exec_outcome
stringclasses
1 value
code_uid
stringlengths
32
32
file_name
stringclasses
111 values
prob_desc_created_at
stringlengths
10
10
prob_desc_description
stringlengths
63
3.8k
prob_desc_memory_limit
stringclasses
18 values
source_code
stringlengths
117
65.5k
lang_cluster
stringclasses
1 value
prob_desc_sample_inputs
stringlengths
2
802
prob_desc_time_limit
stringclasses
27 values
prob_desc_sample_outputs
stringlengths
2
796
prob_desc_notes
stringlengths
4
3k
lang
stringclasses
5 values
prob_desc_input_from
stringclasses
3 values
tags
sequencelengths
0
11
src_uid
stringlengths
32
32
prob_desc_input_spec
stringlengths
28
2.37k
difficulty
int64
-1
3.5k
prob_desc_output_spec
stringlengths
17
1.47k
prob_desc_output_to
stringclasses
3 values
hidden_unit_tests
stringclasses
1 value
PASSED
995070557f5415187bca99c4a6215a0d
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.*; import java.io.*; public class lab_1 { public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); for(int i = 0 ;i< t;i++) { int x = sc.nextInt(); int y = sc.nextInt(); int x2 = x; int y2 = y; boolean flag = false; int counter = 0; double euc = Math.sqrt(Math.pow(0 - x, 2) + Math.pow(0 - y, 2)); if(0 == x && 0 == y) { counter = 0; } else if(euc % 1 == 0) { counter = 1; } else { for(int a = 0; a<=x;a++) { for(int b = 0; b<=y ;b++) { euc = Math.sqrt(Math.pow(a- x2, 2) + Math.pow(b- y2, 2)); if(euc % 1 ==0) { x2 = a; y2 = b; a = 0; b= 0; counter++; } double euc2 = Math.sqrt(Math.pow(0- x2, 2) + Math.pow(0- y2, 2)); if(euc2 % 1 == 0) { counter++; flag = true; break; } } if(flag == true) { break; } } } System.out.println(counter); } } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public boolean ready() throws IOException { return br.ready(); } public int[] readArr(int n) throws IOException { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = Integer.parseInt(next()); } return arr; } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
2faee42095b2baa74d98d1c89a28612f
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Main{ public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[]data; int t, x, y; t = Integer.valueOf(br.readLine()); while((t--)!=0){ data = br.readLine().split(" "); x = Integer.parseInt(data[0]); y = Integer.parseInt(data[1]); if(x==0 && y == 0){ System.out.println(0);; }else{ int hip = (int)Math.sqrt(x*x + y*y); System.out.println(hip * hip != x*x + y*y ? 2 : 1); } } } private static int solve(int x0, int y0, int x, int y) { if(x0 == x && y0 == y){ return 0; } for(int i = y; i >= y0 ; --i){ for(int j = x ; j >= x0 ; --j){ int sqrHip =(i-y0)*(i-y0) + (j - x0)*(j-x0) ; int hip = (int)Math.sqrt( sqrHip); if( hip*hip == sqrHip){ int sub = solve(j, i, x, y); if(sub >= 0){ return sub + 1; } } } } return Integer.MIN_VALUE; } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
01678bc724095a1eb45434fa7ba32644
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Main{ public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[]data; int t, x, y; t = Integer.valueOf(br.readLine()); while((t--)!=0){ data = br.readLine().split(" "); x = Integer.parseInt(data[0]); y = Integer.parseInt(data[1]); System.out.println(solve(0,0, x, y)); } } private static int solve(int x0, int y0, int x, int y) { if(x0 == x && y0 == y){ return 0; } for(int i = y; i >= y0 ; --i){ for(int j = x ; j >= x0 ; --j){ int sqrHip =(i-y0)*(i-y0) + (j - x0)*(j-x0) ; int hip = (int)Math.sqrt( sqrHip); if( hip*hip == sqrHip){ int sub = solve(j, i, x, y); if(sub >= 0){ return sub + 1; } } } } return Integer.MIN_VALUE; } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
0b6373e1dcfb2d2f510801857c243e58
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.*; import java.io.*; import java.lang.*; public class quetion1template { static class FastWriter { private final BufferedWriter bw; public FastWriter() { this.bw = new BufferedWriter(new OutputStreamWriter(System.out)); } public void print(Object object) throws IOException { bw.append("" + object); } public void println(Object object) throws IOException { print(object); bw.append("\n"); } public void close() throws IOException { bw.close(); } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine().trim(); } catch (Exception e) { e.printStackTrace(); } return str; } } public static void main(String[] args) { try { FastReader sc = new FastReader(); FastWriter out = new FastWriter(); int testCases = sc.nextInt(); while (testCases-- > 0) { int x=sc.nextInt(); int y=sc.nextInt(); int ans=0; if(x==0 && y==0) { ans=0; } else if(isPerfect(x,y)) { ans=1; } else { ans=2; } out.println(ans); } out.close(); } catch (Exception e) { return; } } private static boolean isPerfect(int x, int y) { // TODO Auto-generated method stub int real=x*x+y*y; int a=(int)Math.sqrt(x*x+y*y); return a*a==real; } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
d446e2af5a028bf005e356fdc74788a1
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.Scanner; public class Contest1657 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int test = sc.nextInt(); for (int t = 0; t < test; t++){ int x = sc.nextInt(); int y = sc.nextInt(); if (x == 0 && y == 0){ System.out.println(0); } else { System.out.println(check(x, y)); } } } static int check(int x, int y){ int z = x*x + y*y; for(int n = 0; n*n <= x*x + y*y; n++){ if (n*n == z){ return 1; } } return 2; } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
caa42f357eda549d8c50dc1b5ccb9a72
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class test { static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) {} return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } } public static void main(String[] args) { FastScanner t=new FastScanner(); int line=t.nextInt(); while(line>0) { int x=t.nextInt(); int y=t.nextInt(); double ans=Math.sqrt(Math.pow(x-0,2)+Math.pow(y-0,2)); if(x==0 && y==0) System.out.println(0); else if (ans==(int)ans) System.out.println(1); else System.out.println(2); line--; } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
9a57f96abc0069ae9fd428b90874be09
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.io.*; import java.util.StringTokenizer; public class P1657A_B { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } String nextToken() throws IOException { while (st == null || !st.hasMoreElements()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextLine() throws IOException { return br.readLine(); } } public static void main(String[] args) throws IOException { PrintWriter writer = new PrintWriter(System.out); testableMain(new FastReader(System.in), writer); writer.flush(); } static void testableMain(InputStream is, OutputStream os) throws IOException { PrintWriter writer = new PrintWriter(os); testableMain(new FastReader(is), writer); writer.flush(); } static void testableMain(FastReader reader, PrintWriter writer) throws IOException { int numCases = reader.nextInt(); for(int i = 0; i < numCases; i++) { int a = reader.nextInt(); int b = reader.nextInt(); int answer = solve(a, b); writer.println(answer); } } static int solve(int a, int b) { int d2 = a * a + b * b; if (d2 == 0) { return 0; } int sq = 1; int i = 0; do { sq = i * i; if (sq == d2) { return 1; } i += 1; } while(sq < d2); return 2; } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
763e6406f2053fec5f3ebf23d991a4cc
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.io.*; import java.util.*; public class P1657A { static class TestCase { int x; int y; TestCase(int x, int y) { this.x = x; this.y = y; } } private List<String> stdInputRaw = new ArrayList<>(10000); // Input as-is. private int currentLineNumber = 0; private List<String> stdOutput = new ArrayList<>(10000); private TestCase testCase; private int testCaseNumber; boolean getNextTestCase() { if (testCase == null) { testCaseNumber = Integer.parseInt(getNextLine()); } if (testCaseNumber == 0) { return false; } testCaseNumber--; int[] input = new int[2]; InputParsers.readWholeNumbers(getNextLine(), input); testCase = new TestCase(input[0], input[1]); return true; } void processTestCase() { int x = testCase.x; int y = testCase.y; if (x == 0 && y == 0) { addToOutput("0\n"); return; } int d = x * x + y * y; int sq = (int) Math.sqrt(d); if (d == sq * sq) { addToOutput("1\n"); return; } addToOutput("2\n"); } void solveAll() { while(getNextTestCase()) { processTestCase(); } } void testableMain(InputStream is, OutputStream os) { readInput(is); solveAll(); writeOutput(os); } public static void main(String[] args) { new P1657A().testableMain(System.in, System.out); } String getNextLine() { return cleanupLine(getNextLineRaw()); } String getNextLineRaw() { String nextLine = ""; if (currentLineNumber < stdInputRaw.size()) { nextLine = stdInputRaw.get(currentLineNumber++); } return nextLine; } void addToOutput(String s) { stdOutput.add(s); } void readInput(InputStream is) { BufferedReader stdin = new BufferedReader(new InputStreamReader(is)); try { while (stdin.ready()) { String line = stdin.readLine(); stdInputRaw.add(line); } } catch(IOException e) { // nothing we can do... } } private String cleanupLine(String s) { if (s.isEmpty()) { return s; } boolean shouldCleanup = false; int l = s.length(); if (s.charAt(0) == ' ' || s.charAt(l - 1) == ' ') { shouldCleanup = true; } if (!shouldCleanup) { // check for double space for(int i = 1; i < l; i++) { if (s.charAt(i) == ' ' && s.charAt(i - 1) == ' ') { shouldCleanup = true; break; } } } if (!shouldCleanup) { return s; } StringBuilder sb = new StringBuilder(l); boolean previousSpace = true; for(int i = 0; i < l; i++) { if (s.charAt(i) != ' ') { sb.append(s.charAt(i)); previousSpace = false; } else { if (!previousSpace) { sb.append(' '); previousSpace = true; } } } return sb.toString(); } void writeOutput(OutputStream os) { BufferedWriter stdout = new BufferedWriter(new OutputStreamWriter(os)); try { for (String o : stdOutput) { stdout.write(o); } stdout.flush(); stdout.close(); } catch(IOException e) { // nothing we can do } } static class InputParsers { // Note: this could handle "raw" inputs with extra spaces. static void readWholeNumbers(String line, int[] output) { int outputPosition = 0; boolean previousSpace = true; int value = 0; for (byte b : line.getBytes()) { if (b == ' ' && !previousSpace) { output[outputPosition++] = value; value = 0; previousSpace = true; } if (b != ' ') { if (!(b <= '9' && b >= '0')) { throw new IllegalStateException("non-digit found for int reads"); } previousSpace = false; value = value * 10 + (b - '0'); } } if (outputPosition == output.length - 1) { output[outputPosition++] = value; return; } if (outputPosition != output.length) { throw new IllegalStateException("Not enough values read"); } if (value != 0) { throw new IllegalStateException("Extra argument found"); } } // Note: this could handle "raw" inputs with extra spaces. static void readWholeNumbers(String line, long[] output) { int outputPosition = 0; boolean previousSpace = true; long value = 0; for (byte b : line.getBytes()) { if (b == ' ' && !previousSpace) { output[outputPosition++] = value; value = 0; previousSpace = true; } if (b != ' ') { if (!(b <= '9' && b >= '0')) { throw new IllegalStateException("non-digit found for int reads"); } previousSpace = false; value = value * 10 + (b - '0'); } } if (outputPosition == output.length - 1) { output[outputPosition++] = value; return; } if (outputPosition != output.length) { throw new IllegalStateException("Not enough values read"); } if (value != 0) { throw new IllegalStateException("Extra argument found"); } } static void readIntNumbers(String line, int[] output) { int outputPosition = 0; boolean previousSpace = true; int value = 0; boolean negative = false; for (byte b : line.getBytes()) { if (b == ' ' && !previousSpace) { if (negative) { value = -value; negative = false; } output[outputPosition++] = value; value = 0; previousSpace = true; } if (b != ' ') { if (b != '-' && !(b <= '9' && b >= '0')) { throw new IllegalStateException("non-digit found for int reads"); } if (b == '-') { negative = true; } else { previousSpace = false; value = value * 10 + (b - '0'); } } } if (outputPosition == output.length - 1) { if (negative) { value = -value; negative = false; } output[outputPosition++] = value; return; } if (outputPosition != output.length) { throw new IllegalStateException("Not enough values read"); } if (value != 0) { throw new IllegalStateException("Extra argument found"); } } public static int countWords(String line) { boolean prevSpace = true; int count = 0; for(int i = 0; i < line.length(); i++) { if (line.charAt(i) == ' ') { if (!prevSpace) { prevSpace = true; count += 1; } } else { prevSpace = false; } } if (!prevSpace) { count += 1; } return count; } public static ArrayList<String> parseWords(String line) { ArrayList<String> words = new ArrayList<>(); int start = 0; while(start < line.length() && line.charAt(start) == ' ') { start++; } while(start < line.length()) { int end = line.indexOf(' ', start); if (end == -1) { end = line.length(); } words.add(line.substring(start, end)); start = end + 1; while(start < line.length() && line.charAt(start) == ' ') { start++; } } return words; } } static class Toolkit { static int[] getPrimeList(int upperValue) { boolean[] isPrime = new boolean[upperValue + 1]; Arrays.fill(isPrime, true); isPrime[0] = isPrime[1] = false; int p = 2; while(p * p < isPrime.length) { if (isPrime[p]) { int m = p * p; while(m < isPrime.length) { isPrime[m] = false; m += p; } } p++; } int numPrimes = 0; for (int i = 2; i < isPrime.length; i++) { if (isPrime[i]) { numPrimes++; } } int[] primes = new int[numPrimes]; int primeIndex = 0; for (int i = 2; i < isPrime.length; i++) { if (isPrime[i]) { primes[primeIndex++] = i; } } return primes; } public static <T> void swap(ArrayList<T> encryptedWords, int i, int j) { T value = encryptedWords.get(i); encryptedWords.set(i, encryptedWords.get(j)); encryptedWords.set(j, value); } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
f283d7ba3e1f99002143b44bc7420182
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.Scanner; import java.util.*; public class Test { public static void main(String args[]) { Scanner scan=new Scanner(System.in); int numberOfIterations=scan.nextInt(); int result=0; for(int i=numberOfIterations;i>0;i--) { int x=scan.nextInt(); int y=scan.nextInt(); if(x==0 && y==0) result=0; else if(Math.sqrt(x*x+y*y)==(int)Math.sqrt(x*x+y*y)) result=1; else result=2; System.out.println(result); } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
7536b4cb326ad7ffe558fe0a62a46452
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.Scanner; public class codeforces4 { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); for (int i = 0; i < t; i++) { int x=sc.nextInt(); int y=sc.nextInt(); int z; z=x*x+y*y; if(x==0 && y==0 ){ System.out.println(0); } else{ if(checkPerfectSquare(z)){ System.out.println(1); } else{ System.out.println(2); }}}} static boolean checkPerfectSquare(double number) { //calculating the square root of the given number double sqrt=Math.sqrt(number); //finds the floor value of the square root and comparing it with zero return ((sqrt - Math.floor(sqrt)) == 0); } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
bdf44af54d8531191a5894320acb0c78
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.*; import java.lang.Math; public class test { public static void main(String[] args) { Scanner inputul = new Scanner(System.in); int n = inputul.nextInt(); int x,y,res=0; for (int i = 0; i < n; i++) { x = inputul.nextInt(); y = inputul.nextInt(); if (x ==0 && y ==0)res=0; else if (Math.sqrt(x*x+y*y)==(int)Math.sqrt(x*x+y*y)){ res = 1; } else res=2; System.out.println(res); } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
41a7fb1712646674cea82c5e3017f970
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.io.*; //import java.util.*; public class IntegerMoves { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.valueOf(br.readLine());// int[][] distances = new int[60][60]; preprocess(distances); while(t-->0){ String[] str = br.readLine().split("\\s+"); int x = Integer.valueOf(str[0]); int y = Integer.valueOf(str[1]); if(x==0 && y==0)System.out.println(0); else if(distances[x][y]==1 || x==0 || y==0){ System.out.println(1); }else { System.out.println(2); } } } public static void preprocess(int[][] distances){ int m = 2; int a=0,b=0,c=0; /* a = m*m - n*n; b = 2*m*n; c = m*m + n*n */ while(c<71){ for(int n=1; n<m; n++){ a = m*m - n*n; b = 2*m*n; c = m*m + n*n; if(c>= 71) break; int g = a>b?a:b; for(int i=1;g*i<51;i++){ int ia = i*a, ib = i*b; //System.out.println(ia+" "+ib); distances[ia][ib] = distances[ib][ia] = 1; } } m++; } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
becc052a51bae15f73c9a0bcc36bfe19
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.Scanner; public class IntegerMoves { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int arr = scanner.nextInt(); while (arr > 0) { int x = scanner.nextInt(); int y = scanner.nextInt(); double s = Math.sqrt(x * x + y * y); if(x == 0 && y == 0 ){ System.out.println(0); } else if((int) s * s == x * x + y * y) { System.out.println(1); }else { System.out.println(2); } arr--; } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
64f9f37af86f6ce53d65113a10453c32
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.*; public class code { public static void main(String[] args) { Scanner sc = new Scanner(System.in); long t = sc.nextLong(); while (t-- > 0) { long x=sc.nextLong(); long y= sc.nextLong(); long res=(x*x)+(y*y); int ans=2; long i=0; while(i*i<res) i++; if(i*i==res) ans=1; if(x==0 && y==0) ans=0; System.out.println(ans); } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
f033a1c4a186c02bdf18457f3bd69c60
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.io.*; import java.util.*; public class Main { static PrintWriter pw; public static int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } public static int lcm(int a, int b) { return a * b / gcd(a, b); } public static long fac(long i) { long res=1; while(i>0) { res=res*i--; } return res; } public static long combination (long x,long y) { return 1l*(fac(x)/(fac(x-y)*fac(y))); } public static long permutation (long x,long y) { return combination(x, y) * fac(y); } public static long sum(Long[]arr,long item) { long res=0; for (int i = 0; i < arr.length; i++) { res+=arr[i] ; } res-=item; return res; } public static void main(String[] args) throws IOException, InterruptedException { Scanner sc = new Scanner(System.in); pw = new PrintWriter(System.out); int t=sc.nextInt(); while(t-->0) { int x=sc.nextInt(); int y=sc.nextInt(); int res =x*x+y*y; if(x==0&&y==0) System.out.println("0"); else if(Math.sqrt(res)==(int)Math.sqrt(res)) System.out.println("1"); else { System.out.println("2"); } } pw.flush(); } static class Pair { long x; long y; public Pair(long x, long y) { this.x = x; this.y = y; } public String toString() { return x + " " + y; } } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public int[] nextIntArray(int n) throws IOException { int[] array = new int[n]; for (int i = 0; i < n; i++) { array[i] = nextInt(); } return array; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] array = new Integer[n]; for (int i = 0; i < n; i++) { array[i] = nextInt(); } return array; } public long[] nextlongArray(int n) throws IOException { long[] array = new long[n]; for (int i = 0; i < n; i++) { array[i] = nextLong(); } return array; } public Long[] nextLongArray(int n) throws IOException { Long[] array = new Long[n]; for (int i = 0; i < n; i++) { array[i] = nextLong(); } return array; } public char[] nextCharArray(int n) throws IOException { char[] array = new char[n]; String string = next(); for (int i = 0; i < n; i++) { array[i] = string.charAt(i); } return array; } public boolean ready() throws IOException { return br.ready(); } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
a758a8c5364d90449bde9f3cad77d8fb
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.Scanner; public class A_Integer_Moves { private static final Scanner in = new Scanner(System.in); private static int x, y, testCases; private static void solve() { if (x == 0 && y == 0) { System.out.println(0); return; } double dis = distance(x, y); int dis1 = (int) distance(x, y); if (dis == (double) dis1) { System.out.println(1); } else { System.out.println(2); } } public static void main(String[] args) { testCases = in.nextInt(); for (int t = 0; t < testCases; ++t) { x = in.nextInt(); y = in.nextInt(); solve(); } } private static double distance(int x, int y) { return Math.sqrt(Math.pow(y, 2) + Math.pow(x, 2)); } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
9606ae5ff93efe7931aad31b4f5c64c5
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.Scanner; public class A_Integer_Moves { static Scanner in = new Scanner(System.in); static int x, y, testCases; static StringBuilder ans = new StringBuilder(); static double distance() { return Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2)); } static void solve() { double d = distance(); int e = (int)distance(); if(x == 0 && y == 0 ) { //System.out.println(0); ans.append(0).append("\n"); } else if(d == (double)e ) { //System.out.println(1); ans.append(1).append("\n"); } else { //System.out.println(2); ans.append(2).append("\n"); } } public static void main(String [] priya) { testCases = in.nextInt(); for(int t = 0; t < testCases; ++t) { x = in.nextInt(); y = in.nextInt(); solve(); } System.out.print(ans.toString()); } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
c9cf14f5768b4c8e1225e4f7334aa67b
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.*; import java.io.*; public class A1657 { public static void main(String[] args) throws IOException { //BufferedReader r = new BufferedReader(new FileReader("test.in")); BufferedReader r = new BufferedReader(new InputStreamReader(System.in)); int T = Integer.parseInt(r.readLine()); for(int i = 0; i < T; i++) { StringTokenizer st = new StringTokenizer(r.readLine()); int a = Integer.parseInt(st.nextToken()); int b=Integer.parseInt(st.nextToken()); double distance = Math.sqrt((Math.pow(a,2)+Math.pow(b,2))); if(a==0&&b==0) { System.out.println(0); } else if(distance == (int)distance) { System.out.println(1); } else { System.out.println(2); } } r.close(); } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
a72906f5f729873426dd8108975cc0ff
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.*; public class question { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while(t-->0) { int x = sc.nextInt(); int y = sc.nextInt(); if(x==0 && y==0) System.out.println(0); else { double ans = Math.sqrt( x*x + y*y ); if( ans == (int)ans ) System.out.println(1); else System.out.println(2); } } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
22af16771d61e49d83dc032b9d9caa7d
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.io.*; import java.util.*; import java.math.*; public class Main{ static class in{ static BufferedReader re = new BufferedReader(new InputStreamReader(System.in)); static StreamTokenizer st = new StreamTokenizer(re); public static int nextInt()throws IOException{ st.nextToken(); return (int)st.nval; } public static double nextDouble()throws IOException{ st.nextToken(); return st.nval; } public static String nextLine()throws IOException{ return re.readLine(); } } static PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); static int t,x,y,ans; static int[][] mapp = new int[100][100]; public static void main(String[] args)throws IOException { Scanner sc = new Scanner(System.in); t = in.nextInt(); while(t-->0){ x = in.nextInt(); y = in.nextInt(); double tnum = (x)*(x)+(y)*(y); if(x==0&&y==0){ System.out.println(0); } else if(Math.sqrt(tnum)-(int)Math.sqrt(tnum)==0){ System.out.println(1); } else{ System.out.println(2); } // for(int i = 0;i <= x;++i){ // for(int k = 0;k <= y;++k){ // mapp[i][k] = 0; // } // } // Queue<node> q = new LinkedList<>(); // if(x==0&&y==0){ // System.out.println(0); // } // else{ // q.add(new node(0,0)); // while(!q.isEmpty()){ // node n = q.poll(); // int dx = n.x,dy = n.y; // for(int i = dx;i <= x;++i){ // for(int k = dy;k <= y;++k){ // double tnum = (dx-i)*(dx-i)+(dy-k)*(dy-k); // if(i!=dx && k!=dy && Math.sqrt(tnum)-(int)Math.sqrt(tnum)==0){ // if(mapp[i][k]>0){ // mapp[i][k] = Math.min(mapp[dx][dy]+1, mapp[i][k]); // } // else{ // mapp[i][k] = mapp[dx][dy]+1; // } // q.add(new node(i,k)); // } // } // } // if(mapp[x][y]!=0){ // System.out.println(mapp[x][y]); // break; // } // } // } // for(int i = 0;i <= x;++i){ // for(int k = 0;k <= y;++k){ // System.out.print(mapp[i][k]+" "); // } // System.out.println(); // } } sc.close(); out.flush(); } } class node{ int x,y; node(int a,int b){ x = a; y = b; } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
f47055319ad6c750fa0d8d93d50f7c6c
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
//package codeforces.educational125; import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.FileInputStream; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.LinkedList; import java.util.Queue; public class IntegerMoves { private static final int MAX = 51; public static void main(String[] args) throws IOException { new IntegerMoves().run(); } public void run() throws IOException { InputStream inputStream = getInputStream(); BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(inputStream)); PrintWriter writer = new PrintWriter(new BufferedOutputStream(System.out)); IntegerMoves integerMoves = new IntegerMoves(); String[] tokens; tokens = bufferedReader.readLine().split(" "); int t = Integer.parseInt(tokens[0]); while (t > 0) { tokens = bufferedReader.readLine().split(" "); int x = Integer.parseInt(tokens[0]); int y = Integer.parseInt(tokens[1]); writer.println(integerMoves.moves(x, y)); t--; } writer.close(); inputStream.close(); } Position[][] positions = new Position[MAX][MAX]; static class Position { int x; int y; int d; Position(int x, int y, int d) { this.x = x; this.y = y; this.d = d; } } public IntegerMoves() { boolean[] square = new boolean[2*MAX*MAX]; for (int x = 0; x*x < 2*MAX*MAX; x++) { square[x*x] = true; } positions[0][0] = new Position(0, 0, 0); Queue<Position> queue = new LinkedList<>(); queue.add(positions[0][0]); while (!queue.isEmpty()) { Position head = queue.poll(); for (int x = 0; x < MAX; x++) { for (int y = 0; y < MAX; y++) { if (positions[x][y] == null && square[(x - head.x)*(x - head.x) + (y - head.y)*(y - head.y)]) { positions[x][y] = new Position(x, y, head.d+1); queue.add(positions[x][y]); } } } } } public int moves(int x, int y) { return positions[x][y].d; } private InputStream getInputStream() throws IOException { if (System.getProperty("ONLINE_JUDGE") != null) { return System.in; } return new FileInputStream("IntegerMoves"); } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
453b67e38b6f1d493750568275647823
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.Scanner; public class template { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); for (int i = 1; i <= n; i++) { int x = sc.nextInt(); int y = sc.nextInt(); System.out.println(buildNum(x, y)); } } private static int buildNum(int x, int y) { if (x == 0 && y == 0) return 0; double hyp = Math.sqrt(x*x + y*y); if ((hyp % 1) == 0) return 1; return 2; } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
bb354a4e613fdad06ba92ddf2570c76b
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.*; import java.io.*; import java.math.*; public class Main { static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args) throws Exception { FastScanner sc=new FastScanner(); int t=sc.nextInt(); while(t-->0){ int x=sc.nextInt(); int y=sc.nextInt(); if(x==0 && y==0) System.out.println("0"); else{ double d = Math.pow(x, 2) + Math.pow(y, 2); double sq = Math.sqrt(d); if (sq == (int) sq) System.out.println("1"); else System.out.println("2"); } } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
422aa02279df7001bf05108782812b5d
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
/*##################################################### ################ >>>> Diaa12360 <<<< ################## ################ Just Nothing ################## ############ If You Need it, Fight For IT; ############ ####################.-. 1 5 9 2 .-.#################### ######################################################*/ import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Stack; import java.util.StringTokenizer; public class Main { public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); StringBuilder out = new StringBuilder(); StringTokenizer tk; int t = ints(in.readLine()); while(t-- > 0){ tk = new StringTokenizer(in.readLine()); int x = ints(tk.nextToken()), y = ints(tk.nextToken()); int ans; double sol = Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2)); if(x == 0 && y == 0) ans = 0; else if(sol-(int)sol == 0) ans = 1; else ans = 2; out.append(ans).append('\n'); } System.out.println(out); } static int ints(String s){return Integer.parseInt(s);} static int ll(String s) {return Integer.parseInt(s);} static int[] readArray(String s, int n){ StringTokenizer tk = new StringTokenizer(s); int []arr = new int[n]; for (int i = 0; i < n; i++) arr[i] = ints(tk.nextToken()); return arr; } static int[] readArray(String s){ StringTokenizer tk = new StringTokenizer(s); int []arr = new int[tk.countTokens()]; for (int i = 0; i < arr.length; i++) arr[i] = ints(tk.nextToken()); return arr; } } //e. (x1−x2)2+(y1−y2)2−−−−−−−−−−−−−−−−−−√
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
aa375aaf375abf0e1ae0c649c3f6608d
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.io.*; import java.util.*; public class A_Integer_Moves { public static void main(String[] args) { MyScanner sc = new MyScanner(); out = new PrintWriter(new BufferedOutputStream(System.out)); int t = sc.nextInt(); while (t-- > 0) { int x = sc.nextInt(), y = sc.nextInt(); if (x == 0 && y == 0) out.println(0); else if (Math.sqrt(((0 - x) * (0 - x)) + ((0 - y) * (0 - y))) == (int) Math .sqrt(((0 - x) * (0 - x)) + ((0 - y) * (0 - y)))) out.println(1); else out.println(2); } out.close(); } public static PrintWriter out; public static long mod = (long) 1e9 + 7; public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } int[] readArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long[] readLongArray(int n) { long a[] = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static void SieveOfEratosthenes(int n, boolean prime[]) { prime[0] = false; prime[1] = false; for (int p = 2; p * p <= n; p++) { if (prime[p] == true) for (int i = p * p; i <= n; i += p) prime[i] = false; } } static void dfs(int root, boolean[] vis, int[] value, ArrayList[] gr, int prev) { vis[root] = true; value[root] = 3 - prev; prev = 3 - prev; for (int i = 0; i < gr[root].size(); i++) { int next = (int) gr[root].get(i); if (!vis[next]) dfs(next, vis, value, gr, prev); } } static boolean isPrime(int n) { for (int i = 2; i * i <= n; i++) if (n % i == 0) return false; return true; } static int abs(int a) { return a > 0 ? a : -a; } static int max(int a, int b) { return a > b ? a : b; } static int min(int a, int b) { return a < b ? a : b; } static long pow(long n, long m) { if (m == 0) return 1; long temp = pow(n, m / 2); long res = ((temp * temp) % mod); if (m % 2 == 0) return res; return (res * n) % mod; } static long modular_add(long a, long b) { return ((a % mod) + (b % mod)) % mod; } static long modular_sub(long a, long b) { return ((a % mod) - (b % mod) + mod) % mod; } static long modular_mult(long a, long b) { return ((a % mod) * (b % mod)) % mod; } static long lcm(int a, int b) { return (a / gcd(a, b)) * b; } static long gcd(long a, long b) { if (b == 0) { return a; } return gcd(b, a % b); } static class Pair { int u, v; Pair(int u, int v) { this.u = u; this.v = v; } static void sort(Pair[] coll) { List<Pair> al = new ArrayList<>(Arrays.asList(coll)); Collections.sort(al, new Comparator<Pair>() { public int compare(Pair p1, Pair p2) { return p1.u - p2.u; } }); for (int i = 0; i < al.size(); i++) { coll[i] = al.get(i); } } } static void sort(int[] a) { ArrayList<Integer> list = new ArrayList<>(); for (int i : a) list.add(i); Collections.sort(list); for (int i = 0; i < a.length; i++) a[i] = list.get(i); } static void sort(long a[]) { ArrayList<Long> list = new ArrayList<>(); for (long i : a) list.add(i); Collections.sort(list); for (int i = 0; i < a.length; i++) a[i] = list.get(i); } static int[] array(int n, int value) { int a[] = new int[n]; for (int i = 0; i < n; i++) a[i] = value; return a; } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
6c17d509dc7fb20b9b4e9f8c9417d35e
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.Scanner; import java.util.StringTokenizer; public class IntegerMoves { public static double distance(int x1, int x2, int y1, int y2) { return(Math.sqrt(Math.pow(x1-x2, 2) + Math.pow(y1-y2, 2))); } public static void main(String[] args) { Scanner scan = new Scanner(System.in); StringTokenizer st; int t = Integer.parseInt(scan.nextLine()); int[] operations = new int[t]; //double[] temp = new double[t]; int x, y; boolean ok, maxQuad; for(int i = 0; i < t; i++) { ok = false; st = new StringTokenizer(scan.nextLine()); x = Integer.parseInt(st.nextToken()); y = Integer.parseInt(st.nextToken()); //int tempX, tempY; //temp[i] = distance(x, 0, y, 0); if(x != 0 && y != 0) {while(!ok) { //System.out.println("dentro al while"); maxQuad = false; for(int j = x; j >= 0 && !maxQuad; j--) { //System.out.println("dentro al forX"); for(int k = y; k >= 0 && !maxQuad; k--) { //System.out.println("dentro al forY"); if(distance(j, 0, k, 0) % 1 == 0) { //System.out.println("fatta operazione " + (operations[i]+1)); operations[i]++; maxQuad = true; x -= j; y -= k; } } } //System.out.println("ci arrivo mai quii"); //System.out.println(x + " " + y); if(x == 0 && y == 0) ok = true; } }else if((x == 0 || y == 0) && !(x == 0 && y == 0)) operations[i]++; //System.out.println("esco dall'ok HWIL"); } for(int i = 0; i < t; i++) { System.out.println(operations[i]); } /* int a = scan.nextInt(); int b = scan.nextInt(); System.out.println(distance(a, 0, b, 0) % 1 == 0 ? "yes" : "no"); */ } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
af5ac0b12a277399e3a8a0e41cac178a
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
// #samoJako import java.util.Arrays; import java.util.Scanner; public class A_Integer_Moves { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); for(int i = 0; i < n; i++) { Integer x=sc.nextInt(); Integer y=sc.nextInt(); System.out.println(solve(x,y)); } sc.close(); } static Integer solve(Integer x, Integer y) { if(x==0 && y==0) return 0; if(check(x,y,0,0)== true) return 1; else return 2; } static boolean check(Integer x, Integer y, Integer x2, Integer y2){ Double korijen = Math.sqrt( square(x2-x)+square(y2-y)); if( korijen == korijen.intValue() ) return true; else return false; } static long square(int x) { return (long) x * x; } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
de4a0dcb5c2a4ee879dd2b0519214d56
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
// #samoJako import java.util.Arrays; import java.util.Scanner; public class A_Integer_Moves { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); for(int i = 0; i < n; i++) { Integer x=sc.nextInt(); Integer y=sc.nextInt(); System.out.println(solve(x,y)); } sc.close(); } static Integer solve(Integer x, Integer y) { Integer veci = Integer.max(x,y); Integer manji = Integer.min(x,y); Integer pocetakX = 0; Integer pocetakY = 0; if(x==0 && y==0) return 0; if(check(x,y,0,0)== true) return 1; else return 2; } static boolean check(Integer x, Integer y, Integer x2, Integer y2){ Double korijen = Math.sqrt( square(x2-x)+square(y2-y)); if( korijen == korijen.intValue() ) return true; else return false; } static long square(int x) { return (long) x * x; } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
b65461a3587c560103c5c3005ac8f491
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.*; public class Solution { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while(t-- > 0) { long x = sc.nextInt(); long y = sc.nextInt(); long temp = (long)Math.sqrt(x*x + y*y); if(x == 0 && y == 0) System.out.println(0); else if (temp*temp == (x*x + y*y)) { System.out.println(1); } else { System.out.println(2); } } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
0129d5ce3994a67f172ec0941b06a64c
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc= new Scanner(System.in); int t = sc.nextInt(); while(t--!=0){ int a= sc.nextInt(); int b = sc.nextInt(); if(a==0 && b==0){ System.out.println("0"); } else{ double fin= (double) Math.sqrt(Math.pow(a,2)+ Math.pow(b,2)); if(Math.ceil(fin)==Math.floor(fin)){ System.out.println("1"); } else{ System.out.println("2"); } } } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
66cd23a1da3c002edb741d39610355e6
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class Main { static int t; static int n; static int[] a; static String s; static FastReader fr = new FastReader(); static PrintWriter out = new PrintWriter(System.out); static long mod = 998244353l; public static Edge[] edges; public static int cnt; public static int[] fir; public static long[] dis; public static boolean[] vis; static class Edge { int u, v, next; boolean cut; int used; int num; long fz, fm; } public static void dijInit(int edgeSize, int nodeSize) { cnt = 0; edges = new Edge[edgeSize + 10]; fir = new int[edgeSize + 10]; dis = new long[nodeSize + 10]; vis = new boolean[nodeSize + 10]; Arrays.fill(fir, -1); } public static long gcd(long a, long b) { return b == 0 ? a : gcd(b, a % b); } //构建邻接表,u代表起点,v代表终点,w代表之间路径 static void addEdge(int u, int v, long fz, long fm) { edges[cnt] = new Edge(); edges[cnt].u = u; edges[cnt].v = v; edges[cnt].fz = fz; edges[cnt].fm = fm; edges[cnt].next = fir[u]; edges[cnt].used = 0; fir[u] = cnt++; } static long x, y, q; //扩展欧几里德 static void ExEuclid(long a, long b) { if (b == 0) { x = 1; y = 0; q = a; return; } ExEuclid(b, a % b); long tmp = x; x = y; y = tmp - y * (a / b); } //乘法逆元 static long inv(long num) { ExEuclid(num, mod); return (x + mod) % mod; } static int[][] dp = new int[51][51]; static void init() { Set<Integer> z = new HashSet<>(); for (int i = 0; i < 100; i++) { z.add(i * i); } for (int i = 0; i <= 50; i ++) Arrays.fill(dp[i], 0x3f3f3f3f); dp[0][0] = 0; for (int i = 0; i <= 50; i ++) { for (int j = 0; j <= 50; j ++) { for (int k = 0; k <= i; k ++) { for (int h = 0; h <= j; h ++) { int t = (i - k) * (i - k) + (j - h) * (j - h); if (t == 0) continue; if (z.contains(t)) { dp[i][j] = Math.min(dp[i][j], dp[k][h] + 1); } } } } } } public static void main(String[] args) { init(); int t = fr.nextInt(); while ((t --) > 0) { int x = fr.nextInt(); int y = fr.nextInt(); System.out.println(dp[x][y]); } return; } static class FastReader { private BufferedReader bfr; private StringTokenizer st; public FastReader() { bfr = new BufferedReader(new InputStreamReader(System.in)); } String next() { if (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(bfr.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } char nextChar() { return next().toCharArray()[0]; } String nextString() { return next(); } int[] nextIntArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) arr[i] = nextInt(); return arr; } double[] nextDoubleArray(int n) { double[] arr = new double[n]; for (int i = 0; i < arr.length; i++) arr[i] = nextDouble(); return arr; } long[] nextLongArray(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) arr[i] = nextLong(); return arr; } int[][] nextIntGrid(int n, int m) { int[][] grid = new int[n][m]; for (int i = 0; i < n; i++) { char[] line = fr.next().toCharArray(); for (int j = 0; j < m; j++) grid[i][j] = line[j] - 48; } return grid; } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
62d945fea71a6b0bfdeace1e74242e1b
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.awt.image.ImageProducer; import java.util.*; public class Solution { static boolean prime[] = new boolean[1000001]; static Set<Long> cubes=new HashSet<>(); static { long N = 1000000000000L; // // // for(int i=1;i*i<=n;i++) // { // long x=i*i; // set.add(x); // } for (long i = 1; i * i * i <= N; i++) { cubes.add(i * i * i); } } public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t=sc.nextInt(); while(t-->0) { long a=sc.nextLong(); long b=sc.nextLong(); double cs=(a*a)+(b*b); if(cs==0) { System.out.println(0); } else if(checkPerfectSquare(cs)) { System.out.println(1); } else { System.out.println(2); } } } // public static int[] reverse(int arr[],int start,int end) // { // for(int i=start;i<=end;i++) // { // int temp=arr[i]; // arr[i]=arr[i+1]; // arr[i+1]=temp; // } // return arr; // } static boolean checkPerfectSquare(double number) { //calculating the square root of the given number double sqrt=Math.sqrt(number); //finds the floor value of the square root and comparing it with zero return ((sqrt - Math.floor(sqrt)) == 0); } static void sieveOfEratosthenes(int n) { for(int i=0;i<=n;i++) prime[i] = true; for(int p = 2; p*p <=n; p++) { if(prime[p] == true) { for(int i = p*p; i <= n; i += p) prime[i] = false; } } // Print all prime numbers // for(int i = 2; i <= n; i++) // { // if(prime[i] == true) // System.out.print(i + " "); // } } public static boolean isPrime(int n) { for(int i=2;i*i<=n;i++) { if(n%i==0) return false; } return true; } public static int gcd(int a,int b) { if(b==0) return a; return gcd(b,a%b); } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
952a64effa469a54726fb515ddda7739
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
/* I am dead inside Do you like NCT, sKz, BTS? 5 4 3 2 1 Moonwalk Imma knock it down like domino Is this what you want? Is this what you want? Let's ttalkbocky about that */ import static java.lang.Math.*; import java.util.*; import java.io.*; import java.math.*; public class x1657A { static final int INF = Integer.MAX_VALUE/2; public static void main(String omkar[]) throws Exception { boolean[] square = new boolean[1<<18]; for(int v=1; v*v < 1<<18; v++) square[v*v] = true; BufferedReader infile = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(infile.readLine()); int T = Integer.parseInt(st.nextToken()); StringBuilder sb = new StringBuilder(); while(T-->0) { st = new StringTokenizer(infile.readLine()); int X = Integer.parseInt(st.nextToken()); int Y = Integer.parseInt(st.nextToken()); if(X+Y == 0) sb.append("0\n"); else if(square[X*X+Y*Y]) sb.append("1\n"); else sb.append("2\n"); } System.out.print(sb); } public static int[] readArr(int N, BufferedReader infile, StringTokenizer st) throws Exception { int[] arr = new int[N]; st = new StringTokenizer(infile.readLine()); for(int i=0; i < N; i++) arr[i] = Integer.parseInt(st.nextToken()); return arr; } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
d40ab4512617672842a24ceca4ae2212
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.*; import java.io.*; public class tr0 { static PrintWriter out; static StringBuilder sb; static long mod = (long) 998244353; static long inf = (long) 1e16; static int n, l, k; static ArrayList<Integer>[][] ad, ad1; static int[][] remove, add; static int[][] memo; static long[] inv, f, ncr[]; static HashMap<Integer, Integer> hm; static int[] pre, suf, Smax[], Smin[]; static int idmax, idmin; static ArrayList<Integer> av; static HashMap<Integer, Integer> mm; static boolean[] msks; static int[] lazy[], lazyCount; static int[] c, w; public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); out = new PrintWriter(System.out); int t = sc.nextInt(); // int[][] dp = new int[51][51]; // ad = new ArrayList[51][51]; // for (int i = 0; i < ad.length; i++) // for (int j = 0; j < ad.length; j++) // ad[i][j] = new ArrayList<>(); // for (int i = 0; i <= 50; i++) { // for (int j = 0; j <= 50; j++) { // for (int ii = 0; ii <= 50; ii++) { // for (int jj = 0; jj <= 50; jj++) { // if (ii == i && jj == j) // continue; // int o = (i - ii) * (i - ii) + (j - jj) * (j - jj); // int o2 = (int) Math.sqrt(o); // if (o2 * o2 == o) { // System.out.println(Math.abs(i - ii) + " " + Math.abs(j - jj)); // } // } // } // } // } while (t-- > 0) { int x = sc.nextInt(); int y = sc.nextInt(); if (x == 0 && y == 0) out.println(0); else { int o = x * x + y * y; int o2 = (int) Math.sqrt(o); if (o2 * o2 == o) { out.println(1); } else out.println(2); } } out.flush(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream system) { br = new BufferedReader(new InputStreamReader(system)); } public Scanner(String file) throws Exception { br = new BufferedReader(new FileReader(file)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public String nextLine() throws IOException { return br.readLine(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public char nextChar() throws IOException { return next().charAt(0); } public Long nextLong() throws IOException { return Long.parseLong(next()); } public int[] nextArrInt(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long[] nextArrLong(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextArrIntSorted(int n) throws IOException { int[] a = new int[n]; Integer[] a1 = new Integer[n]; for (int i = 0; i < n; i++) a1[i] = nextInt(); Arrays.sort(a1); for (int i = 0; i < n; i++) a[i] = a1[i].intValue(); return a; } public long[] nextArrLongSorted(int n) throws IOException { long[] a = new long[n]; Long[] a1 = new Long[n]; for (int i = 0; i < n; i++) a1[i] = nextLong(); Arrays.sort(a1); for (int i = 0; i < n; i++) a[i] = a1[i].longValue(); return a; } public boolean ready() throws IOException { return br.ready(); } public void waitForInput() throws InterruptedException { Thread.sleep(3000); } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
a270d8273551c2bbbcb033cb8001d512
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.*; public class Solution { public static void main(String[] args) { Scanner s = new Scanner(System.in); int t = s.nextInt(); while (t-- > 0) { int x = s.nextInt(); int y = s.nextInt(); if (x == 0 && y == 0) { System.out.println("0"); continue; } double r = Math.sqrt(x * x + y * y); if (r == (int) r) { System.out.println("1"); } else { System.out.println("2"); } } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
dada4ab5793d97b39ad288fbe2955b49
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.*; public class main{ public static void main(String args[]) { Scanner s=new Scanner(System.in); int t=s.nextInt(); for(int g=0;g<t;g++) { int x=s.nextInt(); int y=s.nextInt(); if(x==0&&y==0) { System.out.println(0); continue; } int a= x*x +y*y; double d=Math.sqrt(a); if(Math.floor(d)==d) System.out.println(1); else System.out.println(2); } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
1405f87923747147ea64a2b8607604ab
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.Scanner; public class Main { private static final int MAX_SQ = 50001; public static void main(String[] args) { Scanner in = new Scanner(System.in); int testCases = in.nextInt(); boolean sq[] = new boolean[MAX_SQ]; for (int s = 1; s * s < MAX_SQ; ++s) { sq[s * s] = true; } for (int currTestCase = 1; currTestCase <= testCases; ++currTestCase) { int x = in.nextInt(); int y = in.nextInt(); if (x == 0 && y == 0) { System.out.println(0); } else if (x == 0 || y == 0) { System.out.println(1); } else if (sq[x * x + y * y]) { System.out.println(1); } else { System.out.println(2); } } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
087c080978b2c98fa57da9a613b056a3
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.Scanner; public class A { static Scanner sc = new Scanner(System.in); private static void solve() { int x = sc.nextInt(); int y = sc.nextInt(); if( x == 0 && y == 0 ) { System.out.println("0"); return; } int val = (int) Math.sqrt(x * x + y * y); if (val * val == (x * x + y * y)) { System.out.println("1"); return; } System.out.println("2"); } public static void main(String[] args) { int t = sc.nextInt(); for (int k = 0; k < t; k++) { solve(); } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
f927f68b626af8dc446fc0da1701d81e
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.io.*; import java.util.*; public class A { static int t,n,arr[],x,y; static StringBuilder sb; static BufferedReader bf=new BufferedReader(new InputStreamReader(System.in)); static StreamTokenizer in=new StreamTokenizer(bf); static PrintWriter out=new PrintWriter(new BufferedOutputStream(System.out)); public static void main(String[] args) throws IOException{ in.nextToken();t=(int)in.nval; while(t-->0) solve(); out.flush(); } static void solve() throws IOException { in.nextToken();x=(int)in.nval; in.nextToken();y=(int)in.nval; if(x==0&&y==0){ out.println(0); return; } out.println((int)Math.sqrt(x*x+y*y)==Math.sqrt(x*x+y*y)?1:2); } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
17ba2dd20a549861bd7e5dc17964e157
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.io.*; import java.util.*; public class Main { public static void main(String[] args) throws IOException { IO io = new IO(); int t = io.nextInt(); while (t-- > 0) { int x = io.nextInt(), y = io.nextInt(); if (x == 0 && y == 0) io.println(0); else { int dist = x * x + y * y; boolean can = false; for (int i = 1; i <= 1000; ++i) if (i * i == dist) can = true; if (can) io.println(1); else io.println(2); } } io.flush(); io.close(); } static class IO extends PrintWriter { BufferedReader br; StringTokenizer st; // standard input public IO() { this(System.in, System.out); } public IO(InputStream i, OutputStream o) { super(o); br = new BufferedReader(new InputStreamReader(i)); } public IO(String problemName) throws IOException { super(problemName + ".out"); br = new BufferedReader(new FileReader(problemName + ".in")); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public String nextLine() throws IOException { return br.readLine(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
dd4853c2829175acc4a8db54fbe6405a
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.*; import java.io.*; import static java.lang.Math.*; public class Main { public static void swap (int [] arr , int i , int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } public static void main(String[] args) throws IOException { OutputStreamWriter osr = new OutputStreamWriter(System.out); PrintWriter o = new PrintWriter(osr); FastReader fr = new FastReader(); int t = fr.nextInt(); while (t-- != 0) { int x = fr.nextInt() , y = fr.nextInt(); if(x == 0 && y == 0) o.println(0); else { double a = pow(x, 2) + pow(y, 2); if(sqrt(a) == (int)sqrt(a)) o.println(1); else o.println(2); } } o.close(); } } class FastReader { // Attributes : BufferedReader br; StringTokenizer st; // Constructor : public FastReader() { InputStreamReader isr = new InputStreamReader(System.in); br = new BufferedReader(isr); } // Operations : // #01 : public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } // #02 : public String nextLine() throws IOException { return br.readLine(); } // #03 : public int nextInt() throws IOException { return Integer.parseInt(next()); } // #04 : public long nextLong() throws IOException { return Long.parseLong(next()); } // #05 : public double nextDouble() throws IOException { return Double.parseDouble(next()); } // #06 : public int [] intArray (int size) throws IOException{ int [] arr = new int[size]; for (int i = 0 ; i < size; i++) arr[i] = nextInt(); return arr; } // #07 : public char [] charArray() throws IOException { return nextLine().toCharArray(); } } class Pair { int x; int y; public Pair(int x, int y) { this.x = x; this.y = y; } static class Compare implements Comparator<Pair> { @Override public int compare(Pair o1, Pair o2) { return (o1.y - o2.y); } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
1c4badcd63c8749ee5b65c6c01dce65f
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.Scanner; public class test310 { public static void main(String[] args) { Scanner in = new Scanner(System.in); int t=in.nextInt(); for(int j=0;j<t;j++) { int x=in.nextInt(); int y=in.nextInt(); if(x==0 && y==0) { System.out.println(0); } else { int z=(int)Math.sqrt(x*x+y*y); if(z*z==x*x+y*y) { System.out.println(1); } else { System.out.println(2); } } } in.close(); } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
48214ce8a24cb0ea01a111efd726db28
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
/* ...|/G\/E\/O\/R\/G\/E\|... */ import java.io.*; import java.util.StringTokenizer; import static java.lang.Double.parseDouble; import static java.lang.Integer.parseInt; import static java.lang.Long.parseLong; public class Main { static BufferedWriter of = null; static { try { of = new BufferedWriter(new FileWriter(new File("filee.txt"))); } catch (IOException e) { e.printStackTrace(); } } private static BufferedWriter ifile = null; static { try { ifile = new BufferedWriter(new FileWriter(String.valueOf(System.in))); } catch (IOException e) { e.printStackTrace(); } } private static final BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out)); private static final Fast in = new Fast(); public static void main(String[] args) throws IOException { int n = in.nextInt(); while(n>0) { int m1 = in.nextInt(); int m2 = in.nextInt(); if (m1==0 && m2==0) System.out.println("0"); else if (Math.sqrt((m1*m1)+(m2*m2))-(int)Math.sqrt((m1*m1)+(m2*m2))==0) System.out.println("1"); else System.out.println("2"); n--; } } public static class Fast { BufferedReader br; StringTokenizer st; public Fast() { br = new BufferedReader(new InputStreamReader(System.in)); } public Fast(FileReader f) { br = new BufferedReader(f); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return parseInt(next()); } public long nextLong() throws IOException { return parseLong(next()); } public double nextDouble() throws IOException { return parseDouble(next()); } public float nextFloat() throws IOException { return Float.parseFloat(next()); } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
4ada6f159892e731bd4754e9f012d32b
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.io.*; import java.util.*; public class Main { public static void main(String[] args) { new Thread(null, () -> new Main().run(), "1", 1 << 23).start(); } private void run() { FastReader scan = new FastReader(); PrintWriter out = new PrintWriter(System.out); Solution solve = new Solution(); int t = scan.nextInt(); // int t = 1; for (int qq = 0; qq < t; qq++) { solve.solve(scan, out); //out.println(); } out.close(); } } class Solution { /* * think and coding */ double EPS = 0.000_0001; public void solve(FastReader scan, PrintWriter out) { int x = scan.nextInt(), y = scan.nextInt(); if (x == 0 && y == x) { out.println(0); } else { int t = x * x + y * y; int tt = (int) Math.sqrt(t); if (tt * tt == t) { out.println(1); } else out.println(2); } } static class Pair implements Comparable<Pair> { int a, b; public Pair(int a, int b) { this.a = a; this.b = b; } public Pair(Pair p) { this.a = p.a; this.b = p.b; } @Override public int compareTo(Pair p) { return Integer.compare(a, p.a); } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Pair pair = (Pair) o; return a == pair.a && b == pair.b; } @Override public int hashCode() { return Objects.hash(a, b); } @Override public String toString() { return "Pair{" + "a=" + a + ", b=" + b + '}'; } } } class FastReader { private final BufferedReader br; private StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s))); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
91a9e3dc7a84d9c31aed434e7a6f196b
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); int x , y; while (t > 0) { x = Integer.parseInt(sc.next()); y = Integer.parseInt(sc.next()); sc.nextLine(); if (x == 0 && y == 0) { System.out.println(0); } else { int a = (int)Math.sqrt(x * x + y * y); if (a * a == x * x + y * y) { System.out.println(1); } else { System.out.println(2); } } t -= 1; } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
b21fc9b9b2d40e6d6270acc09fc14e9d
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.Scanner; public class vc { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); for (int i = 0; i < t; i++) { double x = sc.nextDouble(); double y = sc.nextDouble(); if (x == 0.0 && y == 0.0) System.out.println(0); else System.out.println((Math.sqrt(x * x + y * y) % 1.0 == 0) ? 1 : 2); } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
bc2adb0992f8d2544d46ffa7cab33116
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while (t-- > 0) { int x = sc.nextInt(); int y = sc.nextInt(); if ( x == 0 && y== 0) { System.out.println(0); } else if ((double)Math.sqrt(x*x+y*y) == (int)Math.sqrt(x*x+y*y)) { System.out.println(1); } else if ((double)Math.sqrt(x*x+y*y) != (int)Math.sqrt(x*x+y*y)) { System.out.println(2); } } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
2e171cd6bdf8c0781d589a0abd7df098
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.nio.charset.StandardCharsets; import java.util.ArrayList; import java.util.List; import java.util.Scanner; public class AMinSteps { public static void main(String[] args) { Scanner sc = new Scanner(System.in, StandardCharsets.UTF_8.name()); String s1 = sc.nextLine(); Integer count = Integer.parseInt(s1); List<String> inputs = new ArrayList(); for(int i=0; i<count; i++){ inputs.add(sc.nextLine()); } for(int j=0; j<count; j++){ String s2 = inputs.get(j); int x = Integer.parseInt(s2.split(" ")[0]); int y = Integer.parseInt(s2.split(" ")[1]); if(x==0 && y==0){ System.out.println(0); continue; } if(Double.valueOf(Math.sqrt(x*x+y*y)).intValue() * Double.valueOf(Math.sqrt(x*x+y*y)).intValue() == x*x + y*y){ System.out.println(1); }else { System.out.println(2); } } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
dbcf1d829aa1cbb60790e1c3449d19c5
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.Scanner; public class ProblemA { public static void main(String[] args) { Scanner in = new Scanner(System.in); int t = in.nextInt(); int[][] point = new int[t][2]; for (int i = 0; i < t; i++) { point[i][0] = in.nextInt(); point[i][1] = in.nextInt(); } for (int i = 0; i < t; i++) { int x = point[i][0]; int y = point[i][1]; if (x == 0 && y == 0) { System.out.println(0); } else if (Math.round(Math.sqrt(x * x + y * y)) == Math.sqrt(x * x + y * y)) { System.out.println(1); } else { System.out.println(2); } } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
49623ee18176fbbee0010e2187f2f38f
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.io.*; import java.util.*; public final class Main { //int 2e9 - long 9e18 static PrintWriter out = new PrintWriter(System.out); static FastReader in = new FastReader(); static Pair[] moves = new Pair[]{new Pair(-1, 0), new Pair(0, 1), new Pair(1, 0), new Pair(0, -1)}; static int mod = (int) (1e9 + 7); static int mod2 = 998244353; public static void main(String[] args) { int tt = i(); while (tt-- > 0) { solve(); } out.flush(); } public static void solve() { int x = i(); int y = i(); if (x == 0 && y == 0) { out.println(0); } else { int z = x * x + y * y; int sq = (int) Math.sqrt(z); if (sq * sq == z) { out.println(1); } else { out.println(2); } } } // (10,5) = 2 ,(11,5) = 3 static long upperDiv(long a, long b) { return (a / b) + ((a % b == 0) ? 0 : 1); } static long sum(int[] a) { long sum = 0; for (int x : a) { sum += x; } return sum; } static int[] preint(int[] a) { int[] pre = new int[a.length + 1]; pre[0] = 0; for (int i = 0; i < a.length; i++) { pre[i + 1] = pre[i] + a[i]; } return pre; } static long[] pre(int[] a) { long[] pre = new long[a.length + 1]; pre[0] = 0; for (int i = 0; i < a.length; i++) { pre[i + 1] = pre[i] + a[i]; } return pre; } static long[] post(int[] a) { long[] post = new long[a.length + 1]; post[0] = 0; for (int i = 0; i < a.length; i++) { post[i + 1] = post[i] + a[a.length - 1 - i]; } return post; } static long[] pre(long[] a) { long[] pre = new long[a.length + 1]; pre[0] = 0; for (int i = 0; i < a.length; i++) { pre[i + 1] = pre[i] + a[i]; } return pre; } static void print(char A[]) { for (char c : A) { out.print(c); } out.println(); } static void print(boolean A[]) { for (boolean c : A) { out.print(c + " "); } out.println(); } static void print(int A[]) { for (int c : A) { out.print(c + " "); } out.println(); } static void print(long A[]) { for (long i : A) { out.print(i + " "); } out.println(); } static void print(List<Integer> A) { for (int a : A) { out.print(a + " "); } } static int i() { return in.nextInt(); } static long l() { return in.nextLong(); } static double d() { return in.nextDouble(); } static String s() { return in.nextLine(); } static String c() { return in.next(); } static int[][] inputWithIdx(int N) { int A[][] = new int[N][2]; for (int i = 0; i < N; i++) { A[i] = new int[]{i, in.nextInt()}; } return A; } static int[] input(int N) { int A[] = new int[N]; for (int i = 0; i < N; i++) { A[i] = in.nextInt(); } return A; } static long[] inputLong(int N) { long A[] = new long[N]; for (int i = 0; i < A.length; i++) { A[i] = in.nextLong(); } return A; } static int GCD(int a, int b) { if (b == 0) { return a; } else { return GCD(b, a % b); } } static long GCD(long a, long b) { if (b == 0) { return a; } else { return GCD(b, a % b); } } static long LCM(int a, int b) { return (long) a / GCD(a, b) * b; } static long LCM(long a, long b) { return a / GCD(a, b) * b; } // find highest i which satisfy a[i]<=x static int lowerbound(int[] a, int x) { int l = 0; int r = a.length - 1; while (l < r) { int m = (l + r + 1) / 2; if (a[m] <= x) { l = m; } else { r = m - 1; } } return l; } static void shuffle(int[] arr) { for (int i = 0; i < arr.length; i++) { int rand = (int) (Math.random() * arr.length); int temp = arr[rand]; arr[rand] = arr[i]; arr[i] = temp; } } static void shuffleAndSort(int[] arr) { for (int i = 0; i < arr.length; i++) { int rand = (int) (Math.random() * arr.length); int temp = arr[rand]; arr[rand] = arr[i]; arr[i] = temp; } Arrays.sort(arr); } static void shuffleAndSort(int[][] arr, Comparator<? super int[]> comparator) { for (int i = 0; i < arr.length; i++) { int rand = (int) (Math.random() * arr.length); int[] temp = arr[rand]; arr[rand] = arr[i]; arr[i] = temp; } Arrays.sort(arr, comparator); } static void shuffleAndSort(long[] arr) { for (int i = 0; i < arr.length; i++) { int rand = (int) (Math.random() * arr.length); long temp = arr[rand]; arr[rand] = arr[i]; arr[i] = temp; } Arrays.sort(arr); } static boolean isPerfectSquare(double number) { double sqrt = Math.sqrt(number); return ((sqrt - Math.floor(sqrt)) == 0); } static void swap(int A[], int a, int b) { int t = A[a]; A[a] = A[b]; A[b] = t; } static void swap(char A[], int a, int b) { char t = A[a]; A[a] = A[b]; A[b] = t; } static long pow(long a, long b, int mod) { long pow = 1; long x = a; while (b != 0) { if ((b & 1) != 0) { pow = (pow * x) % mod; } x = (x * x) % mod; b /= 2; } return pow; } static long pow(long a, long b) { long pow = 1; long x = a; while (b != 0) { if ((b & 1) != 0) { pow *= x; } x = x * x; b /= 2; } return pow; } static long modInverse(long x, int mod) { return pow(x, mod - 2, mod); } static boolean isPrime(long N) { if (N <= 1) { return false; } if (N <= 3) { return true; } if (N % 2 == 0 || N % 3 == 0) { return false; } for (int i = 5; i * i <= N; i = i + 6) { if (N % i == 0 || N % (i + 2) == 0) { return false; } } return true; } public static String reverse(String str) { if (str == null) { return null; } return new StringBuilder(str).reverse().toString(); } public static void reverse(int[] arr) { for (int i = 0; i < arr.length / 2; i++) { int tmp = arr[i]; arr[arr.length - 1 - i] = tmp; arr[i] = arr[arr.length - 1 - i]; } } public static String repeat(char ch, int repeat) { if (repeat <= 0) { return ""; } final char[] buf = new char[repeat]; for (int i = repeat - 1; i >= 0; i--) { buf[i] = ch; } return new String(buf); } public static int[] manacher(String s) { char[] chars = s.toCharArray(); int n = s.length(); int[] d1 = new int[n]; for (int i = 0, l = 0, r = -1; i < n; i++) { int k = (i > r) ? 1 : Math.min(d1[l + r - i], r - i + 1); while (0 <= i - k && i + k < n && chars[i - k] == chars[i + k]) { k++; } d1[i] = k--; if (i + k > r) { l = i - k; r = i + k; } } return d1; } public static int[] kmp(String s) { int n = s.length(); int[] res = new int[n]; for (int i = 1; i < n; ++i) { int j = res[i - 1]; while (j > 0 && s.charAt(i) != s.charAt(j)) { j = res[j - 1]; } if (s.charAt(i) == s.charAt(j)) { ++j; } res[i] = j; } return res; } } class Pair { int i; int j; Pair(int i, int j) { this.i = i; this.j = j; } @Override public boolean equals(Object o) { if (this == o) { return true; } if (o == null || getClass() != o.getClass()) { return false; } Pair pair = (Pair) o; return i == pair.i && j == pair.j; } @Override public int hashCode() { return Objects.hash(i, j); } } class ThreePair { int i; int j; int k; ThreePair(int i, int j, int k) { this.i = i; this.j = j; this.k = k; } @Override public boolean equals(Object o) { if (this == o) { return true; } if (o == null || getClass() != o.getClass()) { return false; } ThreePair pair = (ThreePair) o; return i == pair.i && j == pair.j && k == pair.k; } @Override public int hashCode() { return Objects.hash(i, j); } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } class Node { int val; public Node(int val) { this.val = val; } } class ST { int n; Node[] st; ST(int n) { this.n = n; st = new Node[4 * Integer.highestOneBit(n)]; } void build(Node[] nodes) { build(0, 0, n - 1, nodes); } private void build(int id, int l, int r, Node[] nodes) { if (l == r) { st[id] = nodes[l]; return; } int mid = (l + r) >> 1; build((id << 1) + 1, l, mid, nodes); build((id << 1) + 2, mid + 1, r, nodes); st[id] = comb(st[(id << 1) + 1], st[(id << 1) + 2]); } void update(int i, Node node) { update(0, 0, n - 1, i, node); } private void update(int id, int l, int r, int i, Node node) { if (i < l || r < i) { return; } if (l == r) { st[id] = node; return; } int mid = (l + r) >> 1; update((id << 1) + 1, l, mid, i, node); update((id << 1) + 2, mid + 1, r, i, node); st[id] = comb(st[(id << 1) + 1], st[(id << 1) + 2]); } Node get(int x, int y) { return get(0, 0, n - 1, x, y); } private Node get(int id, int l, int r, int x, int y) { if (x > r || y < l) { return new Node(0); } if (x <= l && r <= y) { return st[id]; } int mid = (l + r) >> 1; return comb(get((id << 1) + 1, l, mid, x, y), get((id << 1) + 2, mid + 1, r, x, y)); } Node comb(Node a, Node b) { if (a == null) { return b; } if (b == null) { return a; } return new Node(GCD(a.val, b.val)); } static int GCD(int a, int b) { if (b == 0) { return a; } else { return GCD(b, a % b); } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
74b2c50a8728ec68f87af24369f5aae4
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.*; import java.io.*; public class MyCpClass{ public static void main(String []args) throws IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringBuilder sb = new StringBuilder(); int T = Integer.parseInt(br.readLine().trim()); while(T-- > 0){ String []ip = br.readLine().trim().split(" "); int x = Integer.parseInt(ip[0]); int y = Integer.parseInt(ip[1]); int ans = 2, i = 1; int n = x*x + y*y; while(i*i <= n){ if(i*i == n) ans = 1; i++; } if(x==0 && y==0) ans = 0; sb.append(ans + "\n"); } System.out.println(sb); } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
691ce32295a15bc0db68e136b681f519
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.*; import java.io.*; public class A { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void swap(long[] a, int i, int j) { long temp = a[i]; a[i] = a[j]; a[j] = temp; } public static void main(String[] args) { // TODO Auto-generated method stub FastReader t = new FastReader(); PrintWriter o = new PrintWriter(System.out); int test = t.nextInt(); while (test-- > 0) { long m = t.nextLong(); long n = t.nextLong(); long max = Integer.MIN_VALUE, min = Integer.MAX_VALUE; // int n = t.nextInt(); // long[] a = new long[n]; // for (int i = 0; i < n; ++i) { // a[i] = t.nextLong(); // } double d = Math.sqrt(m*m+n*n); int ans = 0; if (m == 0 && n == 0) { } else if (d%1 == 0.00) ans = 1; else ans = 2; o.println(ans); } o.flush(); o.close(); } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
f728a80ea482410d5d15a4fc9f5dfa65
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.*; public class IntegerMoves { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while(t-->0) { int x = sc.nextInt(); int y = sc.nextInt(); double z = Math.sqrt(x*x+y*y); System.out.println(z==0?"0":z==(int)z?"1":"2"); } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
718488224cd4d0616ef4b4ba9bcc090d
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.*; public class IntegerMoves { public static void main(String[] args) { // TODO Auto-generated method stub Scanner sc=new Scanner(System.in); int t=sc.nextInt(); while(t-->0) { int x=sc.nextInt(); int y=sc.nextInt(); int temp=x*x+y*y; if(x==0&&y==0) System.out.println(0); else if(Math.sqrt(temp)==(int)Math.sqrt(temp)) System.out.println(1); else System.out.println(2); } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
7498c7cd028303f9aa727af4b9cc62ca
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.*; import java.io.*; public class IntegerMoves { public static void main(String[] args) throws IOException { Scanner scan = new Scanner (System.in); int n = scan.nextInt(); for(int i=0;i<n;i++) { int x = scan.nextInt(); int y = scan.nextInt(); int currx = 0; int curry = 0; int counter = 0; if(x==0 && y==0) { System.out.println(counter); } else { for(int j=x;j>=currx;j--) { for(int k=y;k>=curry;k--) { double sqrt = Math.sqrt((j-currx)*(j-currx)+(k-curry)*(k-curry)); if(sqrt==(int)sqrt) { counter++; currx = j; curry = k; j=x; k=y+1; if(x==currx &&y==curry) { break; } } } if(x==currx &&y==curry) { break; } } System.out.println(counter); } } } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public boolean ready() throws IOException { return br.ready(); } public int[] readArr(int n) throws IOException { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = Integer.parseInt(next()); } return arr; } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
7d1958cfd898311fdfe3fd833db2151e
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.io.*; import java.util.*; public class Main { static Reader rd = new Reader(); public static void main(String[] args) { int tt = rd.nextInt(); while (tt-- > 0) { new Solution().solve(); } } static class Solution { // int N = 51; void solve() { int x = rd.nextInt(), y = rd.nextInt(); // int[][] step = new int[N][N]; if (x == 0 && y == 0) { System.out.println(0); return; } long d = Math.round(Math.sqrt(x * x + y * y)); if (d * d == x * x + y * y) { System.out.println(1); return; } System.out.println(2); } } static class Reader { private BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); private StringTokenizer tokenizer = new StringTokenizer(""); private String innerNextLine() { try { return reader.readLine(); } catch (IOException ex) { throw new RuntimeException(ex); } } public boolean hasNext() { while (!tokenizer.hasMoreTokens()) { String nextLine = innerNextLine(); if (nextLine == null) { return false; } tokenizer = new StringTokenizer(nextLine); } return true; } public String nextLine() { tokenizer = new StringTokenizer(""); return innerNextLine(); } public String next() { hasNext(); return tokenizer.nextToken(); } public int nextInt() { return Integer.valueOf(next()); } public long nextLong() { return Long.valueOf(next()); } public double nextDouble() { return Double.valueOf(next()); } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
6cf43d7a4e8ae552f011dd0424ebc6bb
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class Main { public static void main(String args[]) throws java.lang.Exception { FastScanner input = new FastScanner(); int tc = input.nextInt(); work: while (tc-- > 0) { double x = input.nextDouble(); double y = input.nextDouble(); double dis = Math.sqrt(x*x+y*y); long one = (long) dis; long two = (long) Math.ceil(dis); if(one==two&&one==0L) { System.out.println("0"); } else if(one==two) { System.out.println(1); } else { System.out.println(2); } } } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() throws IOException { return br.readLine(); } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
7c896315903e772fdabc0b807cb59cbd
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Scanner; import java.util.*; import java.lang.Math; import java.util.StringTokenizer; public class nine { public static void main(String[] args){ int a, b, t; String str; FastReader in = new FastReader(); t = in.nextInt(); while(t-- > 0){ int x1 = 0; int y1 = 0; int x2 = in.nextInt(); int y2 = in.nextInt(); double distance = Math.sqrt(Math.pow(x1 - x2, 2) + Math.pow(y1 - y2, 2)); if(x2 == x1 && y2 == y1){ System.out.println(0); continue; } if(distance % 1 == 0){ System.out.println(1); }else{ System.out.println(2); } } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { if(st.hasMoreTokens()){ str = st.nextToken("\n"); } else{ str = br.readLine(); } } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
6b6bcf1fab2ecf3f6c9ae095036bdc14
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.Scanner; public class A1657 { public static void main(String[] args) { Scanner in = new Scanner(System.in); int T = in.nextInt(); for (int t=0; t<T; t++) { int X = in.nextInt(); int Y = in.nextInt(); int answer; double dist = Math.sqrt(X*X + Y*Y); if (dist == 0) { answer = 0; } else { answer = (dist == (int) dist) ? 1 : 2; } System.out.println(answer); } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
ca7eb757f86bb9a14bd2e1b34774ae95
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.io.*; import java.util.*; public class _1657a { FastScanner scn; PrintWriter w; PrintStream fs; int MOD = 1000000007; int MAX = 200005; long mul(long x, long y) {long res = x * y; return (res >= MOD ? res % MOD : res);} long power(long x, long y) {if (y < 0) return 1; long res = 1; x %= MOD; while (y!=0) {if ((y & 1)==1)res = mul(res, x); y >>= 1; x = mul(x, x);} return res;} void ruffleSort(int[] a) {int n=a.length;Random r=new Random();for (int i=0; i<a.length; i++) {int oi=r.nextInt(n), temp=a[i];a[i]=a[oi];a[oi]=temp;}Arrays.sort(a);} void reverseSort(int[] arr){List<Integer> list = new ArrayList<>();for (int i=0; i<arr.length; i++){list.add(arr[i]);}Collections.sort(list, Collections.reverseOrder());for (int i = 0; i < arr.length; i++){arr[i] = list.get(i);}} boolean LOCAL; void debug(Object... o){if(LOCAL)System.err.println(Arrays.deepToString(o));} //SPEED IS NOT THE CRITERIA, CODE SHOULD BE A NO BRAINER, CMP KILLS, MOCIM boolean checkPerfectSquare(double number) { //calculating the square root of the given number double sqrt=Math.sqrt(number); //finds the floor value of the square root and comparing it with zero return ((sqrt - Math.floor(sqrt)) == 0); } void solve(){ int t =scn.nextInt(); while(t-->0) { int x = scn.nextInt(); int y = scn.nextInt(); if(x==0&&y==0){ w.println(0); continue; } double xx =x,yy=y; double ans = (xx*xx)+(yy*yy); if(checkPerfectSquare(ans)){ w.println(1); }else{ w.println(2); } } } void run() { try { long ct = System.currentTimeMillis(); scn = new FastScanner(new File("input.txt")); w = new PrintWriter(new File("output.txt")); fs=new PrintStream("error.txt"); System.setErr(fs); LOCAL=true; solve(); w.close(); System.err.println(System.currentTimeMillis() - ct); } catch (FileNotFoundException e) { e.printStackTrace(); } } void runIO() { scn = new FastScanner(System.in); w = new PrintWriter(System.out); LOCAL=false; solve(); w.close(); } class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(File f) { try { br = new BufferedReader(new FileReader(f)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public FastScanner(InputStream f) { br = new BufferedReader(new InputStreamReader(f)); } String next() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return null; st = new StringTokenizer(s); } return st.nextToken(); } boolean hasMoreTokens() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return false; st = new StringTokenizer(s); } return true; } int nextInt() { return Integer.parseInt(next()); } int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } long[] nextLongArray(int n) { long a[] = new long[n]; for (int i = 0; i < n; i++) { a[i] = nextLong(); } return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } int lowerBound(int[] arr, int x){int n = arr.length, si = 0, ei = n - 1;while(si <= ei){int mid = si + (ei - si)/2;if(arr[mid] == x){if(mid-1 >= 0 && arr[mid-1] == arr[mid]){ei = mid-1;}else{return mid;}}else if(arr[mid] > x){ei = mid - 1; }else{si = mid+1;}}return si; } int upperBound(int[] arr, int x){int n = arr.length, si = 0, ei = n - 1;while(si <= ei){int mid = si + (ei - si)/2;if(arr[mid] == x){if(mid+1 < n && arr[mid+1] == arr[mid]){si = mid+1;}else{return mid + 1;}}else if(arr[mid] > x){ei = mid - 1; }else{si = mid+1;}}return si; } int upperBound(ArrayList<Integer> list, int x){int n = list.size(), si = 0, ei = n - 1;while(si <= ei){int mid = si + (ei - si)/2;if(list.get(mid) == x){if(mid+1 < n && list.get(mid+1) == list.get(mid)){si = mid+1;}else{return mid + 1;}}else if(list.get(mid) > x){ei = mid - 1; }else{si = mid+1;}}return si; } void swap(int[] arr, int i, int j){int temp = arr[i];arr[i] = arr[j];arr[j] = temp;} long nextPowerOf2(long v){if (v == 0) return 1;v--;v |= v >> 1;v |= v >> 2;v |= v >> 4;v |= v >> 8;v |= v >> 16;v |= v >> 32;v++;return v;} int gcd(int a, int b) {if(a == 0){return b;}return gcd(b%a, a);} // TC- O(logmax(a,b)) boolean nextPermutation(int[] arr) {if(arr == null || arr.length <= 1){return false;}int last = arr.length-2;while(last >= 0){if(arr[last] < arr[last+1]){break;}last--;}if (last < 0){return false;}if(last >= 0){int nextGreater = arr.length-1;for(int i=arr.length-1; i>last; i--){if(arr[i] > arr[last]){nextGreater = i;break;}}swap(arr, last, nextGreater);}int i = last + 1, j = arr.length - 1;while(i < j){swap(arr, i++, j--);}return true;} public static void main(String[] args) { new _1657a().runIO(); } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
9443a4a00e927f0bb21aa0876bc019d1
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.*; import java.io.*; public class Solution { public static void main(String[] args) throws IOException { Scanner in = new Scanner(System.in); BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringBuffer out = new StringBuffer(); int T = in.nextInt(); OUTER: while (T-->0) { int x = in.nextInt(); int y = in.nextInt(); int ans = -1; if(x==0 && y==0) { ans = 0; } else { double dist = Math.sqrt(x*x+y*y); if(dist == (int)dist) { ans = 1; } else { ans = 2; } } out.append(ans+"\n"); } System.out.print(out); } private static long gcd(long a, long b) { if (a==0) return b; return gcd(b%a, a); } private static int toInt(String s) { return Integer.parseInt(s); } private static long toLong(String s) { return Long.parseLong(s); } private static void print(String s) { System.out.print(s); } private static void println(String s) { System.out.println(s); } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
c78afa9510aabe6b016c16a99953fe12
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import javax.swing.*; import java.lang.reflect.Array; import java.text.DecimalFormat; import java.util.*; import java.lang.*; import java.io.*; import java.math.*; import java.util.stream.Stream; // Please name your class Main public class Main { static FastScanner fs=new FastScanner(); static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); public String next() { while (!st.hasMoreElements()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int Int() { return Integer.parseInt(next()); } long Long() { return Long.parseLong(next()); } String Str(){ return next(); } } public static void main (String[] args) throws java.lang.Exception { PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); //reading /writing file //Scanner in=new Scanner(System.in); //Scanner in=new Scanner(new File("input.txt")); //PrintWriter pr=new PrintWriter("output.txt") int T=1; for(int t=0;t<T;t++){ Solution sol1=new Solution(out,fs); sol1.solution(T,t); } out.flush(); } public static int[] Arr(int n){ int A[]=new int[n]; for(int i=0;i<n;i++)A[i]=Int(); return A; } public static int Int(){ return fs.Int(); } public static long Long(){ return fs.Long(); } public static String Str(){ return fs.Str(); } } class Solution { PrintWriter out; int INF = Integer.MAX_VALUE; int NINF = Integer.MIN_VALUE; int MOD = 998244353; int mod = 1000000007; Main.FastScanner fs; public Solution(PrintWriter out, Main.FastScanner fs) { this.out = out; this.fs = fs; } public void add(Map<Integer, Integer> f, int key) { Integer cnt = f.get(key); if(cnt == null) { f.put(key, 1); } else { f.put(key, cnt + 1); } } public void del(Map<Integer, Integer> f, int key) { Integer cnt = f.get(key); if(cnt == 1) { f.remove(key); } else { f.put(key, cnt - 1); } } public void msg(String s) { System.out.println(s); } public void solution(int all, int testcase) { int t = fs.Int(); while(t > 0) { t--; int x = fs.Int();int y = fs.Int(); if(x == 0 && y == 0) { out.println(0); } else { int sum = x * x + y * y; int sq = (int)(Math.sqrt(sum)); if(sq * sq == sum) { out.println(1); } else { out.println(2); } } } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
982d941ae483e3a5fd2b804940ed8186
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.*; import java.io.BufferedReader; import java.io.InputStreamReader; public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); // int a = 1; int t; t = in.nextInt(); //t = 1; while (t > 0) { // out.print("Case #"+(a++)+": "); solver.call(in,out); t--; } out.close(); } static class TaskA { public void call(InputReader in, PrintWriter out) { long x, y; x = in.nextLong(); y = in.nextLong(); if(x==0 && y==0){ out.println(0); return; } long a = x*x + y*y; long b = (long) Math.pow(a,0.5); if(b*b == a){ out.println(1); } else{ out.println(2); } } } static int gcd(int a, int b ) { if (a == 0) return b; return gcd(b % a, a); } static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } static class answer implements Comparable<answer>{ int a; long b, c; public answer(int a, long b, int c) { this.a = a; this.b = b; this.c = c; } public answer(int a, long b) { this.a = a; this.b = b; } @Override public int compareTo(answer o) { if(this.a == o.a){ return Long.compare(this.b, o.b); } return Integer.compare(this.a, o.a); } } static class answer1 implements Comparable<answer1>{ int a, b, c; public answer1(int a, int b, int c) { this.a = a; this.b = b; this.c = c; } public answer1(int a, int b) { this.a = a; this.b = b; } @Override public int compareTo(answer1 o) { if(this.b == o.b){ return Integer.compare(this.a, o.a); } return Integer.compare(this.b, o.b); } } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static void sort(long[] a) { ArrayList<Long> l = new ArrayList<>(); for (Long i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static final Random random=new Random(); static void shuffleSort(int[] a) { int n = a.length; for (int i=0; i<n; i++) { int oi= random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong(){ return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
aa0a9458ddee32ae73ab793f846ae271
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
// package faltu; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; import java.util.Map.Entry; public class Main { public static int upperBound(long[] arr, long m, int l, int r) { while(l<=r) { int mid=(l+r)/2; if(arr[mid]<=m) l=mid+1; else r=mid-1; } return l; } public static int lowerBound(long[] a, long m, int l, int r) { while(l<=r) { int mid=(l+r)/2; if(a[mid]<m) l=mid+1; else r=mid-1; } return l; } public static long getClosest(long val1, long val2,long target) { if (target - val1 >= val2 - target) return val2; else return val1; } static void ruffleSort(long[] a) { int n=a.length; Random r=new Random(); for (int i=0; i<a.length; i++) { long oi=r.nextInt(n), temp=a[i]; a[i]=a[(int)oi]; a[(int)oi]=temp; } Arrays.sort(a); } static void ruffleSort(int[] a){ int n=a.length; Random r=new Random(); for (int i=0; i<a.length; i++) { int oi=r.nextInt(n), temp=a[i]; a[i]=a[oi]; a[oi]=temp; } Arrays.sort(a); } int ceilIndex(int input[], int T[], int end, int s){ int start = 0; int middle; int len = end; while(start <= end){ middle = (start + end)/2; if(middle < len && input[T[middle]] < s && s <= input[T[middle+1]]){ return middle+1; }else if(input[T[middle]] < s){ start = middle+1; }else{ end = middle-1; } } return -1; } public static int findIndex(long arr[], long t) { if (arr == null) { return -1; } int len = arr.length; int i = 0; while (i < len) { if (arr[i] == t) { return i; } else { i = i + 1; } } return -1; } static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } static long lcm(long a,long b) { return (a / gcd(a, b)) * b; } public static int[] swap(int a[], int left, int right) { int temp = a[left]; a[left] = a[right]; a[right] = temp; return a; } public static void swap(long x,long max1) { long temp=x; x=max1; max1=temp; } public static int[] reverse(int a[], int left, int right) { // Reverse the sub-array while (left < right) { int temp = a[left]; a[left++] = a[right]; a[right--] = temp; } return a; } static int lowerLimitBinarySearch(ArrayList<Integer> A,int B) { int n =A.size(); int first = 0,second = n; while(first <second) { int mid = first + (second-first)/2; if(A.get(mid) > B) { second = mid; }else { first = mid+1; } } if(first < n && A.get(first) < B) { first++; } return first; //1 index } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } // *******----segement tree implement---***** // -------------START-------------------------- void buildTree (int[] arr,int[] tree,int start,int end,int treeNode) { if(start==end) { tree[treeNode]=arr[start]; return; } buildTree(arr,tree,start,end,2*treeNode); buildTree(arr,tree,start,end,2*treeNode+1); tree[treeNode]=tree[treeNode*2]+tree[2*treeNode+1]; } void updateTree(int[] arr,int[] tree,int start,int end,int treeNode,int idx,int value) { if(start==end) { arr[idx]=value; tree[treeNode]=value; return; } int mid=(start+end)/2; if(idx>mid) { updateTree(arr,tree,mid+1,end,2*treeNode+1,idx,value); } else { updateTree(arr,tree,start,mid,2*treeNode,idx,value); } tree[treeNode]=tree[2*treeNode]+tree[2*treeNode+1]; } // disjoint set implementation --start static void makeSet(int n) { parent=new int[n]; rank=new int[n]; for(int i=0;i<n;i++) { parent[i]=i; rank[i]=0; } } static void union(int u,int v) { u=findpar(u); v=findpar(v); if(rank[u]<rank[v])parent[u]=v; else if(rank[v]<rank[u])parent[v]=u; else { parent[v]=u; rank[u]++; } } private static int findpar(int node) { if(node==parent[node])return node; return parent[node]=findpar(parent[node]); } static int parent[]; static int rank[]; // *************end static void presumbit(int[][]prebitsum) { for(int i=1;i<=200000;i++) { int z=i; int j=0; while(z>0) { if((z&1)==1) { prebitsum[i][j]+=(prebitsum[i-1][j]+1); }else { prebitsum[i][j]=prebitsum[i-1][j]; } z=z>>1; j++; } } } public static int[] sort(int[] arr) { ArrayList<Integer> al = new ArrayList<>(); for(int i=0;i<arr.length;i++) al.add(arr[i]); Collections.sort(al); for(int i=0;i<arr.length;i++) arr[i]=al.get(i); return arr; } static ArrayList<String>powof2s; static void powof2S() { long i=1; while(i<(long)2e18) { powof2s.add(String.valueOf(i)); i*=2; } } static boolean coprime(int a, long l){ return (gcd(a, l) == 1); } static Long MOD=(long) (1e9+7); static int prebitsum[][]; static ArrayList<Integer>arr; static boolean[] vis; static ArrayList<ArrayList<Integer>>adj; public static void main(String[] args) throws IOException { // sieve(); // prebitsum=new int[200001][18]; // presumbit(prebitsum); // powof2S(); FastReader s = new FastReader(); long tt = s.nextLong(); while(tt-->0) { int x=s.nextInt(); int y=s.nextInt(); if(x==0&&y==0)System.out.println(0); else { double dis=Math.sqrt((x*x)+(y*y)); int temp1=(int) Math.ceil(dis); int temp2=(int) Math.floor(dis); if(temp1!=temp2)System.out.println(2); else System.out.println(1); } } } static void DFSUtil(int v, boolean[] visited) { visited[v] = true; Iterator<Integer> it = adj.get(v).iterator(); while (it.hasNext()) { int n = it.next(); if (!visited[n]) DFSUtil(n, visited); } } static long DFS(int n) { boolean[] visited = new boolean[n+1]; long cnt=0; for (int i = 1; i <= n; i++) { if (!visited[i]) { DFSUtil(i, visited); cnt++; } } return cnt; } public static String revStr(String str){ String input = str; StringBuilder input1 = new StringBuilder(); input1.append(input); input1.reverse(); return input1.toString(); } public static String sortString(String inputString){ char tempArray[] = inputString.toCharArray(); Arrays.sort(tempArray); return new String(tempArray); } static long myPow(long n, long i){ if(i==0) return 1; if(i%2==0) return (myPow(n,i/2)%MOD * myPow(n,i/2)%MOD)%MOD; return (n%MOD* myPow(n,i-i)%MOD)%MOD; } static void palindromeSubStrs(String str) { HashSet<String>set=new HashSet<>(); char[]a =str.toCharArray(); int n=str.length(); int[][]dp=new int[n][n]; for(int g=0;g<n;g++){ for(int i=0,j=g;j<n;j++,i++){ if(!set.contains(str.substring(i,i+1))&&g==0) { dp[i][j]=1; set.add(str.substring(i,i+1)); } else { if(!set.contains(str.substring(i,j+1))&&isPalindrome(str,i,j)) { dp[i][j]=1; set.add(str.substring(i,j+1)); } } } } int ans=0; for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { System.out.print(dp[i][j]+" "); if(dp[i][j]==1)ans++; } System.out.println(); } System.out.println(ans); } static boolean isPalindrome(String str,int i,int j) { while (i < j) { if (str.charAt(i) != str.charAt(j)) return false; i++; j--; } return true; } static boolean sign(long num) { return num>0; } static boolean isSquare(long x){ if(x==1)return true; long y=(long) Math.sqrt(x); return y*y==x; } static long power1(long a,long b) { if(b == 0){ return 1; } long ans = power(a,b/2); ans *= ans; if(b % 2!=0){ ans *= a; } return ans; } static void swap(StringBuilder sb,int l,int r) { char temp = sb.charAt(l); sb.setCharAt(l,sb.charAt(r)); sb.setCharAt(r,temp); } // function to reverse the string between index l and r static void reverse(StringBuilder sb,int l,int r) { while(l < r) { swap(sb,l,r); l++; r--; } } // function to search a character lying between index l and r // which is closest greater (just greater) than val // and return it's index static int binarySearch(StringBuilder sb,int l,int r,char val) { int index = -1; while (l <= r) { int mid = (l+r)/2; if (sb.charAt(mid) <= val) { r = mid - 1; } else { l = mid + 1; if (index == -1 || sb.charAt(index) >= sb.charAt(mid)) index = mid; } } return index; } // this function generates next permutation (if there exists any such permutation) from the given string // and returns True // Else returns false static boolean nextPermutation(StringBuilder sb) { int len = sb.length(); int i = len-2; while (i >= 0 && sb.charAt(i) >= sb.charAt(i+1)) i--; if (i < 0) return false; else { int index = binarySearch(sb,i+1,len-1,sb.charAt(i)); swap(sb,i,index); reverse(sb,i+1,len-1); return true; } } private static int lps(int m ,int n,String s1,String s2,int[][]mat) { for(int i=1;i<=m;i++) { for(int j=1;j<=n;j++) { if(s1.charAt(i-1)==s2.charAt(j-1))mat[i][j]=1+mat[i-1][j-1]; else mat[i][j]=Math.max(mat[i-1][j],mat[i][j-1]); } } return mat[m][n]; } static int lcs(String X, String Y, int m, int n) { int[][] L = new int[m+1][n+1]; // Following steps build L[m+1][n+1] in bottom up fashion. Note // that L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1] for (int i=0; i<=m; i++) { for (int j=0; j<=n; j++) { if (i == 0 || j == 0) L[i][j] = 0; else if (X.charAt(i-1) == Y.charAt(j-1)) L[i][j] = L[i-1][j-1] + 1; else L[i][j] = Math.max(L[i-1][j], L[i][j-1]); } } return L[m][n]; // Following code is used to print LCS // int index = L[m][n]; // int temp = index; // // // Create a character array to store the lcs string // char[] lcs = new char[index+1]; // lcs[index] = '\u0000'; // Set the terminating character // // // Start from the right-most-bottom-most corner and // // one by one store characters in lcs[] // int i = m; // int j = n; // while (i > 0 && j > 0) // { // // If current character in X[] and Y are same, then // // current character is part of LCS // if (X.charAt(i-1) == Y.charAt(j-1)) // { // // Put current character in result // lcs[index-1] = X.charAt(i-1); // // // reduce values of i, j and index // i--; // j--; // index--; // } // // // If not same, then find the larger of two and // // go in the direction of larger value // else if (L[i-1][j] > L[i][j-1]) // i--; // else // j--; // } // return String.valueOf(lcs); // Print the lcs // System.out.print("LCS of "+X+" and "+Y+" is "); // for(int k=0;k<=temp;k++) // System.out.print(lcs[k]); } static long lis(long[] aa2, int n) { long lis[] = new long[n]; int i, j; long max = 0; for (i = 0; i < n; i++) lis[i] = 1; for (i = 1; i < n; i++) for (j = 0; j < i; j++) if (aa2[i] >= aa2[j] && lis[i] <= lis[j] + 1) lis[i] = lis[j] + 1; for (i = 0; i < n; i++) if (max < lis[i]) max = lis[i]; return max; } static boolean isPalindrome(String str) { int i = 0, j = str.length() - 1; while (i < j) { if (str.charAt(i) != str.charAt(j)) return false; i++; j--; } return true; } static boolean issafe(int i, int j, int r,int c, char ch) { if (i < 0 || j < 0 || i >= r || j >= c|| ch!= '1')return false; else return true; } static long power(long a, long b) { a %=MOD; long out = 1; while (b > 0) { if((b&1)!=0)out = out * a % MOD; a = a * a % MOD; b >>= 1; a*=a; } return out; } static long[] sieve; public static void sieve() { int nnn=(int) 1e6+1; long nn=(int) 1e6; sieve=new long[(int) nnn]; int[] freq=new int[(int) nnn]; sieve[0]=0; sieve[1]=1; for(int i=2;i<=nn;i++) { sieve[i]=1; freq[i]=1; } for(int i=2;i*i<=nn;i++) { if(sieve[i]==1) { for(int j=i*i;j<=nn;j+=i) { if(sieve[j]==1) { sieve[j]=0; } } } } } } class decrease implements Comparator<Long> { // Used for sorting in ascending order of // roll number public int compare(long a, long b) { return (int) (b - a); } @Override public int compare(Long o1, Long o2) { // TODO Auto-generated method stub return (int) (o2-o1); } } class pair{ long x; long y; long c; char ch; public pair(long x,long y) { this.x=x; this.y=y; } public pair(long x,char ch) { this.x=x; this.ch=ch; } public pair(long x,long y,long c) { this.x=x; this.y=y; this.c=c; } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
537d47c9e45c00520b2790e7553342fb
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.Scanner; import java.io.IOException; import java.util.Scanner; import java.util.concurrent.CopyOnWriteArraySet; public class int_mov { static boolean isInteger(double N) { // Convert float value // of N to integer int X = (int)N; double temp2 = N - X; // If N is not equivalent // to any integer if (temp2 > 0) { return false; } return true; } public static void main(String[] args) { Scanner sc=new Scanner(System.in); int a= sc.nextInt(); for(int i=0;i<a ;i++) { int c = sc.nextInt(); int b = sc.nextInt(); double x=(Math.pow(c, 2) + Math.pow(b, 2)) ; // System.out.println(x); double R = Math.sqrt(x); // System.out.println(R); if(c==0 && b==0){ System.out.println("0"); } else if (isInteger(R)) { System.out.println("1"); } else { System.out.println("2"); } } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
4eeda3fc3855521abd87325a0d78621c
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.Scanner; public class IntegerMoves { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); while (t-->0){ int x=sc.nextInt(); int y=sc.nextInt(); if(x==0 && y==0){ System.out.println(0); } else if (Math.sqrt(x*x+y*y)==(int)Math.sqrt(x*x+y*y)){ System.out.println(1); } else { System.out.println(2); } } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
8b67eceb78755b6fcd4776a84d555805
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.Scanner; public class codevita { public static int solve(int x,int y) { if(x==0 && y==0) { return 0; } int a=(x*x)+(y*y); double b=Math.sqrt(a); if(Math.floor(b)==b) { return 1; }else { return 2; } } public static void main(String[] args) { Scanner s= new Scanner(System.in); int t=s.nextInt(); while(t-->0) { int x= s.nextInt(); int y= s.nextInt(); int a=solve(x,y); System.out.println(a); } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
6a0694af8588d83e5f908b5ba9eb753b
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.*; public class Main { public static void main(String[] args) { Scanner in = new Scanner(System.in); int T = in.nextInt(); while(T-- > 0) { int x = in.nextInt(); int y = in.nextInt(); double dis = Math.sqrt(x*x + y*y); int d = (int)Math.sqrt(x*x + y*y); if(dis == 0) { System.out.println(0); } else if(dis == d) { System.out.println(1); } else { System.out.println(2); } } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
311f0c0a494c86a49547ab36f4e0c403
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
/* package codechef; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class Codechef { public static void main (String[] args) throws java.lang.Exception { // your code goes here try { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); while(t-->0) { int x=sc.nextInt(); int y=sc.nextInt(); if(x==0 && y==0){ System.out.println(0); continue; } int root= (int)Math.sqrt(x*x + y*y); int temp=x*x + y*y; root*=root; if(root==temp) { System.out.println(1); continue; } System.out.println(2); } } catch(Exception e) { } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
9cf0427c3f9afc26308bb5c98789eeb0
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.Scanner; public class IntegerMoves{ public static double distance(int x1, int y1, int x2, int y2){ double dist = Math.sqrt((x2 - x1)*(x2 - x1) + (y2 - y1)*(y2 - y1)); return dist; } public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int x1 = 0; int y1 = 0; for(int i = 0; i < n; i++){ int x2 = sc.nextInt(); int y2 = sc.nextInt(); if(x2 == 0 && y2 == 0) System.out.println("0"); else{ double dist = distance(x1, y1, x2, y2); int d = (int)dist; if(d == dist){ System.out.println("1"); }else{ System.out.println("2"); } } } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
a5981d9f2db56161a45ba811ce1a67f8
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.util.*; import java.util.stream.IntStream; import java.io.*; public class Solution{ public static void main(String args[]){ Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while(t--!=0){ int x = sc.nextInt(); int y = sc.nextInt(); if(x==0 && y==0){ System.out.println("0"); continue; } int z = x*x+y*y; boolean b = false; if(z>=0){ int sr = (int)Math.sqrt(z); if(sr*sr == z){ b = true; } } if(b){ System.out.println("1"); } else{ System.out.println("2"); } } } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
bc3faed12bcc0e9d829b05a2809ddd83
train_110.jsonl
1647960300
There's a chip in the point $$$(0, 0)$$$ of the coordinate plane. In one operation, you can move the chip from some point $$$(x_1, y_1)$$$ to some point $$$(x_2, y_2)$$$ if the Euclidean distance between these two points is an integer (i.e. $$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$$ is integer).Your task is to determine the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
256 megabytes
import java.io.*; import java.util.*; public class A_Integer_Moves { public static void main(String[] args) { MyScanner s = new MyScanner(); int t = s.nextInt(); for(int f = 0;f<t;f++) { int x = s.nextInt(); int y = s.nextInt(); if(x==0 && y==0) { System.out.println(0); continue; } double a = Math.sqrt(x*x + y*y); if(a==Math.ceil(a)) { System.out.println(1); }else { System.out.println(2); } } } } class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["3\n8 6\n0 0\n9 15"]
2 seconds
["1\n0\n2"]
NoteIn the first example, one operation $$$(0, 0) \rightarrow (8, 6)$$$ is enough. $$$\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10$$$ is an integer.In the second example, the chip is already at the destination point.In the third example, the chip can be moved as follows: $$$(0, 0) \rightarrow (5, 12) \rightarrow (9, 15)$$$. $$$\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13$$$ and $$$\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5$$$ are integers.
Java 8
standard input
[ "brute force", "math" ]
fce6d690c2790951f7e04c622c3c2d44
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 3000$$$) — number of test cases. The single line of each test case contains two integers $$$x$$$ and $$$y$$$ ($$$0 \le x, y \le 50$$$) — the coordinates of the destination point.
800
For each test case, print one integer — the minimum number of operations required to move the chip from the point $$$(0, 0)$$$ to the point $$$(x, y)$$$.
standard output
PASSED
c251ffa4fd996c1eb0b8a58d1d9f36a8
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.util.*; public class XY_sequence { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); for(int i=0;i<t;i++) { long n,b,x,y,sum; n=sc.nextLong(); b=sc.nextLong(); x=sc.nextLong(); y=sc.nextLong(); sum=0; long a=0; for(int j=0;j<n;j++) { if(a+x<=b) { a=a+x; } else { a=a-y; } sum=sum+a; } System.out.println(sum); } } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
794e41a9c674749ebaf4c5ff2e1d2bee
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.util.*; public class Solution { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); sc.nextLine(); for(int i=0;i<t;i++){ long n=sc.nextInt(); long b=sc.nextInt(); long x=sc.nextInt(); long y=sc.nextInt(); long prev=0; long count=0; for(int j=0;j<=n;j++){ count+=prev; if(prev+x<=b) prev=prev+x; else prev=prev-y; } System.out.println(count); } } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
9f71b6f8252b0bfc12eb139ed5f4af06
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.util.*; public class Round_124_Div2 { public static void main(String[] args) { Scanner str = new Scanner(System.in); int t = str.nextInt(); for (int i = 0; i < t; i++) { int n = str.nextInt(); int b = str.nextInt(); int x = str.nextInt(); int y = str.nextInt(); long sum = 0; int arr[] = new int[n + 1]; arr[0] = 0; for (int j = 1; j <= n; j++) { if(Math.max(arr[j-1] + x, arr[j-1] - y) <= b){ arr[j] = Math.max(arr[j-1] + x, arr[j-1] - y); } else{ arr[j] = Math.min(arr[j-1] + x, arr[j-1] - y); } sum += arr[j]; } System.out.println(sum); } } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
26199ce3ecdc1c6b724fb98cae5f9e28
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.util.*; public class Main{ public static void main(String[] args) { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); while(t-->0) { int n=sc.nextInt(); int b=sc.nextInt(); int x=sc.nextInt(); int y=sc.nextInt(); long sum=0,str=0; while(n>0) { if(str+x<=b) { str+=x; sum+=str; } else { str-=y; sum+=str; } n--; // System.out.println(sum); } System.out.println(sum); } }}
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
3044e863c47dbf4053571873b62cd7bf
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.util.*; public class Main { public static void main(String[] args) { // System.out.println(" afddfadf"); Scanner scn = new Scanner(System.in); int t = scn.nextInt(); while(t-->0) { // System.out.println(); int n = scn.nextInt(); long b = scn.nextLong(); long x = scn.nextLong(); long y = scn.nextLong(); long a = 0; long sum = 0; for(int i=1;i<=n;i++) { if(a+x<=b) { a = a+x; }else { a = a-y; } sum+=a; } System.out.println(sum); } } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
7b75f83e6d0ac015ee70b47092534eac
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.*; public class Main{ public static void main(String[] args)throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int testCases = Integer.parseInt(br.readLine()); StringBuilder result = new StringBuilder(); StringTokenizer str; for(int testCase = 1; testCase <= testCases; testCase++){ str = new StringTokenizer(br.readLine()); int n = Integer.parseInt(str.nextToken()); long B = Long.parseLong(str.nextToken()); long x = Long.parseLong(str.nextToken()); long y = Long.parseLong(str.nextToken()); long sum = 0, num = 0; while(n > 0){ if(n > 0 && ((num + x) <= B)){ num += x; n--; sum += num; }else{ num -= y; n--; sum += num; } } result.append(sum + "\n"); } System.out.println(result); } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
fba4c84ff9120113c3110cc6dc7f5b40
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.util.*; // Compiler version JDK 11.0.2 public class Dcoder { public static void main(String args[]) { Scanner s=new Scanner(System.in); int t=s.nextInt(); while(t-->0) { int n=s.nextInt(); int B=s.nextInt(); int x=s.nextInt(); int y=s.nextInt(); long ans=0; int a=0; while(n-->0) { if(a+x<=B) a+=x; else a-=y; ans+=a; } System.out.println(ans); } s.close(); } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
5eb01d74c65cc32bbd9452dfa7ee68b4
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.util.Scanner; public class Test { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int tc = sc.nextInt(); while (tc-- > 0) { int n = sc.nextInt(); int B = sc.nextInt(); int x = sc.nextInt(); int y = sc.nextInt(); int[] arr = new int[n + 1]; arr[0] = 0; for (int i = 1; i < arr.length; i++) { if (arr[i - 1] + x > B) { arr[i] = arr[i - 1] - y; } else if (arr[i - 1] - y > B) { arr[i] = arr[i - 1] + x; } else { arr[i] = Math.max(arr[i - 1] + x, arr[i - 1] - y); } } // System.out.println(Arrays.toString(arr)); long ans = 0; for (int i = 1; i < arr.length; i++) { ans += arr[i]; } System.out.println(ans); } } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
12707e7735fc9101bef1deba29baf541
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java .util.Scanner; public class Experts { public static void main(String[] args) { Scanner input=new Scanner(System.in); int t=input.nextInt(); while(t!=0){ long sum=0; long num=0; long n=input.nextInt(); long b=input.nextInt(); long x=input.nextInt(); long y=input.nextInt(); for(int i=0;i<n;i++){ if(num+x<=b) num+=x; else{ num-=y; } sum+=num; } System.out.println(sum); t--; } } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
5d8e987dc3243bc9441785e45933dff4
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.util.Scanner; public class XYSequence { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int t = scanner.nextInt(); for (int i = 0; i < t; i++) { long n = scanner.nextLong(), b = scanner.nextLong(), x = scanner.nextLong(), y = scanner.nextLong(); long sum = 0; long max = 0; for (int j = 0; j < n; j++) { long min = Long.min(max + x, max - y); max = Long.max(max + x, max - y); sum += max <= b ? max : min; max = max <= b ? max : min; } System.out.println(sum); } } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
caba5b82bedab0a3da303f23c27bf8f9
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.util.Scanner; public class XYSequence { public static void main(String[] args) { Scanner scanner=new Scanner(System.in); int t=scanner.nextInt(); for (int i = 0; i < t; i++) { int n=scanner.nextInt(); int b=scanner.nextInt(); int x=scanner.nextInt(); int y=scanner.nextInt(); long sum=0;int s=0; for (int i1 = 0; i1 < n; i1++) { if (s+x<=b) {s+=x;sum+=s;} else {s-=y;sum+=s;} } System.out.println(sum); } } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
e5ef1fae925fda46e497a162a51727c4
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while (t > 0) { int n = sc.nextInt(); int B = sc.nextInt(); int x = sc.nextInt(); int y = sc.nextInt(); long ans = 0, curr = 0; for (int i = 1; i <= n; ++i) { if (curr + x <= B) { curr = curr + x; } else { curr = curr - y; } ans += curr; } System.out.println(ans); t--; } sc.close(); } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
95ccc25c315e084267a66d43d12d323e
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while (t > 0) { int n = sc.nextInt(); int B = sc.nextInt(); int x = sc.nextInt(); int y = sc.nextInt(); long ans = 0, ansX, ansY; long arr[] = new long[n + 1]; arr[0] = 0; for (int i = 1; i <= n; ++i) { ansX = arr[i - 1] + x; if (ansX <= B) { arr[i] = ansX; ans += arr[i]; } else { ansY = arr[i - 1] - y; arr[i] = ansY; ans += arr[i]; } } System.out.println(ans); t--; } sc.close(); } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
8684780ea077988e0228998e76663119
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while (t > 0) { int n = sc.nextInt(); int B = sc.nextInt(); int x = sc.nextInt(); int y = sc.nextInt(); long ansX, ansY; long arr[] = new long[n + 1]; arr[0] = 0; for (int i = 1; i <= n; ++i) { ansX = arr[i - 1] + x; if (ansX <= B) { arr[i] = ansX; } else { ansY = arr[i - 1] - y; arr[i] = ansY; } } long ans = 0; for (int i = 0; i <= n; i++) { ans += arr[i]; } System.out.println(ans); t--; } sc.close(); } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
665d63683928c113b43779a876d2e83e
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
/****************************************************************************** Welcome to GDB Online. GDB online is an online compiler and debugger tool for C, C++, Python, Java, PHP, Ruby, Perl, C#, VB, Swift, Pascal, Fortran, Haskell, Objective-C, Assembly, HTML, CSS, JS, SQLite, Prolog. Code, Compile, Run and Debug online from anywhere in world. *******************************************************************************/ import java.util.*; public class Main { private static boolean elcheckx(int prev,int x, int B) { int next; next=prev+x; if(next<=B) { return true; } return false; } private static boolean elchecky(int prev,int y, int B) { int nexty; nexty=prev-y; if(nexty<=B) { return true; } return false; } public static void main(String[] args) { int n,B,x,y,t; Scanner in=new Scanner(System.in); t=in.nextInt(); for(int j=0;j<t;j++) { n=in.nextInt()+1; B=in.nextInt(); x=in.nextInt(); y=in.nextInt(); int seq[]= new int[n]; seq[0]=0; //code starts anywhere for(int i=1;i<n;i++) { int nx; nx=seq[i-1]+x; int ny; ny=seq[i-1]-y; if(elcheckx(seq[i-1],x,B) && elchecky(seq[i-1],y,B)) { if(nx>ny) seq[i]=nx; else seq[i]=ny; } else if(elcheckx(seq[i-1],x,B)) { seq[i]=nx; } else if(elchecky(seq[i-1],y,B)) { seq[i]=ny; } } long sum=0; for(int i=0;i<n;i++){ sum+=seq[i]; } System.out.println(sum); } } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
e33f2bf6723c78b46ee3c7786209cbf2
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.util.*; import java.io.*; import java.lang.*; public class Main { public static void main(String[] args) { Scanner scan = new Scanner(System.in); int number_of_inputs = scan.nextInt(); List<Long> final_list = new ArrayList<Long>(); for (int i=0;i<number_of_inputs;i++) { int n = scan.nextInt(); int B = scan.nextInt(); int x = scan.nextInt(); int y = scan.nextInt(); int sum = 0; List<Integer> new_list = new ArrayList<>(); for (int j=0;j<n;j++) { int summation = sum+x; int difference = sum-y; if ((B-summation < B-difference) && (summation <= B)) { sum = summation; new_list.add(sum); } else { sum = difference; new_list.add(sum); } } long final_sum = 0; for (int item:new_list) final_sum += item; final_list.add(final_sum); } for (long item:final_list)System.out.println(item); } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
29cfb542cc8ce1547aa966ecde87b4a9
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.util.*; import java.math.*; import java.io.*; public class Solution { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void inmatrix(int [][]a, int n, int m) { for (int i = 0; i < n; i++) { String s = sc.next(); for (int j = 0; j < m; j++) { a[i][j] = s.charAt(j) - '0'; } } } public static void main(String[] args) throws IOException { sc = new FastReader(); out = new PrintWriter(System.out); // primes(); // ________________________________ StringBuilder output = new StringBuilder(); int test = sc.nextInt(); // int test = 1; int t = test; while (test-- > 0) { int n = sc.nextInt(); long B = sc.nextLong(); long x = sc.nextLong(); long y = sc.nextLong(); solver(n,B,x,y); } out.flush(); } public static void solver( int n, long B,long x, long y) { long ans [] = new long[n+1]; for(int i =1;i<=n;i++) { long pos = ans[i-1]+x; if(pos<=B) { ans[i] = pos; } else ans[i] =ans[i-1]-y; } long sum =0; for(long i :ans) sum+=i; System.out.println(sum); } static void sort(int a[]) { // int -> long ArrayList<Integer> arr = new ArrayList<>(); // Integer -> Long for (int i = 0; i < a.length; i++) arr.add(a[i]); Collections.sort(arr); for (int i = 0; i < a.length; i++) a[i] = arr.get(i); } static class Pair implements Comparable<Pair> { long val; int idx; Pair(long val, int idx) { this.val = val; this.idx = idx; } public int compareTo(Pair o) { if(o.val >this.val) return 1; else if(o.val==this.val) return 0; else return -1; } } public static void leftRotate(int a[], int n, int k) { k = k % n; reverseArray(a, 0, k - 1); reverseArray(a, k, n - 1); reverseArray(a, 0, n - 1); } private static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } private static void inarr(long a[]) { for (int i = 0; i < a.length; i++) { a[i] = sc.nextLong(); } } private static long pow(long x, long y) { if (y == 0) return 1; long temp = pow(x, y / 2); if (y % 2 == 1) { return x * temp * temp; } else { return temp * temp; } } static long powM(long a, long b) { if (b == 0) return 1; long res = pow(a, b / 2); res = (res % mod * res % mod) % 1_000_000_007; if (b % 2 == 1) { res = (res % mod * a % mod) % 1_000_000_007; } return res % mod; } static int log(long n) { int res = 0; while (n > 0) { res++; n /= 2; } return res; } static int mod = (int) 1e9 + 7; static PrintWriter out; static FastReader sc; static class Edge { int u, v; Edge(int u, int v) { this.u = u; this.v = v; } } // static class Pair implements Comparable <Pair>{ // int l, r; // // Pair(int l, int r) // { // this.l = l; // this.r = r; // // } // public int compareTo(Pair o) // { // // return this.l-o.l; // } // } static long[] dp; public static int setbitcnt(long n) { int nb = 0; while (n != 0) { long rmsb = n & (-n); n = n - rmsb; nb++; } return nb; } public static long log2(long N) { // calculate log2 N indirectly // using log() method long result = (long) (Math.log(N) / Math.log(2)); return result; } static long highestPowerof2(long x) { // check for the set bits x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; // Then we remove all but the top bit by xor'ing the // string of 1's with that string of 1's shifted one to // the left, and we end up with just the one top bit // followed by 0's. return x ^ (x >> 1); } public static void rotate(int[] arr, int s, int n) { int x = arr[n], i; for (i = n; i > s; i--) arr[i] = arr[i - 1]; arr[s] = x; // for(int j=s;j<=n;j++) // System.out.print(arr[j]+" "); // System.out.println(); } static int lower_bound(int[] a, long x) { int i = 0; int j = a.length - 1; // if(arr[i] > key)return -1; if (a[j] < x) return a.length; while (i < j) { int mid = (i + j) / 2; if (a[mid] == x) { j = mid; } else if (a[mid] < x) { i = mid + 1; } else j = mid - 1; } return i; } int upper_bound(int[] arr, int key) { int i = 0; int j = arr.length - 1; if (arr[j] <= key) return j + 1; while (i < j) { int mid = (i + j) / 2; if (arr[mid] <= key) { i = mid + 1; } else j = mid; } return i; } static void reverseArray(int arr[], int start, int end) { while (start < end) { int temp = arr[start]; arr[start] = arr[end]; arr[end] = temp; start++; end--; } } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
e452cc53198c8bfe0b596cd7a4e8454b
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.util.Scanner; //https://codeforces.com/contest/1657/problem/B public class XYSeq { public static void main(String[] args) { Scanner input = new Scanner(System.in); long testcases = input.nextLong(); long n = 0; long B = 0; long x = 0; long y = 0; for (long i = 0; i < testcases; i++) { n = input.nextLong(); B = input.nextLong(); x = input.nextLong(); y = input.nextLong(); long ans = helper(n, B, x, y, 0); System.out.println(ans); } } public static long helper(long n, long B, long x, long y, long a) { if (n == 0) { return a; } if (a + x <= B) { return helper(n - 1, B, x, y, a + x) + a; } return helper(n - 1, B, x, y, a - y) + a; } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
4cd083c9786f6e7188e5e25294e1dd6c
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.io.*; import java.util.*; public class JavaApplication { static BufferedReader in; static StringTokenizer st; String getLine() throws IOException { return in.readLine(); } String getToken() throws IOException { if (st == null || !st.hasMoreTokens()) st = new StringTokenizer(getLine()); return st.nextToken(); } int getInt() throws IOException { return Integer.parseInt(getToken()); } long getLong() throws IOException { return Long.parseLong(getToken()); } public void Solve() throws IOException { int t = getInt(); while (t-- > 0) { int n = getInt(); int B = getInt(); int x = getInt(); int y = getInt(); List<Long> a = new ArrayList<Long>(); a.add(0l); int i = 1; long sum = 0; while (i <= n) { int pos = a.size() - 1; long temp = a.get(pos) + x; while (i <= n && temp <= B) { a.add(temp); i++; pos = a.size() - 1; temp = a.get(pos) + x; } pos = a.size() - 1; temp = a.get(pos) - y; if (i <= n) { a.add(temp); i++; } } for (Long num : a) { sum += num; } System.out.println(sum); } } public static void main(String[] args) throws java.lang.Exception { in = new BufferedReader(new InputStreamReader(System.in)); new JavaApplication().Solve(); return; } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
4597fe3b6bad9952129693f05fa50d8d
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.util.Scanner; public class solut { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while (t-->0){ int n = sc.nextInt(); int b = sc.nextInt(); int x = sc.nextInt(); int y = sc.nextInt(); int[] arr = new int[n+1]; arr[0] = 0; int ans = 0; long sum = 0; for(int i = 1; i<n+1; i++){ if((ans+x)<=b){ arr[i] = ans+x; ans+=x; } else{ arr[i] = ans-y; ans-=y; } } for(int j = 0; j<n+1; j++){ sum+=arr[j]; } //System.out.println(Arrays.toString(arr)); System.out.println(sum); } } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
6301602a1cc59be3e0a9849005788662
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.util.*; public class Main { // Driver Code public static void main(String args[]) { Scanner sc= new Scanner(System.in); int j=sc.nextInt(); long n,b,x,y; long a=0,d; long sum=0; for (int i=0; i<j;i++) { n = sc.nextLong(); b = sc.nextLong(); x = sc.nextLong(); y = sc.nextLong(); //System.out.println(n +" "+" "+b+ " "+x+" "+y); for (int k = 0; k < n; k++) { if ((a + x) <= b) { a = a + x; } else { a = a - y; } //System.out.println(a); sum = sum + a; } System.out.println(sum); sum=0; a=0; } } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
8f3293784053203f19414da07a2d34b2
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.util.*; public class B{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); int T =sc.nextInt(); while(T-->0){ int n = sc.nextInt(); int B = sc.nextInt(); int x = sc.nextInt(); int y = sc.nextInt(); int a[] = new int[n+1]; long sum = 0; a[0]=0; for(int i=1;i<=n;i++){ if(a[i-1]+x<=B) a[i]=a[i-1]+x; else a[i]=a[i-1]-y; } for(int i=0;i<=n;i++) sum+=a[i]; System.out.println(sum); } } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
d78136ab97bb5c125a1fdd82f24b3f68
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.util.*; public class Play { public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while (t -- > 0) { int n = sc.nextInt(); long b = sc.nextLong(), x = sc.nextLong(), y = sc.nextLong(); long ans = 0, prev = 0; for (int i=1; i<=n; i++) { long add = prev + x, minus = prev - y; if (add <= b && minus <= b) { prev = Math.max(add, minus); } else if (add < b) { prev = add; } else { prev = minus; } // System.out.println("add: "+add + " minus " + minus + " prev " + prev); ans += prev; } System.out.println(ans); } } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
87e7e48394ade5eed6a442fd049d683a
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.util.Scanner; public class Solution { public static void main(String[] args) { try (Scanner sc = new Scanner(System.in)) { int t = sc.nextInt(); while(t > 0) { int n = sc.nextInt(); long B = sc.nextLong(); long x = sc.nextLong(); long y = sc.nextLong(); long start = 0; long sum = 0; int c = 1; while(c <= n) { if(start + x <= B) { sum += start + x; start = start + x; } else { sum += start - y; start = start - y; } c++; } System.out.println(sum); t = t - 1; } } } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
0ff412c2bfad0dd4115e078777c840f8
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.util.Scanner; // Import the Scanner class import java.util.ArrayList; // import the ArrayList class public class Main { public static void main(String[] args) { Scanner input = new Scanner(System.in); int n = input.nextInt(); long [][] arr = new long[n][4]; for(int i = 0 ; i < n; i ++) { for(int j = 0; j < arr[0].length; j++) { long a = input.nextLong(); arr[i][j] = a; } } for(int i = 0 ; i < arr.length; i ++) { long x = retNum(arr[i]); System.out.println(x); } } public static long retNum(long[] arr) { long sum = 0; long newNum = 0; long counter = 0; while(counter < arr[0]) { long temp; temp = newNum; temp += arr[2]; if(temp > arr[1]) { newNum -= arr[3]; } else { newNum += arr[2]; } sum += newNum; counter ++; } return sum; } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
65351a148cce030a307fc0c5155579db
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.util.Scanner; public class Main { public static void main(String argc[]){ Scanner sc =new Scanner(System.in); int t=sc.nextInt(); while(t-->0){ long n=sc.nextInt(),B=sc.nextInt(),x=sc.nextInt(),y= sc.nextInt(); long sum=0,cur=0; for(int i=1;i<=n;i++){ if(cur+x<=B){ cur+=x; } else { cur-=y; } sum+=cur; } System.out.println(sum); } } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
ee43ad914ed3e7bd4d516a4f0711102a
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class CFER1215B { public static void main(String[] args) throws java.io.IOException{ InputReader in = new InputReader(); int t = in.readInt(); for(; t>0; t--) { long[] a = in.readLongArray(4); long n = a[0]; long b = a[1]; long x = a[2]; long y = a[3]; long p = 0; long sum = 0; for(int i=0; i<n; i++) { if(p+x <= b) { // System.out.print(p + " "); sum += p+x; p = p+x; } else { // System.out.print(p + " "); sum += p-y; p = p-y; } } // System.out.println(p + " "); System.out.println(sum); } } public static class InputReader { static BufferedReader br; static StringTokenizer st; InputReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public String read() throws IOException { return br.readLine().trim(); } public int readInt() throws IOException { return Integer.parseInt(br.readLine().trim()); } public long readLong() throws IOException { return Long.parseLong(br.readLine().trim()); } public int[] readArray(int len) throws IOException { int[] a = new int[len]; st = new StringTokenizer(br.readLine().trim()); int pos = 0; for(;st.hasMoreTokens();) { a[pos++] = Integer.parseInt(st.nextToken()); } return a; } public long[] readLongArray(int len) throws IOException { long[] a = new long[len]; st = new StringTokenizer(br.readLine().trim()); int pos = 0; for(;st.hasMoreTokens();) { a[pos++] = Long.parseLong(st.nextToken()); } return a; } } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output
PASSED
aa6f8f8ce8a221f857036b27c656e1d7
train_110.jsonl
1647960300
You are given four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$. You should build a sequence $$$a_0, a_1, a_2, \dots, a_n$$$ where $$$a_0 = 0$$$ and for each $$$i \ge 1$$$ you can choose: either $$$a_i = a_{i - 1} + x$$$ or $$$a_i = a_{i - 1} - y$$$. Your goal is to build such a sequence $$$a$$$ that $$$a_i \le B$$$ for all $$$i$$$ and $$$\sum\limits_{i=0}^{n}{a_i}$$$ is maximum possible.
256 megabytes
import java.util.Scanner; public class name { public static void main(String[] args) { // write your code here Scanner in = new Scanner(System.in); int cases = in.nextInt(); for(int i =0; i<cases; i++){ long total = 0; int rounds = in.nextInt(); int max = in.nextInt(); int cur=0; int x = in.nextInt(); int y = in.nextInt(); for(int j =0; j<rounds; j++){ if(cur+x<= max){ total+= cur+x; cur=cur+x; } else{ total+=(cur-y); cur=cur-y; } } System.out.println(total); } } }
Java
["3\n5 100 1 30\n7 1000000000 1000000000 1000000000\n4 1 7 3"]
2 seconds
["15\n4000000000\n-10"]
NoteIn the first test case, the optimal sequence $$$a$$$ is $$$[0, 1, 2, 3, 4, 5]$$$.In the second test case, the optimal sequence $$$a$$$ is $$$[0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9]$$$.In the third test case, the optimal sequence $$$a$$$ is $$$[0, -3, -6, 1, -2]$$$.
Java 11
standard input
[ "greedy" ]
2c921093abf2c5963f5f0e96cd430456
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Next $$$t$$$ cases follow. The first and only line of each test case contains four integers $$$n$$$, $$$B$$$, $$$x$$$ and $$$y$$$ ($$$1 \le n \le 2 \cdot 10^5$$$; $$$1 \le B, x, y \le 10^9$$$). It's guaranteed that the total sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
800
For each test case, print one integer — the maximum possible $$$\sum\limits_{i=0}^{n}{a_i}$$$.
standard output