a%b ); } } class segNode { long pref,suff,sum,max; segNode(long a,long b,long c,long d) { pref=a; suff=b; sum=c; max=d; } } //class TreeNode //{ // int cnt,index; // TreeNode left,right; // TreeNode(int c) // { // cnt=c; // index=-1; // } // TreeNode(int c,int index) // { // cnt=c; // this.index=index; // } //} class role { String skill; int level; role(String s,int l) { skill=s; level=l; } } class project implements Comparable<project> { int score,index; project(int s,int i) { // roles=r; index=i; score=s; // skill=new String[r]; // lvl=new int[r]; } public int compareTo(project x) { return x.score-this.score; } } class post implements Comparable<post> { long x,y,d,t; post(long a,long b,long c) { x=a; y=b; d=c; } public int compareTo(post X) { if(X.t==this.t) { return 0; } else { long xt=this.t-X.t; if(xt>0)return 1; return -1; } } } class TreeNode { int val; TreeNode left, right,par; TreeNode() {} TreeNode(int item) { val = item; left =null; right = null; par=null; } } class edge { int a,wt; edge(int a,int w) { this.a=a; wt=w; } } class pair3 implements Comparable<pair3> { long a; int index; pair3(long x,int i) { a=x; index=i; } public int compareTo(pair3 x) { if(this.a>x.a)return 1; if(this.a<x.a)return -1; return 0; // return this.index-x.index; } } //Code For FastReader //Code For FastReader //Code For FastReader //Code For FastReader class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br=new BufferedReader(new InputStreamReader(System.in)); } String next() { while(st==null || !st.hasMoreElements()) { try { st=new StringTokenizer(br.readLine()); } catch(IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str=""; try { str=br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
92a56bac44cd2c79cf98591986d26c7c
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.util.InputMismatchException; import java.io.IOException; import java.util.Stack; import java.util.Vector; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Ashutosh Patel ([email protected]) Linkedin : ( https://www.linkedin.com/in/ashutosh-patel-7954651ab/ ) */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); CBracketSequenceDeletion solver = new CBracketSequenceDeletion(); int testCount = Integer.parseInt(in.next()); for (int i = 1; i <= testCount; i++) solver.solve(i, in, out); out.close(); } static class CBracketSequenceDeletion { public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.readInt(); String s = in.readLine(); int i = 0, j = 0; Stack<Character> st = new Stack<>(); int op = 0; while (i < n && j < n) { if (s.charAt(j) == '(') { st.push(s.charAt(j)); } else { if (!st.isEmpty()) st.pop(); else st.push(s.charAt(j)); } if (j - i >= 1 && (isPalindrome(s, i, j) || st.isEmpty())) { i = j + 1; j = i; op++; st.clear(); continue; } j++; } out.printLine(op + " " + (n - i)); } private boolean isPalindrome(String s, int i, int j) { while (i <= j) { if (s.charAt(i) != s.charAt(j)) return false; i++; j--; } return true; } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } } static class InputReader { private final InputStream stream; private final byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { if (Character.isValidCodePoint(c)) { res.appendCodePoint(c); } c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } private String readLine0() { StringBuilder buf = new StringBuilder(); int c = read(); while (c != '\n' && c != -1) { if (c != '\r') { buf.appendCodePoint(c); } c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) { s = readLine0(); } return s; } public String next() { return readString(); } public interface SpaceCharFilter { boolean isSpaceChar(int ch); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
df53940b1aa02d887e69a78846c6cb83
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class Main { public static boolean check(char a[], int left, int right) { while (left < right) { if (a[left] != a[right]) { return false; } left++; right--; } return true; } public static void main(String args[]) throws java.lang.Exception { FastScanner input = new FastScanner(); int tc = input.nextInt(); work: while (tc-- > 0) { int n = input.nextInt(); String s = input.next(); char a[] = s.toCharArray(); int operation = 0; int remaining = 0; for (int i = 0; i < n; i++) { if (a[i] == '('&&i+1<n) { i++; operation++; remaining = i + 1; } else if (a[i] == ')') { int j = i+1; boolean find = false; while (j < n) { if(a[j]==')'&&check(a, i, j)) { find = true; operation++; remaining = j+1; i = j; break; } else j++; } if(!find) { System.out.println(operation+" "+(s.substring(remaining).length())); continue work; } } else { remaining = i; break; } } System.out.println(operation+" "+(s.substring(remaining).length())); } } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() throws IOException { return br.readLine(); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
a7b3db48ecc9c40b6d5df089f2808f97
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.Scanner; import java.util.Stack; public class C { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while (t-- > 0) { int n = sc.nextInt(); char[] s = sc.next().toCharArray(); char ptr1; int cnt = 0; int rem = 0; for (int i = 0; i < n; i++) { ptr1 = s[i]; if (ptr1 == '(') { if (i == n - 1) { rem = 1; break; } cnt++; i++; } else { int j = i + 1; while (j < n && s[j] == '(') j++; if (j == n) { rem = n - i; break; } else { cnt++; i = j; } } } System.out.println(cnt+" "+rem); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
baed42da34e426a7236a6f878e03ae6c
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
//package com.company.codeforces; import java.io.*; import java.util.*; public class BracketSequenceDeletion { public static void main(String[] args) throws IOException { InputStream inputStream = System.in; InputReader in = new InputReader(inputStream); BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out)); int t = in.nextInt(); while (t-- != 0) { int n = in.nextInt(); String str = in.next(); int idx = 0; int count = 0; boolean shouldContiue = true; while (idx < n - 1 && shouldContiue) { shouldContiue = false; if (str.charAt(idx) == '(') { idx += 2; count++; shouldContiue = true; } else { int r = idx; while (r < n - 1) { r++; if (str.charAt(r) == ')') { r++; idx = r; count++; shouldContiue = true; break; } } } } out.write(count + " " + (n - idx)); out.newLine(); } out.close(); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public int[] readArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) arr[i] = nextInt(); return arr; } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
8e1320b548b03d7b90cba4a3b77d7e1f
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.*; import java.math.*; import java.util.*; public class Main { static final int INF = 0x3f3f3f3f; static final long LNF = 0x3f3f3f3f3f3f3f3fL; public static void main(String[] args) throws IOException { initReader(); int t=nextInt(); while (t--!=0){ int n=nextInt(); String s=next(); int l=0,cnt=0; while (l+1<n){ if(s.charAt(l)=='('){ l+=2; }else { int id=l+1; while (id<n&&s.charAt(id)!=')')id++; if(id==n)break; l=id+1; } cnt++; } pw.println(cnt+" "+(n-l)); } pw.close(); } /***************************************************************************************/ static BufferedReader reader; static StringTokenizer tokenizer; static PrintWriter pw; public static void initReader() throws IOException { reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = new StringTokenizer(""); pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); // 从文件读写 // reader = new BufferedReader(new FileReader("test.in")); // tokenizer = new StringTokenizer(""); // pw = new PrintWriter(new BufferedWriter(new FileWriter("test1.out"))); } public static boolean hasNext() { try { while (!tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } } catch (Exception e) { return false; } return true; } public static String next() throws IOException { while (!tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } public static String nextLine() { try { return reader.readLine(); } catch (Exception e) { return null; } } public static int nextInt() throws IOException { return Integer.parseInt(next()); } public static long nextLong() throws IOException { return Long.parseLong(next()); } public static double nextDouble() throws IOException { return Double.parseDouble(next()); } public static char nextChar() throws IOException { return next().charAt(0); } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
82529e8d1c1adf54893707157980c34a
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; import java.math.*; public class Main { static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args) throws Exception { FastScanner sc=new FastScanner(); int t=sc.nextInt(); while(t-->0){ int n=sc.nextInt(); String str=sc.nextLine(); fun(str.toCharArray()); } } public static void fun(char[] arr){ if(arr.length==1){ System.out.println(0+" "+1); return; } long a=0,b=0; StringBuilder sb=new StringBuilder(); int i=0; while(i<arr.length){ sb.append(arr[i]); if(i+1<arr.length) sb.append(arr[i+1]); if(sb.toString().equals("()")||sb.toString().equals("((")||sb.toString().equals("))")){ b+=2; a++; i+=2; sb=new StringBuilder(); }else{ i+=2; while(sb.length()>1&& i<arr.length && arr[i]=='('){ sb.append(arr[i]); i++; }if(i<arr.length && arr[i]==')') { a++; b += sb.length()+1; sb=new StringBuilder(); } i++; } } System.out.println(a+" "+(arr.length-b)); } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
fa22156ff3f41896abd2a4f2507386aa
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.io.*; import java.util.*; public class BracketSequenceDeletion { public static PrintWriter out; public static void main(String[] args)throws IOException{ Scanner sc=new Scanner(); out=new PrintWriter(System.out); int t=sc.nextInt(); while(t-->0) { int n=sc.nextInt(); String s=sc.next(); int ans=0; int i=0; int j=1; while(i<n&&j<n) { if(s.charAt(i) == ')' && s.charAt(j)=='('){ j++; }else { i=j+1; j+=2; ans++; } } out.println(ans+" "+(n-i)); } out.close(); } public static class Scanner { BufferedReader br; StringTokenizer st; public Scanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
2ae455e3232aef11c1404379fd452cc1
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; public class HelloWorld { public static void main(String[] args) { Scanner in = new Scanner(System.in); StringBuilder sb = new StringBuilder(); int t = in.nextInt(); while(t-->0) { // )(() // )(() int n = in.nextInt(); String s = in.next(); char[] arr = s.toCharArray(); if(arr.length==1) { sb.append("0 1\n"); continue; } int count = 0; Stack<Character> stack = new Stack<Character>(); StringBuilder st = new StringBuilder(); push(stack, arr[0]); push(stack, arr[1]); st.append(arr[0]); st.append(arr[1]); if(stack.size()==0 || isPalin(st)) { stack.clear(); st.setLength(0); count++; } for(int i=2; i<n; i++) { push(stack, arr[i]); st.append(arr[i]); if(stack.size()==0 || isPalin(st)) { stack.clear(); st.setLength(0); count++; } } sb.append(count); sb.append(" "); sb.append(st.length()); sb.append("\n"); } System.out.println(sb); } private static void push(Stack<Character> stack, char c) { if(c==')' && stack.size()!=0 && stack.peek()=='(') stack.pop(); else stack.push(c); } private static boolean isPalin(StringBuilder st) { if(st.length()<2) return false; boolean result = false; if(st.charAt(0)!=st.charAt(st.length()-1)) return false; String s1 = st.toString(); String s2 = st.reverse().toString(); st.reverse(); result = s1.equals(s2); return result; } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output
PASSED
ba84a647869e4cea6a677ec1e84c311d
train_110.jsonl
1647960300
You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases.
256 megabytes
import java.util.*; import java.io.*; public class main { public static void main (String[] args) throws java.lang.Exception { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); while(t-->0){ int n=sc.nextInt(); String st=sc.next(); int l=0; int cost=0; while(l+1<n){ if(st.charAt(l)=='(' || st.charAt(l)==')' && st.charAt(l+1)==')'){ l+=2; }else{ int r=l+1; while(r<n && st.charAt(r)!=')') r++; if(r==n) break; l=r+1; } cost++; } System.out.print(cost+" "); System.out.println(n-l); } } }
Java
["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("]
2 seconds
["1 0\n1 1\n2 0\n1 0\n1 1"]
null
Java 8
standard input
[ "greedy", "implementation" ]
af3f3329e249c0a4fa14476626e9c97c
The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$).
1,200
For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations.
standard output