exec_outcome
stringclasses 1
value | code_uid
stringlengths 32
32
| file_name
stringclasses 111
values | prob_desc_created_at
stringlengths 10
10
| prob_desc_description
stringlengths 63
3.8k
| prob_desc_memory_limit
stringclasses 18
values | source_code
stringlengths 117
65.5k
| lang_cluster
stringclasses 1
value | prob_desc_sample_inputs
stringlengths 2
802
| prob_desc_time_limit
stringclasses 27
values | prob_desc_sample_outputs
stringlengths 2
796
| prob_desc_notes
stringlengths 4
3k
⌀ | lang
stringclasses 5
values | prob_desc_input_from
stringclasses 3
values | tags
sequencelengths 0
11
| src_uid
stringlengths 32
32
| prob_desc_input_spec
stringlengths 28
2.37k
⌀ | difficulty
int64 -1
3.5k
⌀ | prob_desc_output_spec
stringlengths 17
1.47k
⌀ | prob_desc_output_to
stringclasses 3
values | hidden_unit_tests
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PASSED | d0ee27c2eb576078833c093d4bc19433 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
static StringBuilder sb;
static dsu dsu;
static long fact[];
static int mod ;
static int test;
static int tc;
static void solve() {
int n=i();
String s=s();
int idx=0;
int op=0;
while(idx<n-1){
char c1=s.charAt(idx);
char c2=s.charAt(idx+1);
if(c1==')'&&c2=='('){
int didx=idx+1;
while(didx<n&&s.charAt(didx)=='('){
didx++;
}
if(didx>=n||s.charAt(didx)!=')'){
break;
}
else {
idx=didx+1;
op++;
}
}
else{
idx+=2;
op++;
}
}
int ans=n-idx;
ans=Math.max(ans,0);
sb.append(op+" "+ans+"\n");
}
public static void main(String[] args) {
sb = new StringBuilder();
test = i();
tc=1;
while (test-- > 0) {
solve();
tc++;
}
System.out.print(sb);
}
//**************NCR%P******************
static long ncr(int n, int r) {
if (r > n)
return (long) 0;
long res = fact[n] % mod;
// System.out.println(res);
res = ((long) (res % mod) * (long) (p(fact[r], mod - 2) % mod)) % mod;
res = ((long) (res % mod) * (long) (p(fact[n - r], mod - 2) % mod)) % mod;
// System.out.println(res);
return res;
}
static long p(long x, long y)// POWER FXN //
{
if (y == 0)
return 1;
long res = 1;
while (y > 0) {
if (y % 2 == 1) {
res = (res * x) % mod;
y--;
}
x = (x * x) % mod;
y = y / 2;
}
return res;
}
//**************END******************
// *************Disjoint set
// union*********//
static class dsu {
int parent[];
dsu(int n) {
parent = new int[n];
for (int i = 0; i < n; i++)
parent[i] = i;
}
int find(int a) {
if (parent[a] ==a)
return a;
else {
int x = find(parent[a]);
parent[a] = x;
return x;
}
}
void merge(int a, int b) {
a = find(a);
b = find(b);
if (a == b)
return;
parent[b] = a;
}
}
//**************PRIME FACTORIZE **********************************//
static TreeMap<Integer, Integer> prime(long n) {
TreeMap<Integer, Integer> h = new TreeMap<>();
long num = n;
for (int i = 2; i <= Math.sqrt(num); i++) {
if (n % i == 0) {
int nt = 0;
while (n % i == 0) {
n = n / i;
nt++;
}
h.put(i, nt);
}
}
if (n != 1)
h.put((int) n, 1);
return h;
}
//****CLASS PAIR ************************************************
static class Pair implements Comparable<Pair> {
int v;
int i;
Pair(int v, int i) {
this.v = v;
this.i = i;
}
public int compareTo(Pair o) {
return (int) (this.v - o.v);
}
}
//****CLASS PAIR **************************************************
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int Int() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String String() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return String();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
public void flush() {
writer.flush();
}
}
static InputReader in = new InputReader(System.in);
static OutputWriter out = new OutputWriter(System.out);
public static long[] sort(long[] a2) {
int n = a2.length;
ArrayList<Long> l = new ArrayList<>();
for (long i : a2)
l.add(i);
Collections.sort(l);
for (int i = 0; i < l.size(); i++)
a2[i] = l.get(i);
return a2;
}
public static char[] sort(char[] a2) {
int n = a2.length;
ArrayList<Character> l = new ArrayList<>();
for (char i : a2)
l.add(i);
Collections.sort(l);
for (int i = 0; i < l.size(); i++)
a2[i] = l.get(i);
return a2;
}
public static long pow(long x, long y) {
long res = 1;
while (y > 0) {
if (y % 2 != 0) {
res = (res * x);// % modulus;
y--;
}
x = (x * x);// % modulus;
y = y / 2;
}
return res;
}
//GCD___+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
public static long gcd(long x, long y) {
if (x == 0)
return y;
else
return gcd(y % x, x);
}
// ******LOWEST COMMON MULTIPLE
// *********************************************
public static long lcm(long x, long y) {
return (x * (y / gcd(x, y)));
}
//INPUT PATTERN********************************************************
public static int i() {
return in.Int();
}
public static long l() {
String s = in.String();
return Long.parseLong(s);
}
public static String s() {
return in.String();
}
public static int[] readArrayi(int n) {
int A[] = new int[n];
for (int i = 0; i < n; i++) {
A[i] = i();
}
return A;
}
public static long[] readArray(long n) {
long A[] = new long[(int) n];
for (int i = 0; i < n; i++) {
A[i] = l();
}
return A;
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 1c388073fde4247e847df3a5534fe401 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.util.*;
public class C {
public static void main(String[] args) {
while (N-- > 0) {
solve();
}
out.close();
}
public static void solve() {
int n = sc.nextInt();
String s = sc.nextLine();
int start = 0;
int operations = 0;
while (n - start > 1) {
if (s.charAt(start) == ')' && s.charAt(start + 1) == '(') {
int cur = start + 2;
while (cur < n && s.charAt(cur) != ')') {
cur++;
}
if (cur == n) {
break;
} else {
start = cur + 1;
operations++;
}
} else {
operations++;
start += 2;
}
}
out.println(operations + " " + (n - start));
}
private static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
private static MyScanner sc = new MyScanner();
private static int N = sc.nextInt();
private final static int MOD = 1000000007;
@SuppressWarnings("unused")
private static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | f66a243ae1bdd8b15cc90352719bb216 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.ArrayList;
import java.util.Scanner;
import java.util.Stack;
public class pb1 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while (t-- > 0){
int n = sc.nextInt();
char[] str = sc.next().toCharArray();
int ind = 0 , start = -1;
int count = 0;
Stack<Character> st = new Stack<>();
ArrayList<Character> list = new ArrayList<>();
while (ind < n){
char ch = str[ind];
if (st.isEmpty() || ch == '(' || (st.peek() != '(')){
st.push(ch);
}
else{
st.pop();
if (st.isEmpty()){
list = new ArrayList<>();
start = ind;
count++;
ind++;
continue;
}
}
list.add(ch);
if (list.size() > 1){
boolean flag = true;
int len = list.size();
for (int i = 0 ; i <= len/2 ; i++){
if (list.get(i) != list.get(len - 1 - i)) {
flag = false;
break;
}
}
if (flag){
st = new Stack<>();
list = new ArrayList<>();
count++;
start = ind;
}
}
ind++;
}
System.out.println(count + " " + (n-1-start));
}
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | a7cbd39d9d16c66561dd2d3a468d0968 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | //package prog_temps;
import java.util.*;
import java.io.*;
public class Java_Template {
static boolean[] primecheck = new boolean[1000002];
static int M = 1000000007;
static int mn = Integer.MIN_VALUE;
static int mx = Integer.MAX_VALUE;
static int vis[];
static ArrayList<ArrayList<Integer>> list;
public static char rev(char c){
int diff = c-'A';
char ans = (char)('Z' - diff);
return ans;
}
public static void swap(int a[], int i,int j){
int temp = a[i];
a[i] = a[j];
a[j] = temp;
}
ArrayList<Integer> I = new ArrayList<>();
ArrayList<Integer> J = new ArrayList<>();
public static void solve(FastReader sc, PrintWriter w) throws Exception {
int n = sc.nextInt();
char[] s = sc.nextLine().toCharArray();
int counter=0;
int left=n;
int i =0;
for ( i = 0; i < n-1; i++) {
if (s[i]=='(' || (s[i]=='(' && s[i+1]=='(')){
i++;
left-=2;
}
else{
// ')'
int d = i+1;
;
while (d<n && s[d]!=')') {
d++;
left -= 1;
}
if (d==n){
break;
}
i = d;
}
counter++;
}
System.out.println(counter + " "+ (n-i));
}
public static void main(String[] args) throws Exception {
FastReader sc = new FastReader();
PrintWriter w = new PrintWriter(System.out);
int t = 1;
t = sc.nextInt();
while (t-- > 0) {
solve(sc, w);
}
w.close();
}
public static void merge(
int[] a, int[] l, int[] r, int left, int right) {
int i = 0, j = 0, k = 0;
while (i < left && j < right) {
if (l[i] <= r[j]) {
a[k++] = l[i++];
}
else {
a[k++] = r[j++];
}
}
while (i < left) {
a[k++] = l[i++];
}
while (j < right) {
a[k++] = r[j++];
}
}
public static void mergeSort(int[] a, int n) {
if (n < 2) {
return;
}
int mid = n / 2;
int[] l = new int[mid];
int[] r = new int[n - mid];
for (int i = 0; i < mid; i++) {
l[i] = a[i];
}
for (int i = mid; i < n; i++) {
r[i - mid] = a[i];
}
mergeSort(l, mid);
mergeSort(r, n - mid);
merge(a, l, r, mid, n - mid);
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
float nextFloat() {
return Float.parseFloat(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
void readArr(int[] ar, int n) {
for (int i = 0; i < n; i++) {
ar[i] = nextInt();
}
}
}
public static boolean perfectSqr(long a) {
long sqrt = (long) Math.sqrt(a);
if (sqrt * sqrt == a) {
return true;
}
return false;
}
public static void Sieve(int n) {
Arrays.fill(primecheck, true);
primecheck[0] = false;
primecheck[1] = false;
for (int i = 2; i * i < n + 1; i++) {
if (primecheck[i]) {
for (int j = i * 2; j < n + 1; j += i) {
primecheck[j] = false;
}
}
}
}
public static long gcd(long a, long b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
public static long power(long x, long y) {
long res = 1; // Initialize result
while (y > 0) {
// If y is odd, multiply x with result
if ((y & 1) != 0)
res = res * x;
// y must be even now
y = y >> 1; // y = y/2
x = x * x; // Change x to x^2
}
return res;
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | ce294596dad763139f261b555bf62768 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.util.InputMismatchException;
public class A {
static InputReader in;
static OutputWriter out;
public static void main(String[] args) throws FileNotFoundException{
in = new InputReader(System.in);
out = new OutputWriter(System.out);
if (System.getProperty("ONLINE_JUDGE") == null) {
try {
in = new InputReader(new FileInputStream("input.txt"));
out = new OutputWriter(new FileOutputStream("output.txt"));
}
catch (Exception e) {
}
}
int t = in.readInt();
for (int o = 1; o <= t; o++) {
int n = in .readInt();
String s = in.readString();
solve(n, s);
}
out.flush();
out.close();
}
public static void solve(int n, String s) {
int c = 0, r = n;
int i;
for (i = 0; i < n - 1; i++) {
if (s.charAt(i) == '(') {
c++;
i++;
r -= 2;
} else {
int j = i + 1;
while (j < n && s.charAt(j) != ')') {
j++;
}
if (j < n) {
c++;
r -= j - i + 1;
}
i = j;
}
}
out.printLine(c + " " + r);
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c)) c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null) return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
public void flush() {
writer.flush();
}
}
class IOUtils {
public static int[] readIntArray(InputReader in, int size) {
int[] array = new int[size];
for (int i = 0; i < size; i++)
array[i] = in.readInt();
return array;
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 536e80a2223b190952eecd5715781051 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
public class Main{
static HashSet<String>h=new HashSet<>();
static HashSet<String>h1=new HashSet<>();
static int gcd(int a,int b){
if(a==0){
return b;
}
if(b==0){
return a;
}
return gcd(b,a%b);
}
public static void main(String[] args){
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
for(int j1=0;j1<t;j1++){
int n=sc.nextInt();
String s=sc.next();
//Stack<Character>St=new Stack<>();
int dp[]=new int[n+1];
Arrays.fill(dp,-1);
for(int i=s.length()-1;i>=0;i--){
if(s.charAt(i)==')'){
dp[i]=i;
}else{
dp[i]=dp[i+1];
}
}
/* for(int i=0;i<s.length();i++){
System.out.println(dp[i]);
}
*/
int left=0;
int c=0;
int remove=0;
for(int i=0;i<s.length();i++){
if(i+1<s.length() && s.charAt(i)=='(' && s.charAt(i+1)=='('){
i++;
remove++;
}else if(i+1<s.length() && s.charAt(i)=='(' && s.charAt(i+1)==')'){
i++;
remove++;
}else if(s.charAt(i)=='('){
left++;
}else if(s.charAt(i)==')'){
int a=dp[i+1];
if(a==-1){
left=left+s.length()-i;
break;
}else{
remove++;
i=dp[i+1];
}
}
}
System.out.println(remove+" "+left);
}}} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 0d80e68bd849742c66d2a1cbf40e9c6a | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes |
import java.io.*;
import java.util.*;
public class Solution{
public static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void swap(int i, int j)
{
int temp = i;
i = j;
j = temp;
}
static class Pair{
int i,t;
Pair(int x, int y) {
i=x;
t= y;
}
}
static class Interval{
long st,e;
Interval(long x, long y) {
st=x;
e=y;
}
}
static long mod = 1000000007;
static boolean ans= false;
static StringBuffer sb = new StringBuffer("");
public static void main(String[] args) throws Exception
{
//Read input from user
//Scanner scn = new Scanner(System.in);
FastReader scn = new FastReader();
int t = scn.nextInt();
while(t>0) {
int n = scn.nextInt();
String s = scn.next();
int op=0;
int i=0;
int rem=0;
while(i<s.length()) {
if(s.charAt(i)==')') {
int j = i+1;
while(j<s.length() && s.charAt(j)=='(') {
j++;
}
if(j==s.length()) {
// System.out.println("rem "+i+" "+j);
rem= j-i;
break;
}else {
i=j;
op++;
}
}else {
op++;
i++;
if(i==s.length()) {
rem=1;
op--;
}
}
i++;
}
System.out.println(op+" "+rem);
t--;
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 05672f74fd0b5805f16bef37d1ed8b04 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
public class Test {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
sc.nextLine();
while (t > 0) {
int n = sc.nextInt();
sc.nextLine();
String s = sc.nextLine();
int l = 0, cnt = 0;
while (l + 1 < n) {
if (s.charAt(l) == '(' || (s.charAt(l) == ')' && s.charAt(l + 1) == ')')) {
l += 2;
} else {
int r = l + 1;
while (r < n && s.charAt(r) != ')') {
++r;
}
if (r == n) {
break;
}
l = r + 1;
}
++cnt;
}
System.out.println(cnt + " " + (n - l));
t--;
}
sc.close();
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 5aac84a34785e824a74b568f31f869e9 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
sc.nextLine();
while (t > 0) {
int n = sc.nextInt();
sc.nextLine();
String s = sc.nextLine();
Stack<Character> st = new Stack<Character>();
st.push(s.charAt(0));
char start = s.charAt(0);
int last = -1;
int noOfOp = 0;
for (int i = 1; i < n; ++i) {
if (s.charAt(i) == start) {
++noOfOp;
last = i;
while (!st.empty()) {
st.pop();
}
start = '-';
continue;
}
if (st.empty()) {
st.push(s.charAt(i));
start = s.charAt(i);
continue;
} else {
if (st.peek() != s.charAt(i) && s.charAt(i) == ')') {
st.pop();
} else {
st.push(s.charAt(i));
}
if (st.empty()) {
last = i;
++noOfOp;
start = '-';
}
}
}
System.out.println(noOfOp + " " + (n - last - 1));
t--;
}
sc.close();
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 4d2c1bd6afaafcbecd96d3b87e7e3339 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args) throws Exception {
Scanner in = new Scanner(System.in);
int t = in.nextInt();
while (t --> 0) {
int n = in.nextInt();
String s = in.next();
int i = 0, left = 0, cnt = 0;
while (i < n-1) {
if (s.charAt(i) == ')' && s.charAt(i+1) == '(') {
int j = i+2;
while (j < n) {
if (s.charAt(j) == ')') {
i = j+1;
cnt++;
break;
}
j++;
}
if (j == n) break;
} else {
cnt++;
i += 2;
}
}
left = n-i;
System.out.println(cnt+" "+left);
}
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 956b16515af21a59e605168c19b4bd97 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.util.*;
import static java.lang.Math.*;
//-------------------------------///////////////****/////////******//////////
//------------------------------------///**********//*****//********//*****//
//-----------------------------------///**********//*****//********//*****//
//----------------------------------///**********//*****//********//*****//
//---------------------------------///**********//*****//********//*****//
//--------------------------------///**********//*****//********//*****//
//--------------------------///**///**********//*****//********//*****//
//---------------------------/////***********/////////*******//////////
public class CodeForces {
final static String no = "NO";
final static String yes = "YES";
static long count = 0;
static public OutputWriter w = new OutputWriter(System.out);
static public FastScanner sc = new FastScanner();
static HashMap<Integer, Integer> map = new HashMap<>();
static Scanner fc = new Scanner(System.in);
//*******************************************Be SANSA***********************************
//************************************Don't stick to single approach********************
//*****************************************You are a slow learner But you learn*********
//***************************************Don't fall in rating trap**********************
//**********************************Pain in temporary, regret remains forever***********
////////////////////////////////////////////////////////////////////////////////////////////
public static void main(String[] args) {
int t = sc.nextInt();
while(t-->0) {
int n = sc.nextInt();
char[]ch = sc.next().toCharArray();
int cnt = 0;
int i = 0;
int rem = n;
while(i<n) {
if(ch[i]=='(') {
if(i+1<n) {
cnt++;
i+=2;
rem-=2;
}else {
break;
}
}else {
int prev = i;
i+=1;
while(i < n&&ch[i]!=')') {
i++;
}
if(i==n) {
i = prev;break;
}else {
cnt++;
i++;
}
}
}
w.writer.println(cnt+" "+(n-i));
}
w.writer.flush();
}
//////////////////////////////////////////////////////////////////////////////////////////
static ArrayList<Integer> primes = new ArrayList<>();
static boolean[]sieve = new boolean[(int)1e6+2];
static void sieve(int n) {
sieve[0] = sieve[1] = true;
primes.add(2);
for(int i=3;i<(int)n;i+=2) {
if(!sieve[i]) {
primes.add(i);
for(int j=i*2;j<(int)n;j+=i) {
sieve[j]= true;
}
}
}
}
static int floorPowerOf2(int n) {
int p = (int)(Math.log(n) /
Math.log(2));
return (int)Math.pow(2, p);
}
static int ceilPowerOf2(int n) {
int p = (int)(Math.log(n) /
Math.log(2));
return (int)Math.pow(2, p+1);
}
static int[] reverseArray(int[] arr, int begin, int end) {
if (arr.length == 1) {
return arr;
}
while (begin < end) {
int tmp = arr[begin];
arr[begin++] = arr[end];
arr[end--] = tmp;
}
return arr;
}
static String reverse(String s) {
return new StringBuilder(s).reverse().toString();
}
static int printCubes(int a, int b) {
// Find cube root of both a and b
int acrt = (int) Math.cbrt(a);
int bcrt = (int) Math.cbrt(b);
int cnt = 0;
// Print cubes between acrt and bcrt
for (int i = acrt; i <= bcrt; i++)
if (i * i * i >= a && i * i * i <= b && !(checkPerfectSquare(i)))
cnt++;
return cnt;
}
static double countSquares(int a, int b) {
return (Math.floor(Math.sqrt(b)) - Math.ceil(Math.sqrt(a)) + 1);
}
static boolean checkPerfectSquare(int n) {
// If ceil and floor are equal
// the number is a perfect
// square
if (Math.ceil((double) Math.sqrt(n)) == Math.floor((double) Math.sqrt(n))) {
return true;
} else {
return false;
}
}
static boolean perfectCube(int N) {
int cube_root;
cube_root = (int) Math.round(Math.cbrt(N));
// If cube of cube_root is equals to N,
// then print Yes Else print No
if (cube_root * cube_root * cube_root == N) {
//System.out.println("Yes");
return true;
} else {
// System.out.println("NO");
return false;
}
}
static List<Integer> printDivisors(int n) {
// Note that this loop runs till square root
List<Integer> sl = new ArrayList<>();
for (int i = 1; i <= Math.sqrt(n); i++) {
if (n % i == 0) {
// If divisors are equal, print only one
if (n / i == i)
sl.add(i);
else // Otherwise print both
{
sl.add(i);
sl.add(n / i);
}
}
}
return sl;
}
static boolean isPrime(int n) {
if (n <= 1)
return false;
else if (n == 2)
return true;
else if (n % 2 == 0)
return false;
for (int i = 3; i <= Math.sqrt(n); i += 2) {
if (n % i == 0)
return false;
}
return true;
}
static class Pair {
int x, y,z;
Pair(int x,int y){
this.x = x;
this.y = y;
}
Pair(int x, int y,int z) {
this.x = x;
this.y = y;
this.z = z;
}
}
static public boolean checkBit(int n, int i) {
if ((n >> i & 1) == 1) {
return true;
} else {
return false;
}
}
static int gcd(int a, int b) {
if (a == 0)
return b;
return gcd(b % a, a);
}
static long gcd(long a, long b) {
if (a == 0)
return b;
return gcd(b % a, a);
}
static boolean isPowerOfTwo(long n) {
if (n == 0)
return false;
return (long) (Math.ceil((Math.log(n) / Math.log(2)))) == (long) (Math.floor(((Math.log(n) / Math.log(2)))));
}
// method to return LCM of two numbers
static long lcm(long a, long b) {
return (a / gcd(a, b)) * b;
}
static long getPairsCount(long[] arr, long sum) {
Map<Long, Long> hm = new HashMap<>();
int n = arr.length;
long count = 0;
for (int i = 0; i < n; i++) {
if (hm.containsKey(sum - arr[i])) {
count += hm.get(sum - arr[i]);
}
if (hm.get(arr[i]) != null) {
hm.put(arr[i], hm.get(arr[i]) + 1);
} else {
hm.put(arr[i], 1l);
}
}
return count;
}
static void sort(int[] arr) {
Random rand = new Random();
int n = arr.length;
for (int i = 0; i < n; i++) {
int idx = rand.nextInt(n);
if (idx == i)
continue;
arr[i] ^= arr[idx];
arr[idx] ^= arr[i];
arr[i] ^= arr[idx];
}
Arrays.sort(arr);
}
static void sort(long[] arr) {
Random rand = new Random();
int n = arr.length;
for (int i = 0; i < n; i++) {
int idx = rand.nextInt(n);
if (idx == i)
continue;
arr[i] ^= arr[idx];
arr[idx] ^= arr[i];
arr[i] ^= arr[idx];
}
Arrays.sort(arr);
}
static void sortDec(int[] arr) {
Random rand = new Random();
int n = arr.length;
for (int i = 0; i < n; i++) {
int idx = rand.nextInt(n);
if (idx == i)
continue;
arr[i] ^= arr[idx];
arr[idx] ^= arr[i];
arr[i] ^= arr[idx];
}
Arrays.sort(arr);
int l = 0;
int r = n - 1;
while (l < r) {
arr[l] ^= arr[r];
arr[r] ^= arr[l];
arr[l] ^= arr[r];
l++;
r--;
}
}
static void sortDec(long[] arr) {
Random rand = new Random();
int n = arr.length;
for (int i = 0; i < n; i++) {
int idx = rand.nextInt(n);
if (idx == i)
continue;
arr[i] ^= arr[idx];
arr[idx] ^= arr[i];
arr[i] ^= arr[idx];
}
Arrays.sort(arr);
int l = 0;
int r = n - 1;
while (l < r) {
arr[l] ^= arr[r];
arr[r] ^= arr[l];
arr[l] ^= arr[r];
l++;
r--;
}
}
static int[] countInversions(int[] arr, int low, int high) {
if (low == high) {
int base[] = new int[1];
base[0] = arr[low];
return base;
}
int mid = low + (high - low) / 2;
int left[] = countInversions(arr, low, mid);
int right[] = countInversions(arr, mid + 1, high);
int[] merged = merge(left, right);
return merged;
}
static int[] merge(int first[], int[] next) {
int i = 0;
int j = 0;
int k = 0;
int[] merged = new int[first.length + next.length];
while (j < first.length && k < next.length) {
if (first[j] <= next[k]) {
merged[i++] = first[j++];
} else {
count += first.length - j;
merged[i++] = next[k++];
}
}
while (j < first.length) {
merged[i++] = first[j++];
}
while (k < next.length) {
merged[i++] = next[k++];
}
return merged;
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
long[] longArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
double nextDouble() {
return Double.parseDouble(next());
}
}
static public class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | d3b04fb0613ed60254898c8abfc1d74b | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class Main {
static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static class TreeMultiSet<T> implements Iterable<T>
{
private final TreeMap<T,Integer> map;
private int size;
public TreeMultiSet(){map=new TreeMap<>(); size=0;}
public TreeMultiSet(boolean reverse)
{
if(reverse) map=new TreeMap<>(Collections.reverseOrder());
else map=new TreeMap<>(); size=0;
}
public void clear(){map.clear(); size=0;}
public int size(){return size;}
public int setSize(){return map.size();}
public boolean contains(T a){return map.containsKey(a);}
public boolean isEmpty(){return size==0;}
public Integer get(T a){return map.getOrDefault(a,0);}
public void add(T a, int count)
{
int cur=get(a);map.put(a,cur+count); size+=count;
if(cur+count==0) map.remove(a);
}
public void addOne(T a){add(a,1);}
public void remove(T a, int count){add(a,Math.max(-get(a),-count));}
public void removeOne(T a){remove(a,1);}
public void removeAll(T a){remove(a,Integer.MAX_VALUE-10);}
public T ceiling(T a){return map.ceilingKey(a);}
public T floor(T a){return map.floorKey(a);}
public T first(){return map.firstKey();}
public T last(){return map.lastKey();}
public T higher(T a){return map.higherKey(a);}
public T lower(T a){return map.lowerKey(a);}
public T pollFirst(){T a=first(); removeOne(a); return a;}
public T pollLast(){T a=last(); removeOne(a); return a;}
public Iterator<T> iterator()
{
return new Iterator<>()
{
private final Iterator<T> iter = map.keySet().iterator();
private int count = 0; private T curElement;
public boolean hasNext(){return iter.hasNext()||count>0;}
public T next()
{
if(count==0)
{
curElement=iter.next();
count=get(curElement);
}
count--; return curElement;
}
};
}
}
static long abs(long x){
if(x<0) x*=-1;
return x;
}
static int sqrt(int x) {
double t = Math.sqrt((double) x);
return (int)t;
}
static boolean checkPalindorm(String x) {
for(int i=0;i<x.length();i++) {
if(x.charAt(i) != x.charAt(x.length() -1 - i)) {
return false;
}
}
return true;
}
public static void main(String[] args) {
MyScanner scanner = new MyScanner();
int t = scanner.nextInt();
while(t-- != 0){
int n = scanner.nextInt();
String s = scanner.nextLine();
char left = '(';
char right = ')';
if (n == 1){
System.out.println("0 1");
continue;
}
int i =1;
int op = 0;
while(i < n ) {
if (s.charAt(i-1) == left && s.charAt(i) == right || s.charAt(i-1) == s.charAt(i)) {
op ++;
i = i +2;
}else {
int j =i;
while ( i < n && s.charAt(i) == left){
i++;
}
if (i <n && s.charAt(i) == right) {
op++;
i += 2;
}else {
i = j;
break;
}
}
}
if (i == n+1) {
System.out.println(op + " "+ 0);
}else {
System.out.println(op + " "+(n-i +1));
}
}
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 482ca49ec16cbb8165bed71639afcfa5 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Stack;
import java.util.StringTokenizer;
public class C {
static final FastReader sc = new FastReader();
static final PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) {
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
char[] s = sc.next().toCharArray();
int l = 0, c = 0;
while (l < n - 1) {
if (s[l] == '(' || s[l] == ')' && s[l + 1] == ')') {
l += 2;
} else {
int r = l + 1;
while (r < n && s[r] != ')')
r++;
if (r == n)
break;
l = r + 1;
}
c++;
}
out.println(c + " " + (n - l));
}
out.close();
}
static int[] sort(int[] arr) {
ArrayList<Integer> a = new ArrayList<>();
for (int i : arr) {
a.add(i);
}
Collections.sort(a);
for (int i = 0; i < a.size(); i++) {
arr[i] = a.get(i);
}
return arr;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 445bdf41f927ee1c5ceb6a546ae63776 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
public class Codeforces {
public static void main(String[] args) {
try {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while (t-->0) {
long n = sc.nextLong();
String s = sc.next();
int i=0; int count=0;
while(true){
if(i==s.length() || i==s.length()-1)
break;
if(s.charAt(i)=='('){
count++;
i+=2;
}
else if(s.charAt(i)==')'){
int j=i+1; int flag=0;
while(j<s.length()){
if(s.charAt(j)==')') {
flag = 1;
count++;
i=j+1;
break;
}
j++;
}
if(flag==0)
break;
if(i==s.length())
break;
}
}
int len = i-s.length();
if(len>0)
len=0;
System.out.println(count+" "+Math.abs(len));
}
} catch (Exception e) {
return;
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 78dd44216b6f81522535f04df0ecb52b | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | //package Rishab;
import java.io.*;
import java.text.DecimalFormat;
import java.util.*;
import java.util.Map.Entry;
public class Main {
static int dirx[]= {-1,1,0,0};static int diry[]= {0,0,-1,1};
static final PrintWriter out = new PrintWriter(System.out, true);
static final FastScanner sc = new FastScanner();
public static void main(String[] args) {
int t=sc.nextInt();
while(t-->0) {
solve();
}
}
static void solve() {
int n=sc.nextInt();
String s=sc.next();
int ans=0;
Stack<Integer>q=new Stack<>();
int i=0;int c=0;
while(i<n-1) {
if(s.charAt(i)=='(') {
ans++;
i+=2;
}else {
if(s.charAt(i+1)==')') {
ans++;
i+=2;
continue;
}else {
int cnt=1;
while(i+1<n && s.charAt(i+1)!=')') {
i++;
cnt++;
}
if(i+1<n && s.charAt(i+1)==')') {
i+=2;
ans++;
continue;
}else if(i+1>=n) {
c+=cnt;
i++;
continue;
}
}
}
}
if(i==n-1) {
c++;
out.println(ans+" "+c);
}else {
out.println(ans+" "+c);
}
}
static long Cr(int n, int r,int mod,long fac[],long inv[]) {
if(n<r) return 0L;
return fac[n]*(inv[r]*inv[n - r]%mod)%mod;
// long fac[]=new long[100000];
// long inv[]=new long[100000];
// fac[0]=fac[1]=1;
// fac[i]=modmul(fac[i-1],i,m);
// inv[i] =modpow(fac[i], m - 2,m);
// long ans = 1;
// ans *= (Cr(n-x,more,m,fac,inv)*fac[more])%m;
// ans %= m;
}
static boolean [] sieveOfEratosthenes(int n){
boolean prime[] = new boolean[n + 1];
for (int i = 0; i <= n; i++)
prime[i] = true;
for (int p = 2; p * p <= n; p++)
{
if (prime[p] == true)
{
for (int i = p * p; i <= n; i += p)
prime[i] = false;
}
}
prime[1]=prime[0]=false;
return prime;
}
static void divisors(int n,ArrayList a[]) {
for(int i=1;i<=n;i++) {
for(int j=i;j<=n;j+=i) {
a[j].add(i);
}
}
}
static long modDivide(long a, long b, int m)
{
a = a % m;
long inv = modInverse(b, m);
if (inv == -1) return -1;
else
{
long c = (inv * a) % m ;
return c;
}
}
static long modInverse(long a, int m){
long g = gcd(a, m);
if (g != 1) return -1;
else
{
return modpow(a,m-2,m);
}
}
public static double logx(long m,int x){
double result = (double)(Math.log(m) / Math.log(x));
return result;
}
static double setPrecision(double ans,int k){
double y=Math.pow(10,k);
return Math.round(ans*y)/y;
}
public static double log2(double m)
{
double result = (double)(Math.log(m) / Math.log(2));
return result;
}
static int countDivisors(int n)
{ int ans=0;
for (int i=1; i<=Math.sqrt(n); i++)
{
if (n%i==0)
{
if (n/i == i) ans++;
// System.out.print(" "+ i);
else ans+=2;
// System.out.print(i+" " + n/i + " " );
}
}
return ans;
}
static ArrayList<Integer> pyyy = new ArrayList<Integer>();
static void sieveppp(int MAX)
{
int[] isPrime=new int[MAX+1];
for (int i = 2; i<= MAX; i++)
{
if (isPrime[i] == 0)
{
pyyy.add(i);
for (int j = 2; i * j<= MAX; j++)
isPrime[i * j]= 1;
}
}
}
static int phi(int n) {
/// call sieveppp(n) in main fn
int res = n;
for (int i=0; pyyy.get(i)*pyyy.get(i) <= n; i++)
{
if (n % pyyy.get(i)== 0)
{
res -= (res / pyyy.get(i));
while (n % pyyy.get(i)== 0)
n /= pyyy.get(i);
}
}
if (n > 1)
res -= (res / n);
return res;
}
public static void sort(long[] arr){//because Arrays.sort() uses quicksort which is in worst O(n^2)
//Collections.sort() uses merge sort
ArrayList<Long> ttttt = new ArrayList<Long>();
for(long y: arr)ttttt.add(y);Collections.sort(ttttt);
for(int i=0; i < arr.length; i++)arr[i] = ttttt.get(i);
}
public static void sort(int[] arr){//because Arrays.sort() uses quicksort which is dumb
//Collections.sort() uses merge sort
ArrayList<Integer> ttttt = new ArrayList<>();
for(int y: arr)ttttt.add(y);Collections.sort(ttttt);
for(int i=0; i < arr.length; i++)arr[i] = ttttt.get(i);
}
static boolean check(double[] a,double m,int n,int k) {
int ans=0;
for(int i=0;i<n;i++) {
ans+=(Math.floor(a[i]/m));
if(ans>=k) return true;
}
return ans>=k;
}
static boolean isKthBitSet(long n, int k) {
if ((n & (1 << (k - 1))) > 0)
return true;
else
return false;
}
static long modpow(long a,long b,int m) {
if(b==0) return 1;
if(b==1) return a;
long ans=0;
long t=modpow(a,b/2,m);
ans=modmul(t,t,m);
if(b%2!=0) ans=modmul(a,ans,m);
return ans;
}
static long modmul(long a,long b,int m) {
return mod(mod(a,m)*mod(b,m),m);
}
static long mod(long x,int m) {
return ((x%m)+m)%m;
}
static int octaltodecimal(int deciNum)
{
int octalNum = 0, countval = 1;
int dNo = deciNum;
while (deciNum != 0) {
// decimals remainder is calculated
int remainder = deciNum % 8;
// storing the octalvalue
octalNum += remainder * countval;
// storing exponential value
countval = countval * 10;
deciNum /= 8;
}
return octalNum;
}
public static int floorSqrt(int x)
{
// Base Cases
if (x == 0 || x == 1)
return x;
// Do Binary Search for floor(sqrt(x))
int start = 1, end = x, ans=0;
while (start <= end)
{
int mid = (start + end) / 2;
// If x is a perfect square
if (mid*mid == x)
return mid;
// Since we need floor, we update answer when mid*mid is
// smaller than x, and move closer to sqrt(x)
if (mid*mid < x)
{
start = mid + 1;
ans = mid;
}
else // If mid*mid is greater than x
end = mid-1;
}
return ans;
}
static int div(int n,int b) {
int g=-1;
for(int i=2;i<=Math.sqrt(n);i++) {
if(n%i==0&&i!=b) {
g=i;
break;
}
}
return g;
}
public static long gcd(long a, long a2)
{
if (a == 0)
return a2;
return gcd(a2%a, a);
}
public static long lcm(long a, long b)
{
return (a*b)/gcd(a, b);
}
public static boolean isPrime(int n) {
if (n <= 1) {
return false;
}
if (n == 2) {
return true;
}
if (n % 2 == 0) {
return false;
}
for (int i = 3; i <= Math.sqrt(n) + 1; i = i + 2) {
if (n % i == 0) {
return false;
}
}
return true;
}
static class FastScanner {
BufferedReader input = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer strToken = new StringTokenizer("");
String next() {
while (!strToken.hasMoreTokens()) {
try {
strToken = new StringTokenizer(input.readLine());
} catch (IOException e) {
e.printStackTrace();
}
} return strToken.nextToken();
}
String nextLine() {
String strrrrr = ""; try {
strrrrr = input.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return strrrrr;
}
int nextInt() {
return Integer.parseInt(next());
}
int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
double nextDouble() {
return Double.parseDouble(next());
}
}
}
class DisjointSet {
private int[] parent;
private int[] rank;
public DisjointSet(int n) {
if (n < 0) throw new IllegalArgumentException();
parent = new int[n];
for(int i=0;i<n;i++) parent[i]=i;
rank = new int[n];
}
public void reset(int x) {
parent[x]=x;
}
public int find(int x) {
if (parent[x] == x) return x;
return parent[x] = find(parent[x]); // Path compression by halving.
}
// Return false if x, y are connected.
public boolean union(int x, int y) {
int rootX = find(x);
int rootY = find(y);
if (rootX == rootY) return false;
// Make root of smaller rank point to root of larger rank.
if (rank[rootX] < rank[rootY]) parent[rootX] = rootY;
else if (rank[rootX] > rank[rootY]) parent[rootY] = rootX;
else {
parent[rootX] = rootY;
rank[rootY]++;
}
return true;
}
}
class Pair{
int value;
int distance;
Pair(int value,int distance){
this.value=value;
this.distance=distance;
}
}
class sortbydistance implements Comparator<Pair>{
@Override
public int compare(Pair o1, Pair o2) {
return o1.distance-o2.distance;
}
}
class Solution
{
static int[] dijkstra(int n, ArrayList<ArrayList<ArrayList<Integer>>> adj,ArrayList<Integer>ans)
{
PriorityQueue<Pair>set=new PriorityQueue<>(new sortbydistance());
int dis[]=new int[n];
Arrays.fill(dis,Integer.MAX_VALUE);
dis[0]=0;
while(set.isEmpty()==false) {
Pair p=set.poll();
int u=p.value;
for(int i=0;i<adj.get(u).size();i++) {
int v=adj.get(u).get(i).get(0);
int wt=adj.get(u).get(i).get(1);
if(dis[v]>dis[u]+wt) {
if(dis[v]!=Integer.MAX_VALUE) {
set.remove(new Pair(dis[v],v));
}
dis[v]=dis[u]+wt;
ans.add(v);
set.add(new Pair(v,dis[v]));
}
}
}
return dis;
}
}
/* Points-
*
* 1) when need max and min both use treeset if duplicates are there then use treeset<int []> and add a[1] as unique
* number but imp is to make new TreeSet<>((x,y)->(x[0]==y[0])?(x[1]-y[1]):(x[0]-y[0])) in this x[0]==y[0] cond.
* is important
*
* 2) n!/2 is not fac[n]/2 it is modmul(fac[n],inv[2],m)
*
* 3) if sorting can think of TreeSet also bro or want max and min use tree set as it has last and first function
*
* 4) if dp is not optimisable then think of changing the defination of dp states
*/
class pairs{
int a,b;
pairs(int a,int b){
this.a=a;this.b=b;
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 76b6c1c826d65e9b6bb309e8188294d2 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | //package Algorithm;
//package Algorithm;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
import java.util.Scanner;
public class main {
public static void main(String[] args) throws IOException{
// TODO Auto-generated method stub
BufferedReader br = new BufferedReader(
new InputStreamReader(System.in));
int t = Integer.parseInt(br.readLine());
while(t-->0) {
// String s[] = br.readLine().split(" ");
int n = Integer.parseInt(br.readLine());
String str = br.readLine();
int i=0,j=0;
int cnt = 0;
int ans = 0;
StringBuilder pall = new StringBuilder();
boolean flag = false;
while(i<n && j<n) {
char ch = str.charAt(j);
if(ch=='(') {
if(j==n-1) {
break;
}
ans++;
j+=2;
i=j;
} else {
j++;
while(j<n && str.charAt(j)!=')') {
j++;
}
if(j<n) {
ans++;
j++;
i=j;
}
}
}
System.out.println(ans+" "+(n-i));
}
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 444ddcc67682805734bca4692581b620 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
static class JoinSet {
int[] fa;
JoinSet(int n) {
fa = new int[n];
for (int i = 0; i < n; i++) fa[i] = i;
}
int find(int t) {
if (t != fa[t]) fa[t] = find(fa[t]);
return fa[t];
}
void join(int x, int y) {
x = find(x);
y = find(y);
fa[x] = y;
}
}
static BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
static BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
static int mod = (int)1e9+7;
static int[][] dir1 = new int[][]{{0,1},{0,-1},{1,0},{-1,0}};
static int[][] dir2 = new int[][]{{0,1},{0,-1},{1,0},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1}};
static boolean[] prime = new boolean[10];
static {
for (int i = 2; i < prime.length; i++) prime[i] = true;
for (int i = 2; i < prime.length; i++) {
if (prime[i]) {
for (int k = 2; i * k < prime.length; k++) {
prime[i * k] = false;
}
}
}
}
static long gcd(long a, long b) {
return b == 0 ? a : gcd(b, a % b);
}
static long lcm(long a, long b) {
return a * b / gcd(a, b);
}
static int get() throws Exception {
String ss = bf.readLine();
if (ss.contains(" ")) ss = ss.substring(0, ss.indexOf(" "));
return Integer.parseInt(ss);
}
static long getx() throws Exception {
String ss = bf.readLine();
if (ss.contains(" ")) ss = ss.substring(0, ss.indexOf(" "));
return Long.parseLong(ss);
}
static int[] getint() throws Exception {
String[] s = bf.readLine().split(" ");
int[] a = new int[s.length];
for (int i = 0; i < a.length; i++) {
a[i] = Integer.parseInt(s[i]);
}
return a;
}
static long[] getlong() throws Exception {
String[] s = bf.readLine().split(" ");
long[] a = new long[s.length];
for (int i = 0; i < a.length; i++) {
a[i] = Long.parseLong(s[i]);
}
return a;
}
static String getstr() throws Exception {
return bf.readLine();
}
static void println() throws Exception {
bw.write("\n");
}
static void print(int a) throws Exception {
bw.write(a + "\n");
}
static void print(long a) throws Exception {
bw.write(a + "\n");
}
static void print(String a) throws Exception {
bw.write(a + "\n");
}
static void print(int[] a) throws Exception {
for (int i : a) {
bw.write(i + " ");
}
println();
}
static void print(long[] a) throws Exception {
for (long i : a) {
bw.write(i + " ");
}
println();
}
static void print(int[][] a) throws Exception {
for (int i[] : a) print(i);
}
static void print(long[][] a) throws Exception {
for (long[] i : a) print(i);
}
static void print(char[] a) throws Exception {
for (char i : a) {
bw.write(i +"");
}
println();
}
static long pow(long a, long b) {
long ans = 1;
while (b > 0) {
if ((b & 1) == 1) {
ans *= a;
}
a *= a;
b >>= 1;
}
return ans;
}
static int powmod(long a, long b, int mod) {
long ans = 1;
while (b > 0) {
if ((b & 1) == 1) {
ans = ans * a % mod;
}
a = a * a % mod;
b >>= 1;
}
return (int) ans;
}
static void sort(int[] a) {
int n = a.length;
Integer[] b = new Integer[n];
for (int i = 0; i < n; i++) b[i] = a[i];
Arrays.sort(b);
for (int i = 0; i < n; i++) a[i] = b[i];
}
static void sort(long[] a) {
int n = a.length;
Long[] b = new Long[n];
for (int i = 0; i < n; i++) b[i] = a[i];
Arrays.sort(b);
for (int i = 0; i < n; i++) a[i] = b[i];
}
static int max(int a, int b) {
return Math.max(a,b);
}
static int min(int a, int b) {
return Math.min(a,b);
}
static long max(long a, long b) {
return Math.max(a,b);
}
static long min(long a, long b) {
return Math.min(a,b);
}
static int max(int[] a) {
int max = a[0];
for(int i : a) max = max(max,i);
return max;
}
static int min(int[] a) {
int min = a[0];
for(int i : a) min = min(min,i);
return min;
}
static long max(long[] a) {
long max = a[0];
for(long i : a) max = max(max,i);
return max;
}
static long min(long[] a) {
long min = a[0];
for(long i : a) min = min(min,i);
return min;
}
static int abs(int a) {
return Math.abs(a);
}
static long abs(long a) {
return Math.abs(a);
}
public static void main(String[] args) throws Exception {
int t = get();
while (t-- > 0){
int n = get();
String s = getstr();
int c = 0, i = 0;
for(;i < n-1;){
if(s.charAt(i) == '(') i+=2;
else{
int oi = i++;
while(i < n && s.charAt(i) != ')') i++;
if(i == n){
i = oi;
break;
}
i++;
}
c++;
}
print(c+" "+(n-i));
}
bw.flush();
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | d7adcb967455cd01154351032034b25c | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes |
import java.util.*;
public class Codeforces {
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0)
{
int n=sc.nextInt();
String in=sc.next();
n = in.length();
int i = 0;
int c = 0;
while (i < n - 1) {
if (in.charAt(i) == in.charAt(i+1)) {
c++;
i += 2;
continue;
}
if (in.charAt(i) == '(' && in.charAt(i+1) == ')') {
c++;
i += 2;
continue;
}
int index = -1;
for (int k = i + 1; k < n; k++) {
if (in.charAt(k) == ')') {
c++;
index = k;
break;
}
}
if (index == -1) break;
i = index + 1;
}
int l = 0;
if (i < n) {
l = n - i;
}
System.out.println(c+" "+l);
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | dc2b0fd7bfe7a05d9a6698a79f5fc448 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes |
import static java.lang.Integer.parseInt;
import static java.lang.Long.parseLong;
import static java.lang.Double.parseDouble;
import static java.lang.Math.PI;
import static java.lang.Math.min;
import static java.lang.System.arraycopy;
import static java.lang.System.exit;
import static java.util.Arrays.copyOf;
import java.util.LinkedList;
import java.util.List;
import java.util.Iterator;
import java.io.FileReader;
import java.io.FileWriter;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
import java.util.NoSuchElementException;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.Stack;
import java.util.StringTokenizer;
import java.util.Comparator;
import java.lang.StringBuilder;
import java.util.Collections;
import java.util.*;
import java.text.DecimalFormat;
public class Solution {
static class Edge{
int u, v, w;
Edge(int u, int v, int w){
this.u = u;
this.v = v;
this.w = w;
}
}
static class Pair{
int first, second;
Pair(int first, int second){
this.first = first;
this.second = second;
}
}
static class Tuple{
int first, second, third;
Tuple(int first, int second, int third){
this.first = first;
this.second =second;
this.third = third;
}
}
static class Point{
int x, y;
Point(int x, int y){
this.x = x;
this.y = y;
}
}
static BufferedReader in;
static PrintWriter out;
static StringTokenizer tok;
static int dx[] = {-1,0,1,0};
static int dy[] = {0,-1,0,1};
static int MOD = (int)1e9+7;
static boolean vis[][];
static int xors[];
static ArrayList<Integer> adj[];
static int arr[];
static int parent[];
static int count;
private static void solve() throws IOException{
int n = scanInt();
char str[] = scanString().toCharArray();
Stack<Character> stack = new Stack<>();
int moves = 0;
for(char ch: str){
if(!stack.isEmpty()){
if(ch == stack.peek() && stack.size() == 1){
stack.pop();
++moves;
}
else if(ch == ')' && stack.peek() == '('){
stack = new Stack<>();
++moves;
}
else
stack.push(ch);
}
else
stack.push(ch);
}
out.println(moves+" "+stack.size());
}
private static int[] inputArray(int n) throws IOException {
int arr[] = new int[n];
for(int i=0; i<n; ++i)
arr[i] = scanInt();
return arr;
}
public static void main(String[] args) {
try {
long startTime = System.currentTimeMillis();
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
//in = new BufferedReader(new FileReader("input.txt"));
//out = new PrintWriter(new FileWriter("output.txt"));
int test=scanInt();
for(int t=1; t<=test; t++){
// out.print("Case #"+t+": ");
solve();
}
long endTime = System.currentTimeMillis();
long totalTime = endTime - startTime;
// out.println(totalTime+"---------- "+System.currentTimeMillis() );
in.close();
out.close();
} catch (Throwable e) {
e.printStackTrace();
exit(1);
}
}
static int scanInt() throws IOException {
return parseInt(scanString());
}
static long scanLong() throws IOException {
return parseLong(scanString());
}
static double scanDouble() throws IOException {
return parseDouble(scanString());
}
static String scanString() throws IOException {
if (tok == null || !tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
static String scanLine() throws IOException {
return in.readLine();
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | b3284dea05dc576342d8a5970a853a7c | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes |
import static java.lang.Integer.parseInt;
import static java.lang.Long.parseLong;
import static java.lang.Double.parseDouble;
import static java.lang.Math.PI;
import static java.lang.Math.min;
import static java.lang.System.arraycopy;
import static java.lang.System.exit;
import static java.util.Arrays.copyOf;
import java.util.LinkedList;
import java.util.List;
import java.util.Iterator;
import java.io.FileReader;
import java.io.FileWriter;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
import java.util.NoSuchElementException;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.Stack;
import java.util.StringTokenizer;
import java.util.Comparator;
import java.lang.StringBuilder;
import java.util.Collections;
import java.util.*;
import java.text.DecimalFormat;
public class Solution {
static class Edge{
int u, v, w;
Edge(int u, int v, int w){
this.u = u;
this.v = v;
this.w = w;
}
}
static class Pair{
int first, second;
Pair(int first, int second){
this.first = first;
this.second = second;
}
}
static class Tuple{
int first, second, third;
Tuple(int first, int second, int third){
this.first = first;
this.second =second;
this.third = third;
}
}
static class Point{
int x, y;
Point(int x, int y){
this.x = x;
this.y = y;
}
}
static BufferedReader in;
static PrintWriter out;
static StringTokenizer tok;
static int dx[] = {-1,0,1,0};
static int dy[] = {0,-1,0,1};
static int MOD = (int)1e9+7;
static boolean vis[][];
static int xors[];
static ArrayList<Integer> adj[];
static int arr[];
static int parent[];
static int count;
private static void solve() throws IOException{
int n = scanInt();
char str[] = scanString().toCharArray();
Stack<Character> stack = new Stack<>();
int moves = 0;
for(char ch: str){
if(!stack.isEmpty()){
if(ch == stack.peek() && stack.size() == 1){
stack.pop();
++moves;
}
else if(ch == ')' && stack.peek() == '('){
stack.pop();
while(!stack.isEmpty()){
stack.pop();
}
++moves;
}
else
stack.push(ch);
}
else
stack.push(ch);
}
out.println(moves+" "+stack.size());
}
private static int[] inputArray(int n) throws IOException {
int arr[] = new int[n];
for(int i=0; i<n; ++i)
arr[i] = scanInt();
return arr;
}
public static void main(String[] args) {
try {
long startTime = System.currentTimeMillis();
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
//in = new BufferedReader(new FileReader("input.txt"));
//out = new PrintWriter(new FileWriter("output.txt"));
int test=scanInt();
for(int t=1; t<=test; t++){
// out.print("Case #"+t+": ");
solve();
}
long endTime = System.currentTimeMillis();
long totalTime = endTime - startTime;
// out.println(totalTime+"---------- "+System.currentTimeMillis() );
in.close();
out.close();
} catch (Throwable e) {
e.printStackTrace();
exit(1);
}
}
static int scanInt() throws IOException {
return parseInt(scanString());
}
static long scanLong() throws IOException {
return parseLong(scanString());
}
static double scanDouble() throws IOException {
return parseDouble(scanString());
}
static String scanString() throws IOException {
if (tok == null || !tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
static String scanLine() throws IOException {
return in.readLine();
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 0047865e10ad5d0e7da902be44f5dfdf | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.util.StringTokenizer;
/**
*
* @author eslam
*/
public class IceCave {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() throws FileNotFoundException {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) throws IOException {
FastReader input = new FastReader();
BufferedWriter log = new BufferedWriter(new OutputStreamWriter(System.out));
int t = input.nextInt();
loop:
while (t-- > 0) {
int n = input.nextInt();
String w = input.next();
int size = n;
int ans = 0;
for (int i = 0; i < n; i++) {
if (w.charAt(i) == '('&&i+1<n) {
ans++;
i++;
size -= 2;
} else if(w.charAt(i)==')') {
int l = i + 1;
boolean ca = false;
while (l < w.length()) {
if (w.charAt(l) == ')') {
ca = true;
break;
}
l++;
}
if (!ca) {
break;
}
size -= (l - i + 1);
i = l;
ans++;
}
}
log.write(ans+" "+size+"\n");
}
log.flush();
}
static class pair {
int x;
int y;
public pair(int x, int y) {
this.x = x;
this.y = y;
}
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | d3d057a00ebb2bd78de08f504304d437 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.util.StringTokenizer;
/**
*
* @author eslam
*/
public class IceCave {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() throws FileNotFoundException {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) throws IOException {
FastReader input = new FastReader();
BufferedWriter log = new BufferedWriter(new OutputStreamWriter(System.out));
int t = input.nextInt();
loop:
while (t-- > 0) {
int n = input.nextInt();
String w = input.next();
int size = n;
int ans = 0;
for (int i = 0; i < n; i++) {
if (w.charAt(i) == '('&&i+1<n) {
ans++;
i++;
size -= 2;
} else {
int l = i + 1;
boolean ca = false;
while (l < w.length()) {
if (w.charAt(l) == ')') {
ca = true;
break;
}
l++;
}
if (!ca) {
break;
}
size -= (l - i + 1);
i = l;
ans++;
}
}
log.write(ans+" "+size+"\n");
}
log.flush();
}
static class pair {
int x;
int y;
public pair(int x, int y) {
this.x = x;
this.y = y;
}
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 2649ffeca4a63b24281ac4b0a8b98576 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.util.Arrays;
import java.util.Random;
import java.io.FileWriter;
import java.io.PrintWriter;
/*
Solution Created: 21:21:26 22/03/2022
Custom Competitive programming helper.
*/
public class Main {
public static void solve() {
int n = in.nextInt();
char[] a = in.nca();
int lastNotTakenIdx = 0;
int op = 0;
for(int i = 0; i<n-1; i++) {
if(a[i]=='(') {
op++;
lastNotTakenIdx = i+2;
i++;
}else {
int j = i;
while(j+1<n && a[j+1] == '(') j++;
j++;
if(j<n) {
//we take from i to j
op++;
lastNotTakenIdx = j+1;
i = j;
}else break;
}
}
out.println(op +" "+(n-lastNotTakenIdx));
}
public static void main(String[] args) {
in = new Reader();
out = new Writer();
int t = in.nextInt();
while(t-->0) solve();
out.exit();
}
static Reader in; static Writer out;
static class Reader {
static BufferedReader br;
static StringTokenizer st;
public Reader() {
this.br = new BufferedReader(new InputStreamReader(System.in));
}
public Reader(String f){
try {
this.br = new BufferedReader(new FileReader(f));
} catch (IOException e) {
e.printStackTrace();
}
}
public int[] na(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
public double[] nd(int n) {
double[] a = new double[n];
for (int i = 0; i < n; i++) a[i] = nextDouble();
return a;
}
public long[] nl(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
public char[] nca() {
return next().toCharArray();
}
public String[] ns(int n) {
String[] a = new String[n];
for (int i = 0; i < n; i++) a[i] = next();
return a;
}
public int nextInt() {
ensureNext();
return Integer.parseInt(st.nextToken());
}
public double nextDouble() {
ensureNext();
return Double.parseDouble(st.nextToken());
}
public Long nextLong() {
ensureNext();
return Long.parseLong(st.nextToken());
}
public String next() {
ensureNext();
return st.nextToken();
}
public String nextLine() {
try {
return br.readLine();
} catch (Exception e) {
e.printStackTrace();
return null;
}
}
private void ensureNext() {
if (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
}
}
static class Util{
private static Random random = new Random();
static long[] fact;
public static void initFactorial(int n, long mod) {
fact = new long[n+1];
fact[0] = 1;
for (int i = 1; i < n+1; i++) fact[i] = (fact[i - 1] * i) % mod;
}
public static long modInverse(long a, long MOD) {
long[] gcdE = gcdExtended(a, MOD);
if (gcdE[0] != 1) return -1; // Inverted doesn't exist
long x = gcdE[1];
return (x % MOD + MOD) % MOD;
}
public static long[] gcdExtended(long p, long q) {
if (q == 0) return new long[] { p, 1, 0 };
long[] vals = gcdExtended(q, p % q);
long tmp = vals[2];
vals[2] = vals[1] - (p / q) * vals[2];
vals[1] = tmp;
return vals;
}
public static long nCr(int n, int r, long MOD) {
if (r == 0) return 1;
return (fact[n] * modInverse(fact[r], MOD) % MOD * modInverse(fact[n - r], MOD) % MOD) % MOD;
}
public static long nCr(int n, int r) {
return (fact[n]/fact[r])/fact[n-r];
}
public static long nPr(int n, int r, long MOD) {
if (r == 0) return 1;
return (fact[n] * modInverse(fact[n - r], MOD) % MOD) % MOD;
}
public static long nPr(int n, int r) {
return fact[n]/fact[n-r];
}
public static boolean isPrime(int n) {
if (n <= 1) return false;
if (n <= 3) return true;
if (n % 2 == 0 || n % 3 == 0) return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
public static boolean[] getSieve(int n) {
boolean[] isPrime = new boolean[n+1];
for (int i = 2; i <= n; i++) isPrime[i] = true;
for (int i = 2; i*i <= n; i++) if (isPrime[i])
for (int j = i; i*j <= n; j++) isPrime[i*j] = false;
return isPrime;
}
static long pow(long x, long pow, long mod){
long res = 1;
x = x % mod;
if (x == 0) return 0;
while (pow > 0){
if ((pow & 1) != 0) res = (res * x) % mod;
pow >>= 1;
x = (x * x) % mod;
}
return res;
}
public static int gcd(int a, int b) {
int tmp = 0;
while(b != 0) {
tmp = b;
b = a%b;
a = tmp;
}
return a;
}
public static long gcd(long a, long b) {
long tmp = 0;
while(b != 0) {
tmp = b;
b = a%b;
a = tmp;
}
return a;
}
public static int random(int min, int max) {
return random.nextInt(max-min+1)+min;
}
public static void dbg(Object... o) {
System.out.println(Arrays.deepToString(o));
}
public static void reverse(int[] s, int l , int r) {
for(int i = l; i<=(l+r)/2; i++) {
int tmp = s[i];
s[i] = s[r+l-i];
s[r+l-i] = tmp;
}
}
public static void reverse(int[] s) {
reverse(s, 0, s.length-1);
}
public static void reverse(long[] s, int l , int r) {
for(int i = l; i<=(l+r)/2; i++) {
long tmp = s[i];
s[i] = s[r+l-i];
s[r+l-i] = tmp;
}
}
public static void reverse(long[] s) {
reverse(s, 0, s.length-1);
}
public static void reverse(float[] s, int l , int r) {
for(int i = l; i<=(l+r)/2; i++) {
float tmp = s[i];
s[i] = s[r+l-i];
s[r+l-i] = tmp;
}
}
public static void reverse(float[] s) {
reverse(s, 0, s.length-1);
}
public static void reverse(double[] s, int l , int r) {
for(int i = l; i<=(l+r)/2; i++) {
double tmp = s[i];
s[i] = s[r+l-i];
s[r+l-i] = tmp;
}
}
public static void reverse(double[] s) {
reverse(s, 0, s.length-1);
}
public static void reverse(char[] s, int l , int r) {
for(int i = l; i<=(l+r)/2; i++) {
char tmp = s[i];
s[i] = s[r+l-i];
s[r+l-i] = tmp;
}
}
public static void reverse(char[] s) {
reverse(s, 0, s.length-1);
}
public static <T> void reverse(T[] s, int l , int r) {
for(int i = l; i<=(l+r)/2; i++) {
T tmp = s[i];
s[i] = s[r+l-i];
s[r+l-i] = tmp;
}
}
public static <T> void reverse(T[] s) {
reverse(s, 0, s.length-1);
}
public static void shuffle(int[] s) {
for (int i = 0; i < s.length; ++i) {
int j = random.nextInt(i + 1);
int t = s[i];
s[i] = s[j];
s[j] = t;
}
}
public static void shuffle(long[] s) {
for (int i = 0; i < s.length; ++i) {
int j = random.nextInt(i + 1);
long t = s[i];
s[i] = s[j];
s[j] = t;
}
}
public static void shuffle(float[] s) {
for (int i = 0; i < s.length; ++i) {
int j = random.nextInt(i + 1);
float t = s[i];
s[i] = s[j];
s[j] = t;
}
}
public static void shuffle(double[] s) {
for (int i = 0; i < s.length; ++i) {
int j = random.nextInt(i + 1);
double t = s[i];
s[i] = s[j];
s[j] = t;
}
}
public static void shuffle(char[] s) {
for (int i = 0; i < s.length; ++i) {
int j = random.nextInt(i + 1);
char t = s[i];
s[i] = s[j];
s[j] = t;
}
}
public static <T> void shuffle(T[] s) {
for (int i = 0; i < s.length; ++i) {
int j = random.nextInt(i + 1);
T t = s[i];
s[i] = s[j];
s[j] = t;
}
}
public static void sortArray(int[] a) {
shuffle(a);
Arrays.sort(a);
}
public static void sortArray(long[] a) {
shuffle(a);
Arrays.sort(a);
}
public static void sortArray(float[] a) {
shuffle(a);
Arrays.sort(a);
}
public static void sortArray(double[] a) {
shuffle(a);
Arrays.sort(a);
}
public static void sortArray(char[] a) {
shuffle(a);
Arrays.sort(a);
}
public static <T extends Comparable<T>> void sortArray(T[] a) {
Arrays.sort(a);
}
public static int[][] rotate90(int[][] a){
int n = a.length, m = a[0].length;
int[][] ans = new int[m][n];
for(int i = 0; i<n; i++) for(int j = 0; j<m; j++) ans[m-j-1][i] = a[i][j];
return ans;
}
public static char[][] rotate90(char[][] a){
int n = a.length, m = a[0].length;
char[][] ans = new char[m][n];
for(int i = 0; i<n; i++) for(int j = 0; j<m; j++) ans[m-j-1][i] = a[i][j];
return ans;
}
}
static class Writer {
private PrintWriter pw;
public Writer(){
pw = new PrintWriter(System.out);
}
public Writer(String f){
try {
pw = new PrintWriter(new FileWriter(f));
} catch (IOException e) {
e.printStackTrace();
}
}
public void yesNo(boolean condition) {
println(condition?"YES":"NO");
}
public void printArray(int[] a) {
for(int i = 0; i<a.length; i++) print(a[i]+" ");
}
public void printlnArray(int[] a) {
for(int i = 0; i<a.length; i++) print(a[i]+" ");
pw.println();
}
public void printArray(long[] a) {
for(int i = 0; i<a.length; i++) print(a[i]+" ");
}
public void printlnArray(long[] a) {
for(int i = 0; i<a.length; i++) print(a[i]+" ");
pw.println();
}
public void print(Object o) {
pw.print(o.toString());
}
public void println(Object o) {
pw.println(o.toString());
}
public void println() {
pw.println();
}
public void flush() {
pw.flush();
}
public void exit() {
pw.close();
}
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 8c3015e4a282b99d9dfc0a30a828f846 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes |
//Break in nested for loops creates problem in java
import java.util.*;
import java.io.*;
import java.lang.*;
//import java.util.stream.*;
public class A {
static class FastReader{
BufferedReader br;
StringTokenizer st;
public FastReader(){
br=new BufferedReader(new InputStreamReader(System.in));
}
String next(){
while(st==null || !st.hasMoreTokens()){
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt(){
return Integer.parseInt(next());
}
long nextLong(){
return Long.parseLong(next());
}
double nextDouble(){
return Double.parseDouble(next());
}
String nextLine(){
String str="";
try {
str=br.readLine().trim();
} catch (Exception e) {
e.printStackTrace();
}
return str;
}
}
static class FastWriter {
private final BufferedWriter bw;
public FastWriter() {
this.bw = new BufferedWriter(new OutputStreamWriter(System.out));
}
public void print(Object object) throws IOException {
bw.append(" " + object);
}
public void println(Object object) throws IOException {
print(object);
bw.append("\n");
}
public void close() throws IOException {
bw.close();
}
}
static int mod=1000000007;
//Power under mod (a ^ b) % mod
static int modpow(int a, int b) {
int ans = 1;
int m=mod;
while (b>0) {
if (b%2!=0) { ans = (ans * a) % m; }
b = b >> 1; a = (a * a) % m;
}
return ans;
}
static Boolean isSquare(int n)
{
int y= (int)Math.sqrt(n);
return y*y==n;
}
static int highestPowerof2(int x)
{
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return x ^ (x >> 1);
}
static boolean check_pow (int x)
{
return x!=0 && ((x&(x-1)) == 0);
}
static int digits(int n)
{
if(n==0)
return 1;
return (int)(Math.floor(Math.log10(n))+1);
}
public static boolean IsPrime(long number)
{
if (number < 2) return false;
if (number % 2 == 0) return (number == 2);
int root = (int)Math.sqrt((double)number);
for (int i = 3; i <= root; i += 2)
{
if (number % i == 0) return false;
}
return true;
}
static long gcd(long a, long b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
static long lcm(long a, long b)
{
return (a / gcd(a, b)) * b;
}
static boolean check(int i, int j, int n, int m,StringBuilder arr[]) {
if(i<0 || i>=n || j<0 || j>=m)
return false;
if(arr[i].charAt(j)!='#')
return false;
return true;
}
static boolean isPalindrome(String str)
{
int i = 0, j = str.length() - 1;
while (i < j) {
if (str.charAt(i) != str.charAt(j))
return false;
i++;
j--;
}
return true;
}
static int upperbound(int arr[],int key)
{
int l=0,h=arr.length-1;
int mid;
while(h-l>1)
{
mid=(h+l)/2;
if(arr[mid]<=key)
l=mid+1;
else
h=mid;
}
if(arr[l]>key)
return l;
if(arr[h]>key)
return h;
return -1;
}
public static void main(String[] args) throws Exception{
// TODO Auto-generated method stub
FastReader sc= new FastReader();
//FastWriter out = new FastWriter();
//StringBuilder sb= new StringBuilder("");
//PrintWriter out= new PrintWriter(System.out);
//Collections.sort(A, (a, b) -> Integer.compare(b[1], a[1]));
int t=sc.nextInt();
while(t-->0)
{
int n=sc.nextInt();
String s=sc.next();
List<Character> list = new ArrayList<>();
int i=0;
list.add(s.charAt(0));
if(n==1)
System.out.println(0+" "+1);
else
{
int a=0;
while(i+1<n)
{
if(s.charAt(i)==s.charAt(i+1) || (s.charAt(i)=='(' && s.charAt(i+1)==')'))
{
i+=2;a++;
}
else
{
int j=i+1;
while(j<n && s.charAt(j)=='(')
j++;
if(j==n)
break;
a++;
i=j+1;;
}
}
System.out.println(a+" "+(n-i));
}
}
// out.close();
}
}
class Pair {
int x;
int y;
public Pair(int x, int y)
{
this.x = x;
this.y = y;
}
}
class Compare {
static void comparey(Pair arr[], int n)
{
Arrays.sort(arr, new Comparator<Pair>() {
@Override public int compare(Pair p1, Pair p2)
{
return p1.y - p2.y;
}
});
}
static void comparex(Pair arr[], int n)
{
Arrays.sort(arr, new Comparator<Pair>() {
@Override public int compare(Pair p1, Pair p2)
{
return p1.x - p2.x;
}
});
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 466787e5772808f0f185dd62406b2762 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Main
{
private static boolean palin(String s,int l,int h){
while(l<h){
if(s.charAt(l)!=s.charAt(h)) return false;
l++;
h--;
}
return true;
}
public static void main (String[] args) throws java.lang.Exception
{
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t-->0){
int n = sc.nextInt();
String s = sc.next();
int l=0,opr=0,i=1;
for(i=1;i<n;i++){
if(s.charAt(i-1)=='('&&s.charAt(i)==')'){
opr++;
i++;
l=i;
}
else{
if(palin(s,l,i)){
i++;
opr++;
l=i;
}
}
}
if(i<=n)
System.out.println(opr+" "+ (n-l));
else System.out.println(opr+" 0");
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 8c89f486964731121a9427f9cce3593b | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main{
public static void main(String args[])throws IOException{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int t=Integer.parseInt(br.readLine());
while(t-->0){
int n=Integer.parseInt(br.readLine());
String st=br.readLine();
int i=0;
int count=0;
int opr=0;
int rem=0;
while(i<st.length()){
int j=i;
// boolean flag=true;
count=0;
while(j<st.length()){
boolean flag=true;
if(flag&&st.charAt(j)=='('){
// System.out.println(" open "+j);
count++;
// System.out.println(" open "+j+" "+count);
}else if(flag&&st.charAt(j)==')'){
count--;
if(count<0){
flag=false;
}
if(count==0){
rem+=(j-i+1);
opr++;
// count=0;
// System.out.println(i+" "+ j+" "+ "valid");
// i=j+1;
break;
}
}
if(isPalin(st,i,j)){
rem+=(j-i+1);
opr++;
// i=j+1;
// System.out.println(i+" "+ j+" "+ "palindrome");
break;
}
j++;
}
i=j+1;
}
System.out.println(opr+" "+ (n-rem));
}
}
public static boolean isPalin(String st,int i,int j){
if(i==j)return false;
while(i<j){
if(st.charAt(i)!=st.charAt(j))return false;
i++;j--;
}
return true;
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 9317e1b60a1ac1cd8e71ca63a68c994d | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.io.*;
import java.math.*;
public class Solution {
static int mod=1000000007;
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) {
int start=(int) System.currentTimeMillis();
FastReader sc = new FastReader();
int tt=1;
//
tt = sc.nextInt();
//
while (tt-->0) {
int ans=0;
int i=0;
int n=sc.nextInt();
String s=sc.next();
// System.out.println(n+" "+s);
while(i<n-1) {
if(s.charAt(i)=='(') {
ans++;
i+=2;
}
else {
int j=i+1;
while(j<n&&s.charAt(j)=='(') {
j++;
}
if(j==n)break;
else {
ans++;
i=j+1;
}
}
}
int rem=n-i;
System.out.println(ans+" "+rem);
//while
}
// int end=(int) System.currentTimeMillis();
// end-=start;
// System.out.println();
// System.out.println();
// System.out.println("time : "+end);
//main
}
//class
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 756b8781ed89ad76c89ca82d760978a6 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.lang.*;
import java.io.*;
public class BracketSequenceDeletion {
public static void main(String[] args)throws java.lang.Exception{
Scanner scn=new Scanner(System.in);
long a=scn.nextLong();
while(a-->0){
long b=scn.nextLong();
scn.nextLine();
String str=scn.nextLine();
int count=0,i=0;
while(i<str.length()-1){
if(str.charAt(i)=='(' && str.charAt(i+1)==')'){
count++;
i+=2;
continue;
}
if(str.charAt(i)==str.charAt(i+1)){
count++;
i+=2;
continue;
}
int index = -1;
for (int k = i + 1; k < str.length(); k++) {
if (str.charAt(k) == ')') {
count++;
index = k;
break;
}
}
if (index == -1) break;
i = index + 1;
}
int l = 0;
if (i < str.length()) {
l = str.length() - i;
}
System.out.println(count+" "+l);
}
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 207434fd39e54fac7de6ab1c58202a71 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes |
import java.util.*;
public class Play {
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while (t -- > 0) {
int n = sc.nextInt();
sc.nextLine();
String expression = sc.nextLine();
Stack<Character> palindrome = new Stack<>(), good = new Stack<>();
int ans = 0;
for (int i=0; i<n; i++) {
Character c = expression.charAt(i);
// System.out.println("c is " + c);
if (palindrome.empty()) {
palindrome.push(c);
}
else {
if (palindrome.peek() == c) {
palindrome.pop();
if (palindrome.isEmpty()) {
ans++;
good.clear();
continue;
}
}
else if (palindrome.size() >= 2) {
// System.out.println("palindrome cleared");
if (palindrome.get(palindrome.size() - 2) == c) {
palindrome.pop(); palindrome.pop();
if (palindrome.isEmpty()) {
ans++;
good.clear();
continue;
}
}
}
else {
palindrome.push(c);
}
}
if (good.empty()) {
good.push(c);
}
else {
if (good.peek() == '(' && c == ')') {
// System.out.println("goof popped in "+ i);
good.pop();
if (good.isEmpty()) {
ans++;
palindrome.clear();
}
}
else {
good.push(c);
}
}
// System.out.println("palindrome " + palindrome);
// System.out.println("good " + good);
// System.out.println();
}
System.out.println(ans + " " + good.size());
}
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | a0b1d0cbf428a699091cced31b9ae601 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | // package codeforce;
import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.IntStream;
import java.io.*;
public class A {
static class Node {
int id1;
int id2;
int ind ;
Node(int v1, int w1, int i){
this.id1= v1;
this.id2=w1;
this.ind=i;
}
Node(){}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next(){
while (st == null || !st.hasMoreElements()){
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e){
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt(){
return Integer.parseInt(next());
}
long nextLong(){
return Long.parseLong(next());
}
double nextDouble(){
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try{
str = br.readLine();
}
catch (IOException e){
e.printStackTrace();
}
return str;
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
}
// static int[] ans = new int[101];
static boolean[] seiveofEratoSthenes(int n) {
boolean[] isPrime= new boolean[n+1];
Arrays.fill(isPrime, true);
isPrime[0]=false;
isPrime[1]= false;
for(int i=2;i*i<n;i++) {
for(int j=2*i; j<=n;j++) {
isPrime[j]= false;
}
}
return isPrime;
}
static int i = 2;
// Function check whether a number
// is prime or not
public static boolean isPrime(int n)
{
// Corner cases
if (n == 0 || n == 1)
{
return false;
}
// Checking Prime
if (n == i)
return true;
// Base cases
if (n % i == 0)
{
return false;
}
i++;
return isPrime(n);
}
static class SortingComparator implements Comparator<Node>{
@Override
public int compare(Node p1, Node p2) {
if(p1.id2<p2.id2) {
return 1;
}
else if(p1.id2 > p2.id2) {
return -1;
}
return p2.ind-p1.ind;
}
}
public static void main(String[] args) {
FastReader sc=new FastReader();
int t = sc.nextInt();
int mod = 1000000007;
// boolean [] prime = seiveofEratoSthenes(1000000007);
while(t--!=0) {
int n = sc.nextInt();
String s = sc.next();
char[] in = s.toCharArray();
n = in.length;
int i = 0;
int c = 0;
while (i < in.length - 1) {
if (in[i] == in[i + 1]) {
c++;
i += 2;
continue;
}
if (in[i] == '(' && in[i + 1] == ')') {
c++;
i += 2;
continue;
}
int index = -1;
for (int k = i + 1; k < n; k++) {
if (in[k] == ')') {
c++;
index = k;
break;
}
}
if (index == -1) break;
i = index + 1;
}
int l = 0;
if (i < n) {
l = n - i;
}
System.out.println(c+" "+l);
}
}
static boolean palin (String s) {
int i=0;
int j = s.length()-1;
while(i<j) {
if(s.charAt(i)!=s.charAt(j))return false;
i++;
j--;
}
return true;
}
public static String longestPalindrome(String s) {
if (s == null || s.length() < 1) return "";
int start = 0, end = 0;
for (int i = 0; i < s.length(); i++) {
int len1 = expandAroundCenter(s, i, i);
int len2 = expandAroundCenter(s, i, i + 1);
int len = Math.max(len1, len2);
if (len > end - start) {
start = i - (len - 1) / 2;
end = i + len / 2;
}
}
return s.substring(start, end + 1);
}
public static int expandAroundCenter(String s, int left, int right) {
int L = left, R = right;
while (L >= 0 && R < s.length() && s.charAt(L) == s.charAt(R)) {
L--;
R++;
}
return R - L - 1;
}
public static int longestValidParentheses(String s) {
int left = 0, right = 0, maxlength = 0;
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) == '(') {
left++;
} else {
right++;
}
if (left == right) {
maxlength = Math.max(maxlength, 2 * right);
} else if (right >= left) {
left = right = 0;
}
}
left = right = 0;
for (int i = s.length() - 1; i >= 0; i--) {
if (s.charAt(i) == '(') {
left++;
} else {
right++;
}
if (left == right) {
maxlength = Math.max(maxlength, 2 * left);
} else if (left >= right) {
left = right = 0;
}
}
return maxlength;
}
static boolean recure(char[]arr, int i) {
if(i==arr.length ) {
boolean f = isPalindrome(arr, 0, arr.length-1);
for(int j = 0; j<arr.length; j++) {
for(int k = j+4; k<arr.length; k++) {
f = ( f || isPalindrome(arr, j, k));
}
}
return f;
}
for(int j = i; j<arr.length; j++) {
if(arr[j]=='?') {
arr[j]='1';
if(recure(arr, j+1)==false) {
return false;
}
arr[j]='0';
if(recure(arr, j+1)==false)return false;
}
}
return true;
}
static boolean isPalindrome(char[] arr, int i, int j) {
while(i<j) {
if(arr[i]!=arr[j])return false;
i++;
j--;
}
return true;
}
static int lcm(int a, int b)
{
return (a / gcd(a, b)) * b;
}
static int mind(int a, int[] b) {
int min =Math.abs(b[0]-a);
for(int j=0; j<b.length ; j++) {
min = Math.min(min, Math.abs(b[j]-a));
}
return min;
}
static int max =0;
static void dfs(int i, boolean[] vis , ArrayList<ArrayList<Integer>> adj) {
max = Math.max(max, i);
vis[i]= true;
for(int e: adj.get(i)) {
if(vis[e]==false) {
dfs(e, vis, adj);
}
}
}
static ArrayList<Node> al = new ArrayList<>();
static int[] gcd= {2, 11, 101, 1087, 15413, 100003, 1000003, 10000019, 999999937};
static long answer =0;
//static void solve(int[] arr, int i, int s, int e) {
// if(s>= arr.length || e<0 || e>=arr.length || s<0) return;
// if(s>e)return;
// int max = 0;
// int ind =0;
// for(int j=s; j<=e && e<arr.length; j++) {
// if(max<arr[j]) {
// max = arr[j];
// ind = j;
// }
// }
// ans[ind] = i;
// solve(arr, i+1, s, ind-1);
// solve(arr, i+1, ind+1, e);
//
// }
public static boolean isValid(int x, int y, char[][] arr , boolean[][] vis) {
if(x<0 || y<0 || x>= arr.length || y>=arr.length || vis[x][y]==true || arr[x][y]=='1')return false;
return true;
}
static int gcd(int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
static double pow(int a, int b) {
long res= 1;
while(b>0) {
if((b&1)!=0) {
res= (res*a);
}
a= (a*a);
b= b>>1;
}
return res;
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 98a6a5cf581d88879b7032b31e65bf3d | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
public class C_Bracket_Sequence_Deletion{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t-->0){
int n =sc.nextInt();
String s = sc.next();
int ans =0;
int x =0;
int y =0;
// HashSet<Integer> HS = new HashSet<>();
boolean isRegular = true;
for(int i =0;i<n;i++){
if(s.charAt(i)=='('){
x++;
}else{
y++;
}
if(x<y){
// then
isRegular = false;
}
if(x==y && isRegular){
ans++;
x = 0;
y =0;
isRegular = true;
}
if(y==2){
// then it will be concluded
ans++;
x = 0;
y = 0;
isRegular = true;
}
if(y==0 && x==2){
ans++;
x = 0;
y = 0;
isRegular = true;
}
// if(x==0 && y==2){
// ans++;
// x = 0;
// y = 0;
// }
}
System.out.println(ans+ " "+(x+y));
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 1e97f11534db3e30c1f491b34a95a812 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.util.*;
public class Codeforces {
static final long MOD = (long)(1e9 + 7);
static int stoi(String s) {
return Integer.parseInt(s);
}
static long stol(String s) {
return Long.parseLong(s);
}
public static void main(String[] args) throws IOException {
try (BufferedReader br = new BufferedReader(new InputStreamReader(System.in))) {
int t = stoi(br.readLine());
while (t-- > 0) {
int n = stoi(br.readLine());
char[] s = br.readLine().toCharArray();
int i = 0, opr = 0;
while (i < n-1) {
if (s[i] == s[i+1]) {
i += 2;
opr++;
}
else if (s[i] == '(' && s[i+1] == ')') {
i += 2;
opr++;
}
else {
int val = -1;
for (int k = i + 1; k < n; k++) {
if (s[k] == ')') {
val = k+1;
opr++;
break;
}
}
if (val == -1) break;
i = val;
}
}
System.out.println(opr + " " + (n - i));
}
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 11 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 810df9869fd4e25681e3070583f646f1 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main implements Runnable {
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
public static void main(String[] args) {
new Thread(null, new Main(), "").start();
}
public void run() {
try {
long t1 = System.currentTimeMillis();
if (System.getProperty("ONLINE_JUDGE") != null) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
} else {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
Locale.setDefault(Locale.US);
solve();
in.close();
out.close();
long t2 = System.currentTimeMillis();
System.err.println("Time = " + (t2 - t1));
} catch (Throwable t) {
t.printStackTrace(System.err);
System.exit(-1);
}
}
String readString() throws IOException {
while (!tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
int readInt() throws IOException {
return Integer.parseInt(readString());
}
long readLong() throws IOException {
return Long.parseLong(readString());
}
double readDouble() throws IOException {
return Double.parseDouble(readString());
}
int[] readIntArray(int n) throws IOException {
int [] a = new int[n];
for(int i = 0; i < n; i++) {
a[i] = readInt();
}
return a;
}
long[] readLongArray(int n) throws IOException {
long [] a = new long[n];
for(int i = 0; i < n; i++) {
a[i] = readLong();
}
return a;
}
void solveTest() throws IOException {
readInt();
String s = readString();
int i = 0;
int ops = 0;
while(i < s.length()-1) {
if(s.charAt(i) == ')' && s.charAt(i+1) == '(') {
// i += 2;
int j = i + 2;
while(j<s.length() && s.charAt(j) == '(') j++;
if(j < s.length()) {
ops++;
i += j-i+1;
} else {
break;
}
} else {
ops++;
i += 2;
}
}
out.println(ops + " " + (s.length()-i));
}
void solve() throws IOException {
int numTests = readInt();
while(numTests-->0) {
solveTest();
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 862c324ff78d6cdf9f2ebb0a127655b8 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args) throws Exception {
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
String s = sc.next();
char[] a = s.toCharArray();
Hash h = new Hash(s);
int ind = -1;
int cnt = 0;
int sum = 0;
boolean still = true;
for (int i = 0; i < n; i++) {
if (a[i] == '(') {
sum++;
} else {
sum--;
}
if (sum < 0) {
still = false;
}
if ((sum == 0 && still) || (ind + 1 != i && (h.query(ind + 1, i) == h.query(i, ind + 1)))) {
cnt++;
ind = i;
sum = 0;
still = true;
}
}
pw.println(cnt + " " + (n - 1 - ind));
}
pw.close();
}
public static long RandomPick(long[] a) {
int n = a.length;
int r = rn.nextInt(n);
return a[r];
}
public static int RandomPick(int[] a) {
int n = a.length;
int r = rn.nextInt(n);
return a[r];
}
static class Hash {
int[] HashsArraypre;
int[] HashsArraysuf;
static int[] prepow;
static int HashsArrayInd = 0;
static int prime = 61;
static int mod;
static int max = 1000009;
int prelen;
static final int[] mods = {
1000000007, 1000000009, 1000000021, 1000000033, 1000000087, 1000000093, 1000000097, 1000000103, 1000000123, 1000000181,
1000000207, 1000000223, 1000000241, 1000000271, 1000000289, 1000000297, 1000000321, 1000000349, 1000000363, 1000000403,
1000000409, 1000000411, 1000000427, 1000000433, 1000000439, 1000000447, 1000000453, 1000000459, 1000000483, 1000000513,
1000000531, 1000000579, 1000000607, 1000000613, 1000000637, 1000000663, 1000000711, 1000000753, 1000000787, 1000000801,
1000000829, 1000000861, 1000000871, 1000000891, 1000000901, 1000000919, 1000000931, 1000000933, 1000000993, 1000001011,
1000001021, 1000001053, 1000001087, 1000001099, 1000001137, 1000001161, 1000001203, 1000001213, 1000001237, 1000001263,
1000001269, 1000001273, 1000001279, 1000001311, 1000001329, 1000001333, 1000001351, 1000001371, 1000001393, 1000001413,
1000001447, 1000001449, 1000001491, 1000001501, 1000001531, 1000001537, 1000001539, 1000001581, 1000001617, 1000001621,
1000001633, 1000001647, 1000001663, 1000001677, 1000001699, 1000001759, 1000001773, 1000001789, 1000001791, 1000001801,
1000001803, 1000001819, 1000001857, 1000001887, 1000001917, 1000001927, 1000001957, 1000001963, 1000001969, 1000002043};
public Hash(String s) {
prelen = s.length();
HashsArraypre = new int[prelen + 1];
HashsArraysuf = new int[prelen + 1];
if (HashsArrayInd == 0) {
mod = RandomPick(mods);
prime = (int)(Math.random()*(1e8)+1000);
prepow = new int[max];
prepow[0] = 1;
for (int i = 1; i < max; i++) {
// prepow[i] = (int) (((1l * prepow[i - 1] << 7) - prepow[i - 1]) % mod);
prepow[i] = (int) ((1l * prepow[i - 1] * prime) % mod);
}
}
for (int i = 0; i < prelen; i++) {
HashsArraypre[i + 1] = (int)
((HashsArraypre[i] + 1l * s.charAt(i) * prepow[i] % mod) % mod);
}
for (int i = 0; i < prelen; i++) {
HashsArraysuf[i + 1] = (int)
((HashsArraysuf[i] + 1l * s.charAt(i) * prepow[max - 1 - i] % mod) % mod);
}
HashsArrayInd++;
}
public int query(int l, int r) {
int val;
if (l <= r) {
val = (int) ((1l * HashsArraypre[r + 1] + mod - HashsArraypre[l]) % mod);
val = (int) ((1l * val * prepow[max - 1 - l]) % mod);
} else {
val = (int) ((1l * HashsArraysuf[l + 1] + mod - HashsArraysuf[r]) % mod);
val = (int) ((1l * val * prepow[l]) % mod);
}
return val;
}
}
static Random rn = new Random();
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
static class pair implements Comparable<pair> {
long x;
long y;
public pair(long x, long y) {
this.x = x;
this.y = y;
}
public String toString() {
return x + " " + y;
}
public boolean equals(Object o) {
if (o instanceof pair) {
pair p = (pair) o;
return p.x == x && p.y == y;
}
return false;
}
public int hashCode() {
return new Long(x).hashCode() * 31 + new Long(y).hashCode();
}
public int compareTo(pair other) {
if (this.x == other.x) {
return Long.compare(this.y, other.y);
}
return Long.compare(this.x, other.x);
}
}
static class tuble implements Comparable<tuble> {
int x;
int y;
int z;
public tuble(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;
}
public String toString() {
return x + " " + y + " " + z;
}
public int compareTo(tuble other) {
if (this.x == other.x) {
if (this.y == other.y) {
return this.z - other.z;
}
return this.y - other.y;
} else {
return this.x - other.x;
}
}
}
static Scanner sc = new Scanner(System.in);
static PrintWriter pw = new PrintWriter(System.out);
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 26bf2bb0386ccc9f2d1697d2b4a47586 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args) throws Exception {
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
String s = sc.next();
char[] a = s.toCharArray();
hash h = new hash(s);
int ind = -1;
int cnt = 0;
int sum = 0;
boolean still = true;
for (int i = 0; i < n; i++) {
if (a[i] == '(') {
sum++;
} else {
sum--;
}
if (sum < 0) {
still = false;
}
if ((sum == 0 && still) || (ind + 1 != i && (h.query(ind + 1, i) == h.query(i, ind + 1)))) {
cnt++;
ind = i;
sum = 0;
still = true;
}
}
pw.println(cnt + " " + (n - 1 - ind));
}
pw.close();
}
public static long RandomPick(long[] a) {
int n = a.length;
int r = rn.nextInt(n);
return a[r];
}
public static int RandomPick(int[] a) {
int n = a.length;
int r = rn.nextInt(n);
return a[r];
}
static class hash {
int[] HashsArraypre;
int[] HashsArraysuf;
static int[] prepow;
static int HashsArrayInd = 0;
static int prime = 61;
static int mod;
static int max = 1000009;
int prelen;
static final int[] mods = {
1000000007, 1000000009, 1000000021, 1000000033, 1000000087, 1000000093, 1000000097, 1000000103, 1000000123, 1000000181,
1000000207, 1000000223, 1000000241, 1000000271, 1000000289, 1000000297, 1000000321, 1000000349, 1000000363, 1000000403,
1000000409, 1000000411, 1000000427, 1000000433, 1000000439, 1000000447, 1000000453, 1000000459, 1000000483, 1000000513,
1000000531, 1000000579, 1000000607, 1000000613, 1000000637, 1000000663, 1000000711, 1000000753, 1000000787, 1000000801,
1000000829, 1000000861, 1000000871, 1000000891, 1000000901, 1000000919, 1000000931, 1000000933, 1000000993, 1000001011,
1000001021, 1000001053, 1000001087, 1000001099, 1000001137, 1000001161, 1000001203, 1000001213, 1000001237, 1000001263,
1000001269, 1000001273, 1000001279, 1000001311, 1000001329, 1000001333, 1000001351, 1000001371, 1000001393, 1000001413,
1000001447, 1000001449, 1000001491, 1000001501, 1000001531, 1000001537, 1000001539, 1000001581, 1000001617, 1000001621,
1000001633, 1000001647, 1000001663, 1000001677, 1000001699, 1000001759, 1000001773, 1000001789, 1000001791, 1000001801,
1000001803, 1000001819, 1000001857, 1000001887, 1000001917, 1000001927, 1000001957, 1000001963, 1000001969, 1000002043};
public hash(String s) {
prelen = s.length();
HashsArraypre = new int[prelen + 1];
HashsArraysuf = new int[prelen + 1];
if (HashsArrayInd == 0) {
mod = RandomPick(mods);
prime = (int)(Math.random()*(1e9)+100);
prepow = new int[max];
prepow[0] = 1;
for (int i = 1; i < max; i++) {
// prepow[i] = (int) (((1l * prepow[i - 1] << 7) - prepow[i - 1]) % mod);
prepow[i] = (int) ((1l * prepow[i - 1] * prime) % mod);
}
}
for (int i = 0; i < prelen; i++) {
HashsArraypre[i + 1] = (int)
((HashsArraypre[i] + 1l * s.charAt(i) * prepow[i] % mod) % mod);
}
for (int i = 0; i < prelen; i++) {
HashsArraysuf[i + 1] = (int)
((HashsArraysuf[i] + 1l * s.charAt(i) * prepow[max - 1 - i] % mod) % mod);
}
HashsArrayInd++;
}
public int query(int l, int r) {
int val;
if (l <= r) {
val = (int) ((1l * HashsArraypre[r + 1] + mod - HashsArraypre[l]) % mod);
val = (int) ((1l * val * prepow[max - 1 - l]) % mod);
} else {
val = (int) ((1l * HashsArraysuf[l + 1] + mod - HashsArraysuf[r]) % mod);
val = (int) ((1l * val * prepow[l]) % mod);
}
return val;
}
}
static Random rn = new Random();
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
static class pair implements Comparable<pair> {
long x;
long y;
public pair(long x, long y) {
this.x = x;
this.y = y;
}
public String toString() {
return x + " " + y;
}
public boolean equals(Object o) {
if (o instanceof pair) {
pair p = (pair) o;
return p.x == x && p.y == y;
}
return false;
}
public int hashCode() {
return new Long(x).hashCode() * 31 + new Long(y).hashCode();
}
public int compareTo(pair other) {
if (this.x == other.x) {
return Long.compare(this.y, other.y);
}
return Long.compare(this.x, other.x);
}
}
static class tuble implements Comparable<tuble> {
int x;
int y;
int z;
public tuble(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;
}
public String toString() {
return x + " " + y + " " + z;
}
public int compareTo(tuble other) {
if (this.x == other.x) {
if (this.y == other.y) {
return this.z - other.z;
}
return this.y - other.y;
} else {
return this.x - other.x;
}
}
}
static Scanner sc = new Scanner(System.in);
static PrintWriter pw = new PrintWriter(System.out);
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | d6a72de8230618d7db58864e92741d79 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args) throws Exception {
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
String s = sc.next();
char[] a = s.toCharArray();
hash h = new hash(s);
int ind = -1;
int cnt = 0;
int sum = 0;
boolean still = true;
for (int i = 0; i < n; i++) {
if (a[i] == '(') {
sum++;
} else {
sum--;
}
if (sum < 0) {
still = false;
}
if ((sum == 0 && still) || (ind + 1 != i && (h.query(ind + 1, i) == h.query(i, ind + 1)))) {
cnt++;
ind = i;
sum = 0;
still = true;
}
}
pw.println(cnt + " " + (n - 1 - ind));
}
pw.close();
}
public static long RandomPick(long[] a) {
int n = a.length;
int r = rn.nextInt(n);
return a[r];
}
public static int RandomPick(int[] a) {
int n = a.length;
int r = rn.nextInt(n);
return a[r];
}
static class hash {
int[] HashsArraypre;
int[] HashsArraysuf;
static int[] prepow;
static int HashsArrayInd = 0;
static int prime = 61;
static int mod;
static int max = 1000009;
int prelen;
static final int[] mods = {
1000000007, 1000000009, 1000000021, 1000000033, 1000000087, 1000000093, 1000000097, 1000000103, 1000000123, 1000000181,
1000000207, 1000000223, 1000000241, 1000000271, 1000000289, 1000000297, 1000000321, 1000000349, 1000000363, 1000000403,
1000000409, 1000000411, 1000000427, 1000000433, 1000000439, 1000000447, 1000000453, 1000000459, 1000000483, 1000000513,
1000000531, 1000000579, 1000000607, 1000000613, 1000000637, 1000000663, 1000000711, 1000000753, 1000000787, 1000000801,
1000000829, 1000000861, 1000000871, 1000000891, 1000000901, 1000000919, 1000000931, 1000000933, 1000000993, 1000001011,
1000001021, 1000001053, 1000001087, 1000001099, 1000001137, 1000001161, 1000001203, 1000001213, 1000001237, 1000001263,
1000001269, 1000001273, 1000001279, 1000001311, 1000001329, 1000001333, 1000001351, 1000001371, 1000001393, 1000001413,
1000001447, 1000001449, 1000001491, 1000001501, 1000001531, 1000001537, 1000001539, 1000001581, 1000001617, 1000001621,
1000001633, 1000001647, 1000001663, 1000001677, 1000001699, 1000001759, 1000001773, 1000001789, 1000001791, 1000001801,
1000001803, 1000001819, 1000001857, 1000001887, 1000001917, 1000001927, 1000001957, 1000001963, 1000001969, 1000002043};
static final int[] primes = {59, 61, 67, 71, 73, 79, 83, 89, 97, 101};
public hash(String s) {
prelen = s.length();
HashsArraypre = new int[prelen + 1];
HashsArraysuf = new int[prelen + 1];
if (HashsArrayInd == 0) {
mod = RandomPick(mods);
prime = RandomPick(primes);
prepow = new int[max];
prepow[0] = 1;
for (int i = 1; i < max; i++) {
// prepow[i] = (int) (((1l * prepow[i - 1] << 7) - prepow[i - 1]) % mod);
prepow[i] = (int) ((1l * prepow[i - 1] * prime) % mod);
}
}
for (int i = 0; i < prelen; i++) {
HashsArraypre[i + 1] = (int)
((HashsArraypre[i] + 1l * s.charAt(i) * prepow[i] % mod) % mod);
}
for (int i = 0; i < prelen; i++) {
HashsArraysuf[i + 1] = (int)
((HashsArraysuf[i] + 1l * s.charAt(i) * prepow[max - 1 - i] % mod) % mod);
}
HashsArrayInd++;
}
public int query(int l, int r) {
int val;
if (l <= r) {
val = (int) ((1l * HashsArraypre[r + 1] + mod - HashsArraypre[l]) % mod);
val = (int) ((1l * val * prepow[max - 1 - l]) % mod);
} else {
val = (int) ((1l * HashsArraysuf[l + 1] + mod - HashsArraysuf[r]) % mod);
val = (int) ((1l * val * prepow[l]) % mod);
}
return val;
}
}
static Random rn = new Random();
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
static class pair implements Comparable<pair> {
long x;
long y;
public pair(long x, long y) {
this.x = x;
this.y = y;
}
public String toString() {
return x + " " + y;
}
public boolean equals(Object o) {
if (o instanceof pair) {
pair p = (pair) o;
return p.x == x && p.y == y;
}
return false;
}
public int hashCode() {
return new Long(x).hashCode() * 31 + new Long(y).hashCode();
}
public int compareTo(pair other) {
if (this.x == other.x) {
return Long.compare(this.y, other.y);
}
return Long.compare(this.x, other.x);
}
}
static class tuble implements Comparable<tuble> {
int x;
int y;
int z;
public tuble(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;
}
public String toString() {
return x + " " + y + " " + z;
}
public int compareTo(tuble other) {
if (this.x == other.x) {
if (this.y == other.y) {
return this.z - other.z;
}
return this.y - other.y;
} else {
return this.x - other.x;
}
}
}
static Scanner sc = new Scanner(System.in);
static PrintWriter pw = new PrintWriter(System.out);
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 10d4b5329a502c639a45d92ad9081133 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args) throws Exception {
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
String s = sc.next();
char[] a = s.toCharArray();
hash h = new hash(s);
int ind = -1;
int cnt = 0;
int sum = 0;
boolean still = true;
for (int i = 0; i < n; i++) {
if (a[i] == '(') {
sum++;
} else {
sum--;
}
if (sum < 0) {
still = false;
}
if ((sum == 0 && still) || (ind + 1 != i && (h.query(ind + 1, i) == h.query(i, ind + 1)))) {
cnt++;
ind = i;
sum = 0;
still = true;
}
}
pw.println(cnt + " " + (n - 1 - ind));
}
pw.close();
}
public static long RandomPick(long[] a) {
int n = a.length;
int r = rn.nextInt(n);
return a[r];
}
public static int RandomPick(int[] a) {
int n = a.length;
int r = rn.nextInt(n);
return a[r];
}
static class hash {
int[] HashsArraypre;
int[] HashsArraysuf;
static int[] prepow;
static int HashsArrayInd = 0;
static int prime = 61;
static int mod;
static int max = 1000009;
int prelen;
static final int[] mods = {
1000000007, 1000000009, 1000000021, 1000000033, 1000000087, 1000000093, 1000000097, 1000000103, 1000000123, 1000000181,
1000000207, 1000000223, 1000000241, 1000000271, 1000000289, 1000000297, 1000000321, 1000000349, 1000000363, 1000000403,
1000000409, 1000000411, 1000000427, 1000000433, 1000000439, 1000000447, 1000000453, 1000000459, 1000000483, 1000000513,
1000000531, 1000000579, 1000000607, 1000000613, 1000000637, 1000000663, 1000000711, 1000000753, 1000000787, 1000000801,
1000000829, 1000000861, 1000000871, 1000000891, 1000000901, 1000000919, 1000000931, 1000000933, 1000000993, 1000001011,
1000001021, 1000001053, 1000001087, 1000001099, 1000001137, 1000001161, 1000001203, 1000001213, 1000001237, 1000001263,
1000001269, 1000001273, 1000001279, 1000001311, 1000001329, 1000001333, 1000001351, 1000001371, 1000001393, 1000001413,
1000001447, 1000001449, 1000001491, 1000001501, 1000001531, 1000001537, 1000001539, 1000001581, 1000001617, 1000001621,
1000001633, 1000001647, 1000001663, 1000001677, 1000001699, 1000001759, 1000001773, 1000001789, 1000001791, 1000001801,
1000001803, 1000001819, 1000001857, 1000001887, 1000001917, 1000001927, 1000001957, 1000001963, 1000001969, 1000002043};
// static final int[] primes = {59, 61, 67, 71, 73, 79, 83, 89, 97, 101};
public hash(String s) {
prelen = s.length();
HashsArraypre = new int[prelen + 1];
HashsArraysuf = new int[prelen + 1];
if (HashsArrayInd == 0) {
mod = RandomPick(mods);
// prime = RandomPick(primes);
prepow = new int[max];
prepow[0] = 1;
for (int i = 1; i < max; i++) {
prepow[i] = (int) (((1l * prepow[i - 1] << 7) - prepow[i - 1]) % mod);
// prepow[i] = (int) ((1l * prepow[i - 1]*prime) % mod);
}
}
for (int i = 0; i < prelen; i++) {
HashsArraypre[i + 1] = (int)
((HashsArraypre[i] + 1l * s.charAt(i) * prepow[i] % mod) % mod);
}
for (int i = 0; i < prelen; i++) {
HashsArraysuf[i + 1] = (int)
((HashsArraysuf[i] + 1l * s.charAt(i) * prepow[max - 1 - i] % mod) % mod);
}
HashsArrayInd++;
}
public int query(int l, int r) {
int val;
if (l <= r) {
val = (int) ((1l * HashsArraypre[r + 1] + mod - HashsArraypre[l]) % mod);
val = (int) ((1l * val * prepow[max - 1 - l]) % mod);
} else {
val = (int) ((1l * HashsArraysuf[l + 1] + mod - HashsArraysuf[r]) % mod);
val = (int) ((1l * val * prepow[l]) % mod);
}
return val;
}
}
static Random rn = new Random();
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
static class pair implements Comparable<pair> {
long x;
long y;
public pair(long x, long y) {
this.x = x;
this.y = y;
}
public String toString() {
return x + " " + y;
}
public boolean equals(Object o) {
if (o instanceof pair) {
pair p = (pair) o;
return p.x == x && p.y == y;
}
return false;
}
public int hashCode() {
return new Long(x).hashCode() * 31 + new Long(y).hashCode();
}
public int compareTo(pair other) {
if (this.x == other.x) {
return Long.compare(this.y, other.y);
}
return Long.compare(this.x, other.x);
}
}
static class tuble implements Comparable<tuble> {
int x;
int y;
int z;
public tuble(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;
}
public String toString() {
return x + " " + y + " " + z;
}
public int compareTo(tuble other) {
if (this.x == other.x) {
if (this.y == other.y) {
return this.z - other.z;
}
return this.y - other.y;
} else {
return this.x - other.x;
}
}
}
static Scanner sc = new Scanner(System.in);
static PrintWriter pw = new PrintWriter(System.out);
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | ca373e7b825221ebf4e1ab747356e4a8 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args) throws Exception {
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
String s = sc.next();
char[] a = s.toCharArray();
hash h = new hash(s);
int ind = -1;
int cnt = 0;
int sum = 0;
boolean still = true;
for (int i = 0; i < n; i++) {
if (a[i] == '(') {
sum++;
} else {
sum--;
}
if (sum < 0) {
still = false;
}
if ((sum == 0 && still) || (ind + 1 != i && (h.query(ind + 1, i) == h.query(i, ind + 1)))) {
cnt++;
ind = i;
sum = 0;
still = true;
}
}
pw.println(cnt + " " + (n - 1 - ind));
}
pw.close();
}
public static long RandomPick(long[] a) {
int n = a.length;
int r = rn.nextInt(n);
return a[r];
}
public static int RandomPick(int[] a) {
int n = a.length;
int r = rn.nextInt(n);
return a[r];
}
static class hash {
int[] HashsArraypre;
int[] HashsArraysuf;
static int[] prepow;
static int HashsArrayInd = 0;
static int prime = 61;
static int mod;
static int max=1000009;
int prelen;
static final int[] mods = {
1000000007, 1000000009, 1000000021, 1000000033, 1000000087, 1000000093, 1000000097, 1000000103, 1000000123, 1000000181,
1000000207, 1000000223, 1000000241, 1000000271, 1000000289, 1000000297, 1000000321, 1000000349, 1000000363, 1000000403,
1000000409, 1000000411, 1000000427, 1000000433, 1000000439, 1000000447, 1000000453, 1000000459, 1000000483, 1000000513,
1000000531, 1000000579, 1000000607, 1000000613, 1000000637, 1000000663, 1000000711, 1000000753, 1000000787, 1000000801,
1000000829, 1000000861, 1000000871, 1000000891, 1000000901, 1000000919, 1000000931, 1000000933, 1000000993, 1000001011,
1000001021, 1000001053, 1000001087, 1000001099, 1000001137, 1000001161, 1000001203, 1000001213, 1000001237, 1000001263,
1000001269, 1000001273, 1000001279, 1000001311, 1000001329, 1000001333, 1000001351, 1000001371, 1000001393, 1000001413,
1000001447, 1000001449, 1000001491, 1000001501, 1000001531, 1000001537, 1000001539, 1000001581, 1000001617, 1000001621,
1000001633, 1000001647, 1000001663, 1000001677, 1000001699, 1000001759, 1000001773, 1000001789, 1000001791, 1000001801,
1000001803, 1000001819, 1000001857, 1000001887, 1000001917, 1000001927, 1000001957, 1000001963, 1000001969, 1000002043};
// static final int[] primes = {59, 61, 67, 71, 73, 79, 83, 89, 97, 101};
public hash(String s) {
prelen = s.length();
HashsArraypre = new int[prelen + 1];
HashsArraysuf = new int[prelen + 1];
if (HashsArrayInd == 0) {
mod = RandomPick(mods);
// prime = RandomPick(primes);
prime=127;
prepow = new int[max];
prepow[0] = 1;
for (int i = 1; i < max; i++) {
// prepow[i] = (int) (((1l * prepow[i - 1] << 7) - prepow[i - 1]) % mod);
prepow[i] = (int) ((1l * prepow[i - 1]*prime) % mod);
}
}
for (int i = 0; i < prelen; i++) {
HashsArraypre[i + 1] = (int)
((HashsArraypre[i] + 1l * s.charAt(i) * prepow[i] % mod) % mod);
}
for (int i = 0; i < prelen; i++) {
HashsArraysuf[i + 1] = (int)
((HashsArraysuf[i] + 1l * s.charAt(i) * prepow[max-1 - i] % mod) % mod);
}
HashsArrayInd++;
}
public int query(int l, int r) {
int val;
if (l <= r) {
val = (int) ((1l * HashsArraypre[r + 1] + mod - HashsArraypre[l]) % mod);
val = (int) ((1l * val * prepow[max-1 - l]) % mod);
} else {
val = (int) ((1l * HashsArraysuf[l + 1] + mod - HashsArraysuf[r]) % mod);
val = (int) ((1l * val * prepow[l]) % mod);
}
return val;
}
}
static Random rn = new Random();
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
static class pair implements Comparable<pair> {
long x;
long y;
public pair(long x, long y) {
this.x = x;
this.y = y;
}
public String toString() {
return x + " " + y;
}
public boolean equals(Object o) {
if (o instanceof pair) {
pair p = (pair) o;
return p.x == x && p.y == y;
}
return false;
}
public int hashCode() {
return new Long(x).hashCode() * 31 + new Long(y).hashCode();
}
public int compareTo(pair other) {
if (this.x == other.x) {
return Long.compare(this.y, other.y);
}
return Long.compare(this.x, other.x);
}
}
static class tuble implements Comparable<tuble> {
int x;
int y;
int z;
public tuble(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;
}
public String toString() {
return x + " " + y + " " + z;
}
public int compareTo(tuble other) {
if (this.x == other.x) {
if (this.y == other.y) {
return this.z - other.z;
}
return this.y - other.y;
} else {
return this.x - other.x;
}
}
}
static Scanner sc = new Scanner(System.in);
static PrintWriter pw = new PrintWriter(System.out);
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 3f9e86eb5405cd8a39b3069639f8c109 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args) throws Exception {
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
String s = sc.next();
char[] a = s.toCharArray();
hash h = new hash(s);
int ind = -1;
int cnt = 0;
int sum = 0;
boolean still = true;
for (int i = 0; i < n; i++) {
if (a[i] == '(') {
sum++;
} else {
sum--;
}
if (sum < 0) {
still = false;
}
if ((sum == 0 && still) || (ind + 1 != i && (h.query(ind + 1, i) == h.query(i, ind + 1)))) {
cnt++;
ind = i;
sum = 0;
still = true;
}
}
pw.println(cnt + " " + (n - 1 - ind));
}
pw.close();
}
public static long RandomPick(long[] a) {
int n = a.length;
int r = rn.nextInt(n);
return a[r];
}
public static int RandomPick(int[] a) {
int n = a.length;
int r = rn.nextInt(n);
return a[r];
}
static class hash {
int[] HashsArraypre;
int[] HashsArraysuf;
static int[] prepow;
static int HashsArrayInd = 0;
static int prime = 61;
static int mod;
static int max=1000009;
int prelen;
static final int[] mods = {
1000000007, 1000000009, 1000000021, 1000000033, 1000000087, 1000000093, 1000000097, 1000000103, 1000000123, 1000000181,
1000000207, 1000000223, 1000000241, 1000000271, 1000000289, 1000000297, 1000000321, 1000000349, 1000000363, 1000000403,
1000000409, 1000000411, 1000000427, 1000000433, 1000000439, 1000000447, 1000000453, 1000000459, 1000000483, 1000000513,
1000000531, 1000000579, 1000000607, 1000000613, 1000000637, 1000000663, 1000000711, 1000000753, 1000000787, 1000000801,
1000000829, 1000000861, 1000000871, 1000000891, 1000000901, 1000000919, 1000000931, 1000000933, 1000000993, 1000001011,
1000001021, 1000001053, 1000001087, 1000001099, 1000001137, 1000001161, 1000001203, 1000001213, 1000001237, 1000001263,
1000001269, 1000001273, 1000001279, 1000001311, 1000001329, 1000001333, 1000001351, 1000001371, 1000001393, 1000001413,
1000001447, 1000001449, 1000001491, 1000001501, 1000001531, 1000001537, 1000001539, 1000001581, 1000001617, 1000001621,
1000001633, 1000001647, 1000001663, 1000001677, 1000001699, 1000001759, 1000001773, 1000001789, 1000001791, 1000001801,
1000001803, 1000001819, 1000001857, 1000001887, 1000001917, 1000001927, 1000001957, 1000001963, 1000001969, 1000002043};
// static final int[] primes = {59, 61, 67, 71, 73, 79, 83, 89, 97, 101};
public hash(String s) {
prelen = s.length();
HashsArraypre = new int[prelen + 1];
HashsArraysuf = new int[prelen + 1];
if (HashsArrayInd == 0) {
mod = RandomPick(mods);
// prime = RandomPick(primes);
prepow = new int[max];
prepow[0] = 1;
for (int i = 1; i < max; i++) {
prepow[i] = (int) (((1l * prepow[i - 1] << 7) - prepow[i - 1]) % mod);
}
}
for (int i = 0; i < prelen; i++) {
HashsArraypre[i + 1] = (int)
((HashsArraypre[i] + 1l * s.charAt(i) * prepow[i] % mod) % mod);
}
for (int i = 0; i < prelen; i++) {
HashsArraysuf[i + 1] = (int)
((HashsArraysuf[i] + 1l * s.charAt(i) * prepow[max-1 - i] % mod) % mod);
}
HashsArrayInd++;
}
public int query(int l, int r) {
int val;
if (l <= r) {
val = (int) ((1l * HashsArraypre[r + 1] + mod - HashsArraypre[l]) % mod);
val = (int) ((1l * val * prepow[max-1 - l]) % mod);
} else {
val = (int) ((1l * HashsArraysuf[l + 1] + mod - HashsArraysuf[r]) % mod);
val = (int) ((1l * val * prepow[l]) % mod);
}
return val;
}
}
static Random rn = new Random();
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
static class pair implements Comparable<pair> {
long x;
long y;
public pair(long x, long y) {
this.x = x;
this.y = y;
}
public String toString() {
return x + " " + y;
}
public boolean equals(Object o) {
if (o instanceof pair) {
pair p = (pair) o;
return p.x == x && p.y == y;
}
return false;
}
public int hashCode() {
return new Long(x).hashCode() * 31 + new Long(y).hashCode();
}
public int compareTo(pair other) {
if (this.x == other.x) {
return Long.compare(this.y, other.y);
}
return Long.compare(this.x, other.x);
}
}
static class tuble implements Comparable<tuble> {
int x;
int y;
int z;
public tuble(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;
}
public String toString() {
return x + " " + y + " " + z;
}
public int compareTo(tuble other) {
if (this.x == other.x) {
if (this.y == other.y) {
return this.z - other.z;
}
return this.y - other.y;
} else {
return this.x - other.x;
}
}
}
static Scanner sc = new Scanner(System.in);
static PrintWriter pw = new PrintWriter(System.out);
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 3856e8a76ccc287a5726ea53eddca104 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args) throws Exception {
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
String s = sc.next();
char[] a = s.toCharArray();
hash h = new hash(s);
int ind = -1;
int cnt = 0;
int sum = 0;
boolean still = true;
for (int i = 0; i < n; i++) {
if (a[i] == '(') {
sum++;
} else {
sum--;
}
if (sum < 0) {
still = false;
}
if ((sum == 0 && still) || (ind + 1 != i && (h.query(ind + 1, i) == h.query(i, ind + 1)))) {
cnt++;
ind = i;
sum = 0;
still = true;
}
}
pw.println(cnt + " " + (n - 1 - ind));
}
pw.close();
}
public static long RandomPick(long[] a) {
int n = a.length;
int r = rn.nextInt(n);
return a[r];
}
public static int RandomPick(int[] a) {
int n = a.length;
int r = rn.nextInt(n);
return a[r];
}
static class hash {
int[] HashsArraypre;
int[] HashsArraysuf;
static int[] prepow;
static int HashsArrayInd = 0;
static int prime = 61;
static int mod;
static int max=500009;
int prelen;
static final int[] mods = {
1000000007, 1000000009, 1000000021, 1000000033, 1000000087, 1000000093, 1000000097, 1000000103, 1000000123, 1000000181,
1000000207, 1000000223, 1000000241, 1000000271, 1000000289, 1000000297, 1000000321, 1000000349, 1000000363, 1000000403,
1000000409, 1000000411, 1000000427, 1000000433, 1000000439, 1000000447, 1000000453, 1000000459, 1000000483, 1000000513,
1000000531, 1000000579, 1000000607, 1000000613, 1000000637, 1000000663, 1000000711, 1000000753, 1000000787, 1000000801,
1000000829, 1000000861, 1000000871, 1000000891, 1000000901, 1000000919, 1000000931, 1000000933, 1000000993, 1000001011,
1000001021, 1000001053, 1000001087, 1000001099, 1000001137, 1000001161, 1000001203, 1000001213, 1000001237, 1000001263,
1000001269, 1000001273, 1000001279, 1000001311, 1000001329, 1000001333, 1000001351, 1000001371, 1000001393, 1000001413,
1000001447, 1000001449, 1000001491, 1000001501, 1000001531, 1000001537, 1000001539, 1000001581, 1000001617, 1000001621,
1000001633, 1000001647, 1000001663, 1000001677, 1000001699, 1000001759, 1000001773, 1000001789, 1000001791, 1000001801,
1000001803, 1000001819, 1000001857, 1000001887, 1000001917, 1000001927, 1000001957, 1000001963, 1000001969, 1000002043};
// static final int[] primes = {59, 61, 67, 71, 73, 79, 83, 89, 97, 101};
public hash(String s) {
prelen = s.length();
HashsArraypre = new int[prelen + 1];
HashsArraysuf = new int[prelen + 1];
if (HashsArrayInd == 0) {
mod = RandomPick(mods);
// prime = RandomPick(primes);
prepow = new int[max];
prepow[0] = 1;
for (int i = 1; i < max; i++) {
prepow[i] = (int) (((1l * prepow[i - 1] << 7) - prepow[i - 1]) % mod);
}
}
for (int i = 0; i < prelen; i++) {
HashsArraypre[i + 1] = (int)
((HashsArraypre[i] + 1l * s.charAt(i) * prepow[i] % mod) % mod);
}
for (int i = 0; i < prelen; i++) {
HashsArraysuf[i + 1] = (int)
((HashsArraysuf[i] + 1l * s.charAt(i) * prepow[max-1 - i] % mod) % mod);
}
HashsArrayInd++;
}
public int query(int l, int r) {
int val;
if (l <= r) {
val = (int) ((1l * HashsArraypre[r + 1] + mod - HashsArraypre[l]) % mod);
val = (int) ((1l * val * prepow[max-1 - l]) % mod);
} else {
val = (int) ((1l * HashsArraysuf[l + 1] + mod - HashsArraysuf[r]) % mod);
val = (int) ((1l * val * prepow[l]) % mod);
}
return val;
}
}
static Random rn = new Random();
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
static class pair implements Comparable<pair> {
long x;
long y;
public pair(long x, long y) {
this.x = x;
this.y = y;
}
public String toString() {
return x + " " + y;
}
public boolean equals(Object o) {
if (o instanceof pair) {
pair p = (pair) o;
return p.x == x && p.y == y;
}
return false;
}
public int hashCode() {
return new Long(x).hashCode() * 31 + new Long(y).hashCode();
}
public int compareTo(pair other) {
if (this.x == other.x) {
return Long.compare(this.y, other.y);
}
return Long.compare(this.x, other.x);
}
}
static class tuble implements Comparable<tuble> {
int x;
int y;
int z;
public tuble(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;
}
public String toString() {
return x + " " + y + " " + z;
}
public int compareTo(tuble other) {
if (this.x == other.x) {
if (this.y == other.y) {
return this.z - other.z;
}
return this.y - other.y;
} else {
return this.x - other.x;
}
}
}
static Scanner sc = new Scanner(System.in);
static PrintWriter pw = new PrintWriter(System.out);
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 8efdda97bf9243aff2a35db9c00f3cf4 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args) throws Exception {
long[]mo=new long[1000000];
mo[0]=1;
for(int i=1;i<1000000;i++){
mo[i]=mo[i-1]*3;
mo[i]%=mod;
}
// for(int i=1;i<20;i++){
// pw.println(mo[i]);
// }
int t=sc.nextInt();
while(t-->0){
int n=sc.nextInt();
char[]a=sc.next().toCharArray();
long[]pre=new long[n+1];
long[]suf=new long[n+1];
long now=3;
for(int i=1;i<=n;i++){
if(a[i-1]=='('){
pre[i]+=now;
}else{
pre[i]+=2*now;
}
pre[i]+=pre[i-1];
pre[i]%=mod;
now*=3;
now%=mod;
}
now=3;
for(int i=n-1;i>-1;i--){
if(a[i]=='('){
suf[i]+=now;
}else{
suf[i]+=2*now;
}
suf[i]+=suf[i+1];
suf[i]%=mod;
now*=3;
now%=mod;
}
// pw.println(Arrays.toString(pre));
// pw.println(Arrays.toString(suf));
int ind=-1;
int cnt=0;
int sum=0;
boolean still=true;
for(int i=0;i<n;i++){
if(a[i]=='('){
sum++;
}else{
sum--;
}
if(sum<0){
still=false;
}
// ind=48;
// pw.println("# "+(ind+1)+" "+i+" "+(((pre[i+1]-pre[ind+1]+mod)*modinverse(mo[ind+1],mod))%mod)+" "+(((suf[ind+1]-suf[i+1]+mod)*modinverse(mo[n-i-1],mod))%mod));
if((sum==0&&still)||(ind+1!=i&&
((pre[i+1]-pre[ind+1]+mod)*modinverse(mo[ind+1],mod))%mod==
((suf[ind+1]-suf[i+1]+mod)*modinverse(mo[n-i-1],mod))%mod)){
cnt++;
ind=i;
sum=0;
still=true;
}
}
pw.println(cnt+" "+(n-1-ind));
}
pw.close();
}
static long Pow(long a, long e, long mod) // O(log e)
{
a %= mod;
long res = 1l;
while (e > 0) {
if ((e & 1) == 1)
res = (res * a) % mod;
a = (a * a) % mod;
e >>= 1l;
}
return res;
}
public static long modinverse(long a, long mod) {
return Pow(a, mod - 2, mod);
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
static class pair implements Comparable<pair> {
long x;
long y;
public pair(long x, long y) {
this.x = x;
this.y = y;
}
public String toString() {
return x + " " + y;
}
public boolean equals(Object o) {
if (o instanceof pair) {
pair p = (pair) o;
return p.x == x && p.y == y;
}
return false;
}
public int hashCode() {
return new Long(x).hashCode() * 31 + new Long(y).hashCode();
}
public int compareTo(pair other) {
if (this.x == other.x) {
return Long.compare(this.y, other.y);
}
return Long.compare(this.x, other.x);
}
}
static class tuble implements Comparable<tuble> {
int x;
int y;
int z;
public tuble(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;
}
public String toString() {
return x + " " + y + " " + z;
}
public int compareTo(tuble other) {
if (this.x == other.x) {
if (this.y == other.y) {
return this.z - other.z;
}
return this.y - other.y;
} else {
return this.x - other.x;
}
}
}
static long mod = 1000000007;
static Random rn = new Random();
static Scanner sc = new Scanner(System.in);
static PrintWriter pw = new PrintWriter(System.out);
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | d07d6657434e4663cbc90fc3e803ca26 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
/* A Java program to answer queries to check whether
the substrings are palindrome or not efficiently */
// static int p = 101;
// static int MOD = 1000000007;
//
// // Structure to represent a query. A query consists
// // of (L, R) and we have to answer whether the substring
// // from index-L to R is a palindrome or not
// static class Query {
//
// int L, R;
//
// public Query(int L, int R)
// {
// this.L = L;
// this.R = R;
// }
// };
//
// // A function to check if a string str is palindrome
// // in the ranfe L to R
// static boolean isPalindrome(String str, int L, int R)
// {
// // Keep comparing characters while they are same
// while (R > L) {
// if (str.charAt(L++) != str.charAt(R--)) {
// return (false);
// }
// }
// return (true);
// }
//
// // A Function to find pow (base, exponent) % MOD
// // in log (exponent) time
// static int modPow(int base, int exponent)
// {
// if (exponent == 0) {
// return 1;
// }
// if (exponent == 1) {
// return base;
// }
//
// int temp = modPow(base, exponent / 2);
//
// if (exponent % 2 == 0) {
// return (temp % MOD * temp % MOD) % MOD;
// }
// else {
// return (((temp % MOD * temp % MOD) % MOD)
// * base % MOD)
// % MOD;
// }
// }
//
// // A Function to calculate
// // Modulo Multiplicative Inverse of 'n'
// static int findMMI(int n)
// {
// return modPow(n, MOD - 2);
// }
//
// // A Function to calculate the prefix hash
// static void computePrefixHash(String str, int n,
// int prefix[], int power[])
// {
// prefix[0] = 0;
// prefix[1] = str.charAt(0);
//
// for (int i = 2; i <= n; i++) {
// prefix[i] = (prefix[i - 1] % MOD
// + (str.charAt(i - 1) % MOD
// * power[i - 1] % MOD)
// % MOD)
// % MOD;
// }
//
// return;
// }
//
// // A Function to calculate the suffix hash
// // Suffix hash is nothing but the prefix hash of
// // the reversed string
// static void computeSuffixHash(String str, int n,
// int suffix[], int power[])
// {
// suffix[0] = 0;
// suffix[1] = str.charAt(n - 1);
//
// for (int i = n - 2, j = 2; i >= 0 && j <= n; i--, j++) {
// suffix[j] = (suffix[j - 1] % MOD
// + (str.charAt(i) % MOD
// * power[j - 1] % MOD)
// % MOD)
// % MOD;
// }
// return;
// }
//
// // A Function to answer the Queries
// static void queryResults(
// String str, Query q[], int m, int n,
// int prefix[], int suffix[], int power[])
// {
// for (int i = 0; i <= m - 1; i++) {
// int L = q[i].L;
// int R = q[i].R;
//
// // Hash Value of Substring [L, R]
// long hash_LR
// = ((prefix[R + 1] - prefix[L] + MOD) % MOD
// * findMMI(power[L]) % MOD)
// % MOD;
//
// // Reverse Hash Value of Substring [L, R]
// long reverse_hash_LR
// = ((suffix[n - L] - suffix[n - R - 1] + MOD) % MOD
// * findMMI(power[n - R - 1]) % MOD)
// % MOD;
//
// // If both are equal then the substring is a palindrome
// if (hash_LR == reverse_hash_LR) {
// if (isPalindrome(str, L, R) == true) {
// System.out.printf("The Substring [%d %d] is a "
// + "palindrome\n",
// L, R);
// }
// else {
// System.out.printf("The Substring [%d %d] is not a "
// + "palindrome\n",
// L, R);
// }
// }
// else {
// System.out.printf("The Substring [%d %d] is not a "
// + "palindrome\n",
// L, R);
// }
// }
//
// return;
// }
//
// // A Dynamic Programming Based Approach to compute the
// // powers of 101
// static void computePowers(int power[], int n)
// {
// // 101^0 = 1
// power[0] = 1;
//
// for (int i = 1; i <= n; i++) {
// power[i] = (power[i - 1] % MOD * p % MOD) % MOD;
// }
//
// return;
// }
//
// /* Driver code */
// public static void main(String[] args)
// {
// String str = "abaaabaaaba";
// int n = str.length();
//
// // A Table to store the powers of 101
// int[] power = new int[n + 1];
//
// computePowers(power, n);
//
// // Arrays to hold prefix and suffix hash values
// int[] prefix = new int[n + 1];
// int[] suffix = new int[n + 1];
//
// // Compute Prefix Hash and Suffix Hash Arrays
// computePrefixHash(str, n, prefix, power);
// computeSuffixHash(str, n, suffix, power);
//
// Query q[] = { new Query(0, 10), new Query(5, 8),
// new Query(2, 5), new Query(5, 9) };
// int m = q.length;
//
// queryResults(str, q, m, n, prefix, suffix, power);
// }
//
public static void main(String[] args) throws Exception {
long[]mo=new long[1000000];
long p=27;
mo[0]=1;
for(int i=1;i<1000000;i++){
mo[i]=mo[i-1]*p;
mo[i]%=mod;
}
int t=sc.nextInt();
while(t-->0){
int n=sc.nextInt();
char[]a=sc.next().toCharArray();
// long[]pre=new long[n+1];
// long[]suf=new long[n+1];
// long now=p;
// for(int i=1;i<=n;i++){
// if(a[i-1]=='('){
// pre[i]+=2*now;
// }else{
// pre[i]+=5*now;
// }
// pre[i]+=pre[i-1];
// pre[i]%=mod;
// now*=p;
// now%=mod;
// }
//
// now=p;
// for(int i=n-1;i>-1;i--){
// if(a[i]=='('){
// suf[i]+=2*now;
// }else{
// suf[i]+=5*now;
// }
// suf[i]+=suf[i+1];
// suf[i]%=mod;
// now*=p;
// now%=mod;
// }
// pw.println(Arrays.toString(pre));
// pw.println(Arrays.toString(suf));
int ind=-1;
int cnt=0;
int sum=0;
boolean still=true;
for(int i=0;i<n;i++){
if(a[i]=='('){
sum++;
}else{
sum--;
}
if(sum<0){
still=false;
}
// pw.println("# "+(ind+1)+" "+i+" "+(((pre[i+1]-pre[ind+1])*modinverse(mo[ind+1],mod))%mod)+" "+(((suf[ind+1]-suf[i+1])*modinverse(mo[n-i-1],mod))%mod));
if((sum==0&&still)||(ind+1!=i&&a[ind+1]==a[i])){
cnt++;
ind=i;
sum=0;
still=true;
}
}
pw.println(cnt+" "+(n-1-ind));
}
pw.close();
}
static long Pow(long a, long e, long mod) // O(log e)
{
a %= mod;
long res = 1l;
while (e > 0) {
if ((e & 1) == 1)
res = (res * a) % mod;
a = (a * a) % mod;
e >>= 1l;
}
return res;
}
public static long modinverse(long a, long mod) {
return Pow(a, mod - 2, mod);
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
static class pair implements Comparable<pair> {
long x;
long y;
public pair(long x, long y) {
this.x = x;
this.y = y;
}
public String toString() {
return x + " " + y;
}
public boolean equals(Object o) {
if (o instanceof pair) {
pair p = (pair) o;
return p.x == x && p.y == y;
}
return false;
}
public int hashCode() {
return new Long(x).hashCode() * 31 + new Long(y).hashCode();
}
public int compareTo(pair other) {
if (this.x == other.x) {
return Long.compare(this.y, other.y);
}
return Long.compare(this.x, other.x);
}
}
static class tuble implements Comparable<tuble> {
int x;
int y;
int z;
public tuble(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;
}
public String toString() {
return x + " " + y + " " + z;
}
public int compareTo(tuble other) {
if (this.x == other.x) {
if (this.y == other.y) {
return this.z - other.z;
}
return this.y - other.y;
} else {
return this.x - other.x;
}
}
}
static long mod = 1000000007;
static Random rn = new Random();
static Scanner sc = new Scanner(System.in);
static PrintWriter pw = new PrintWriter(System.out);
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 856cd2ef780d16b6a7083da87b1072d8 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.io.*;
public class C1657 {
public static void main(String[] args) throws IOException {
BufferedReader r = new BufferedReader(new InputStreamReader(System.in));
int T = Integer.parseInt(r.readLine());
for(int i = 0; i < T; i++) {
int n=Integer.parseInt(r.readLine());
String str = r.readLine();//original
String s = "";//current analyzed
int open=0; int closed=0; int end=0; int count=0;
boolean works=true;
String[] possible = new String[n];
String last="";
for(int j = 1; j < n; j++) {
//)( would count in this, which is false
if((str.charAt(end)=='(' && str.charAt(j)==')' )|| str.charAt(end)==str.charAt(j)) {
count++; end=j+1;j=end;
}
}
System.out.println(count + " " + (n-end));
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 63e328fb06137c814c4d1ea316b2a030 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.util.*;
public class Program {
public static void println(Object str) {
System.out.println(str);
}
public static void printArr(Object[] arr) {
for(int i=0;i<arr.length;i++) {
System.out.print(arr[i]+" ");
}
System.out.println("");
}
public static void printArr2(Object[][] arr) {
int n = arr.length;
int m = arr[0].length;
for(int i=0;i<n;i++) {
for(int j=0;j<m;j++) {
System.out.print(arr[i][j]+" ");
}
System.out.println("");
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args){
try {
System.setIn(new FileInputStream("input.txt"));
System.setOut(new PrintStream(new FileOutputStream("output.txt")));
} catch (Exception e) {
System.err.println("Error");
}
// code
FastReader sc = new FastReader();
int t = sc.nextInt();
for(int tt=0; tt<t; tt++) {
int n = sc.nextInt();
String s = sc.next();
start = 0;
int result = find(n, s);
System.out.println(result+ " "+(n-start));
// String xx = "((";
// println(isPalindrome(xx, 0, xx.length()-1));
}
return;
}
static int start = 0;
public static int find(int n, String s) {
if(n<2) return 0;
int sum = 0;
while(start<n) {
// println(start+"start");
if(n-start>=2) {
if(s.charAt(start)==')' && s.charAt(start+1)=='(') {
boolean isPal = false;
for(int i=start+2; i<n;i++) {
if(isPalindrome(s, start, i)) {
start = i+1;
sum+=1;
isPal = true;
break;
}
}
if(!isPal) {
return sum;
}
} else {
start+=2;
sum+=1;
}
} else {
break;
}
}
return sum;
}
public static boolean isPalindrome(String s, int start,int end) {
if(end-start<1) return false;
int mid = (start+end)/2;
for(int i=start;i<=mid;i++) {
if(s.charAt(i)!=s.charAt(end+start-i)) {
return false;
}
}
return true;
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | bae235b28711cfc2b84b1882e2e2a0db | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.util.*;
public class Program {
public static void println(Object str) {
System.out.println(str);
}
public static void printArr(Object[] arr) {
for(int i=0;i<arr.length;i++) {
System.out.print(arr[i]+" ");
}
System.out.println("");
}
public static void printArr2(Object[][] arr) {
int n = arr.length;
int m = arr[0].length;
for(int i=0;i<n;i++) {
for(int j=0;j<m;j++) {
System.out.print(arr[i][j]+" ");
}
System.out.println("");
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args){
try {
System.setIn(new FileInputStream("input.txt"));
System.setOut(new PrintStream(new FileOutputStream("output.txt")));
} catch (Exception e) {
System.err.println("Error");
}
// code
FastReader sc = new FastReader();
int t = sc.nextInt();
for(int tt=0; tt<t; tt++) {
int n = sc.nextInt();
String s = sc.next();
start = 0;
int result = find(n, s);
System.out.println(result+ " "+(n-start));
// String xx = "((";
// println(isPalindrome(xx, 0, xx.length()-1));
}
return;
}
static int start = 0;
public static int find(int n, String s) {
if(n<2) return 0;
int sum = 0;
while(start<n) {
// println(start+"start");
if(n-start>=2) {
if(s.charAt(start)==')' && s.charAt(start+1)=='(') {
boolean isPal = false;
for(int i=start+2; i<n;i++) {
if(isPalindrome(s, start, i)) {
start = i+1;
sum+=1;
isPal = true;
break;
}
}
if(!isPal) {
return sum;
}
} else {
start+=2;
sum+=1;
}
} else {
break;
}
}
return sum;
}
static boolean isPalindrome(String str, int start, int end)
{
if(end-start<1) return false;
// Pointers pointing to the beginning
// and the end of the string
int i = start, j = end;
// While there are characters to compare
while (i < j) {
// If there is a mismatch
if (str.charAt(i) != str.charAt(j))
return false;
// Increment first pointer and
// decrement the other
i++;
j--;
}
// Given string is a palindrome
return true;
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | b59e481eb517e1eb5f23f0ca6a6a7041 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes |
import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.Math.abs;
import static java.lang.System.currentTimeMillis;
import static java.lang.System.out;
import java.util.*;
import java.io.*;
public class P_1657_C {
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
public static void main(String[] args) throws Exception {
// long before = currentTimeMillis();
// final InputReader in = new InputReader(new FileInputStream("input.txt"));
final InputReader in = new InputReader(System.in);
// final out = new PrintStream(new BufferedOutputStream(new FileOutputStream("output.txt")));
final PrintStream out = new PrintStream(new BufferedOutputStream(System.out));
solve(in, out);
// long after = currentTimeMillis();
// out.println("time : " + (after - before));
out.close();
}
private static void solve(InputReader ir, PrintStream ps) {
int t = ir.nextInt();
for (int j = 0; j < t; j++) {
int len = ir.nextInt();
String seq = ir.next();
if (len == 1) {
ps.println("0 1");
continue;
}
int prev = 0;
int i = 1;
int removals = 0;
while (i < len) {
char prevChar = seq.charAt(prev);
char currentChar = seq.charAt(i);
if ((prevChar == currentChar) || (prevChar == '(' && currentChar == ')')) {
removals++;
prev += 2;
i += 2;
} else {
// )(
while (currentChar == '(' && (i < len - 1)) {
i++;
currentChar = seq.charAt(i);
}
if (currentChar == ')') {
removals++;
prev = i+1;
i+=2;
} else if (i == len - 1) {
i++;
}
}
}
ps.println(removals + " " + (len - prev));
}
}
public static boolean isPrime(long n) {
if (n < 2) return false;
if (n == 2 || n == 3) return true;
if (n % 2 == 0 || n % 3 == 0) return false;
long sqrtN = (long) Math.sqrt(n) + 1;
for (long i = 6L; i <= sqrtN; i += 6) {
if (n % (i - 1) == 0 || n % (i + 1) == 0) return false;
}
return true;
}
public static long gcd(long a, long b) {
if (a > b) a = (a + b) - (b = a);
if (a == 0L) return b;
return gcd(b % a, a);
}
public static ArrayList<Integer> findDiv(int N) {
//gens all divisors of N
ArrayList<Integer> ls1 = new ArrayList<Integer>();
ArrayList<Integer> ls2 = new ArrayList<Integer>();
for (int i = 1; i <= (int) (Math.sqrt(N) + 0.00000001); i++)
if (N % i == 0) {
ls1.add(i);
ls2.add(N / i);
}
Collections.reverse(ls2);
for (int b : ls2)
if (b != ls1.get(ls1.size() - 1)) ls1.add(b);
return ls1;
}
public static void sort(int[] arr) {
//because Arrays.sort() uses quicksort which is dumb
//Collections.sort() uses merge sort
ArrayList<Integer> ls = new ArrayList<Integer>();
for (int x : arr)
ls.add(x);
Collections.sort(ls);
for (int i = 0; i < arr.length; i++)
arr[i] = ls.get(i);
}
public static long power(long x, long y, long p) {
//0^0 = 1
long res = 1L;
x = x % p;
while (y > 0) {
if ((y & 1) == 1) res = (res * x) % p;
y >>= 1;
x = (x * x) % p;
}
return res;
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | d550040dfc91494ec2afe597eedb104a | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.util.*;
//import javafx.util.*;
public class Main
{
static PrintWriter out = new PrintWriter(System.out);
static FastReader in = new FastReader();
public static void main (String[] args) throws java.lang.Exception
{
int t = i();
while(t-- > 0){
int n = i();
String s = in.nextLine();
int i = 0;
int j = 1;
int count = 0;
while(i < n && j < n){
if(s.charAt(i) == ')' && s.charAt(j) == '('){
j++;
}else{
i = j + 1;
j += 2;
count++;
}
}
out.println(count + " " + (n - i));
}
out.close();
}
static String LongestPalindromicPrefix(String str)
{
// Create temporary String
String temp = str + '?';
// Reverse the String str
str = reverse(str);
// Append String str to temp
temp += str;
// Find the length of String temp
int n = temp.length();
// lps[] array for String temp
int []lps = new int[n];
// Initialise every value with zero
Arrays.fill(lps, 0);
// Iterate the String temp
for(int i = 1; i < n; i++)
{
// Length of longest prefix
// till less than i
int len = lps[i - 1];
// Calculate length for i+1
while (len > 0 && temp.charAt(len) !=
temp.charAt(i))
{
len = lps[len - 1];
}
// If character at current index
// len are same then increment
// length by 1
if (temp.charAt(i) == temp.charAt(len))
{
len++;
}
// Update the length at current
// index to len
lps[i] = len;
}
// Print the palindromic String
// of max_len
return temp.substring(0, lps[n - 1]);
}
public static boolean isValid(String s) {
if(s.length() <0) //If there is empty string
return true;
if(s.length()%2==1) // If input string has odd length
return false;
Stack<Character> stack = new Stack<Character>();
Stack<Character> stack1 = new Stack<Character>();
for(int i = 0 ; i<s.length() ; i++){
char ch = s.charAt(i);
if(ch == '(' || ch == '{' || ch == '['){
stack.push(ch); //push character in the stach for open paraentheses.
}
else{
if(stack.empty()){return false;} //check stack is empty or not
stack1.push(ch); //push character in the stack for closed paraentheses.
// it helps to keep track the string whic is in format like "([{{])"
if((ch == ')' && stack.peek() == '(') ||
(ch == '}' && stack.peek() == '{') ||
(ch == ']' && stack.peek() == '[') )
//validate the current closed paraentheses with the top value of stack.
{
stack.pop();
stack1.pop();
}
}
}
return stack.empty() && stack1.empty();
}
public static String reverse(String s){
char[] ch = s.toCharArray();
int n = s.length();
for(int i = 0;i < (n/2);i++){
char temp = ch[i];
ch[i] = ch[n-1-i];
ch[n - 1 - i] = temp;
}
return String.valueOf(ch);
}
public static void sort(int[] arr){
ArrayList<Integer> ls = new ArrayList<>();
for(int x : arr){
ls.add(x);
}
Collections.sort(ls);
for(int i = 0;i < arr.length;i++){
arr[i] = ls.get(i);
}
}
static int i()
{
return in.nextInt();
}
static long l()
{
return in.nextLong();
}
static int[] input(int N){
int A[]=new int[N];
for(int i=0; i<N; i++)
{
A[i]=in.nextInt();
}
return A;
}
static long[] inputLong(int N) {
long A[]=new long[N];
for(int i=0; i<A.length; i++)A[i]=in.nextLong();
return A;
}
}
class Pair implements Comparable<Pair>{
int x;
int y;
Pair(int x, int y){
this.x = x;
this.y = y;
}
@Override
public int compareTo(Pair obj)
{
// we sort objects on the basis of Student Id
return (this.x - obj.x);
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br=new BufferedReader(new InputStreamReader(System.in));
}
String next()
{
while(st==null || !st.hasMoreElements())
{
try
{
st=new StringTokenizer(br.readLine());
}
catch(IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str="";
try
{
str=br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | d2a7b5aaf5cb83409892be8e88b80a19 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Random;
import java.util.StringTokenizer;
public class EduC {
static FastScanner sc=new FastScanner();
static PrintWriter out=new PrintWriter(System.out);
public static void main(String[] args) {
int T=sc.nextInt();
for (int tt=0; tt<T; tt++) {
solve();
}
}
private static void solve() {
// TODO Auto-generated method stub
int len=sc.nextInt();
String s=sc.next();
int i=0;
int ans= 0;
for(;i<len-1; i++){
if(s.charAt(i)=='('){
i++;
ans++;
}
else{
int j=i+1;
while(j<len){
if(s.charAt(j)==')') break;
j++;
}
if(j<len){
ans++;
i=j;
}
else break;
}
}
System.out.println(ans+" "+(len-i));
}
static final Random random=new Random();
static final int mod=1_000_000_007;
static void ruffleSort(int[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n), temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static long add(long a, long b) {
return (a+b)%mod;
}
static long sub(long a, long b) {
return ((a-b)%mod+mod)%mod;
}
static long mul(long a, long b) {
return (a*b)%mod;
}
static long exp(long base, long exp) {
if (exp==0) return 1;
long half=exp(base, exp/2);
if (exp%2==0) return mul(half, half);
return mul(half, mul(half, base));
}
static long[] factorials=new long[2_000_001];
static long[] invFactorials=new long[2_000_001];
static void precompFacts() {
factorials[0]=invFactorials[0]=1;
for (int i=1; i<factorials.length; i++) factorials[i]=mul(factorials[i-1], i);
invFactorials[factorials.length-1]=exp(factorials[factorials.length-1], mod-2);
for (int i=invFactorials.length-2; i>=0; i--)
invFactorials[i]=mul(invFactorials[i+1], i+1);
}
static long nCk(int n, int k) {
return mul(factorials[n], mul(invFactorials[k], invFactorials[n-k]));
}
static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | b776338280cb4bc94a885a6a7d6f8740 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.io.*;
public class C{
static MyScanner sc;
static PrintWriter out;
static {
sc = new MyScanner();
out = new PrintWriter(System.out);
}
public static boolean isPalindrom(int x,int y,String s){
while(x<=y){
if(s.charAt(x++)!=s.charAt(y--)) return false;
}
return true;
}
public static void solve(){
int n = sc.nextInt();
String s = sc.next();
ArrayList<Integer> a = new ArrayList<>();
for(int i=0;i<s.length();i++){
if(s.charAt(i)==')') a.add(i);
}
//System.out.println(a);
int x=0;
int y=0;
int ans=0;
int i;
for(i=0;i<s.length()-1;i++){
if(s.charAt(i)==')'){
if(s.charAt(i+1)==')'){
ans+=1;
i+=1;
y+=2;
}
else{
if(y+1<a.size() && isPalindrom(a.get(y),a.get(y+1),s)){i=a.get(y+1); ans+=1; y+=2;}
else break;
}
}
else{
if(s.charAt(i+1)==')') y+=1;
ans+=1;
i+=1;
}
}
System.out.println(ans+" "+(s.length()-i));
}
public static void main(String args[]){
int t = sc.nextInt();
while(t-->0) solve();
}
}
class MyScanner{
BufferedReader br;
StringTokenizer tok;
MyScanner() {
try { br = new BufferedReader(new InputStreamReader(System.in)); }
catch(Exception e) { System.out.println(e); }
tok = new StringTokenizer("");
}
public String next() {
try {
while(!tok.hasMoreTokens()) tok = new StringTokenizer(br.readLine());
}
catch(Exception e) { System.out.println(e); }
return tok.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | ea0cd91d8c712bb7ca53addc239907f4 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.util.*;
public class cp{
public static void main(String[] args)throws Exception{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int t=Integer.parseInt(br.readLine());
StringBuilder sb=new StringBuilder();
while(t-->0){
int n=Integer.parseInt(br.readLine());
String str=br.readLine();
int ans=0;
int i=0,j=1;
while(i<n&&j<n){
if(str.charAt(i)==')'&&str.charAt(j)=='('){
j++;
}else{
i=j+1;
j=j+2;
ans++;
}
}
sb.append(ans+" "+(n-i)+"\n");
}
System.out.println(sb);
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 2955ed3b88087d2f8805334c939c1308 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.io.*;
public class BracketSequenceDeletion {
static boolean chk(LinkedList s){
if(s.size() == 1)
return false;
for(int i=0 , j = s.size()-1; j>i ;i++,j--)
if(s.get(i) != s.get(j))
return false;
return true;
}
public static void main(String[] args) throws IOException{
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int t = sc.nextInt();
while(t-->0) {
int n = sc.nextInt();
String s = sc.next();
LinkedList<Character> l = new LinkedList<>();
for (int i = 0; i < n; i++)
l.add(s.charAt(i));
int cnt = 0;
int c = 0;
while(l.size() > 1){
char c1 = l.pollFirst() , c2 = l.pollFirst();
if(c1 == c2)
cnt++;
else if(c1 == '(' && c2 == ')')
cnt++;
else{
LinkedList<Character> l2 = new LinkedList<>();
l2.add(c1);
l.addFirst(c2);
while(l.size()>0 && l.peekFirst() != c1){
l2.add(l.pollFirst());
}
if(l.size()>0 &&l2.peekFirst() == l.peekFirst()) {
cnt++;
l.pollFirst();
}
else {
c = l2.size();
break;
}
}
}
pw.println(cnt+" "+(l.size()+c));
}
pw.flush();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(String file) throws IOException {
br = new BufferedReader(new FileReader(file));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public String readAllLines(BufferedReader reader) throws IOException {
StringBuilder content = new StringBuilder();
String line;
while ((line = reader.readLine()) != null) {
content.append(line);
content.append(System.lineSeparator());
}
return content.toString();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | dbeee2c0c40a9b1b640c53ba1a265d48 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.io.*;
public class BracketSequenceDeletion {
static boolean chk(LinkedList s){
if(s.size() == 1)
return false;
for(int i=0 , j = s.size()-1; j>i ;i++,j--)
if(s.get(i) != s.get(j))
return false;
return true;
}
public static void main(String[] args) throws IOException{
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int t = sc.nextInt();
while(t-->0) {
int n = sc.nextInt();
String s = sc.next();
LinkedList<Character> l = new LinkedList<>();
for (int i = 0; i < n; i++)
l.add(s.charAt(i));
int cnt = 0;
while(l.size() > 1){
char c1 = l.pollFirst() , c2 = l.pollFirst();
if(c1 == c2)
cnt++;
else if(c1 == '(' && c2 == ')')
cnt++;
else{
LinkedList<Character> l2 = new LinkedList<>();
l2.add(c1);
l.addFirst(c2);
while(l.size()>0 && l.peekFirst() != c1){
l2.add(l.pollFirst());
}
if(l.size()>0 &&l2.peekFirst() == l.peekFirst()) {
cnt++;
l.pollFirst();
}
else{
l.addAll(l2);
break;
}
}
}
pw.println(cnt+" "+l.size());
}
pw.flush();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(String file) throws IOException {
br = new BufferedReader(new FileReader(file));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public String readAllLines(BufferedReader reader) throws IOException {
StringBuilder content = new StringBuilder();
String line;
while ((line = reader.readLine()) != null) {
content.append(line);
content.append(System.lineSeparator());
}
return content.toString();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 0a8add23159af6727608718afa82c3f2 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.io.*;
public class BracketSequenceDeletion {
static int c;
static boolean chk(LinkedList l){
if(l.size() == 1)
return false;
for(int i=0 , j = l.size()-1; j>i ;i++,j--)
if(l.get(i) != l.get(j))
return false;
return true;
}
static boolean chk2(LinkedList<Character> l){
LinkedList<Character> l2 = new LinkedList<>();
l2.add(l.pollFirst());
while(l.size()>0 && l.peekFirst() == l2.peekLast())
l2.add(l.pollFirst());
int tmp = l2.size();
c = tmp;
if(l.size()>0)
l2.add(l.pollFirst());
while(l.size()>0 && l2.peekLast() == l.peekFirst() && tmp>0){
l2.add(l.pollFirst());
tmp--;
c++;
}
return tmp == 0;
}
static boolean chk3(LinkedList<Character> l){
LinkedList<Character> l2 = new LinkedList<>();
char c1 = l.pollFirst();
l2.add(c1);
c = 1;
while (l.size()>0 && c1 != l.peekFirst()) {
l2.add(l.pollFirst());
}
if(l.size()>0) {
l.pollFirst();
return true;
}
l.addAll(l2);
return false;
}
public static void main(String[] args) throws IOException{
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int t = sc.nextInt();
while(t-->0) {
int n = sc.nextInt();
String s = sc.next();
LinkedList<Character> l = new LinkedList<>();
for (int i = 0; i < n; i++)
l.add(s.charAt(i));
int cnt = 0;
while(l.size() > 1){
char c1 = l.get(0) , c2 = l.get(1);
if(c1 == '(' && c2 == ')') {
cnt++;
l.pollFirst();
l.pollFirst();
}
else if(c1 == c2) {
cnt++;
l.pollFirst();
l.pollFirst();
}
else if(chk3(l))
cnt++;
else
break;
}
pw.println(cnt+" "+l.size());
}
pw.flush();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(String file) throws IOException {
br = new BufferedReader(new FileReader(file));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public String readAllLines(BufferedReader reader) throws IOException {
StringBuilder content = new StringBuilder();
String line;
while ((line = reader.readLine()) != null) {
content.append(line);
content.append(System.lineSeparator());
}
return content.toString();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | cb95184566ba36f75f2a44d7dd8f363b | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.io.*;
public class CodeForces {
public static void main(String[] args) throws FileNotFoundException {
FastScanner fs = new FastScanner();
int tt = fs.nextInt();
while(tt-- > 0) {
int n = fs.nextInt();
char[] a = fs.next().toCharArray();
int i = 0;
int counter = 0;
while(i < n) {
if(a[i] == '(') {
if(i + 1 >= n) break;
i+=2;
counter++;
}else {
if(i + 1 < n && a[i + 1] == ')') {
i+=2;
counter++;
}else {
boolean flag = false;
for(int j = i+2; j < n; j++) {
if(a[j] == ')') {
flag = true;
counter++;
i = j + 1;
break;
}
}
if(!flag) break;
}
}
}
System.out.println(counter + " " + (n-i));
/*
*
* 2 0
0 4
2 0
2 0
1 2
1 1
1 2
1 2
2 0
1 0
2 0
2 0
2 0
1 1
2 0
2 0
2 1
0 5
2 1
*
*/
}
}
public static int gcd(int a, int b) {
if(b == 0) return a;
return gcd(b, a%b);
}
static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | ca1930d4bb8f2002f799e9284be6f2ce | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes |
import java.util.*;
import java.io.*;
public class C {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void swap(long[] a, int i, int j) {
long temp = a[i];
a[i] = a[j];
a[j] = temp;
}
public static void main(String[] args) {
// TODO Auto-generated method stub
FastReader t = new FastReader();
PrintWriter o = new PrintWriter(System.out);
int test = t.nextInt();
while (test-- > 0) {
long m = t.nextLong();
long max = Integer.MIN_VALUE, min = Integer.MAX_VALUE;
// int n = t.nextInt();
// long[] a = new long[n];
// for (int i = 0; i < n; ++i) {
// a[i] = t.nextLong();
// }
String s = t.next();
long i = 0, j =0 , k =0, oo = 0, l = 0, r = 0;
boolean can = true;
char f = 'a';
for (char c : s.toCharArray())
{
if (c == '(')
{
l++;
oo++;
if (f == 'a')
f = 'b';
}
else
{
r ++;
oo--;
if (f == 'a')
f = 'c';
}
if (oo == 0 && can)
{
j++;
k = i;
l = 0;
r = 0;
f = 'a';
}
if (oo <0 )
can = false;
if ((f == 'b' && l == 2) || (f == 'c' && r == 2))
{
can = true;
oo = 0 ;
j++;
k = i;
l = 0;
r = 0;
f = 'a';
}
i++;
}
if (j == 0)
o.println(j + " "+(s.length()-k));
else
o.println(j + " "+(s.length()-k-1));
}
o.flush();
o.close();
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 461401e00a6efc76f8397ba4d8d2223b | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.awt.*;
import java.util.*;
import java.io.*;
public class Codeforces {
static FScanner sc = new FScanner();
static PrintWriter out = new PrintWriter(System.out);
static final Random random = new Random();
static long mod = 1000000007L;
static HashMap<String, Integer> map = new HashMap<>();
static boolean[] sieve = new boolean[1000000];
static double[] fib = new double[1000000];
public static boolean palindrome(char[] c,int st,int en)
{
for(int i=st;i<=(en-st)/2;i++)
{
if(c[i]!=c[en-i])
return false;
}
return true;
}
public static boolean balanced(char[] c,int st,int en)
{
if(c[st]!='('||c[en]!=')')
return false;
int cnt1=0;
for(int i=st;i<=en;i++)
{
if(c[i]=='(')
cnt1++;
else
{
if(cnt1==0)
return false;
else
cnt1--;
}
}
return cnt1==0;
}
public static String removePrefix(String s)
{
char[] c=s.toCharArray();
int n=c.length;
if(n<2)
return s;
int i=0;
for(i=1;i<n;i++)
{
if(balanced(c,0,i)||palindrome(c,0,i))
{
break;
}
}
if(i==n)
return s;
return s.substring(i+1);
}
public static void main(String args[]) throws IOException {
int T = sc.nextInt();
while (T-- > 0) {
int n=sc.nextInt();
String s=sc.next();
int op=0;
int cl=0;
char[] c=s.toCharArray();
int i=0;
int st=0;
while(i<c.length)
{
st=i;
if(i+1>=c.length)
{
// st=i+1;
break;
}
if(c[i]=='(')
{
i+=2;
st=i;
}
else
{
i++;
while(i<c.length&&c[i]!=')')
i++;
if(i==c.length)
break;
else
i++;
st=i;
}
// if(i+1>=c.length)
// {
// break;
// }
op++;
}
cl=c.length-st;
out.println(op+" "+cl);
}
out.close();
}
// TemplateCode
static void fib() {
fib[0] = 0;
fib[1] = 1;
for (int i = 2; i < fib.length; i++)
fib[i] = fib[i - 1] + fib[i - 2];
}
static void primeSieve() {
for (int i = 0; i < sieve.length; i++)
sieve[i] = true;
for (int i = 2; i * i <= sieve.length; i++) {
if (sieve[i]) {
for (int j = i * i; j < sieve.length; j += i) {
sieve[j] = false;
}
}
}
}
static int max(int a, int b) {
if (a < b)
return b;
return a;
}
static int min(int a, int b) {
if (a < b)
return a;
return b;
}
static void ruffleSort(int[] a) {
int n = a.length;
for (int i = 0; i < n; i++) {
int oi = random.nextInt(n), temp = a[oi];
a[oi] = a[i];
a[i] = temp;
}
Arrays.sort(a);
}
static <E> void print(E res) {
System.out.println(res);
}
static int gcd(int a, int b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
static int lcm(int a, int b) {
return (a / gcd(a, b)) * b;
}
static int abs(int a) {
if (a < 0)
return -1 * a;
return a;
}
static class FScanner {
BufferedReader br;
StringTokenizer st;
public FScanner() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] readintarray(int n) {
int res[] = new int[n];
for (int i = 0; i < n; i++) res[i] = nextInt();
return res;
}
long[] readlongarray(int n) {
long res[] = new long[n];
for (int i = 0; i < n; i++) res[i] = nextLong();
return res;
}
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | f0acf53312f39be88a11d1b2f87f5f92 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.*;
public class Main {
///
// Two theorams are used to find ncrp
// Lucas theoram and the fermit theoram
// a^p-1=1(modp) example 2 and 3
// Lucas theoram
// ncr=ncr(n/mod,n/mod)*ncr1(n%p,r%mod);
static long max = Integer.MAX_VALUE;
//C0C2+C1C1+C2C0
static int catalanNumber(int n, int dp[]) {
if (n <= 2) {
return 1;
}
if (dp[n] != -1) {
return dp[n];
}
//C0C1+C1C2+C20
int answer = 0;
for (int i = 0; i < n; ++i) {
//01 //10
//This is the dynamic programming
answer += catalanNumber(i, dp) * catalanNumber(n - i - 1, dp);
// System.out.println(answer);
}
return dp[n] = answer;
}
static int printNthcatalanNumber(int n) {
int dp[] = new int[n + 1];
Arrays.fill(dp, -1);
return catalanNumber(n, dp);
}
static int power(int a, int b, int mod) {
int res = 1;
while (b > 0) {
if (b % 2 == 1) {
res *= a;
}
a *= a;
b >>= 1;
}
return res;
}
static int fermittheoram(int a, int mod) {
return power(a, mod - 2, mod);
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static PrintWriter out=new PrintWriter(System.out);
static FastReader scan=new FastReader();
static boolean check=false;
static class Pair{
int first;
int second;
long distance;
Pair(int first,int second,long distance){
this.first=first;
this.second=second;
this.distance=distance;
}
}
static long INF = (long) 1e17;
static long NINF = (long)INF*(-1);
static boolean pallindrom(char ch[],int start,int end){
while(start<end){
if(ch[end]==ch[start]){
--end;
++start;
}
else{
return false;
}
}
return true;
}
static boolean check(int n){
return Math.ceil( Math.sqrt(n))==Math.floor(Math.sqrt(n));
}
//0011
static void solve() {
int t=scan.nextInt();
while(t-->0){
int n=scan.nextInt();
String m=scan.next();
int first=0;
int second=0;
for(int i=0;i<m.length();++i){
if(m.charAt(i)=='('){
//Starting with the opening bracket
if(i==m.length()-1){
++second;
}
else{
++first;
i++;
}
}
else{
//Now this is hte closing bracket
if(i==m.length()-1){
++second;
break;
}
int j=i+1;
//)(((()
while(j<m.length()){
if(m.charAt(j)=='('){
++j;
continue;
}
else{
break;
}
}
if(j==m.length()){
//This is ending position we didn't get any point
second+=(m.length()-i);
break;
}
else{
++first;
i=j;
// System.out.println(i);
}
}
}
System.out.println(first+" "+second);
}
}
public static void main(String[] args) {
solve();
out.close();
}}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 49212448fc87e03e7893c6325c8ff1b3 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.lang.*;
import java.io.InputStreamReader;
import static java.lang.Math.*;
import static java.lang.System.out;
import java.util.*;
import java.io.File;
import java.io.PrintStream;
import java.io.PrintWriter;
import java.math.BigInteger;
public class Main {
/* 10^(7) = 1s.
* ceilVal = (a+b-1) / b */
static final int mod = 1000000007;
static final long temp = 998244353;
static final long MOD = 1000000007;
static final long M = (long)1e9+7;
static class Pair implements Comparable<Pair>
{
int first, second;
public Pair(int first, int second)
{
this.first = first;
this.second = second;
}
public int compareTo(Pair ob)
{
return (int)(first - ob.first);
}
}
static class Tuple implements Comparable<Tuple>
{
long first, second,third;
public Tuple(long first, long second, long third)
{
this.first = first;
this.second = second;
this.third = third;
}
public int compareTo(Tuple o)
{
return (int)(o.third - this.third);
}
}
public static class DSU
{
int count = 0;
int[] parent;
int[] rank;
public DSU(int n)
{
count = n;
parent = new int[n];
rank = new int[n];
Arrays.fill(parent, -1);
Arrays.fill(rank, 1);
}
public int find(int i)
{
return parent[i] < 0 ? i : (parent[i] = find(parent[i]));
}
public void union(int a, int b) //Union Find by Rank
{
a = find(a);
b = find(b);
if(a == b) return;
if(rank[a] < rank[b])
{
parent[a] = b;
}
else if(rank[a] > rank[b])
{
parent[b] = a;
}
else
{
parent[b] = a;
rank[a] = 1 + rank[a];
}
count--;
}
public int countConnected()
{
return count;
}
}
static class Reader
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) throws IOException {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long[] longReadArray(int n) throws IOException {
long[] a=new long[n];
for (int i=0; i<n; i++) a[i]=nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
public static int gcd(int a, int b)
{
if(b == 0)
return a;
else
return gcd(b,a%b);
}
public static long lcm(long a, long b)
{
return (a / LongGCD(a, b)) * b;
}
public static long LongGCD(long a, long b)
{
if(b == 0)
return a;
else
return LongGCD(b,a%b);
}
public static long LongLCM(long a, long b)
{
return (a / LongGCD(a, b)) * b;
}
//Count the number of coprime's upto N
public static long phi(long n) //euler totient/phi function
{
long ans = n;
// for(long i = 2;i*i<=n;i++)
// {
// if(n%i == 0)
// {
// while(n%i == 0) n/=i;
// ans -= (ans/i);
// }
// }
//
// if(n > 1)
// {
// ans -= (ans/n);
// }
for(long i = 2;i<=n;i++)
{
if(isPrime(i))
{
ans -= (ans/i);
}
}
return ans;
}
public static long fastPow(long x, long n)
{
if(n == 0)
return 1;
else if(n%2 == 0)
return fastPow(x*x,n/2);
else
return x*fastPow(x*x,(n-1)/2);
}
public static long powMod(long x, long y, long p)
{
long res = 1;
x = x % p;
while (y > 0)
{
if (y % 2 == 1)
{
res = (res * x) % p;
}
y = y >> 1;
x = (x * x) % p;
}
return res;
}
static long modInverse(long n, long p)
{
return powMod(n, p - 2, p);
}
// Returns nCr % p using Fermat's little theorem.
public static long nCrModP(long n, long r,long p)
{
if (n<r)
return 0;
if (r == 0)
return 1;
long[] fac = new long[(int)(n) + 1];
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = fac[i - 1] * i % p;
return (fac[(int)(n)] * modInverse(fac[(int)(r)], p)
% p * modInverse(fac[(int)(n - r)], p)
% p)
% p;
}
public static long fact(long n)
{
long[] fac = new long[(int)(n) + 1];
fac[0] = 1;
for (long i = 1; i <= n; i++)
fac[(int)(i)] = fac[(int)(i - 1)] * i;
return fac[(int)(n)];
}
public static long nCr(long n, long k)
{
long ans = 1;
for(long i = 0;i<k;i++)
{
ans *= (n-i);
ans /= (i+1);
}
return ans;
}
//Modular Operations for Addition and Multiplication.
public static long perfomMod(long x)
{
return ((x%M + M)%M);
}
public static long addMod(long a, long b)
{
return perfomMod(perfomMod(a)+perfomMod(b));
}
public static long subMod(long a, long b)
{
return perfomMod(perfomMod(a)-perfomMod(b));
}
public static long mulMod(long a, long b)
{
return perfomMod(perfomMod(a)*perfomMod(b));
}
public static boolean isPrime(long n)
{
if(n == 1)
{
return false;
}
//check only for sqrt of the number as the divisors
//keep repeating so only half of them are required. So,sqrt.
for(int i = 2;i*i<=n;i++)
{
if(n%i == 0)
{
return false;
}
}
return true;
}
public static List<Long> SieveList(int n)
{
boolean prime[] = new boolean[(int)(n+1)];
Arrays.fill(prime, true);
List<Long> l = new ArrayList<>();
for (long p = 2; p*p<=n; p++)
{
if (prime[(int)(p)] == true)
{
for(long i = p*p; i<=n; i += p)
{
prime[(int)(i)] = false;
}
}
}
for (long p = 2; p<=n; p++)
{
if (prime[(int)(p)] == true)
{
l.add(p);
}
}
return l;
}
public static int countDivisors(int x)
{
int c = 0;
for(int i = 1;i*i<=x;i++)
{
if(x%i == 0)
{
if(x/i != i)
{
c+=2;
}
else
{
c++;
}
}
}
return c;
}
public static long log2(long n)
{
long ans = (long)(log(n)/log(2));
return ans;
}
public static boolean isPow2(long n)
{
return (n != 0 && ((n & (n-1))) == 0);
}
public static boolean isSq(int x)
{
long s = (long)Math.round(Math.sqrt(x));
return s*s==x;
}
/*
*
* >= <=
0 1 2 3 4 5 6 7
5 5 5 6 6 6 7 7
lower_bound for 6 at index 3 (>=)
upper_bound for 6 at index 6(To get six reduce by one) (<=)
*/
public static int LowerBound(int a[], int x)
{
int l=-1,r=a.length;
while(l+1<r)
{
int m=(l+r)>>>1;
if(a[m]>=x) r=m;
else l=m;
}
return r;
}
public static int UpperBound(int a[], int x)
{
int l=-1, r=a.length;
while(l+1<r)
{
int m=(l+r)>>>1;
if(a[m]<=x) l=m;
else r=m;
}
return l+1;
}
public static void Sort(long[] a)
{
List<Long> l = new ArrayList<>();
for (long i : a) l.add(i);
Collections.sort(l);
// Collections.reverse(l); //Use to Sort decreasingly
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
public static void ssort(char[] a)
{
List<Character> l = new ArrayList<>();
for (char i : a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
public static void main(String[] args) throws Exception
{
Reader sc = new Reader();
PrintWriter fout = new PrintWriter(System.out);
int tt = sc.nextInt();
while(tt-- > 0)
{
int n = sc.nextInt();
char[] s = sc.next().toCharArray();
boolean upd = false;
long ans = 0;
int i = 0;
long id1 = 0, id2 = 0;
while(i+1 < n)
{
if(s[i] == ')' && s[i+1] == '(')
{
int j = i + 1;
while(j < n && s[j] == '(') j++;
if(j == n)
{
// i = j;
id1 = ans;
id2 = j - i;
upd = true;
break;
}
else
{
ans += 1;
i = j + 1;
}
}
else
{
ans += 1;
i += 2;
}
}
if(upd == false)
{
id1 = ans;
id2 = n - i;
}
fout.println(id1 + " " + id2);
}
fout.close();
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 83a2c13ae0415f8f24621186582c1822 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.lang.*;
import java.io.InputStreamReader;
import static java.lang.Math.*;
import static java.lang.System.out;
import java.util.*;
import java.io.File;
import java.io.PrintStream;
import java.io.PrintWriter;
import java.math.BigInteger;
public class Main {
/* 10^(7) = 1s.
* ceilVal = (a+b-1) / b */
static final int mod = 1000000007;
static final long temp = 998244353;
static final long MOD = 1000000007;
static final long M = (long)1e9+7;
static class Pair implements Comparable<Pair>
{
int first, second;
public Pair(int first, int second)
{
this.first = first;
this.second = second;
}
public int compareTo(Pair ob)
{
return (int)(first - ob.first);
}
}
static class Tuple implements Comparable<Tuple>
{
long first, second,third;
public Tuple(long first, long second, long third)
{
this.first = first;
this.second = second;
this.third = third;
}
public int compareTo(Tuple o)
{
return (int)(o.third - this.third);
}
}
public static class DSU
{
int count = 0;
int[] parent;
int[] rank;
public DSU(int n)
{
count = n;
parent = new int[n];
rank = new int[n];
Arrays.fill(parent, -1);
Arrays.fill(rank, 1);
}
public int find(int i)
{
return parent[i] < 0 ? i : (parent[i] = find(parent[i]));
}
public void union(int a, int b) //Union Find by Rank
{
a = find(a);
b = find(b);
if(a == b) return;
if(rank[a] < rank[b])
{
parent[a] = b;
}
else if(rank[a] > rank[b])
{
parent[b] = a;
}
else
{
parent[b] = a;
rank[a] = 1 + rank[a];
}
count--;
}
public int countConnected()
{
return count;
}
}
static class Reader
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) throws IOException {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long[] longReadArray(int n) throws IOException {
long[] a=new long[n];
for (int i=0; i<n; i++) a[i]=nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
public static int gcd(int a, int b)
{
if(b == 0)
return a;
else
return gcd(b,a%b);
}
public static long lcm(long a, long b)
{
return (a / LongGCD(a, b)) * b;
}
public static long LongGCD(long a, long b)
{
if(b == 0)
return a;
else
return LongGCD(b,a%b);
}
public static long LongLCM(long a, long b)
{
return (a / LongGCD(a, b)) * b;
}
//Count the number of coprime's upto N
public static long phi(long n) //euler totient/phi function
{
long ans = n;
// for(long i = 2;i*i<=n;i++)
// {
// if(n%i == 0)
// {
// while(n%i == 0) n/=i;
// ans -= (ans/i);
// }
// }
//
// if(n > 1)
// {
// ans -= (ans/n);
// }
for(long i = 2;i<=n;i++)
{
if(isPrime(i))
{
ans -= (ans/i);
}
}
return ans;
}
public static long fastPow(long x, long n)
{
if(n == 0)
return 1;
else if(n%2 == 0)
return fastPow(x*x,n/2);
else
return x*fastPow(x*x,(n-1)/2);
}
public static long powMod(long x, long y, long p)
{
long res = 1;
x = x % p;
while (y > 0)
{
if (y % 2 == 1)
{
res = (res * x) % p;
}
y = y >> 1;
x = (x * x) % p;
}
return res;
}
static long modInverse(long n, long p)
{
return powMod(n, p - 2, p);
}
// Returns nCr % p using Fermat's little theorem.
public static long nCrModP(long n, long r,long p)
{
if (n<r)
return 0;
if (r == 0)
return 1;
long[] fac = new long[(int)(n) + 1];
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = fac[i - 1] * i % p;
return (fac[(int)(n)] * modInverse(fac[(int)(r)], p)
% p * modInverse(fac[(int)(n - r)], p)
% p)
% p;
}
public static long fact(long n)
{
long[] fac = new long[(int)(n) + 1];
fac[0] = 1;
for (long i = 1; i <= n; i++)
fac[(int)(i)] = fac[(int)(i - 1)] * i;
return fac[(int)(n)];
}
public static long nCr(long n, long k)
{
long ans = 1;
for(long i = 0;i<k;i++)
{
ans *= (n-i);
ans /= (i+1);
}
return ans;
}
//Modular Operations for Addition and Multiplication.
public static long perfomMod(long x)
{
return ((x%M + M)%M);
}
public static long addMod(long a, long b)
{
return perfomMod(perfomMod(a)+perfomMod(b));
}
public static long subMod(long a, long b)
{
return perfomMod(perfomMod(a)-perfomMod(b));
}
public static long mulMod(long a, long b)
{
return perfomMod(perfomMod(a)*perfomMod(b));
}
public static boolean isPrime(long n)
{
if(n == 1)
{
return false;
}
//check only for sqrt of the number as the divisors
//keep repeating so only half of them are required. So,sqrt.
for(int i = 2;i*i<=n;i++)
{
if(n%i == 0)
{
return false;
}
}
return true;
}
public static List<Long> SieveList(int n)
{
boolean prime[] = new boolean[(int)(n+1)];
Arrays.fill(prime, true);
List<Long> l = new ArrayList<>();
for (long p = 2; p*p<=n; p++)
{
if (prime[(int)(p)] == true)
{
for(long i = p*p; i<=n; i += p)
{
prime[(int)(i)] = false;
}
}
}
for (long p = 2; p<=n; p++)
{
if (prime[(int)(p)] == true)
{
l.add(p);
}
}
return l;
}
public static int countDivisors(int x)
{
int c = 0;
for(int i = 1;i*i<=x;i++)
{
if(x%i == 0)
{
if(x/i != i)
{
c+=2;
}
else
{
c++;
}
}
}
return c;
}
public static long log2(long n)
{
long ans = (long)(log(n)/log(2));
return ans;
}
public static boolean isPow2(long n)
{
return (n != 0 && ((n & (n-1))) == 0);
}
public static boolean isSq(int x)
{
long s = (long)Math.round(Math.sqrt(x));
return s*s==x;
}
/*
*
* >= <=
0 1 2 3 4 5 6 7
5 5 5 6 6 6 7 7
lower_bound for 6 at index 3 (>=)
upper_bound for 6 at index 6(To get six reduce by one) (<=)
*/
public static int LowerBound(int a[], int x)
{
int l=-1,r=a.length;
while(l+1<r)
{
int m=(l+r)>>>1;
if(a[m]>=x) r=m;
else l=m;
}
return r;
}
public static int UpperBound(int a[], int x)
{
int l=-1, r=a.length;
while(l+1<r)
{
int m=(l+r)>>>1;
if(a[m]<=x) l=m;
else r=m;
}
return l+1;
}
public static void Sort(long[] a)
{
List<Long> l = new ArrayList<>();
for (long i : a) l.add(i);
Collections.sort(l);
// Collections.reverse(l); //Use to Sort decreasingly
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
public static void ssort(char[] a)
{
List<Character> l = new ArrayList<>();
for (char i : a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
public static void main(String[] args) throws Exception
{
Reader sc = new Reader();
PrintWriter fout = new PrintWriter(System.out);
int tt = sc.nextInt();
fr: while(tt-- > 0)
{
int n = sc.nextInt();
char[] s = sc.next().toCharArray();
int c = 0;
int id1 = 0, id2 = 0;
int i = 0;
boolean ok = false;
while(i + 1 < n)
{
if(s[i] == '(')
{
c++;
i += 2;
}
else
{
int j = i + 1;
while(j < n && s[j] == '(') j++;
if(j == n)
{
id1 = c;
id2 = j - i;
ok = true;
break;
}
else
{
c++;
i = j + 1;
}
}
}
if(ok == false)
{
id1 = c;
id2 = n - i;
}
fout.println(id1 + " " + id2);
}
fout.close();
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 9f887652b994625960e25fbc514e4213 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.util.*;
public class Demo{
// public static long gcd(long a, long b) {
// if (b==0)
// return a;
// return gcd(b, a%b);
// }
// public static void pA(int n, int[] arr) {
// for (int i=0; i<n; i++) {
// System.out.print(arr[i]+" ");
// }
// System.out.println();
// }
static BufferedReader br;
static int cnt;
public static void main(String args[]) throws IOException{
br = new BufferedReader(new InputStreamReader(System.in));
// Scanner s = new Scanner(System.in);
int t = Integer.parseInt(br.readLine());
// int t = s.nextInt();
while (t-->0){
cnt=0;
int n = Integer.parseInt(br.readLine());
char[] str = br.readLine().toCharArray();
int i=0;
while (i<n-1){
if (str[i]== str[i+1]){
cnt++;
i += 2;
}else if (str[i]=='(' && str[i+1]==')'){
cnt++;
i += 2;
}else{
int ini = i;
i+=2;
while (i<n && str[i] != ')'){
i++;
}
if (i<n){
cnt++;
i++;
// System.out.println(i+" i");
}else{
i=ini;
break;
}
}
}
// System.out.println(i+" i");
// int x = util(str, 0);
System.out.println(cnt+" "+(n-i));
}
// s.close();
}
// public static int util(char[] str, int i){
// int n = str.length-i;
// if (n<2){
// return i;
// }
// if (str[0]== str[1]){
// cnt++;
// return util(str, 2+i);
// }else if (str[0]=='(' && str[1]==')'){
// cnt++;
// return util(str, i+2);
// }
// int j=2+i;
// while (j<n){
// if (str[j]=='('){
// j++;
// }else{
// break;
// }
// }
// if (j+i==n){
// return 0;
// }
// cnt++;
// return util(str, j+1+i);
// }
public static long[] readLongArr() throws IOException{
String[] integersInString = br.readLine().split(" ");
long a[] = new long[integersInString.length];
// List<Integer> al = new ArrayList<>(integersInString.length);
for (int i = 0; i < integersInString.length; i++) {
a[i]=(Long.parseLong(integersInString[i]));
}
return a;
}
public static int[] readIntArr() throws IOException{
String[] integersInString = br.readLine().split(" ");
int a[] = new int[integersInString.length];
// List<Integer> al = new ArrayList<>(integersInString.length);
for (int i = 0; i < integersInString.length; i++) {
a[i]=(Integer.parseInt(integersInString[i]));
}
return a;
}
// public static String sortString(String inputString) {
// // convert input string to char array
// char tempArray[] = inputString.toCharArray();
// // sort tempArray
// Arrays.sort(tempArray);
// // return new sorted string
// return new String(tempArray);
// }
// public static String getString(int n) {
// char[] buf = new char[(int) Math.floor(Math.log(25 * (n + 1)) / Math.log(26))];
// for (int i = buf.length - 1; i >= 0; i--) {
// n--;
// buf[i] = (char) ('a' + n % 26);
// n /= 26;
// }
// return new String(buf);
// }
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | b057962437540fd874c54bce1ba4c732 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Stack;
import java.util.StringTokenizer;
public class C {
public static void main(String[]args) throws IOException {
Scanner sc=new Scanner(System.in);
PrintWriter out=new PrintWriter(System.out);
int t=sc.nextInt();
while(t-->0) {
int n=sc.nextInt();
String s=sc.next();
Manacher mn=new Manacher(s);
//out.println(Arrays.toString(mn.t));
//out.println(Arrays.toString(mn.p));
int cur=0;
int idx=0;
int cnt=0;
boolean can=true;
Stack<Character>st=new Stack<Character>();
for(int i=0;i<n;i++) {
if(s.charAt(i)=='(') {
st.add('(');
}
else {
if(!st.isEmpty()&&st.peek()=='(') {
st.pop();
}
else can=false;
}
if(st.isEmpty()&&can) {
can=true;
cnt++;
idx=i+1;
continue;
}
int st1=(idx+1)*2,st2=(i+1)*2;
int ln=mn.p[(st1+st2)/2];
if(ln>=i-idx+1&&i-idx+1>=2) {
cnt++;
idx=i+1;
can=true;
st.clear();
continue;
}
}
out.println(cnt+" "+(n-idx));
}
out.close();
}
static class Manacher {
private int[] p; // p[i] = length of longest palindromic substring of t, centered at i
private String s; // original string
private char[] t; // transformed string
public Manacher(String s) {
this.s = s;
preprocess();
p = new int[t.length];
int center = 0, right = 0;
for (int i = 1; i < t.length-1; i++) {
int mirror = 2*center - i;
if (right > i)
p[i] = Math.min(right - i, p[mirror]);
// attempt to expand palindrome centered at i
while (t[i + (1 + p[i])] == t[i - (1 + p[i])])
p[i]++;
// if palindrome centered at i expands past right,
// adjust center based on expanded palindrome.
if (i + p[i] > right) {
center = i;
right = i + p[i];
}
}
}
// Transform s into t.
// For example, if s = "abba", then t = "$#a#b#b#a#@"
// the # are interleaved to avoid even/odd-length palindromes uniformly
// $ and @ are prepended and appended to each end to avoid bounds checking
private void preprocess() {
t = new char[s.length()*2 + 3];
t[0] = '$';
t[s.length()*2 + 2] = '@';
for (int i = 0; i < s.length(); i++) {
t[2*i + 1] = '#';
t[2*i + 2] = s.charAt(i);
}
t[s.length()*2 + 1] = '#';
}
// longest palindromic substring
public String longestPalindromicSubstring() {
int length = 0; // length of longest palindromic substring
int center = 0; // center of longest palindromic substring
for (int i = 1; i < p.length-1; i++) {
if (p[i] > length) {
length = p[i];
center = i;
}
}
return s.substring((center - 1 - length) / 2, (center - 1 + length) / 2);
}
// longest palindromic substring centered at index i/2
public String longestPalindromicSubstring(int i) {
int length = p[i + 2];
int center = i + 2;
return s.substring((center - 1 - length) / 2, (center - 1 + length) / 2);
}
// test client
// public static void main(String[] args) {
// String s = args[0];
// Manacher manacher = new Manacher(s);
// System.println(manacher.longestPalindromicSubstring());
// for (int i = 0; i < 2*s.length(); i++)
// StdOut.println(i + ": " + manacher.longestPalindromicSubstring(i));
//
// }
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public boolean hasNext() {return st.hasMoreTokens();}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public double nextDouble() throws IOException {return Double.parseDouble(next());}
public long nextLong() throws IOException {return Long.parseLong(next());}
public String nextLine() throws IOException {return br.readLine();}
public boolean ready() throws IOException {return br.ready(); }
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | e6bcbfc2ad9bf84af43e2719a189599c | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
import java.util.*;
import static java.lang.System.out;
import static java.lang.Math.*;
public class pre16 {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static class MultiSet<K> {
TreeMap<K, Integer> map;
MultiSet() {
map = new TreeMap<>();
}
void add(K a) {
map.put(a, map.getOrDefault(a, 0) + 1);
}
boolean contains(K a) {
return map.containsKey(a);
}
void remove(K a) {
map.put(a, map.get(a) - 1);
if (map.get(a) == 0) map.remove(a);
}
int occrence(K a) {
return map.get(a);
}
K floor(K a) {
return map.floorKey(a);
}
K ceil(K a) {
return map.ceilingKey(a);
}
@Override
public String toString() {
ArrayList<K> set = new ArrayList<>();
for (Map.Entry<K, Integer> i : map.entrySet()) {
for (int j = 1; j <= i.getValue(); j++) set.add(i.getKey());
}
return set.toString();
}
}
static class Pair<K, V> {
K value1;
V value2;
Pair(K a, V b) {
value1 = a;
value2 = b;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (!(o instanceof Pair)) return false;
Pair<?, ?> p = (Pair<?, ?>) o;
return Objects.equals(this.value1, p.value1) && Objects.equals(this.value2, p.value2);
}
@Override
public int hashCode() {
int result = this.value1.hashCode();
result = 31 * result + this.value2.hashCode();
return result;
}
@Override
public String toString() {
return ("[" + value1 + " <=> " + value2 + "]");
}
}
static ArrayList<Integer> primes;
static void setPrimes(int n) {
boolean p[] = new boolean[n];
Arrays.fill(p, true);
for (int i = 2; i < p.length; i++) {
if (p[i]) {
primes.add(i);
for (int j = i * 2; j < p.length; j += i) p[j] = false;
}
}
}
static int mod = (int) (1e9 + 7);
static int gcd(int a, int b) {
if (a == 0) return b;
return gcd(b % a, a);
}
public static void main(String args[]) {
FastReader obj = new FastReader();
int tc = obj.nextInt();
while (tc-- != 000) {
int n = obj.nextInt();
char str[] = obj.next().toCharArray();
Stack<Integer> open = new Stack<>(),close = new Stack<>();
for(int i=n-1;i>=0;i--){
if(str[i]=='(') open.add(i);
else close.add(i);
}
int ans = 0,i = 0;
for(;i<n-1;i++){
if(str[i]=='('){
ans++;
if(str[i+1]==')') close.pop();
i++;
}else if(str[i]==')'){
close.pop();
if(close.size()>0){
ans++;
i = close.pop();
}else break;
}
}
out.println(ans+" "+(n-i));
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | c48cbb8fe83ef40807bb942d741db835 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
public static void main(String[] args) {
new Thread(null, () -> new Main().run(), "1", 1 << 23).start();
}
private void run() {
FastReader scan = new FastReader();
PrintWriter out = new PrintWriter(System.out);
Solution solve = new Solution();
int t = scan.nextInt();
// int t = 1;
for (int qq = 0; qq < t; qq++) {
solve.solve(scan, out);
//out.println();
}
out.close();
}
}
class Solution {
/*
* think and coding
*/ double EPS = 0.000_0001;
public void solve(FastReader scan, PrintWriter out) {
int n = scan.nextInt();
char[] chars = scan.nextLine().toCharArray();
int ans = 0, cnt = 0, i = 0;
while (i + 1 < n) {
if (chars[i] == '(') {
i += 2;
ans++;
cnt += 2;
} else if (chars[i] == ')'){
int j = i + 1;
while (j < n && chars[j++] != ')');
if (chars[j - 1] == ')') {
ans++;
cnt += j - i;
}
i = j;
}
}
out.println(ans + " " + (n - cnt));
}
static class Pair implements Comparable<Pair> {
int a, b;
public Pair(int a, int b) {
this.a = a;
this.b = b;
}
public Pair(Pair p) {
this.a = p.a;
this.b = p.b;
}
@Override
public int compareTo(Pair p) {
return Integer.compare(a, p.a);
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Pair pair = (Pair) o;
return a == pair.a && b == pair.b;
}
@Override
public int hashCode() {
return Objects.hash(a, b);
}
@Override
public String toString() {
return "Pair{" + "a=" + a + ", b=" + b + '}';
}
}
}
class FastReader {
private final BufferedReader br;
private StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) throws FileNotFoundException {
br = new BufferedReader(new FileReader(new File(s)));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 3e91388fdae6b8d4c882e872fd7678ff | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | // package com.company;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.PriorityQueue;
import java.util.Scanner;
import java.util.Set;
import java.util.Stack;
public class Main {
public static class Pair {
int visits;
int index;
public Pair(int a, int b) {
visits = a;
index = b;
}
}
public static boolean isPalindrome(String str) {
int n = str.length();
if(n == 1) {
return false;
}
int mid = n / 2;
// System.out.println("len: " + str.length() + " mid: " + mid);
StringBuilder temp = new StringBuilder(str.substring(0, mid));
if(n % 2 == 1) {
mid++;
}
return temp.reverse().toString().equals(str.substring(mid));
}
public static int[] solve(String str) {
int ops = 0;
int i = 0;
int n = str.length();
boolean test = true;
while(i < n-1) {
char a = str.charAt(i);
char b = str.charAt(i+1);
if(a == b || a == '(') {
i += 2;
ops++;
} else {
int j = i+1;
test = false;
while(j < n-1) {
if(str.charAt(j) == '(' && str.charAt(j+1) == ')') {
if(isPalindrome(str.substring(i, j+2))) {
ops++;
i = j+2;
test = true;
break;
}
}
j++;
}
if(!test) {
break;
}
}
}
int[] res = new int[2];
res[0] = ops;
res[1] = (!test || i < n) ? n - i : 0;
return res;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int testcases = sc.nextInt();
for(int i=0; i<testcases; i++) {
int n = sc.nextInt();
String str = sc.next();
int[] res = solve(str);
System.out.println(res[0] + " " + res[1]);
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 1b45d0dcd14fb8894d4afaed259dd295 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | /**
* @Jai_Bajrang_Bali
* @Har_Har_Mahadev
*/
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Scanner;
public class practice2 {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while (t-->0){
int n=sc.nextInt();
//sc.nextLine();
String str=sc.next();
int ans=0,i=0,j=1;
while(i<n && j<n){
if(str.charAt(i)==')'&& str.charAt(j)=='(' ) j++;
else{
i=j+1;
j+=2;
ans++;
}
}
System.out.println(ans+" "+(n-i));
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 3208aadc57a2a89bf723fd2c0a2e8326 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.awt.image.ImageProducer;
import java.util.*;
public class Solution {
static boolean prime[] = new boolean[1000001];
static Set<Long> cubes=new HashSet<>();
static
{
long N = 1000000000000L;
//
//
// for(int i=1;i*i<=n;i++)
// {
// long x=i*i;
// set.add(x);
// }
for (long i = 1; i * i * i <= N; i++) {
cubes.add(i * i * i);
}
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
sc.nextLine();
String s = sc.nextLine();
int a = 0;
int b = 0;
int step = 0;
int ans = 0, i = 0, j = 1;
while (i < n && j < n) {
if (s.charAt(i) == ')' && s.charAt(j) == '(') {
j++;
} else {
i = j + 1;
j += 2;
ans++;
}
}
System.out.println(ans + " " + (n - i));
}
}
public static boolean isPal(String str)
{
for(int i=0;i<str.length()/2;i++) {
if (str.charAt(i) != str.charAt(str.length() - 1 - i))
return false;
}
return true;
}
// public static int[] reverse(int arr[],int start,int end)
// {
// for(int i=start;i<=end;i++)
// {
// int temp=arr[i];
// arr[i]=arr[i+1];
// arr[i+1]=temp;
// }
// return arr;
// }
static boolean checkPerfectSquare(double number)
{
//calculating the square root of the given number
double sqrt=Math.sqrt(number);
//finds the floor value of the square root and comparing it with zero
return ((sqrt - Math.floor(sqrt)) == 0);
}
static void sieveOfEratosthenes(int n)
{
for(int i=0;i<=n;i++)
prime[i] = true;
for(int p = 2; p*p <=n; p++)
{
if(prime[p] == true)
{
for(int i = p*p; i <= n; i += p)
prime[i] = false;
}
}
// Print all prime numbers
// for(int i = 2; i <= n; i++)
// {
// if(prime[i] == true)
// System.out.print(i + " ");
// }
}
public static boolean isPrime(int n)
{
for(int i=2;i*i<=n;i++)
{
if(n%i==0)
return false;
}
return true;
}
public static int gcd(int a,int b)
{
if(b==0)
return a;
return gcd(b,a%b);
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | fdca35d31c45da2645a98b12212f37df | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class C {
public void solve(Scanner in, PrintWriter out) {
int t = in.nextInt();
for (int c = 0; c < t; c++) {
int n = in.nextInt();
char[] seq = in.next().toCharArray();
int operations = 0;
int lastPrefixIndex = -1;
int oB = 0;
boolean isGood = true;
List<Character> lastPal = new ArrayList<>();
for (int i = 0; i < n; i++) {
lastPal.add(seq[i]);
if (seq[i] == '(') {
oB++;
} else {
oB--;
}
if (oB < 0) isGood = false;
boolean isPal = false;
if (lastPal.get(0) == seq[i]) {
isPal = checkPal(lastPal);
}
if (isGood && oB == 0 || isPal) {
lastPal = new ArrayList<>();
isGood = true;
lastPrefixIndex = i;
operations++;
oB = 0;
}
}
out.println(operations + " " + (n - (lastPrefixIndex + 1)));
}
}
public boolean checkPal(List<Character> sequence) {
int n = sequence.size();
boolean isPal = true;
if (n > 1) {
for (int i = 0; i < n / 2; i++) {
if (!sequence.get(i).equals(sequence.get(n - i - 1))) {
isPal = false;
break;
}
}
} else {
return false;
}
return isPal;
}
public void run() {
try (Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out)) {
solve(in, out);
}
}
public static void main(String[] args) {
new C().run();
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 48ea80115b05d719dc5e6d6ce2401997 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.util.*;
public class Pentagram {
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int tc = sc.nextInt();
while(tc-->0){
int n = sc.nextInt();
char[] arr = sc.next().toCharArray();
HashMap<Character, Integer> freq = new HashMap<>();
int ans = 0;
int temp = 0;
int taken = 0;
int prev = 0;
for(int i = 0; i<n; i++){
if(temp >= 0){
if (arr[i] == '(') temp++;
else temp -= 1;
}
if(temp == 0){
ans++;
taken += i-prev + 1;
prev = i + 1;
freq.put('(', -1);
freq.put(')', -1);
continue;
}
if(freq.getOrDefault(arr[i], -1) != -1 && arr[i] == arr[prev]){
ans++;
taken += i - freq.get(arr[i]) + 1;
prev = i + 1;
freq.put('(', -1);
freq.put(')', -1);
temp = 0;
}else{
freq.put(arr[i], i);
}
}
//System.out.println(taken);
pw.println(ans + " " + (n - taken));
}
pw.flush();
}
static class Pair implements Comparable<Pair>{
long x;
long y;
public Pair(long x, long y){
this.x = x;
this.y = y;
}
public int compareTo(Pair p){
if(x > p.x)return 1;
if(x < p.x)return -1;
if(y > p.y) return -1;
if(y < p.y) return 1;
return 0;
}
public String toString(){
return "(" + x + "," + y + ")";
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 4058fbf268a7c2b8a16c8649a5553e43 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.util.*;
public class CodeforcesEdu125{
static long mod = 1000000007L;
static MyScanner sc = new MyScanner();
static void solve(){
int a = sc.nextInt();
int b = sc.nextInt();
if(a==0 && b==0){
out.println(0);
return;
}
double c = Math.sqrt((a*a)+(b*b));
if(c%(int)c==0){
out.println(1);
}else{
out.println(2);
}
}
static void solve2(){
int n = sc.nextInt();
int b = sc.nextInt();
int x = sc.nextInt();
int y = sc.nextInt();
int arr[] = new int[n+1];
for(int i = 1;i<=n;i++){
if(arr[i-1]+x>b){
arr[i] = arr[i-1]-y;
}else{
arr[i] = arr[i-1]+x;
}
}
long sum = 0;
for(int i = 0;i<=n;i++){
sum += arr[i];
}
out.println(sum);
}
static void solve3() {
int n = sc.nextInt();
String str = sc.nextLine();
if(n==1){
out.println(0+" "+1);
return;
}
int i = 0;
int count = 0;
boolean f = false;
boolean ft = false;
while(i<n){
if(str.charAt(i)=='('){
if(i!=n-1){
count++;
}else{
ft = true;
}
i+=2;
}else{
i++;
boolean flag = false;
for(;i<n;i++){
if(str.charAt(i)==')'){
flag = true;
i++;
count++;
break;
}
}
if(!flag){
f = true;
}
}
}
if(f){
for(int j = n-1;j>=0;j--){
if(str.charAt(j)==')'){
out.println(count+" "+(n-j));
return;
}
}
}else{
if(ft){
out.println(count+" "+1);
}else{
out.println(count+" "+0);
}
}
}
static boolean isPali(String str){
int i = 0;
int j = str.length()-1;
while(i<j){
if(str.charAt(i)!=str.charAt(j)){
return false;
}
i++;
j--;
}
return true;
}
static long gcd(long a,long b){
if(b==0) return a;
return gcd(b,a%b);
}
static String reverse(String str){
char arr[] = str.toCharArray();
int i = 0;
int j = arr.length-1;
while(i<j){
char temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
i++;
j--;
}
String st = new String(arr);
return st;
}
static boolean isprime(int n){
if(n==1) return false;
if(n==3 || n==2) return true;
if(n%2==0 || n%3==0) return false;
for(int i = 5;i*i<=n;i+= 6){
if(n%i== 0 || n%(i+2)==0){
return false;
}
}
return true;
}
static class Pair implements Comparable<Pair>{
int val;
int ind;
int ans;
Pair(int v,int f){
val = v;
ind = f;
}
public int compareTo(Pair p){
return p.val - this.val;
}
}
public static void main(String[] args) {
out = new PrintWriter(new BufferedOutputStream(System.out));
int t = sc.nextInt();
while(t-- >0){
// solve();
// solve2();
solve3();
}
// Stop writing your solution here. -------------------------------------
out.close();
}
//-----------PrintWriter for faster output---------------------------------
public static PrintWriter out;
//-----------MyScanner class for faster input----------
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int[] readIntArray(int n){
int arr[] = new int[n];
for(int i = 0;i<n;i++){
arr[i] = Integer.parseInt(next());
}
return arr;
}
int[] reverse(int arr[]){
int n= arr.length;
int i = 0;
int j = n-1;
while(i<j){
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
j--;i++;
}
return arr;
}
long[] readLongArray(int n){
long arr[] = new long[n];
for(int i = 0;i<n;i++){
arr[i] = Long.parseLong(next());
}
return arr;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
private static void sort(int[] arr) {
List<Integer> list = new ArrayList<>();
for (int i=0; i<arr.length; i++){
list.add(arr[i]);
}
Collections.sort(list); // collections.sort uses nlogn in backend
for (int i = 0; i < arr.length; i++){
arr[i] = list.get(i);
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | ed973458d719c903aeaa9da570ceae84 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
//import java.text.DecimalFormat;
import java.util.*;
import java.util.function.LongToIntFunction;
public class Codeforces {
static int mod= 998244353 ;
public static void main(String[] args) throws Exception {
PrintWriter out=new PrintWriter(System.out);
FastScanner fs=new FastScanner();
int t=fs.nextInt();
outer:for(int time=1;time<=t;time++) {
int n=fs.nextInt();
char arr[]=fs.next().toCharArray();
int ans=0;
int rem=0;
int next[]=new int[n+1];
next[n]=n;
for(int i=n-1;i>=0;i--) {
if(arr[i]==')') {
next[i]=i;
}
else next[i]=next[i+1];
}
int i=0;
while(i<n-1) {
if(arr[i]=='(') {
i+=2;
ans++;
}
else {
int j= next[i+1]+1;
if(j<n+1) {
ans++;
i=j;
}
else {
break;
}
}
}
rem=Math.max(0, n-i);
if(ans==0) rem=n;
out.println(ans+" "+rem);
}
out.close();
}
static long pow(long a,long b) {
if(b<0) return 1;
long res=1;
while(b!=0) {
if((b&1)!=0) {
res*=a;
res%=mod;
}
a*=a;
a%=mod;
b=b>>1;
}
return res;
}
static int gcd(int a,int b) {
if(b==0) return a;
return gcd(b,a%b);
}
static long nck(int n,int k) {
if(k>n) return 0;
long res=1;
res*=fact(n);
res%=mod;
res*=modInv(fact(k));
res%=mod;
res*=modInv(fact(n-k));
res%=mod;
return res;
}
static long fact(long n) {
// return fact[(int)n];
long res=1;
for(int i=2;i<=n;i++) {
res*=i;
res%=mod;
}
return res;
}
static long modInv(long n) {
return pow(n,mod-2);
}
static void sort(int[] a) {
//suffle
int n=a.length;
Random r=new Random();
for (int i=0; i<a.length; i++) {
int oi=r.nextInt(n);
int temp=a[i];
a[i]=a[oi];
a[oi]=temp;
}
//then sort
Arrays.sort(a);
}
static void sort(long[] a) {
//suffle
int n=a.length;
Random r=new Random();
for (int i=0; i<a.length; i++) {
int oi=r.nextInt(n);
long temp=a[i];
a[i]=a[oi];
a[oi]=temp;
}
//then sort
Arrays.sort(a);
}
// Use this to input code since it is faster than a Scanner
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long[] readArrayL(int n) {
long a[]=new long[n];
for(int i=0;i<n;i++) a[i]=nextLong();
return a;
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 031c4a5134bf677030cfce855a795c51 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.math.BigInteger;
import java.util.*;
public class A {
static ArrayList<Integer>[] adj;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
for (int oo = 0; oo < t; oo++) {
int n = sc.nextInt();
String s = sc.next();
char[] arr = s.toCharArray();
int begin = 0;
int ans = 0;
int last = 0;
boolean prev = false;
for (int i = 0; i < n; i++) {
if (prev) {
if (arr[i] == ')') {
ans++;
last = i;
prev = false;
}
continue;
}
if (arr[i] == '(') {
i++;
if (i < n) {
ans++;
last = i;
}
} else {
prev = true;
}
}
System.out.print(ans + " ");
System.out.println(last == 0 ? n : (n - last - 1));
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | d5aa893c02b093ca671ce0879e220d34 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.io.*;
public class BracketDeletion {
public static void main(String[] args) {
try {
FastReader in = new FastReader();
PrintWriter out = new PrintWriter(System.out);
int testcases = in.nextInt();
while (testcases-- > 0) {
int n = in.nextInt();
String s = in.nextLine();
int l = 0;
int count = 0;
// 2 pointer; editorial
while (l + 1 < n) {
// "() or ))"
if (s.charAt(l) == '(' || s.charAt(l) == ')' && s.charAt(l + 1) == ')') {
l = l + 2;
} else {
int r = l + 1;
while (r < n && s.charAt(r) != ')') {
++r;
}
if (r == n)
break;
l = r + 1;
}
count++;
}
int remaining = n - l;
out.println(count + " " + remaining);
}
out.close();
} catch (
Exception e) {
// TODO: handle exception
return;
}
}
private static boolean isPalindrome(String temp) {
boolean istrue = true;
int n = temp.length();
if (n == 1)
return false;
for (int i = 0; i < temp.length(); i++) {
if (temp.charAt(i) != temp.charAt(n - i - 1))
return false;
}
return istrue;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
long[] readLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
String nextLine() {
String str = "";
try {
str = br.readLine().trim();
} catch (Exception e) {
e.printStackTrace();
}
return str;
}
}
static boolean LOCAL = System.getProperty("ONLINE_JUDGE") == null;
static void dbg(Object... o) {
if (LOCAL)
System.err.println(Arrays.deepToString(o));
}
static final Random random = new Random();
static final int mod = 1_000_000_007;
static void sortIntArray(int[] a) {
int n = a.length;// shuffle, then sort
for (int i = 0; i < n; i++) {
int oi = random.nextInt(n), temp = a[oi];
a[oi] = a[i];
a[i] = temp;
}
Arrays.sort(a);
}
static void sortLongArray(long[] arr) {
int n = arr.length;
for (int i = 0; i < n; ++i) {
long tmp = arr[i];
int randomPos = i + random.nextInt(n - i);
arr[i] = arr[randomPos];
arr[randomPos] = tmp;
}
Arrays.sort(arr);
}
static void reverseSortLongArr(long[] arr) {
int n = arr.length;
for (int i = 0; i < n; ++i) {
long tmp = arr[i];
int randomPos = i + random.nextInt(n - i);
arr[i] = arr[randomPos];
arr[randomPos] = tmp;
}
Arrays.sort(arr);
reverseLongArr(arr);
}
static void reverseSortIntArr(int[] a) {
int n = a.length;// shuffle, then sort
for (int i = 0; i < n; i++) {
int oi = random.nextInt(n), temp = a[oi];
a[oi] = a[i];
a[i] = temp;
}
Arrays.sort(a);
reverseIntArr(a);
}
public static void reverseLongArr(long[] arr) {
int n = arr.length;
for (int i = 0; i < n / 2; i++) {
long temp = arr[i];
arr[i] = arr[n - i - 1];
arr[n - i - 1] = temp;
}
}
public static void reverseIntArr(int[] array) {
int n = array.length;
for (int i = 0; i < n / 2; i++) {
int temp = array[i];
array[i] = array[n - i - 1];
array[n - i - 1] = temp;
}
}
static long add(long a, long b) {
return (a + b) % mod;
}
static long sub(long a, long b) {
return ((a - b) % mod + mod) % mod;
}
static long mul(long a, long b) {
return (a * b) % mod;
}
static long exp(long base, long exp) {
if (exp == 0)
return 1;
long half = exp(base, exp / 2);
if (exp % 2 == 0)
return mul(half, half);
return mul(half, mul(half, base));
}
static long[] factorials = new long[2_000_001];
static long[] invFactorials = new long[2_000_001];
static void precompFacts() {
factorials[0] = invFactorials[0] = 1;
for (int i = 1; i < factorials.length; i++)
factorials[i] = mul(factorials[i - 1], i);
invFactorials[factorials.length - 1] = exp(factorials[factorials.length - 1], mod - 2);
for (int i = invFactorials.length - 2; i >= 0; i--)
invFactorials[i] = mul(invFactorials[i + 1], i + 1);
}
static long nCk(int n, int k) {
return mul(factorials[n], mul(invFactorials[k], invFactorials[n - k]));
}
static void sort(int[] a) {
ArrayList<Integer> l = new ArrayList<>();
for (int i : a)
l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++)
a[i] = l.get(i);
}
static void printArray(int arr[]) {
for (int i : arr) {
System.out.print(i + " ");
}
System.out.println();
}
static void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | b51a75f5f5170c16acf1664b9c0178b0 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.util.*;
public class cp {
static PrintWriter w = new PrintWriter(System.out);
static FastScanner s = new FastScanner();
static int mod = 1000000007;
static class Edge {
int src;
int wt;
int nbr;
Edge(int src, int nbr, int et) {
this.src = src;
this.wt = et;
this.nbr = nbr;
}
}
class EdgeComparator implements Comparator<Edge> {
@Override
//return samllest elemnt on polling
public int compare(Edge s1, Edge s2) {
if (s1.wt < s2.wt) {
return -1;
} else if (s1.wt > s2.wt) {
return 1;
}
return 0;
}
}
static long gcd(long a, long b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
static void prime_till_n(boolean[] prime) {
// Create a boolean array
// "prime[0..n]" and
// initialize all entries
// it as true. A value in
// prime[i] will finally be
// false if i is Not a
// prime, else true.
for (int p = 2; p * p < prime.length; p++) {
// If prime[p] is not changed, then it is a
// prime
if (prime[p] == true) {
// Update all multiples of p
for (int i = p * p; i < prime.length; i += p) {
prime[i] = false;
}
}
}
// int l = 1;
// for (int i = 2; i <= n; i++) {
// if (prime[i]) {
// w.print(i+",");
// arr[i] = l;
// l++;
// }
// }
//Time complexit Nlog(log(N))
}
static int noofdivisors(int n) {
//it counts no of divisors of every number upto number n
int arr[] = new int[n + 1];
for (int i = 1; i <= (n); i++) {
for (int j = i; j <= (n); j = j + i) {
arr[j]++;
}
}
return arr[0];
}
static char[] reverse(char arr[]) {
char[] b = new char[arr.length];
int j = arr.length;
for (int i = 0; i < arr.length; i++) {
b[j - 1] = arr[i];
j = j - 1;
}
return b;
}
static long factorial(int n) {
if (n == 0) {
return 1;
}
long su = 1;
for (int i = 1; i <= n; i++) {
su *= (long) i;
}
return su;
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
public String next() {
while (!st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
long[] readArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = nextLong();
}
return a;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
static class Vertex {
int x;
int y;
int wt;
public Vertex(int x, int y) {
this.x = x;
this.y = y;
}
public Vertex(int x, int y, int wt) {
this.x = x;
this.y = y;
this.wt = wt;
}
}
public static long power(long x, int n) {
if (n == 0) {
return 1l;
}
long pow = power(x, n / 2) % mod;
if ((n & 1) == 1) // if `y` is odd
{
return ((((x % mod) * (pow % mod)) % mod) * (pow % mod)) % mod;
}
// otherwise, `y` is even
return ((pow % mod) * (pow % mod)) % mod;
}
public static void main(String[] args) {
{
int t = s.nextInt();
// int t = 1;
while (t-- > 0) {
solve();
}
w.close();
}
}
public static void solve() {
int n = s.nextInt();
String str = s.next();
char ch[]= str.toCharArray();
//int prev = ch[0];
int flag =2;
if(n==1)
{
w.println(0+" 1");return;
}
int res1=0; int res2=n;
for(int i=0;i<n;i++)
{
if(ch[i]=='('){
i++;res1++;res2-=2;
}
else
{
i++;
int temp=1;
while(i<n )
{
temp++;
if(ch[i]==')'){
flag=4;break;}
i++;
}
if(flag==4)
{
res2-=temp;res1++;
flag=3;
}
}
if(i+1==n-1){
res2=1;break;}
}
w.println(res1+" "+res2);
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 6343b25e8616fb78e5c83cb98230a887 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.io.*;
public class practice {
public static void solve() {
Reader sc = new Reader();
PrintWriter out = new PrintWriter(System.out);
int t = sc.nextInt();
while(t-- > 0) {
int n = sc.nextInt();
char[] arr = sc.next().toCharArray();
int operations = 0;
int removed = 0;
int i = 0;
int j = i + 1;
while(j < n) {
if(i < n - 1 && arr[i] == '(') {
operations++;
i += 2;
removed += 2;
}
else {
while(j < n && arr[j] != ')')
j++;
if(j < n && arr[j] == ')') {
operations++;
removed += (j - i + 1);
}
i = j + 1;
}
j = i + 1;
}
out.println(operations + " " + (n - removed));
}
out.flush();
}
public static void main(String[] args) throws IOException {
solve();
}
static String[] sort(String[] arr,int n) {
List<String> list = new ArrayList<>();
for(int i = 0;i < n;i++)
list.add(arr[i]);
Collections.sort(list);
for(int i = 0;i < n;i++)
arr[i] = list.get(i);
return arr;
}
static class Reader {
BufferedReader br;
StringTokenizer st;
public Reader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
if(st.hasMoreTokens())
str = st.nextToken("\n");
else
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | c932e92aa3d5a38a44223cda8c132370 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.Scanner;
public class C1657 {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int T = in.nextInt();
for (int t = 0; t < T; t++) {
int N = in.nextInt();
String S = in.next();
int steps = 0;
int removedChars = 0;
int lastEnd = 0;
int depth = 0;
int lastStart = 0;
StringBuilder sb = new StringBuilder();
for (int n = 0; n < N; n++) {
char c = S.charAt(n);
sb.append(c);
if (c == '(') {
depth++;
} else {
depth--;
if (depth == 0) {
// valid bracket sequence
steps++;
removedChars += sb.length();
lastStart = n + 1;
sb.setLength(0);
continue;
}
}
if (sb.length() >= 2 && n >= lastEnd) {
String reversed = sb.reverse().toString();
sb.reverse();
int reverseStart = S.indexOf(reversed, lastStart);
if (reverseStart == -1) {
lastEnd = Integer.MAX_VALUE;
} else {
int reverseEnd = reverseStart + sb.length() - 1;
if (reverseEnd == n) {
steps++;
removedChars += sb.length();
sb.setLength(0);
lastStart = n + 1;
depth = 0;
} else {
lastEnd = reverseEnd;
}
}
}
}
System.out.println(steps + " " + (S.length() - removedChars));
}
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 35888d6bf5cd0e8b4a7090dccce67895 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int t = in.nextInt();
while (t-- > 0) {
int n = in.nextInt();
String str = in.next();
int sum = 0;
int s = 0;
for (int i = 1; i < n; ) {
if (str.charAt(i) == '(') {
if (str.charAt(s) == '(') {
sum++;
s = i + 1;
i += 2;
} else {
i++;
}
} else {
if (str.charAt(i) == '(') {
i++;
} else {
sum++;
s = i + 1;
i += 2;
}
}
}
System.out.println(sum + " " + (n - s));
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | b0023a97a168e29f61dd0d061dabdcae | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.util.*;
public class BasicCode {
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(String file) throws FileNotFoundException {
br = new BufferedReader(new FileReader(file));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public boolean ready() throws IOException {
return br.ready();
}
}
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int t = sc.nextInt();
for(int l=0;l<t;l++) {
int n = sc.nextInt();
String s = sc.next();
int c = 0;
int r = n;
boolean ws = false;
for(int i=0;i<n;i++) {
if(ws) {
if(s.charAt(i)==')') {
ws = false;
c++; r = n-(i+1);
}
}
else {
if(s.charAt(i)==')') {
ws = true;
}
else {
if(i!=n-1) {
c++; r = n-(i+2);
i++;
}
}
}
}
pw.print(c + " " + r + "\n");
}
pw.close();
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 828ad22f62bf92e0c6b8bd81aed27fbc | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Scanner;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author cpp
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
CBracketSequenceDeletion solver = new CBracketSequenceDeletion();
solver.solve(1, in, out);
out.close();
}
static class CBracketSequenceDeletion {
public void solve(int testNumber, Scanner in, PrintWriter out) {
int t = in.nextInt();
while (t-- > 0) {
int n = in.nextInt();
String s = in.next();
printAns(n, s, out);
}
}
private void printAns(int n, String s, PrintWriter out) {
int count = 0;
int index = 0;
while (index + 1 < s.length()) {
char first = s.charAt(index);
if (first == '(') {
count += 1;
index += 2;
} else {
if (s.charAt(index + 1) == ')') {
count += 1;
index += 2;
} else {
int curr = index + 2;
while (curr < s.length() && s.charAt(curr) != ')') {
curr++;
}
if (curr < s.length()) {
index = curr + 1;
count++;
} else {
break;
}
}
}
}
out.println(count + " " + (s.length() - index));
}
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 48e82261cf614003ea3ecc67c6954a94 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes |
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.Map;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.Scanner;
import java.util.Stack;
import java.util.StringTokenizer;
import java.util.TreeMap;
import java.util.TreeSet;
public class Practice1 {
static long[] sort(long[] arr) {
int n=arr.length;
ArrayList<Long> al=new ArrayList<>();
for(int i=0;i<n;i++) {
al.add(arr[i]);
}
Collections.sort(al);
for(int i=0;i<n;i++) {
arr[i]=al.get(i);
}
return arr;
}
static int gcd(int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
static long nCr(int n, int r)
{
// int x=1000000007;
long dp[][]=new long[2][r+1];
for(int i=0;i<=n;i++){
for(int j=0;j<=i&&j<=r;j++){
if(i==0||j==0||i==j){
dp[i%2][j]=1;
}else {
// dp[i%2][j]=(dp[(i-1)%2][j]+dp[(i-1)%2][j-1])%x;
dp[i%2][j]=(dp[(i-1)%2][j]+dp[(i-1)%2][j-1]);
}
}
}
return dp[n%2][r];
}
public static class UnionFind {
private final int[] p;
public UnionFind(int n) {
p = new int[n];
for (int i = 0; i < n; i++) {
p[i] = i;
}
}
public int find(int x) {
return x == p[x] ? x : (p[x] = find(p[x]));
}
public void union(int x, int y) {
x = find(x);
y = find(y);
if (x != y) {
p[x] = y;
}
}
}
public static boolean ispalin(String str) {
int n=str.length();
for(int i=0;i<n/2;i++) {
if(str.charAt(i)!=str.charAt(n-i-1)) {
return false;
}
}
return true;
}
static class Pair{
int val;
int pos;
Pair(int val,int pos){
this.val=val;
this.pos=pos;
}
}
static long power(long N,long R)
{
long x=1000000007;
if(R==0) return 1;
if(R==1) return N;
long temp= power(N,R/2)%x; // (a*b)%p = (a%p*b%p)*p
temp=(temp*temp)%x;
if(R%2==0){
return temp%x;
}else{
return (N*temp)%x;
}
}
public static String binary(int n) {
StringBuffer ans=new StringBuffer();
int a=4;
while(a-->0) {
int temp=(n&1);
if(temp!=0) {
ans.append('1');
}else {
ans.append('0');
}
n =n>>1;
}
ans=ans.reverse();
return ans.toString();
}
public static int find(String[][] arr,boolean[][] vis,int dir,int i,int j) {
if(i<0||i>=arr.length||j<0||j>=arr[0].length) return 0;
if(vis[i][j]==true) return 0;
if(dir==1&&arr[i][j].charAt(0)=='1') return 0;
if(dir==2&&arr[i][j].charAt(1)=='1') return 0;
if(dir==3&&arr[i][j].charAt(2)=='1') return 0;
if(dir==4&&arr[i][j].charAt(3)=='1') return 0;
vis[i][j]=true;
int a=find(arr,vis,1,i+1,j);
int b=find(arr,vis,2,i-1,j);
int c=find(arr,vis,3,i,j+1);
int d=find(arr,vis,4,i,j-1);
return 1+a+b+c+d;
}
static ArrayList<Integer> allDivisors(int n) {
ArrayList<Integer> al=new ArrayList<>();
int i=2;
while(i*i<=n) {
if(n%i==0) al.add(i);
if(n%i==0&&i*i!=n) al.add(n/i);
i++;
}
return al;
}
static int[] sort(int[] arr) {
int n=arr.length;
ArrayList<Integer> al=new ArrayList<>();
for(int i=0;i<n;i++) {
al.add(arr[i]);
}
Collections.sort(al);
for(int i=0;i<n;i++) {
arr[i]=al.get(i);
}
return arr;
}
/** Code for Dijkstra's algorithm **/
public static class ListNode {
int vertex, weight;
ListNode(int v, int w) {
vertex = v;
weight = w;
}
int getVertex() { return vertex; }
int getWeight() { return weight; }
}
public static int[] dijkstra(
int V, ArrayList<ArrayList<ListNode> > graph,
int source) {
int[] distance = new int[V];
for (int i = 0; i < V; i++)
distance[i] = Integer.MAX_VALUE;
distance[0] = 0;
PriorityQueue<ListNode> pq = new PriorityQueue<>(
(v1, v2) -> v1.getWeight() - v2.getWeight());
pq.add(new ListNode(source, 0));
while (pq.size() > 0) {
ListNode current = pq.poll();
for (ListNode n :
graph.get(current.getVertex())) {
if (distance[current.getVertex()]
+ n.getWeight()
< distance[n.getVertex()]) {
distance[n.getVertex()]
= n.getWeight()
+ distance[current.getVertex()];
pq.add(new ListNode(
n.getVertex(),
distance[n.getVertex()]));
}
}
}
// If you want to calculate distance from source to
// a particular target, you can return
// distance[target]
return distance;
}
public static void main (String[] args) {
PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
// out.print();
//out.println();
FastReader sc=new FastReader();
int t=sc.nextInt();
while(t-->0) {
int n=sc.nextInt();
String str=sc.nextLine();
int start=0,i=1;
int count=0;
while(i<n) {
if(str.charAt(start)=='(') {
start=i+1;
i=start+1;
count++;
}else {
if(str.charAt(i)==')') {
count++;
start=i+1;
i=start+1;
}else {
i++;
}
}
}
out.println(count+" "+(n-start));
}
out.close();
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 09498efdecfb059abfbd7dbc9720338f | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.util.*;
public class C{
public static void main(String[] args) {
Scanner s=new Scanner(System.in);
int t=s.nextInt();
while(t-->0){
int n=s.nextInt();
String S=s.next();
char c[]=S.toCharArray();
int op=0;
int remaining=0;
String A="";
String B="";
int closing=0;
int q=0;
for(int i=0;i<n;i++){
if(c[i]=='('){
if(i==n-1){
remaining=1;
break;
}
op++;
i++;
}
else{
int s1=i+1;
int id=-1;
for(int j=s1;j<n;j++){
if(c[j]==')') {
id=j;
break;
}
}
if(id==-1){
remaining=n-i;
break;
}
else{
i=id;
op++;
}
}
}
System.out.println(op+" "+remaining);
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 082b171c404afc539a4c97392217502f | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Pranay
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastReader in = new FastReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
CBracketSequenceDeletion solver = new CBracketSequenceDeletion();
int testCount = Integer.parseInt(in.next());
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
static class CBracketSequenceDeletion {
public void solve(int testNumber, FastReader in, PrintWriter out) {
int n = in.nextInt();
char[] c = in.next().toCharArray();
int opr = 0, ind = 0;
while (ind + 1 < n) {
if (c[ind] == ')' && c[ind + 1] == '(') {
int tmp = ind + 1;
while (tmp < n && c[tmp] == '(') tmp++;
if (tmp == n) break;
opr++;
ind = tmp + 1;
} else {
ind += 2;
opr++;
}
}
out.println(opr + " " + (n - ind));
}
}
static class FastReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private FastReader.SpaceCharFilter filter;
public FastReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public String next() {
int c = read();
while (isSpaceChar(c)) c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null) return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 3ac3e669b5715bde79df60c2161ddb3f | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.util.*;
public class C {
static int t,n,s,opt,size;
static char c[];
static boolean ok;
static Scanner sc=new Scanner(System.in);
static BufferedReader bf=new BufferedReader(new InputStreamReader(System.in));
static StreamTokenizer in=new StreamTokenizer(bf);
static PrintWriter out=new PrintWriter(new BufferedOutputStream(System.out));
public static void main(String[] args) throws IOException{
t=sc.nextInt();
while(t-->0) solve();
out.flush();
}
static void solve() throws IOException {
n=sc.nextInt();
size=n;
c=sc.next().toCharArray();
s=0;opt=0;
Deque<Character> deque=new ArrayDeque<>();
for(int i=0;i<size;++i){
boolean add=true;
if(!deque.isEmpty()){
if(deque.peekFirst()=='('&&c[i]==')'){
deque.pollFirst();
add=false;
}
}
if(add) deque.addFirst(c[i]);
else if(deque.isEmpty()){
opt++;
n-=i-s+1;
s=i+1;
}
if(s<i&&c[s]==c[i]){
n-=i-s+1;
s=i+1;
opt++;
deque.clear();
}
}
out.println(opt+" "+n);
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | b75910334fe1e7a64d18b10b86931302 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.util.*;
public class C {
static int t,n,s,opt,size;
static char c[];
static boolean ok;
static Scanner sc=new Scanner(System.in);
static BufferedReader bf=new BufferedReader(new InputStreamReader(System.in));
static StreamTokenizer in=new StreamTokenizer(bf);
static PrintWriter out=new PrintWriter(new BufferedOutputStream(System.out));
public static void main(String[] args) throws IOException{
t=sc.nextInt();
while(t-->0) solve();
out.flush();
}
static void solve() throws IOException {
n=sc.nextInt();
size=n;
c=sc.next().toCharArray();
s=0;opt=0;
Deque<Character> deque=new ArrayDeque<>();
for(int i=0;i<size;++i){
boolean add=true;
if(!deque.isEmpty()){
if(deque.peekFirst()=='('&&c[i]==')'){
deque.pollFirst();
add=false;
}
}
if(add) deque.addFirst(c[i]);
else if(deque.isEmpty()&&i>0){
opt++;
n-=i-s+1;
s=i+1;
continue;
}
if(s<i&&check(i)){
opt++;
deque.clear();
n-=i-s+1;
s=i+1;
}
}
out.println(opt+" "+n);
}
static boolean check(int end){
int l=s,r=end;
while(l<r&&c[l]==c[r]){
l++;
r--;
}
return l>=r;
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 0060d767f638c5aa240f102d7f14ac1e | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes |
import java.util.*;
public class Main{
public static void main(String args[]) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
for(int i=1;i<=t;i++)
{
int n = sc.nextInt();
String str = sc.next();
int firstIndex = 0;
int lastIndex = 1;
int opr = 0;
int len = str.length();
while(lastIndex <= str.length() - 1)
{
if(str.charAt(firstIndex) == '(')
{
opr++;len -= 2;firstIndex = lastIndex + 1;lastIndex = firstIndex + 1;
}
else
{
while(lastIndex <= str.length() - 1 && str.charAt(lastIndex) != str.charAt(firstIndex))
{
lastIndex++;
}
if(lastIndex <= str.length() - 1)
{
opr++;len -= lastIndex - firstIndex + 1;firstIndex = lastIndex + 1; lastIndex = firstIndex + 1;
}
else
{
break;
}
}
}
System.out.println(opr + " " + len);
}
sc.close();
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | c9c4833b8104ae6da170a9727410d177 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.Scanner;
import java.util.Stack;
public class Main {
public static void main(String[] args){
Scanner scanner = new Scanner(System.in);
int num = scanner.nextInt();
while(num > 0){
int length = scanner.nextInt();
scanner.nextLine();
String s = scanner.nextLine();
System.out.println(getOpAndLast(length, s));
num --;
}
}
private static String getOpAndLast(int length, String s){
// 括号字符串需要有效,或者为回文
// 每次要求的是最短,要么有效,要么是回文
// 超时,我理解是回文的判断超时了
Stack<Character> regularStack = new Stack<>();
int opCount = 0;
int lastIdx = 0;
for(int i=0;i<length;i++){
Character c = s.charAt(i);
if(regularStack.isEmpty()){
regularStack.push(c);
}else{
if(regularStack.peek() == '(' && c == ')'){
regularStack.pop();
}else{
regularStack.push(c);
}
// 任意一个条件成立均可
if(regularStack.isEmpty() || isPalindrome(s, lastIdx, i)){
opCount ++;
lastIdx = i+1;
regularStack.clear();
}
}
}
StringBuilder sb = new StringBuilder();
sb.append(opCount);
sb.append(' ');
sb.append(opCount == 0 ? length : (length - lastIdx));
return sb.toString();
}
private static boolean isPalindrome(String s, int start, int end){
while(start < end && s.charAt(start) == s.charAt(end)){
start ++;
end --;
}
return (start == end) || (start == end + 1);
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 2921a7bedc0d1f0d67600f145439de25 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.ArrayList;
import java.util.Scanner;
import java.util.Stack;
public class Solution {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t>0) {
int n = sc.nextInt();
ArrayList<Character> a = new ArrayList<>();
String s = sc.next();
for (int i = 0; i < n; i++) {
a.add(s.charAt(i));
}
int charLeft = n;
int ops = 0;
boolean canBeRegular = true;
int start = 0;
int end = 0;
Stack<Character> expression = new Stack<>();
for (int i = 0; i < n; i++) {
if(a.get(i)=='(') {
expression.add('(');
} else {
if(expression.size()==0) {
canBeRegular=false;
} else {
expression.pop();
}
}
end = i;
if(canBeRegular && expression.size()==0) {
charLeft-=end-start+1;
start=end+1;
canBeRegular=true;
expression.clear();
ops++;
} else if(end-start>=1) {
if(isPalin(a, start, end)) {
charLeft-=end-start+1;
start=end+1;
canBeRegular=true;
expression.clear();
ops++;
}
}
}
System.out.println(ops + " " + charLeft);
t--;
}
}
public static boolean isPalin(ArrayList<Character> a, int s, int e) {
for (int i = s; i <= e; i++) {
if(a.get(i)!=a.get(e-(i-s))) {
return false;
}
}
return true;
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 6d517faa98774f03b87f3849bec3947c | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes |
import java.util.*;
import java.io.*;
public class Main {
public static void main (String[] args)throws IOException {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int t=Integer.parseInt(br.readLine());
while(t-->0){
int n=Integer.parseInt(br.readLine());
String h=br.readLine();
char ch[]=h.toCharArray();
Stack<Character> stack=new Stack<>();
int ans=0;
int pointer=-1;
int i;
// int n=h.length();
HashMap<Character,Integer> map=new HashMap<>();
//int ans=0;
for(i=0;i<n;i++){
if(map.containsKey(ch[i])){
if((i-map.get(ch[i]))==1&&(!map.containsKey(reverse(ch[i])))){
pointer=i;
map.clear();
stack.clear();
ans++;
}
else if(map.containsKey(ch[i])&&(i-map.get(ch[i]))!=1){
stack.clear();
map.clear();
pointer=i;
ans++;
}
else{
map.put(ch[i],i);
}
}
else{
map.put(ch[i],i);
}
if(pointer!=i){
if(ch[i]=='('){
stack.push('(');
}
else{
if(!stack.isEmpty()){
stack.pop();
if(stack.isEmpty()){
pointer=i;
stack.clear();
map.clear();
ans++;
}
}
}
}
}
System.out.println(ans+" "+(n-1-pointer));
}
}
public static char reverse(char a){
if(a=='(')
return ')';
return '(';
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | bd0819369fbf69a42d0b3f0eca02e964 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.lang.*;
import java.io.*;
public class Codechef {
/*
* Aim 1: Do 200 DP codeforces problems
* Aim 2: Beat Sparsh in ratings before 2 june.
*
*/
static long fans[] = new long[200001];
static long inv[] = new long[200001];
static long mod = 1000000007;
static void init() {
fans[0] = 1;
inv[0] = 1;
fans[1] = 1;
inv[1] = 1;
for (int i = 2; i < 200001; i++) {
fans[i] = ((long) i * fans[i - 1]) % mod;
inv[i] = power(fans[i], mod - 2);
}
}
static long ncr(int n, int r) {
return (((fans[n] * inv[n - r]) % mod) * (inv[r])) % mod;
}
public static void main(String[] args) throws java.lang.Exception {
FastReader in = new FastReader(System.in);
StringBuilder sb = new StringBuilder();
int t = 1;
t = in.nextInt();
while (t > 0) {
--t;
int n = in.nextInt();
String s = in.next();
int op = 0;
int st = 0;
int fill[] = new int[n];
Arrays.fill(fill, -1);
fillfill(fill,s);
TreeSet<Integer> open = new TreeSet<>();
TreeSet<Integer> close = new TreeSet<>();
for(int i = 0;i<n;i++)
{
if(s.charAt(i) == '(')
open.add(i);
else
close.add(i);
}
while(true) {
int l1 = (fill[st] == -1?0:fill[st]-st+1);
int l2 = longestpall(s,st,n,(s.charAt(st) == '('?open:close));
int max;
if(l1!=0 && l2!=0)
max = Math.min(l1, l2);
else
max = Math.max(l1, l2);
if(max>0) {
++op;
st = st + max;
}
if(max == 0 || st == s.length())
break;
}
int left = s.length() - st;
sb.append(op+" "+left+"\n");
}
System.out.print(sb);
}
static int longestpall(String s, int st,int n,TreeSet<Integer> set)
{
int len = 0;
Integer val = set.higher(st);
while(val!=null)
{
int j = val.intValue();
int i = st;
boolean poss = true;
while(i<j)
{
if(s.charAt(i)!=s.charAt(j)) {
poss = false;
break;
}
++i;
--j;
}
if(poss)
return (val.intValue()-st+1);
val = set.higher(val.intValue());
}
return 0;
}
static void fillfill(int fill[],String s){
Stack<Integer> st = new Stack<>();
for(int i = 0;i<s.length();i++)
{
if(s.charAt(i) == '(')
st.push(i);
else
{
if(st.size()>0)
{
fill[st.pop()] = i;
}
}
}
}
static long power(long x, long y) {
long res = 1; // Initialize result
while (y > 0) {
// If y is odd, multiply x with result
if ((y & 1) != 0)
res = ((res % mod) * (x % mod)) % mod;
// y must be even now
y = y >> 1; // y = y/2
x = ((x % mod) * (x % mod)) % mod; // Change x to x^2
}
return res;
}
static long[] generateArray(FastReader in, int n) throws IOException {
long arr[] = new long[n];
for (int i = 0; i < n; i++)
arr[i] = in.nextLong();
return arr;
}
static long[][] generatematrix(FastReader in, int n, int m) throws IOException {
long arr[][] = new long[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
arr[i][j] = in.nextLong();
}
}
return arr;
}
static long gcd(long a, long b) {
if (a == 0)
return b;
else
return gcd(b % a, a);
}
static long lcm(long a, long b) {
return (a / gcd(a, b)) * b;
}
static void sort(long[] a) {
ArrayList<Long> l = new ArrayList<>();
for (long i : a)
l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++)
a[i] = l.get(i);
}
}
class FastReader {
byte[] buf = new byte[2048];
int index, total;
InputStream in;
FastReader(InputStream is) {
in = is;
}
int scan() throws IOException {
if (index >= total) {
index = 0;
total = in.read(buf);
if (total <= 0) {
return -1;
}
}
return buf[index++];
}
String next() throws IOException {
int c;
for (c = scan(); c <= 32; c = scan())
;
StringBuilder sb = new StringBuilder();
for (; c > 32; c = scan()) {
sb.append((char) c);
}
return sb.toString();
}
String nextLine() throws IOException {
int c;
for (c = scan(); c <= 32; c = scan())
;
StringBuilder sb = new StringBuilder();
for (; c != 10 && c != 13; c = scan()) {
sb.append((char) c);
}
return sb.toString();
}
char nextChar() throws IOException {
int c;
for (c = scan(); c <= 32; c = scan())
;
return (char) c;
}
int nextInt() throws IOException {
int c, val = 0;
for (c = scan(); c <= 32; c = scan())
;
boolean neg = c == '-';
if (c == '-' || c == '+') {
c = scan();
}
for (; c >= '0' && c <= '9'; c = scan()) {
val = (val << 3) + (val << 1) + (c & 15);
}
return neg ? -val : val;
}
long nextLong() throws IOException {
int c;
long val = 0;
for (c = scan(); c <= 32; c = scan())
;
boolean neg = c == '-';
if (c == '-' || c == '+') {
c = scan();
}
for (; c >= '0' && c <= '9'; c = scan()) {
val = (val << 3) + (val << 1) + (c & 15);
}
return neg ? -val : val;
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 3fb4c256ed44290b6c312680c45569f0 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | // package EDURound125;
import java.io.*;
import java.util.*;
public class C { // GOGIGO!!!
public static void main(String[] args) throws IOException {
// all possible prefix to remove :- (( , )) ,)(),() ,))(
// Scanner sc = new Scanner(new FileReader("input.in"));
// PrintWriter pw = new PrintWriter(new FileWriter(""));
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
// int t = 1;
int t = sc.nextInt();
while(t-->0){
int n = sc.nextInt();
char [] a = sc.nextLine().toCharArray();
int i = 0;
int count = 0;
int old=-1;
boolean flag = false;
while(i<a.length){
if(a[i]=='('){
if(i==n-1){
break;
}
i+=2;
}else{ // staring --> )
if(i==n-1){
break;
}
else{
old = i;
i++;
while(a[i]!=')'){
if(i==n-1){
flag=true;
break;
}
i++;
}
i++;
}
if(flag)break;
}
count++;
}
int len = n-i;
if(flag) len = n-old;
pw.println(count+" "+ len);
}
pw.close();
}
// -------------------------------------------------------Basics----------------------------------------------------
//------------------------------------------------------ BINARYSEARCH ------------------------------------------------
// binary search // first occur // last occur
public static int binarySearch(long x, Long [] a){
int i =0;
int j = a.length-1;
int mid ;
while(i<=j){
mid = (i+j)/2;
if(a[mid]<=x){
i=mid+1;
}else{
j=mid-1;
}
}
return i;
}
// ------------------------------------------------------- MATH ----------------------------------------------------
private static int gcd(int a, int b) {
return (b == 0)? a : gcd(b, a % b);
}
private static long gcd(long a, long b) {
return (b == 0)? a : gcd(b, a % b);
}
private static int lcm(int a, int b) {
return (a / gcd(a, b)) * b;
}
private static long lcm(long a, long b) {
return (a / gcd(a, b)) * b;
}
// ------------------------------------------------------ Objects --------------------------------------------------
static class Pair implements Comparable<Pair>{
long x ;
long y ;
Pair(long x , long y){
this.x=x;
this.y=y;
}
@Override
public int compareTo(Pair o) {
if(this.x==o.x)return 0;
if(this.x>o.x)return 1;
return -1;
}
@Override
public String toString() {
return x +" " + y ;
}
}
static class Tuple implements Comparable<Tuple>{
int x;
int y;
int z;
Tuple(int x, int y , int z){
this.x=x;
this.y=y;
this.z=z;
}
@Override
public int compareTo(Tuple o) {
if(this.x==o.x){
if(this.y==o.y)return this.z-o.z;
return this.y-o.y;
}
return this.x-o.x;
}
@Override
public String toString() {
return x +" " + y + " " + z ;
}
}
// -------------------------------------------------------Scanner---------------------------------------------------
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 68a1a665ede402025172552d24497f46 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes |
import java.util.Scanner;
public class cfContest1657 {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int t = scan.nextInt();
StringBuilder sb = new StringBuilder();
while (t-- > 0) {
int n = scan.nextInt();
String s = scan.next();
int k = 0;
int count = 0;
for (int i = 0; i < n; i++) {
if (i + 1 < n && s.charAt(i) == '(' && s.charAt(i + 1) == ')') {
k = i + 1;
++i;
++count;
} else if (i + 1 < n && s.charAt(i) == '(' && s.charAt(i + 1) == '(') {
k = i + 1;
i += 1;
++count;
} else if (i + 1 < n && s.charAt(i) == ')' && s.charAt(i + 1) == ')') {
k = i + 1;
++i;
++count;
} else {
int p = i + 1;
while (p < n && s.charAt(p) == '(') {
++p;
}
if (p < n && s.charAt(p) == ')') {
i = p;
k = p;
++count;
} else {
i = p;
}
}
}
if (count == 0) {
sb.append(count + " " + (n) + "\n");
} else {
sb.append(count + " " + (n - k - 1) + "\n");
}
}
System.out.println(sb);
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 6f8f68af4d3640875684990f47a31934 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.util.*;
import java.math.*;
import java.math.BigInteger;
public final class A
{
static PrintWriter out = new PrintWriter(System.out);
static StringBuilder ans=new StringBuilder();
static FastReader in=new FastReader();
// static int g[][];
static ArrayList<Integer> g[];
static long mod=(long)998244353,INF=Long.MAX_VALUE;
static boolean set[];
static int max=0;
static int lca[][];
static int par[],col[],D[];
static long fact[];
static int size[],N;
static long dp[][],sum[][],f[];
static int seg[];
public static void main(String args[])throws IOException
{
/*
* star,rope,TPST
* BS,LST,MS,MQ
*/
int T=i();
outer:while(T-->0)
{
int N=i();
char X[]=in.next().toCharArray();
int moves=0,left=N;
for(int i=0; i<N-1; i++)
{
if(X[i]==X[i+1])
{
moves++;
left-=2;
i++;
}
else if(X[i]=='(')
{
moves++;
left-=2;
i++;
}
else
{
boolean f=false;
for(int j=i+1; j<N; j++)
{
if(X[j]==')')
{
moves++;
left-=(j-i+1);
i=j;
f=true;
break;
}
}
if(!f)break;
// break;
}
}
ans.append(moves+" "+left+"\n");
}
out.print(ans);
out.close();
}
static int [] prefix(char s[],int N) {
// int n = (int)s.length();
// vector<int> pi(n);
N=s.length;
int pi[]=new int[N];
for (int i = 1; i < N; i++) {
int j = pi[i-1];
while (j > 0 && s[i] != s[j])
j = pi[j-1];
if (s[i] == s[j])
j++;
pi[i] = j;
}
return pi;
}
static int count(long N)
{
int cnt=0;
long p=1L;
while(p<=N)
{
if((p&N)!=0)cnt++;
p<<=1;
}
return cnt;
}
static long kadane(long A[])
{
long lsum=A[0],gsum=0;
gsum=Math.max(gsum, lsum);
for(int i=1; i<A.length; i++)
{
lsum=Math.max(lsum+A[i],A[i]);
gsum=Math.max(gsum,lsum);
}
return gsum;
}
public static boolean pal(int i)
{
StringBuilder sb=new StringBuilder();
StringBuilder rev=new StringBuilder();
int p=1;
while(p<=i)
{
if((i&p)!=0)
{
sb.append("1");
}
else sb.append("0");
p<<=1;
}
rev=new StringBuilder(sb.toString());
rev.reverse();
if(i==8)System.out.println(sb+" "+rev);
return (sb.toString()).equals(rev.toString());
}
public static void reverse(int i,int j,int A[])
{
while(i<j)
{
int t=A[i];
A[i]=A[j];
A[j]=t;
i++;
j--;
}
}
public static int ask(int a,int b,int c)
{
System.out.println("? "+a+" "+b+" "+c);
return i();
}
static int[] reverse(int A[],int N)
{
int B[]=new int[N];
for(int i=N-1; i>=0; i--)
{
B[N-i-1]=A[i];
}
return B;
}
static boolean isPalin(char X[])
{
int i=0,j=X.length-1;
while(i<=j)
{
if(X[i]!=X[j])return false;
i++;
j--;
}
return true;
}
static int distance(int a,int b)
{
int d=D[a]+D[b];
int l=LCA(a,b);
l=2*D[l];
return d-l;
}
static int LCA(int a,int b)
{
if(D[a]<D[b])
{
int t=a;
a=b;
b=t;
}
int d=D[a]-D[b];
int p=1;
for(int i=0; i>=0 && p<=d; i++)
{
if((p&d)!=0)
{
a=lca[a][i];
}
p<<=1;
}
if(a==b)return a;
for(int i=max-1; i>=0; i--)
{
if(lca[a][i]!=-1 && lca[a][i]!=lca[b][i])
{
a=lca[a][i];
b=lca[b][i];
}
}
return lca[a][0];
}
static void dfs(int n,int p)
{
lca[n][0]=p;
if(p!=-1)D[n]=D[p]+1;
for(int c:g[n])
{
if(c!=p)
{
dfs(c,n);
}
}
}
static int[] prefix_function(char X[])//returns pi(i) array
{
int N=X.length;
int pre[]=new int[N];
for(int i=1; i<N; i++)
{
int j=pre[i-1];
while(j>0 && X[i]!=X[j])
j=pre[j-1];
if(X[i]==X[j])j++;
pre[i]=j;
}
return pre;
}
static TreeNode start;
public static void f(TreeNode root,TreeNode p,int r)
{
if(root==null)return;
if(p!=null)
{
root.par=p;
}
if(root.val==r)start=root;
f(root.left,root,r);
f(root.right,root,r);
}
static int right(int A[],int Limit,int l,int r)
{
while(r-l>1)
{
int m=(l+r)/2;
if(A[m]<Limit)l=m;
else r=m;
}
return l;
}
static int left(int A[],int a,int l,int r)
{
while(r-l>1)
{
int m=(l+r)/2;
if(A[m]<a)l=m;
else r=m;
}
return l;
}
static void build(int v,int tl,int tr,int A[])
{
if(tl==tr)
{
seg[v]=A[tl];
return;
}
int tm=(tl+tr)/2;
build(v*2,tl,tm,A);
build(v*2+1,tm+1,tr,A);
seg[v]=seg[v*2]+seg[v*2+1];
}
static void update(int v,int tl,int tr,int index)
{
if(index==tl && index==tr)
{
seg[v]--;
}
else
{
int tm=(tl+tr)/2;
if(index<=tm)update(v*2,tl,tm,index);
else update(v*2+1,tm+1,tr,index);
seg[v]=seg[v*2]+seg[v*2+1];
}
}
static int ask(int v,int tl,int tr,int l,int r)
{
if(l>r)return 0;
if(tl==l && r==tr)
{
return seg[v];
}
int tm=(tl+tr)/2;
return ask(v*2,tl,tm,l,Math.min(tm, r))+ask(v*2+1,tm+1,tr,Math.max(tm+1, l),r);
}
static boolean f(long A[],long m,int N)
{
long B[]=new long[N];
for(int i=0; i<N; i++)
{
B[i]=A[i];
}
for(int i=N-1; i>=0; i--)
{
if(B[i]<m)return false;
if(i>=2)
{
long extra=Math.min(B[i]-m, A[i]);
long x=extra/3L;
B[i-2]+=2L*x;
B[i-1]+=x;
}
}
return true;
}
static int f(int l,int r,long A[],long x)
{
while(r-l>1)
{
int m=(l+r)/2;
if(A[m]>=x)l=m;
else r=m;
}
return r;
}
static boolean f(long m,long H,long A[],int N)
{
long s=m;
for(int i=0; i<N-1;i++)
{
s+=Math.min(m, A[i+1]-A[i]);
}
return s>=H;
}
static long ask(long l,long r)
{
System.out.println("? "+l+" "+r);
return l();
}
static long f(long N,long M)
{
long s=0;
if(N%3==0)
{
N/=3;
s=N*M;
}
else
{
long b=N%3;
N/=3;
N++;
s=N*M;
N--;
long a=N*M;
if(M%3==0)
{
M/=3;
a+=(b*M);
}
else
{
M/=3;
M++;
a+=(b*M);
}
s=Math.min(s, a);
}
return s;
}
static int ask(StringBuilder sb,int a)
{
System.out.println(sb+""+a);
return i();
}
static void swap(char X[],int i,int j)
{
char x=X[i];
X[i]=X[j];
X[j]=x;
}
static int min(int a,int b,int c)
{
return Math.min(Math.min(a, b), c);
}
static long and(int i,int j)
{
System.out.println("and "+i+" "+j);
return l();
}
static long or(int i,int j)
{
System.out.println("or "+i+" "+j);
return l();
}
static int len=0,number=0;
static void f(char X[],int i,int num,int l)
{
if(i==X.length)
{
if(num==0)return;
//update our num
if(isPrime(num))return;
if(l<len)
{
len=l;
number=num;
}
return;
}
int a=X[i]-'0';
f(X,i+1,num*10+a,l+1);
f(X,i+1,num,l);
}
static boolean is_Sorted(int A[])
{
int N=A.length;
for(int i=1; i<=N; i++)if(A[i-1]!=i)return false;
return true;
}
static boolean f(StringBuilder sb,String Y,String order)
{
StringBuilder res=new StringBuilder(sb.toString());
HashSet<Character> set=new HashSet<>();
for(char ch:order.toCharArray())
{
set.add(ch);
for(int i=0; i<sb.length(); i++)
{
char x=sb.charAt(i);
if(set.contains(x))continue;
res.append(x);
}
}
String str=res.toString();
return str.equals(Y);
}
static boolean all_Zero(int f[])
{
for(int a:f)if(a!=0)return false;
return true;
}
static long form(int a,int l)
{
long x=0;
while(l-->0)
{
x*=10;
x+=a;
}
return x;
}
static int count(String X)
{
HashSet<Integer> set=new HashSet<>();
for(char x:X.toCharArray())set.add(x-'0');
return set.size();
}
static int f(long K)
{
long l=0,r=K;
while(r-l>1)
{
long m=(l+r)/2;
if(m*m<K)l=m;
else r=m;
}
return (int)l;
}
// static void build(int v,int tl,int tr,long A[])
// {
// if(tl==tr)
// {
// seg[v]=A[tl];
// }
// else
// {
// int tm=(tl+tr)/2;
// build(v*2,tl,tm,A);
// build(v*2+1,tm+1,tr,A);
// seg[v]=Math.min(seg[v*2], seg[v*2+1]);
// }
// }
static int [] sub(int A[],int B[])
{
int N=A.length;
int f[]=new int[N];
for(int i=N-1; i>=0; i--)
{
if(B[i]<A[i])
{
B[i]+=26;
B[i-1]-=1;
}
f[i]=B[i]-A[i];
}
for(int i=0; i<N; i++)
{
if(f[i]%2!=0)f[i+1]+=26;
f[i]/=2;
}
return f;
}
static int[] f(int N)
{
char X[]=in.next().toCharArray();
int A[]=new int[N];
for(int i=0; i<N; i++)A[i]=X[i]-'a';
return A;
}
static int max(int a ,int b,int c,int d)
{
a=Math.max(a, b);
c=Math.max(c,d);
return Math.max(a, c);
}
static int min(int a ,int b,int c,int d)
{
a=Math.min(a, b);
c=Math.min(c,d);
return Math.min(a, c);
}
static HashMap<Integer,Integer> Hash(int A[])
{
HashMap<Integer,Integer> mp=new HashMap<>();
for(int a:A)
{
int f=mp.getOrDefault(a,0)+1;
mp.put(a, f);
}
return mp;
}
static long mul(long a, long b)
{
return ( a %mod * 1L * b%mod )%mod;
}
static void swap(int A[],int a,int b)
{
int t=A[a];
A[a]=A[b];
A[b]=t;
}
static int find(int a)
{
if(par[a]<0)return a;
return par[a]=find(par[a]);
}
static void union(int a,int b)
{
a=find(a);
b=find(b);
if(a!=b)
{
if(par[a]>par[b]) //this means size of a is less than that of b
{
int t=b;
b=a;
a=t;
}
par[a]+=par[b];
par[b]=a;
}
}
static boolean isSorted(int A[])
{
for(int i=1; i<A.length; i++)
{
if(A[i]<A[i-1])return false;
}
return true;
}
static boolean isDivisible(StringBuilder X,int i,long num)
{
long r=0;
for(; i<X.length(); i++)
{
r=r*10+(X.charAt(i)-'0');
r=r%num;
}
return r==0;
}
static int lower_Bound(int A[],int low,int high, int x)
{
if (low > high)
if (x >= A[high])
return A[high];
int mid = (low + high) / 2;
if (A[mid] == x)
return A[mid];
if (mid > 0 && A[mid - 1] <= x && x < A[mid])
return A[mid - 1];
if (x < A[mid])
return lower_Bound( A, low, mid - 1, x);
return lower_Bound(A, mid + 1, high, x);
}
static String f(String A)
{
String X="";
for(int i=A.length()-1; i>=0; i--)
{
int c=A.charAt(i)-'0';
X+=(c+1)%2;
}
return X;
}
static void sort(long[] a) //check for long
{
ArrayList<Long> l=new ArrayList<>();
for (long i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static String swap(String X,int i,int j)
{
char ch[]=X.toCharArray();
char a=ch[i];
ch[i]=ch[j];
ch[j]=a;
return new String(ch);
}
static int sD(long n)
{
if (n % 2 == 0 )
return 2;
for (int i = 3; i * i <= n; i += 2) {
if (n % i == 0 )
return i;
}
return (int)n;
}
// static void setGraph(int N,int nodes)
// {
//// size=new int[N+1];
// par=new int[N+1];
// col=new int[N+1];
//// g=new int[N+1][];
// D=new int[N+1];
// int deg[]=new int[N+1];
// int A[][]=new int[nodes][2];
// for(int i=0; i<nodes; i++)
// {
// int a=i(),b=i();
// A[i][0]=a;
// A[i][1]=b;
// deg[a]++;
// deg[b]++;
// }
// for(int i=0; i<=N; i++)
// {
// g[i]=new int[deg[i]];
// deg[i]=0;
// }
// for(int a[]:A)
// {
// int x=a[0],y=a[1];
// g[x][deg[x]++]=y;
// g[y][deg[y]++]=x;
// }
// }
static long pow(long a,long b)
{
//long mod=1000000007;
long pow=1;
long x=a;
while(b!=0)
{
if((b&1)!=0)pow=(pow*x)%mod;
x=(x*x)%mod;
b/=2;
}
return pow;
}
static long toggleBits(long x)//one's complement || Toggle bits
{
int n=(int)(Math.floor(Math.log(x)/Math.log(2)))+1;
return ((1<<n)-1)^x;
}
static int countBits(long a)
{
return (int)(Math.log(a)/Math.log(2)+1);
}
static long fact(long N)
{
long n=2;
if(N<=1)return 1;
else
{
for(int i=3; i<=N; i++)n=(n*i)%mod;
}
return n;
}
static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static boolean isPrime(long N)
{
if (N<=1) return false;
if (N<=3) return true;
if (N%2 == 0 || N%3 == 0) return false;
for (int i=5; i*i<=N; i=i+6)
if (N%i == 0 || N%(i+2) == 0)
return false;
return true;
}
static void print(char A[])
{
for(char c:A)System.out.print(c+" ");
System.out.println();
}
static void print(boolean A[])
{
for(boolean c:A)System.out.print(c+" ");
System.out.println();
}
static void print(int A[])
{
for(int a:A)System.out.print(a+" ");
System.out.println();
}
static void print(long A[])
{
for(long i:A)System.out.print(i+ " ");
System.out.println();
}
static void print(boolean A[][])
{
for(boolean a[]:A)print(a);
}
static void print(long A[][])
{
for(long a[]:A)print(a);
}
static void print(int A[][])
{
for(int a[]:A)print(a);
}
static void print(ArrayList<Integer> A)
{
for(int a:A)System.out.print(a+" ");
System.out.println();
}
static int i()
{
return in.nextInt();
}
static long l()
{
return in.nextLong();
}
static int[] input(int N){
int A[]=new int[N];
for(int i=0; i<N; i++)
{
A[i]=in.nextInt();
}
return A;
}
static long[] inputLong(int N) {
long A[]=new long[N];
for(int i=0; i<A.length; i++)A[i]=in.nextLong();
return A;
}
static long GCD(long a,long b)
{
if(b==0)
{
return a;
}
else return GCD(b,a%b );
}
}
class segNode
{
long pref,suff,sum,max;
segNode(long a,long b,long c,long d)
{
pref=a;
suff=b;
sum=c;
max=d;
}
}
//class TreeNode
//{
// int cnt,index;
// TreeNode left,right;
// TreeNode(int c)
// {
// cnt=c;
// index=-1;
// }
// TreeNode(int c,int index)
// {
// cnt=c;
// this.index=index;
// }
//}
class role
{
String skill;
int level;
role(String s,int l)
{
skill=s;
level=l;
}
}
class project implements Comparable<project>
{
int score,index;
project(int s,int i)
{
// roles=r;
index=i;
score=s;
// skill=new String[r];
// lvl=new int[r];
}
public int compareTo(project x)
{
return x.score-this.score;
}
}
class post implements Comparable<post>
{
long x,y,d,t;
post(long a,long b,long c)
{
x=a;
y=b;
d=c;
}
public int compareTo(post X)
{
if(X.t==this.t)
{
return 0;
}
else
{
long xt=this.t-X.t;
if(xt>0)return 1;
return -1;
}
}
}
class TreeNode
{
int val;
TreeNode left, right,par;
TreeNode() {}
TreeNode(int item)
{
val = item;
left =null;
right = null;
par=null;
}
}
class edge
{
int a,wt;
edge(int a,int w)
{
this.a=a;
wt=w;
}
}
class pair3 implements Comparable<pair3>
{
long a;
int index;
pair3(long x,int i)
{
a=x;
index=i;
}
public int compareTo(pair3 x)
{
if(this.a>x.a)return 1;
if(this.a<x.a)return -1;
return 0;
// return this.index-x.index;
}
}
//Code For FastReader
//Code For FastReader
//Code For FastReader
//Code For FastReader
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br=new BufferedReader(new InputStreamReader(System.in));
}
String next()
{
while(st==null || !st.hasMoreElements())
{
try
{
st=new StringTokenizer(br.readLine());
}
catch(IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str="";
try
{
str=br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 92a56bac44cd2c79cf98591986d26c7c | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.Stack;
import java.util.Vector;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Ashutosh Patel ([email protected]) Linkedin : ( https://www.linkedin.com/in/ashutosh-patel-7954651ab/ )
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
CBracketSequenceDeletion solver = new CBracketSequenceDeletion();
int testCount = Integer.parseInt(in.next());
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
static class CBracketSequenceDeletion {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.readInt();
String s = in.readLine();
int i = 0, j = 0;
Stack<Character> st = new Stack<>();
int op = 0;
while (i < n && j < n) {
if (s.charAt(j) == '(') {
st.push(s.charAt(j));
} else {
if (!st.isEmpty())
st.pop();
else st.push(s.charAt(j));
}
if (j - i >= 1 && (isPalindrome(s, i, j) || st.isEmpty())) {
i = j + 1;
j = i;
op++;
st.clear();
continue;
}
j++;
}
out.printLine(op + " " + (n - i));
}
private boolean isPalindrome(String s, int i, int j) {
while (i <= j) {
if (s.charAt(i) != s.charAt(j)) return false;
i++;
j--;
}
return true;
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
static class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
if (Character.isValidCodePoint(c)) {
res.appendCodePoint(c);
}
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
private String readLine0() {
StringBuilder buf = new StringBuilder();
int c = read();
while (c != '\n' && c != -1) {
if (c != '\r') {
buf.appendCodePoint(c);
}
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0) {
s = readLine0();
}
return s;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
boolean isSpaceChar(int ch);
}
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | df53940b1aa02d887e69a78846c6cb83 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class Main
{
public static boolean check(char a[], int left, int right)
{
while (left < right) {
if (a[left] != a[right]) {
return false;
}
left++;
right--;
}
return true;
}
public static void main(String args[]) throws java.lang.Exception
{
FastScanner input = new FastScanner();
int tc = input.nextInt();
work:
while (tc-- > 0) {
int n = input.nextInt();
String s = input.next();
char a[] = s.toCharArray();
int operation = 0;
int remaining = 0;
for (int i = 0; i < n; i++) {
if (a[i] == '('&&i+1<n) {
i++;
operation++;
remaining = i + 1;
} else if (a[i] == ')') {
int j = i+1;
boolean find = false;
while (j < n) {
if(a[j]==')'&&check(a, i, j))
{
find = true;
operation++;
remaining = j+1;
i = j;
break;
}
else
j++;
}
if(!find)
{
System.out.println(operation+" "+(s.substring(remaining).length()));
continue work;
}
}
else
{
remaining = i;
break;
}
}
System.out.println(operation+" "+(s.substring(remaining).length()));
}
}
static class FastScanner
{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next()
{
while (!st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine() throws IOException
{
return br.readLine();
}
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | a7b3db48ecc9c40b6d5df089f2808f97 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.Scanner;
import java.util.Stack;
public class C {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
char[] s = sc.next().toCharArray();
char ptr1;
int cnt = 0;
int rem = 0;
for (int i = 0; i < n; i++) {
ptr1 = s[i];
if (ptr1 == '(') {
if (i == n - 1) {
rem = 1;
break;
}
cnt++;
i++;
}
else {
int j = i + 1;
while (j < n && s[j] == '(') j++;
if (j == n) {
rem = n - i;
break;
}
else {
cnt++;
i = j;
}
}
}
System.out.println(cnt+" "+rem);
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | baed42da34e426a7236a6f878e03ae6c | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | //package com.company.codeforces;
import java.io.*;
import java.util.*;
public class BracketSequenceDeletion {
public static void main(String[] args) throws IOException {
InputStream inputStream = System.in;
InputReader in = new InputReader(inputStream);
BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out));
int t = in.nextInt();
while (t-- != 0) {
int n = in.nextInt();
String str = in.next();
int idx = 0;
int count = 0;
boolean shouldContiue = true;
while (idx < n - 1 && shouldContiue) {
shouldContiue = false;
if (str.charAt(idx) == '(') {
idx += 2;
count++;
shouldContiue = true;
} else {
int r = idx;
while (r < n - 1) {
r++;
if (str.charAt(r) == ')') {
r++;
idx = r;
count++;
shouldContiue = true;
break;
}
}
}
}
out.write(count + " " + (n - idx));
out.newLine();
}
out.close();
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public int[] readArray(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++)
arr[i] = nextInt();
return arr;
}
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 8e1320b548b03d7b90cba4a3b77d7e1f | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.math.*;
import java.util.*;
public class Main {
static final int INF = 0x3f3f3f3f;
static final long LNF = 0x3f3f3f3f3f3f3f3fL;
public static void main(String[] args) throws IOException {
initReader();
int t=nextInt();
while (t--!=0){
int n=nextInt();
String s=next();
int l=0,cnt=0;
while (l+1<n){
if(s.charAt(l)=='('){
l+=2;
}else {
int id=l+1;
while (id<n&&s.charAt(id)!=')')id++;
if(id==n)break;
l=id+1;
}
cnt++;
}
pw.println(cnt+" "+(n-l));
}
pw.close();
}
/***************************************************************************************/
static BufferedReader reader;
static StringTokenizer tokenizer;
static PrintWriter pw;
public static void initReader() throws IOException {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = new StringTokenizer("");
pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
// 从文件读写
// reader = new BufferedReader(new FileReader("test.in"));
// tokenizer = new StringTokenizer("");
// pw = new PrintWriter(new BufferedWriter(new FileWriter("test1.out")));
}
public static boolean hasNext() {
try {
while (!tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
} catch (Exception e) {
return false;
}
return true;
}
public static String next() throws IOException {
while (!tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
public static String nextLine() {
try {
return reader.readLine();
} catch (Exception e) {
return null;
}
}
public static int nextInt() throws IOException {
return Integer.parseInt(next());
}
public static long nextLong() throws IOException {
return Long.parseLong(next());
}
public static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static char nextChar() throws IOException {
return next().charAt(0);
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 82529e8d1c1adf54893707157980c34a | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
import java.io.*;
import java.math.*;
public class Main {
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) throws Exception {
FastScanner sc=new FastScanner();
int t=sc.nextInt();
while(t-->0){
int n=sc.nextInt();
String str=sc.nextLine();
fun(str.toCharArray());
}
}
public static void fun(char[] arr){
if(arr.length==1){
System.out.println(0+" "+1);
return;
}
long a=0,b=0;
StringBuilder sb=new StringBuilder();
int i=0;
while(i<arr.length){
sb.append(arr[i]);
if(i+1<arr.length)
sb.append(arr[i+1]);
if(sb.toString().equals("()")||sb.toString().equals("((")||sb.toString().equals("))")){
b+=2;
a++;
i+=2;
sb=new StringBuilder();
}else{
i+=2;
while(sb.length()>1&& i<arr.length && arr[i]=='('){
sb.append(arr[i]);
i++;
}if(i<arr.length && arr[i]==')') {
a++;
b += sb.length()+1;
sb=new StringBuilder();
}
i++;
}
}
System.out.println(a+" "+(arr.length-b));
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | fa22156ff3f41896abd2a4f2507386aa | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.io.*;
import java.util.*;
public class BracketSequenceDeletion {
public static PrintWriter out;
public static void main(String[] args)throws IOException{
Scanner sc=new Scanner();
out=new PrintWriter(System.out);
int t=sc.nextInt();
while(t-->0) {
int n=sc.nextInt();
String s=sc.next();
int ans=0;
int i=0;
int j=1;
while(i<n&&j<n) {
if(s.charAt(i) == ')' && s.charAt(j)=='('){
j++;
}else {
i=j+1;
j+=2;
ans++;
}
}
out.println(ans+" "+(n-i));
}
out.close();
}
public static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
| Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | 2ae455e3232aef11c1404379fd452cc1 | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes | import java.util.*;
public class HelloWorld {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
StringBuilder sb = new StringBuilder();
int t = in.nextInt();
while(t-->0) {
// )(()
// )(()
int n = in.nextInt();
String s = in.next();
char[] arr = s.toCharArray();
if(arr.length==1) {
sb.append("0 1\n");
continue;
}
int count = 0;
Stack<Character> stack = new Stack<Character>();
StringBuilder st = new StringBuilder();
push(stack, arr[0]);
push(stack, arr[1]);
st.append(arr[0]);
st.append(arr[1]);
if(stack.size()==0 || isPalin(st)) {
stack.clear();
st.setLength(0);
count++;
}
for(int i=2; i<n; i++) {
push(stack, arr[i]);
st.append(arr[i]);
if(stack.size()==0 || isPalin(st)) {
stack.clear();
st.setLength(0);
count++;
}
}
sb.append(count);
sb.append(" ");
sb.append(st.length());
sb.append("\n");
}
System.out.println(sb);
}
private static void push(Stack<Character> stack, char c) {
if(c==')' && stack.size()!=0 && stack.peek()=='(')
stack.pop();
else
stack.push(c);
}
private static boolean isPalin(StringBuilder st) {
if(st.length()<2)
return false;
boolean result = false;
if(st.charAt(0)!=st.charAt(st.length()-1))
return false;
String s1 = st.toString();
String s2 = st.reverse().toString();
st.reverse();
result = s1.equals(s2);
return result;
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output | |
PASSED | ba84a647869e4cea6a677ec1e84c311d | train_110.jsonl | 1647960300 | You are given a bracket sequence consisting of $$$n$$$ characters '(' and/or )'. You perform several operations with it.During one operation, you choose the shortest prefix of this string (some amount of first characters of the string) that is good and remove it from the string.The prefix is considered good if one of the following two conditions is satisfied: this prefix is a regular bracket sequence; this prefix is a palindrome of length at least two. A bracket sequence is called regular if it is possible to obtain a correct arithmetic expression by inserting characters '+' and '1' into this sequence. For example, sequences (())(), () and (()(())) are regular, while )(, (() and (()))( are not.The bracket sequence is called palindrome if it reads the same back and forth. For example, the bracket sequences )), (( and )(() are palindromes, while bracket sequences (), )( and ))( are not palindromes.You stop performing the operations when it's not possible to find a good prefix. Your task is to find the number of operations you will perform on the given string and the number of remaining characters in the string.You have to answer $$$t$$$ independent test cases. | 256 megabytes |
import java.util.*;
import java.io.*;
public class main
{
public static void main (String[] args) throws java.lang.Exception
{
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0){
int n=sc.nextInt();
String st=sc.next();
int l=0;
int cost=0;
while(l+1<n){
if(st.charAt(l)=='(' || st.charAt(l)==')' && st.charAt(l+1)==')'){
l+=2;
}else{
int r=l+1;
while(r<n && st.charAt(r)!=')') r++;
if(r==n) break;
l=r+1;
}
cost++;
}
System.out.print(cost+" ");
System.out.println(n-l);
}
}
} | Java | ["5\n2\n()\n3\n())\n4\n((((\n5\n)((()\n6\n)((()("] | 2 seconds | ["1 0\n1 1\n2 0\n1 0\n1 1"] | null | Java 8 | standard input | [
"greedy",
"implementation"
] | af3f3329e249c0a4fa14476626e9c97c | The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The next $$$2t$$$ lines describe test cases. The first line of the test case contains one integer $$$n$$$ ($$$1 \le n \le 5 \cdot 10^5$$$) — the length of the bracket sequence. The second line of the test case contains $$$n$$$ characters '(' and/or ')' — the bracket sequence itself. It is guaranteed that the sum of $$$n$$$ over all test cases do not exceed $$$5 \cdot 10^5$$$ ($$$\sum n \le 5 \cdot 10^5$$$). | 1,200 | For each test case, print two integers $$$c$$$ and $$$r$$$ — the number of operations you will perform on the given bracket sequence and the number of characters that remain in the string after performing all operations. | standard output |
Subsets and Splits