exec_outcome
stringclasses 1
value | code_uid
stringlengths 32
32
| file_name
stringclasses 111
values | prob_desc_created_at
stringlengths 10
10
| prob_desc_description
stringlengths 63
3.8k
| prob_desc_memory_limit
stringclasses 18
values | source_code
stringlengths 117
65.5k
| lang_cluster
stringclasses 1
value | prob_desc_sample_inputs
stringlengths 2
802
| prob_desc_time_limit
stringclasses 27
values | prob_desc_sample_outputs
stringlengths 2
796
| prob_desc_notes
stringlengths 4
3k
⌀ | lang
stringclasses 5
values | prob_desc_input_from
stringclasses 3
values | tags
sequencelengths 0
11
| src_uid
stringlengths 32
32
| prob_desc_input_spec
stringlengths 28
2.37k
⌀ | difficulty
int64 -1
3.5k
⌀ | prob_desc_output_spec
stringlengths 17
1.47k
⌀ | prob_desc_output_to
stringclasses 3
values | hidden_unit_tests
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PASSED | ee42852f6bbf90a5fd82a842e3e25165 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class D{
static FastScanner fs = null;
public static void main(String[] args) {
fs = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
int t = fs.nextInt();
Set<Long> set = new HashSet<>();
ArrayList<Long> set1 = new ArrayList<>();
long num = (long)1e12+2;
int c = 0;
while (true) {
long nu = (long)1<<c;
if(nu>num)
break;
set.add(nu);
c+=1;
}
long fact = (long)1;
for(int i=2;i<=num;i++){
fact*=(long)i;
if(fact>num)
break;
if(i==2)
continue;
set1.add(fact);
}
while (t-->0) {
long n = fs.nextLong();
int ans = 100000;
if(set.contains(n)){
ans = 1;
}
else{
int u = (int)Math.pow(2,13)-1;
for(int i = 0;i<u;i++){
int cc = 0;
long su = (long)0;
for(int j = 0;j<12;j++){
int g = 1<<j;
if((i&g)!=0){
su+=(long)set1.get(j);
cc+=1;
}
}
if(su==n){
ans = Math.min(ans,cc);
}
else if(n>su){
long dd = n-su;
int ff = 0;
while (dd>(long)0) {
ff+=dd%(long)2;
dd/=(long)2;
}
ans = Math.min(ans,cc+ff);
}
}
}
out.println(ans);
}
out.close();
}
static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 54b1ddeef844f874a92cdf597fb4862f | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.Scanner;
public class C1646 {
public static void main(String[] args) {
long[] fact = new long[15];
fact[0] = 1;
for (int i=1; i<fact.length; i++) {
fact[i] = i*fact[i-1];
}
int limit = 1 << fact.length;
Scanner in = new Scanner(System.in);
int T = in.nextInt();
for (int t=0; t<T; t++) {
long N = in.nextLong();
int min = Integer.MAX_VALUE;
for (int mask=0; mask<limit; mask++) {
long sum = 0;
for (int bit=0; bit<fact.length; bit++) {
if (((1 << bit) & mask) != 0) {
sum += fact[bit];
}
}
if (sum <= N) {
int cand = Integer.bitCount(mask) + Long.bitCount(N-sum);
min = Math.min(min, cand);
}
}
System.out.println(min);
}
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 2c5424d8582b20c84d882964ba0bd5fd | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
public class Main{
public static void main(String[] args){
long[] fact = new long[15];
fact[0] = 1;
for(int i = 1; i <= 14; ++i){
fact[i] = fact[i - 1] * i;
}
long[] sum = new long[1 << 15];
for(int i = 0; i < 1 << 15; ++i){
long sm = 0;
for(int j = i, lb = j & -j; lb != 0; j -= lb, lb = j & -j){
sm += fact[Integer.bitCount(lb - 1)];
}
sum[i] = sm;
}
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t-- > 0){
long n = sc.nextLong();
int ans = Long.bitCount(n);
for(int mask = 0; mask < 1 << 15; ++mask){
long sm = sum[mask];
if(sm > n) continue;
ans = Math.min(ans, Integer.bitCount(mask) + Long.bitCount(n - sm));
}
System.out.println(ans);
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 7a1ba813f0b95faffa5e80a301b2f674 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.io.*;
import java.lang.Math;
public class Main {
public class MainSolution extends MainSolutionT {
// global vars
long[] F;
public void init(int tests_count)
{
F = new long[12];
F[0] = 6;
long j=4;
for (int i=1; i<12; i++)
{
F[i] = F[i-1] * (j++);
}
}
public int checkD(long n)
{
int r = 0;
while (n>0)
{
if (n%2 == 1)
{
r ++;
}
n /= 2;
}
return r;
}
public class TestCase extends TestCaseT
{
public int mink(long n, int k)
{
if (n==0)
{
return 0;
}
if (k<0)
{
return checkD(n);
}
if (n < F[k])
{
return mink(n, k-1);
}
return Math.min( mink(n, k-1) , 1+mink(n-F[k], k-1) );
}
public Object solve()
{
long n =readLong();
return mink(n, 11);
}
}
public void run()
{
int t = multiply_test ? readInt() : 1;
this.init(t);
for (int i = 0; i < t; i++) {
TestCase T = new TestCase();
T.run(i + 1);
}
}
public void loc_params()
{
this.log_enabled = false;
}
public void params(){
this.multiply_test = true;
}
}
public class MainSolutionT extends MainSolutionBase
{
public class TestCaseT extends TestCaseBase
{
}
}
public class MainSolutionBase
{
public boolean is_local = false;
public MainSolutionBase()
{
}
public class TestCaseBase
{
public Object solve() {
return null;
}
public int caseNumber;
public TestCaseBase() {
}
public void run(int cn){
this.caseNumber = cn;
Object r = this.solve();
if ((r != null))
{
out.println(r);
}
}
}
public String impossible(){
return "IMPOSSIBLE";
}
public String strf(String format, Object... args)
{
return String.format(format, args);
}
public BufferedReader in;
public PrintStream out;
public boolean log_enabled = false;
public boolean multiply_test = true;
public void params()
{
}
public void loc_params()
{
}
private StringTokenizer tokenizer = null;
public int readInt() {
return Integer.parseInt(readToken());
}
public long readLong() {
return Long.parseLong(readToken());
}
public double readDouble() {
return Double.parseDouble(readToken());
}
public String readLn() {
try {
String s;
while ((s = in.readLine()).length() == 0);
return s;
} catch (Exception e) {
return "";
}
}
public String readToken() {
try {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(in.readLine());
}
return tokenizer.nextToken();
} catch (Exception e) {
return "";
}
}
public int[] readIntArray(int n) {
int[] x = new int[n];
readIntArray(x, n);
return x;
}
public void readIntArray(int[] x, int n) {
for (int i = 0; i < n; i++) {
x[i] = readInt();
}
}
public long[] readLongArray(int n) {
long[] x = new long[n];
readLongArray(x, n);
return x;
}
public void readLongArray(long[] x, int n) {
for (int i = 0; i < n; i++) {
x[i] = readLong();
}
}
public void readLongArrayRev(long[] x, int n) {
for (int i = 0; i < n; i++) {
x[n-i-1] = readLong();
}
}
public void logWrite(String format, Object... args) {
if (!log_enabled) {
return;
}
out.printf(format, args);
}
public void readLongArrayBuf(long[] x, int n) {
char[]buf = new char[1000000];
long r = -1;
int k= 0, l = 0;
long d;
while (true)
{
try{
l = in.read(buf, 0, 1000000);
}
catch(Exception E){};
for (int i=0; i<l; i++)
{
if (('0'<=buf[i])&&(buf[i]<='9'))
{
if (r == -1)
{
r = 0;
}
d = buf[i] - '0';
r = 10 * r + d;
}
else
{
if (r != -1)
{
x[k++] = r;
}
r = -1;
}
}
if (l<1000000)
return;
}
}
public void readIntArrayBuf(int[] x, int n) {
char[]buf = new char[1000000];
int r = -1;
int k= 0, l = 0;
int d;
while (true)
{
try{
l = in.read(buf, 0, 1000000);
}
catch(Exception E){};
for (int i=0; i<l; i++)
{
if (('0'<=buf[i])&&(buf[i]<='9'))
{
if (r == -1)
{
r = 0;
}
d = buf[i] - '0';
r = 10 * r + d;
}
else
{
if (r != -1)
{
x[k++] = r;
}
r = -1;
}
}
if (l<1000000)
return;
}
}
public void printArray(long[] a, int n)
{
printArray(a, n, ' ');
}
public void printArray(int[] a, int n)
{
printArray(a, n, ' ');
}
public void printArray(long[] a, int n, char dl)
{
long x;
int i, l = 0;
for (i=0; i<n; i++)
{
x = a[i];
if (x<0)
{
x = -x;
l++;
}
if (x==0)
{
l++;
}
else
{
while (x>0)
{
x /= 10;
l++;
}
}
}
l += n-1;
char[] s = new char[l];
l--;
boolean z;
for (i=n-1; i>=0; i--)
{
x = a[i];
z = false;
if (x<0)
{
x = -x;
z = true;
}
do{
s[l--] = (char)('0' + (x % 10));
x /= 10;
} while (x>0);
if (z)
{
s[l--] = '-';
}
if (i>0)
{
s[l--] = dl;
}
}
out.println(new String(s));
}
public void printArray(double[] a, int n, char dl)
{
long x;
double y;
int i, l = 0;
for (i=0; i<n; i++)
{
x = (long)a[i];
if (x<0)
{
x = -x;
l++;
}
if (x==0)
{
l++;
}
else
{
while (x>0)
{
x /= 10;
l++;
}
}
}
l += n-1 + 10*n;
char[] s = new char[l];
l--;
boolean z;
int j;
for (i=n-1; i>=0; i--)
{
x = (long)a[i];
y = (long)(1000000000*(a[i]-x));
z = false;
if (x<0)
{
x = -x;
z = true;
}
for (j=0; j<9; j++)
{
s[l--] = (char)('0' + (y % 10));
y /= 10;
}
s[l--] = '.';
do{
s[l--] = (char)('0' + (x % 10));
x /= 10;
} while (x>0);
if (z)
{
s[l--] = '-';
}
if (i>0)
{
s[l--] = dl;
}
}
out.println(new String(s));
}
public void printArray(int[] a, int n, char dl)
{
int x;
int i, l = 0;
for (i=0; i<n; i++)
{
x = a[i];
if (x<0)
{
x = -x;
l++;
}
if (x==0)
{
l++;
}
else
{
while (x>0)
{
x /= 10;
l++;
}
}
}
l += n-1;
char[] s = new char[l];
l--;
boolean z;
for (i=n-1; i>=0; i--)
{
x = a[i];
z = false;
if (x<0)
{
x = -x;
z = true;
}
do{
s[l--] = (char)('0' + (x % 10));
x /= 10;
} while (x>0);
if (z)
{
s[l--] = '-';
}
if (i>0)
{
s[l--] = dl;
}
}
out.println(new String(s));
}
public void printMatrix(int[][] a, int n, int m)
{
int x;
int i,j, l = 0;
for (i=0; i<n; i++)
{
for (j=0; j<m; j++)
{
x = a[i][j];
if (x<0)
{
x = -x;
l++;
}
if (x==0)
{
l++;
}
else
{
while (x>0)
{
x /= 10;
l++;
}
}
}
l += m-1;
}
l += n-1;
char[] s = new char[l];
l--;
boolean z;
for (i=n-1; i>=0; i--)
{
for (j=m-1; j>=0; j--)
{
x = a[i][j];
z = false;
if (x<0)
{
x = -x;
z = true;
}
do{
s[l--] = (char)('0' + (x % 10));
x /= 10;
} while (x>0);
if (z)
{
s[l--] = '-';
}
if (j>0)
{
s[l--] = ' ';
}
}
if (i>0)
{
s[l--] = '\n';
}
}
out.println(new String(s));
}
public void printMatrix(long[][] a, int n, int m)
{
long x;
int i,j, l = 0;
for (i=0; i<n; i++)
{
for (j=0; j<m; j++)
{
x = a[i][j];
if (x<0)
{
x = -x;
l++;
}
if (x==0)
{
l++;
}
else
{
while (x>0)
{
x /= 10;
l++;
}
}
}
l += m-1;
}
l += n-1;
char[] s = new char[l];
l--;
boolean z;
for (i=n-1; i>=0; i--)
{
for (j=m-1; j>=0; j--)
{
x = a[i][j];
z = false;
if (x<0)
{
x = -x;
z = true;
}
do{
s[l--] = (char)('0' + (x % 10));
x /= 10;
} while (x>0);
if (z)
{
s[l--] = '-';
}
if (j>0)
{
s[l--] = ' ';
}
}
if (i>0)
{
s[l--] = '\n';
}
}
out.println(new String(s));
}
}
public void run()
{
MainSolution S;
try {
S = new MainSolution();
S.in = new BufferedReader(new InputStreamReader(System.in));
//S.out = System.out;
S.out = new PrintStream(new BufferedOutputStream( System.out ));
} catch (Exception e) {
return;
}
S.params();
S.run();
S.out.flush();
}
public static void main(String args[]) {
Locale.setDefault(Locale.US);
Main M = new Main();
M.run();
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | e365cc90c04a3f0affd1bd7bfe8ee1fd | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
static PrintWriter pw;
static Scanner sc;
static final int inf = (int) 1e9, mod = inf + 7;
static final long longInf = inf * 1l * inf;
static final double eps = 1e-9;
public static void main(String[] args) throws Exception {
sc = new Scanner(System.in);
pw = new PrintWriter(System.out);
preCalc();
int t = sc.nextInt();
while (t-- > 0)
testCase();
pw.close();
}
static void testCase() throws Exception {
long n = sc.nextLong();
int ans = 100;
for (int msk = 0; msk < (1 << factorial.size()); msk++) {
long currVal = n;
for (int i = 0; i < factorial.size(); i++) {
if(((1 << i) & msk) != 0)
currVal -= factorial.get(i);
}
if(currVal >= 0)
ans = Math.min(ans, countBits(msk) + countBits(currVal));
}
pw.println(ans);
}
static int countBits(long x){
if(x == 0)
return 0;
return (int) (x & 1) + countBits(x >> 1);
}
static ArrayList<Long> factorial;
static void preCalc(){
factorial = new ArrayList<>();
factorial.add(1l);
for (int i = 2; true; i++) {
long prev = factorial.get(factorial.size() - 1);
long currFact = prev * i;
if(currFact > 1e12)
break;
factorial.add(currFact);
}
}
static long ceildiv(long x, long y) {
return (x + y - 1) / y;
}
static int mod(long x, int m) {
return (int) ((x % m + m) % m);
}
static void add(Map<Integer, Integer> map, Integer p) {
if (map.containsKey(p)) map.replace(p, map.get(p) + 1);
else map.put(p, 1);
}
static void rem(Map<Integer, Integer> map, Integer p) {
if (map.get(p) == 1) map.remove(p);
else map.replace(p, map.get(p) - 1);
}
static int Int(boolean x) {
return x ? 1 : 0;
}
public static long gcd(long x, long y) {
return y == 0 ? x : gcd(y, x % y);
}
static void printArr(int[] arr) {
for (int i = 0; i < arr.length; i++)
pw.print(arr[i] + " ");
pw.println();
}
static void printArr(long[] arr) {
for (int i = 0; i < arr.length; i++)
pw.print(arr[i] + " ");
pw.println();
}
static void printArr(double[] arr) {
for (int i = 0; i < arr.length; i++)
pw.print(arr[i] + " ");
pw.println();
}
static void printArr(boolean[] arr) {
for (int i = 0; i < arr.length; i++)
pw.print(arr[i] ? 1 : 0);
pw.println();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public int[] nextDigits() throws IOException {
String s = nextLine();
int[] arr = new int[s.length()];
for (int i = 0; i < arr.length; i++)
arr[i] = s.charAt(i) - '0';
return arr;
}
public int[] nextArr(int n) throws IOException {
int[] arr = new int[n];
for (int i = 0; i < arr.length; i++)
arr[i] = nextInt();
return arr;
}
public Integer[] nextSort(int n) throws IOException {
Integer[] arr = new Integer[n];
for (int i = 0; i < n; i++)
arr[i] = nextInt();
return arr;
}
public int[] nextArrMinus1(int n) throws IOException{
int[] arr = new int[n];
for (int i = 0; i < arr.length; i++)
arr[i] = nextInt() - 1;
return arr;
}
public Pair nextPair() throws IOException {
return new Pair(nextInt(), nextInt());
}
public long[] nextLongArr(int n) throws IOException {
long[] arr = new long[n];
for (int i = 0; i < n; i++)
arr[i] = nextLong();
return arr;
}
public Pair[] nextPairArr(int n) throws IOException {
Pair[] arr = new Pair[n];
for (int i = 0; i < n; i++)
arr[i] = nextPair();
return arr;
}
public boolean hasNext() throws IOException {
return (st != null && st.hasMoreTokens()) || br.ready();
}
}
static void printArr(Integer[] arr) {
for (int i = 0; i < arr.length; i++)
pw.print(arr[i] + " ");
pw.println();
}
static void printIter(Iterable list) {
for (Object o : list)
pw.print(o + " ");
pw.println();
}
static class Pair implements Comparable<Pair> {
int x;
int y;
public Pair(int x, int y) {
this.x = x;
this.y = y;
}
public Pair(Map.Entry<Integer, Integer> a) {
x = a.getKey();
y = a.getValue();
}
public int hashCode() {
return (int) ((this.x * 1l * 100003 + this.y) % mod);
}
public int compareTo(Pair p) {
if (x != p.x)
return x - p.x;
return y - p.y;
}
public boolean equals(Object obj) {
if (obj == null) {
return false;
}
if (this.getClass() != obj.getClass()) {
return false;
}
Pair p = (Pair) obj;
return this.x == p.x && this.y == p.y;
}
public Pair clone() {
return new Pair(x, y);
}
public String toString() {
return this.x + " " + this.y;
}
public void subtract(Pair p) {
x -= p.x;
y -= p.y;
}
public void add(Pair p) {
x += p.x;
y += p.y;
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | a0c94aa303e4605086d829a09d1d8c9d | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes |
import java.io.*;
import java.util.*;
public final class Main {
//int 2e9 - long 9e18
static PrintWriter out = new PrintWriter(System.out);
static FastReader in = new FastReader();
static Pair[] moves = new Pair[]{new Pair(-1, 0), new Pair(0, 1), new Pair(1, 0), new Pair(0, -1)};
static int mod = (int) (1e9 + 7);
static int mod2 = 998244353;
public static void main(String[] args) {
int tt = i();
while (tt-- > 0) {
solve();
}
out.flush();
}
public static void solve() {
List<Long> list = new ArrayList<>();
long cur = 1;
for (int i = 1; i < 20; i++) {
cur *= i;
if (cur > 1e12) {
break;
}
list.add(cur);
}
long n = l();
int size = list.size();
int max = 1 << size;
int ans = 100;
for (int i = 0; i < max; i++) {
long m = n;
int res = 0;
for (int j = 0; j < size; j++) {
int k = 1 << j;
if ((i & k) > 0) {
res++;
m -= list.get(j);
}
}
if (m >= 0) {
res += Long.bitCount(m);
ans = Math.min(ans, res);
}
}
out.println(ans);
}
// (10,5) = 2 ,(11,5) = 3
static long upperDiv(long a, long b) {
return (a / b) + ((a % b == 0) ? 0 : 1);
}
static long sum(int[] a) {
long sum = 0;
for (int x : a) {
sum += x;
}
return sum;
}
static int[] preint(int[] a) {
int[] pre = new int[a.length + 1];
pre[0] = 0;
for (int i = 0; i < a.length; i++) {
pre[i + 1] = pre[i] + a[i];
}
return pre;
}
static long[] pre(int[] a) {
long[] pre = new long[a.length + 1];
pre[0] = 0;
for (int i = 0; i < a.length; i++) {
pre[i + 1] = pre[i] + a[i];
}
return pre;
}
static long[] post(int[] a) {
long[] post = new long[a.length + 1];
post[0] = 0;
for (int i = 0; i < a.length; i++) {
post[i + 1] = post[i] + a[a.length - 1 - i];
}
return post;
}
static long[] pre(long[] a) {
long[] pre = new long[a.length + 1];
pre[0] = 0;
for (int i = 0; i < a.length; i++) {
pre[i + 1] = pre[i] + a[i];
}
return pre;
}
static void print(char A[]) {
for (char c : A) {
out.print(c);
}
out.println();
}
static void print(boolean A[]) {
for (boolean c : A) {
out.print(c + " ");
}
out.println();
}
static void print(int A[]) {
for (int c : A) {
out.print(c + " ");
}
out.println();
}
static void print(long A[]) {
for (long i : A) {
out.print(i + " ");
}
out.println();
}
static void print(List<Integer> A) {
for (int a : A) {
out.print(a + " ");
}
}
static int i() {
return in.nextInt();
}
static long l() {
return in.nextLong();
}
static double d() {
return in.nextDouble();
}
static String s() {
return in.nextLine();
}
static String c() {
return in.next();
}
static int[][] inputWithIdx(int N) {
int A[][] = new int[N][2];
for (int i = 0; i < N; i++) {
A[i] = new int[]{i, in.nextInt()};
}
return A;
}
static int[] input(int N) {
int A[] = new int[N];
for (int i = 0; i < N; i++) {
A[i] = in.nextInt();
}
return A;
}
static long[] inputLong(int N) {
long A[] = new long[N];
for (int i = 0; i < A.length; i++) {
A[i] = in.nextLong();
}
return A;
}
static int GCD(int a, int b) {
if (b == 0) {
return a;
} else {
return GCD(b, a % b);
}
}
static long GCD(long a, long b) {
if (b == 0) {
return a;
} else {
return GCD(b, a % b);
}
}
static long LCM(int a, int b) {
return (long) a / GCD(a, b) * b;
}
static long LCM(long a, long b) {
return a / GCD(a, b) * b;
}
// find highest i which satisfy a[i]<=x
static int lowerbound(int[] a, int x) {
int l = 0;
int r = a.length - 1;
while (l < r) {
int m = (l + r + 1) / 2;
if (a[m] <= x) {
l = m;
} else {
r = m - 1;
}
}
return l;
}
static void shuffle(int[] arr) {
for (int i = 0; i < arr.length; i++) {
int rand = (int) (Math.random() * arr.length);
int temp = arr[rand];
arr[rand] = arr[i];
arr[i] = temp;
}
}
static void shuffleAndSort(int[] arr) {
for (int i = 0; i < arr.length; i++) {
int rand = (int) (Math.random() * arr.length);
int temp = arr[rand];
arr[rand] = arr[i];
arr[i] = temp;
}
Arrays.sort(arr);
}
static void shuffleAndSort(int[][] arr, Comparator<? super int[]> comparator) {
for (int i = 0; i < arr.length; i++) {
int rand = (int) (Math.random() * arr.length);
int[] temp = arr[rand];
arr[rand] = arr[i];
arr[i] = temp;
}
Arrays.sort(arr, comparator);
}
static void shuffleAndSort(long[] arr) {
for (int i = 0; i < arr.length; i++) {
int rand = (int) (Math.random() * arr.length);
long temp = arr[rand];
arr[rand] = arr[i];
arr[i] = temp;
}
Arrays.sort(arr);
}
static boolean isPerfectSquare(double number) {
double sqrt = Math.sqrt(number);
return ((sqrt - Math.floor(sqrt)) == 0);
}
static void swap(int A[], int a, int b) {
int t = A[a];
A[a] = A[b];
A[b] = t;
}
static void swap(char A[], int a, int b) {
char t = A[a];
A[a] = A[b];
A[b] = t;
}
static long pow(long a, long b, int mod) {
long pow = 1;
long x = a;
while (b != 0) {
if ((b & 1) != 0) {
pow = (pow * x) % mod;
}
x = (x * x) % mod;
b /= 2;
}
return pow;
}
static long pow(long a, long b) {
long pow = 1;
long x = a;
while (b != 0) {
if ((b & 1) != 0) {
pow *= x;
}
x = x * x;
b /= 2;
}
return pow;
}
static long modInverse(long x, int mod) {
return pow(x, mod - 2, mod);
}
static boolean isPrime(long N) {
if (N <= 1) {
return false;
}
if (N <= 3) {
return true;
}
if (N % 2 == 0 || N % 3 == 0) {
return false;
}
for (int i = 5; i * i <= N; i = i + 6) {
if (N % i == 0 || N % (i + 2) == 0) {
return false;
}
}
return true;
}
public static String reverse(String str) {
if (str == null) {
return null;
}
return new StringBuilder(str).reverse().toString();
}
public static void reverse(int[] arr) {
for (int i = 0; i < arr.length / 2; i++) {
int tmp = arr[i];
arr[arr.length - 1 - i] = tmp;
arr[i] = arr[arr.length - 1 - i];
}
}
public static String repeat(char ch, int repeat) {
if (repeat <= 0) {
return "";
}
final char[] buf = new char[repeat];
for (int i = repeat - 1; i >= 0; i--) {
buf[i] = ch;
}
return new String(buf);
}
public static int[] manacher(String s) {
char[] chars = s.toCharArray();
int n = s.length();
int[] d1 = new int[n];
for (int i = 0, l = 0, r = -1; i < n; i++) {
int k = (i > r) ? 1 : Math.min(d1[l + r - i], r - i + 1);
while (0 <= i - k && i + k < n && chars[i - k] == chars[i + k]) {
k++;
}
d1[i] = k--;
if (i + k > r) {
l = i - k;
r = i + k;
}
}
return d1;
}
public static int[] kmp(String s) {
int n = s.length();
int[] res = new int[n];
for (int i = 1; i < n; ++i) {
int j = res[i - 1];
while (j > 0 && s.charAt(i) != s.charAt(j)) {
j = res[j - 1];
}
if (s.charAt(i) == s.charAt(j)) {
++j;
}
res[i] = j;
}
return res;
}
}
class Pair {
int i;
int j;
Pair(int i, int j) {
this.i = i;
this.j = j;
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
Pair pair = (Pair) o;
return i == pair.i && j == pair.j;
}
@Override
public int hashCode() {
return Objects.hash(i, j);
}
}
class ThreePair {
int i;
int j;
int k;
ThreePair(int i, int j, int k) {
this.i = i;
this.j = j;
this.k = k;
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
ThreePair pair = (ThreePair) o;
return i == pair.i && j == pair.j && k == pair.k;
}
@Override
public int hashCode() {
return Objects.hash(i, j);
}
}
class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
class Node {
int val;
public Node(int val) {
this.val = val;
}
}
class ST {
int n;
Node[] st;
ST(int n) {
this.n = n;
st = new Node[4 * Integer.highestOneBit(n)];
}
void build(Node[] nodes) {
build(0, 0, n - 1, nodes);
}
private void build(int id, int l, int r, Node[] nodes) {
if (l == r) {
st[id] = nodes[l];
return;
}
int mid = (l + r) >> 1;
build((id << 1) + 1, l, mid, nodes);
build((id << 1) + 2, mid + 1, r, nodes);
st[id] = comb(st[(id << 1) + 1], st[(id << 1) + 2]);
}
void update(int i, Node node) {
update(0, 0, n - 1, i, node);
}
private void update(int id, int l, int r, int i, Node node) {
if (i < l || r < i) {
return;
}
if (l == r) {
st[id] = node;
return;
}
int mid = (l + r) >> 1;
update((id << 1) + 1, l, mid, i, node);
update((id << 1) + 2, mid + 1, r, i, node);
st[id] = comb(st[(id << 1) + 1], st[(id << 1) + 2]);
}
Node get(int x, int y) {
return get(0, 0, n - 1, x, y);
}
private Node get(int id, int l, int r, int x, int y) {
if (x > r || y < l) {
return new Node(0);
}
if (x <= l && r <= y) {
return st[id];
}
int mid = (l + r) >> 1;
return comb(get((id << 1) + 1, l, mid, x, y), get((id << 1) + 2, mid + 1, r, x, y));
}
Node comb(Node a, Node b) {
if (a == null) {
return b;
}
if (b == null) {
return a;
}
return new Node(GCD(a.val, b.val));
}
static int GCD(int a, int b) {
if (b == 0) {
return a;
} else {
return GCD(b, a % b);
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | cd7fcc4460b3da8b9276bd776a479c4c | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes |
import java.io.*;
import java.util.*;
public class Main {
static long[] arr;
static TreeSet<String> tSet;
static PrintWriter pw;
public static int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
public static int lcm(int a, int b) {
return a * b / gcd(a, b);
}
public static long fac(long i) {
long res = 1;
while (i > 0) {
res = res * i--;
}
return res;
}
public static long combination(long x, long y) {
return 1l * (fac(x) / (fac(x - y) * fac(y)));
}
public static long permutation(long x, long y) {
return combination(x, y) * fac(y);
}
public static long sum(Long[] arr, long item) {
long res = 0;
for (int i = 0; i < arr.length; i++) {
res += arr[i];
}
res -= item;
return res;
}
public static void main(String[] args) throws IOException, InterruptedException {
Scanner sc = new Scanner(System.in);
pw = new PrintWriter(System.out);
int t=sc.nextInt();
while(t-->0) {
long target=sc.nextLong();
arr=new long[15];
for (int i = 1; i<=14; i++) {
arr[i]=fac(i);
}
pw.println(count(target, 0, 0, 0));
pw.flush();
}
}
public static long count(long target,long acc,int c,int index) {
if(index==15)
{
if(acc<=target)
return c+Long.bitCount(target-acc);
return 90000000;
}
long take=count(target,acc+arr[index],c+1,index+1);
long leave=count(target,acc,c,index+1);
return Math.min(take, leave);
}
static class Pair {
long x;
long y;
public Pair(long x, long y) {
this.x = x;
this.y = y;
}
public String toString() {
return x + " " + y;
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public int[] nextIntArray(int n) throws IOException {
int[] array = new int[n];
for (int i = 0; i < n; i++) {
array[i] = nextInt();
}
return array;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] array = new Integer[n];
for (int i = 0; i < n; i++) {
array[i] = nextInt();
}
return array;
}
public long[] nextlongArray(int n) throws IOException {
long[] array = new long[n];
for (int i = 0; i < n; i++) {
array[i] = nextLong();
}
return array;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] array = new Long[n];
for (int i = 0; i < n; i++) {
array[i] = nextLong();
}
return array;
}
public char[] nextCharArray(int n) throws IOException {
char[] array = new char[n];
String string = next();
for (int i = 0; i < n; i++) {
array[i] = string.charAt(i);
}
return array;
}
public boolean ready() throws IOException {
return br.ready();
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 6c5c4e076e529e155dddf878014f6ff2 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
public class c {
public static void main(String[] args) {
// fact[i] stores (i+3)!
long[] fact = new long[12];
fact[0] = 6;
for (int i=1; i<12; i++)
fact[i] = (i+3)*fact[i-1];
long[] sums = new long[1<<12];
for (int i=1; i<(1<<12); i++) {
int j = 0;
while ((i & (1<<j)) == 0) j++;
sums[i] = sums[i-(1<<j)] + fact[j];
}
Scanner stdin = new Scanner(System.in);
int nC = stdin.nextInt();
for (int loop=0; loop<nC; loop++) {
long inp = stdin.nextLong();
int res = Long.bitCount(inp);
for (int i=0; i<sums.length; i++) {
if (inp < sums[i]) continue;
res = Math.min(res, Integer.bitCount(i) + Long.bitCount(inp-sums[i]));
}
System.out.println(res);
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 774f2ed531ba067df4e63cca5fb61d6c | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
static ArrayList<Long> factorials ;
public static long factorial(int x) {
if(x==2) return 2;
return x*factorial(x-1);
}
public static void main(String[] args) throws Exception {
int t = sc.nextInt();
while(t-->0) {
long n = sc.nextLong();
factorials = new ArrayList<>();
factorials.add((long) 1);
for(int i=2;i<15;i++) {
factorials.add(factorial(i));
}
int ans = (int)1e9;
for(int i=0;i<1<<factorials.size();i++) {
long x = 0;
int ctr=0;
for(int j=0;j<factorials.size();j++) {
if((i&(1<<j))!=0) {
x+=factorials.get(j);
ctr++;
}
}
ans = Math.min(ans, ctr+Long.bitCount((n-x)));
}
pw.println(ans);
}
pw.flush();
}
static class SegmentTree {
int[] arr, sTree, lazy;
int N;
public SegmentTree(int[] in) {
arr = in;
N = in.length - 1;
sTree = new int[2 * N];
lazy = new int[2 * N];
build(1, 1, N);
}
public void build(int Node, int left, int right) { // O(n)
if (left == right)
sTree[Node] = arr[left];
else {
int r = 2 * Node + 1;
int l = 2 * Node;
int mid = (left + right) / 2;
build(l, left, mid);
build(r, mid + 1, right);
sTree[Node] = sTree[l] + sTree[r];
}
}
public int query(int i, int j) {
return query(1, 1, N, i, j);
}
public int query(int Node, int left, int right, int i, int j) {
if (right < i || left > j)
return 0;
if (right <= j && i <= left) {
return sTree[Node];
}
int mid = (left + right) / 2;
int l = 2 * Node;
int r = 2 * Node + 1;
return query(l, left, mid, i, j) + query(r, mid + 1, right, i, j);
}
public void updatePoint(int idx, int value) {
int node = idx + N - 1;
arr[idx] = value;
sTree[node] = value;
while (node > 1) {
node /= 2;
int l = 2 * node;
int r = 2 * node + 1;
sTree[node] = sTree[l] + sTree[r];
}
}
public void updateRange(int i, int j, int val) {
updateRange(1, 1, N, i, j, val);
}
public void updateRange(int Node, int left, int right, int i, int j, int val) {
if (i > right || left > j)
return;
if (right <= j && i <= left) {
sTree[Node] += val * (right - left + 1);
lazy[Node] += val;
} else {
int l = 2 * Node;
int r = 2 * Node + 1;
int mid = (left + right) / 2;
propagate(Node, left, right);
updateRange(l, left, mid, i, j, val);
updateRange(r, mid + 1, right, mid, j, val);
sTree[Node] = sTree[l] + sTree[r];
}
}
public void propagate(int node, int left, int right) {
int l = 2 * node;
int r = 2 * node + 1;
int mid = (left + right) / 2;
lazy[l] = lazy[node];
lazy[r] = lazy[node];
sTree[l] += lazy[node] * (mid - left + 1);
sTree[r] += lazy[node] * (right - mid);
lazy[node] = 0;
}
}
public static void sort(long[] in) {
shuffle(in);
Arrays.sort(in);
}
public static void shuffle(long[] in) {
for (int i = 0; i < in.length; i++) {
int idx = (int) (Math.random() * in.length);
long tmp = in[i];
in[i] = in[idx];
in[idx] = tmp;
}
}
static class Pair implements Comparable<Pair> {
int x;
int y;
public Pair(int x, int y) {
this.x = x;
this.y = y;
}
public int compareTo(Pair o) {
return x - o.x;
}
public String toString() {
return x + " " + y;
}
}
static Scanner sc = new Scanner(System.in);
static PrintWriter pw = new PrintWriter(System.out);
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
public static void display(char[][] a) {
for (int i = 0; i < a.length; i++) {
for (int j = 0; j < a[i].length; j++) {
System.out.print(a[i][j]);
}
System.out.println();
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | a83384d4a172ce0746c033682ff4468b | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | /*
I am dead inside
Do you like NCT, sKz, BTS?
5 4 3 2 1 Moonwalk
Imma knock it down like domino
Is this what you want? Is this what you want?
Let's ttalkbocky about that
*/
import static java.lang.Math.*;
import java.util.*;
import java.io.*;
import java.math.*;
public class x1646C
{
public static void main(String hi[]) throws Exception
{
long[] fac = new long[15];
fac[1] = 1L;
for(int v=2; v < 15; v++)
fac[v] = fac[v-1]*v;
long[] sums = new long[1<<14];
int[] bc = new int[1<<14];
for(int mask=0; mask < (1<<14); mask++)
{
for(int b=0; b < 14; b++)
if((mask&(1<<b)) > 0)
sums[mask] += fac[b+1];
bc[mask] = Integer.bitCount(mask);
}
BufferedReader infile = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(infile.readLine());
int T = Integer.parseInt(st.nextToken());
StringBuilder sb = new StringBuilder();
while(T-->0)
{
st = new StringTokenizer(infile.readLine());
long N = Long.parseLong(st.nextToken());
int res = Long.bitCount(N);
for(int mask=0; mask < (1<<14); mask++)
if(sums[mask] <= N)
{
long temp = N-sums[mask];
if((mask&2) > 0 && (temp&2) > 0)
continue;
res = min(res, bc[mask]+Long.bitCount(temp));
}
sb.append(res+"\n");
}
System.out.print(sb);
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 377bf443f6eca1362a375040c9851bcf | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class C {
static StringBuilder sb;
static long mod = (long) (1e9 + 7);
static long[] fact;
static int min = (int) 1e9;
static int find(long n) {
String bin = Long.toBinaryString(n);
int cnt = 0;
for (int i = 0; i < bin.length(); i++) {
if (bin.charAt(i) == '1')
cnt++;
}
return cnt;
}
static void solve(long tar, int idx, int cnt) {
if (idx == fact.length) {
min = Math.min(min,cnt + find(tar));
return;
}
if (tar >= fact[idx])
solve(tar - fact[idx], idx + 1, cnt + 1);
solve(tar, idx + 1, cnt);
}
static void solve(long n) {
min = (int) 1e9;
solve(n, 0, 0);
sb.append(min + "\n");
}
public static void main(String[] args) {
sb = new StringBuilder();
int test = i();
fact = new long[15];
fact[1] = 1;
for (int i = 2; i < 15; i++) {
fact[i] = i * fact[i - 1];
}
sortlong(fact);
while (test-- > 0) {
solve(l());
}
out.printLine(sb);
out.flush();
out.close();
}
private static double log(long a, long b) {
double ans = Math.log10(a) / Math.log10(b);
return ans;
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int Int() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String String() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return String();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
public void flush() {
writer.flush();
}
}
static InputReader in = new InputReader(System.in);
static OutputWriter out = new OutputWriter(System.out);
public static long[] sortlong(long[] a2) {
int n = a2.length;
ArrayList<Long> l = new ArrayList<>();
for (long i : a2)
l.add(i);
Collections.sort(l);
for (int i = 0; i < l.size(); i++)
a2[i] = l.get(i);
return a2;
}
public static int[] sortint(int[] a2) {
int n = a2.length;
ArrayList<Integer> l = new ArrayList<>();
for (int i : a2)
l.add(i);
Collections.sort(l);
for (int i = 0; i < l.size(); i++)
a2[i] = l.get(i);
return a2;
}
public static int i() {
return in.Int();
}
public static long l() {
String s = in.String();
return Long.parseLong(s);
}
public static String s() {
return in.String();
}
public static int[] readArray(int n) {
int A[] = new int[n];
for (int i = 0; i < n; i++) {
A[i] = i();
}
return A;
}
public static long[] readLongArray(int n) {
long A[] = new long[(int) n];
for (int i = 0; i < n; i++) {
A[i] = l();
}
return A;
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 48fc20e99da49a3f534b2881e10aeff9 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes |
import java.io.*;
import java.util.*;
public class Main {
static int result = 50;
public static int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
public static int lcm(int a, int b) {
return a * b / gcd(a, b);
}
public static long pow(int number, long i) {
if (i == 0)
return 1;
long sum = pow(number, i / 2);
sum *= sum;
if ((i & 1) == 1)
sum *= number;
return sum;
}
public static long fac(long i) {
if (i == 0)
return 1;
return i * fac(i - 1);
}
public static long compliment(int number, int bits) {
return number ^ (pow(2, bits) - 1);
}
public static void helper(long[] arr,int i,int c,long n,long sum){
if(i==arr.length){
if(sum<=n){
c+= Long.bitCount(n - sum);
result = Math.min(result, c);
}
return;
}
helper(arr,i+1,c+1,n,sum+arr[i]);
helper(arr,i+1,c,n,sum);
}
public static void main(String[] args) throws IOException,
InterruptedException {
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int t = sc.nextInt();
long[] arr = new long[15];
for(int i =0;i<15;i++){
arr[i] = fac(i+1);
}
while(t-->0){
result = 50;
long n = sc.nextLong();
helper(arr,0,0,n,0);
pw.println(result);
}
pw.flush();
}
static class Pair {
int a;
int b;
public Pair(int a, int b) {
this.a = a;
this.b = b;
}
public String toString() {
return a + " " + b;
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public int[] nextIntArray(int n) throws IOException {
int[] array = new int[n];
for (int i = 0; i < n; i++) {
array[i] = nextInt();
}
return array;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] array = new Integer[n];
for (int i = 0; i < n; i++) {
array[i] = nextInt();
}
return array;
}
public long[] nextlongArray(int n) throws IOException {
long[] array = new long[n];
for (int i = 0; i < n; i++) {
array[i] = nextLong();
}
return array;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] array = new Long[n];
for (int i = 0; i < n; i++) {
array[i] = nextLong();
}
return array;
}
public char[] nextCharArray(int n) throws IOException {
char[] array = new char[n];
String string = next();
for (int i = 0; i < n; i++) {
array[i] = string.charAt(i);
}
return array;
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 27803c6f333b8fcfb5d32e62b61b3056 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
//--------------------------INPUT READER---------------------------------//
static class fs {
public BufferedReader br;
StringTokenizer st = new StringTokenizer("");
public fs() { this(System.in); }
public fs(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
}
String next() {
while (!st.hasMoreTokens()) {
try { st = new StringTokenizer(br.readLine()); }
catch (IOException e) { e.printStackTrace(); }
}
return st.nextToken();
}
int ni() { return Integer.parseInt(next()); }
long nl() { return Long.parseLong(next()); }
double nd() { return Double.parseDouble(next()); }
String ns() { return next(); }
int[] na(long nn) {
int n = (int) nn;
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = ni();
return a;
}
long[] nal(long nn) {
int n = (int) nn;
long[] l = new long[n];
for(int i = 0; i < n; i++) l[i] = nl();
return l;
}
}
//---------------------------PRINTER-------------------------------------//
static class Printer {
static PrintWriter w;
public Printer() {this(System.out);}
public Printer(OutputStream os) {
w = new PrintWriter(os);
}
public void p(int i) {w.println(i);}
public void p(long l) {w.println(l);}
public void p(double d) {w.println(d);}
public void p(String s) { w.println(s);}
public void pr(int i) {w.print(i);}
public void pr(long l) {w.print(l);}
public void pr(double d) {w.print(d);}
public void pr(String s) { w.print(s);}
public void pl() {w.println();}
public void close() {w.close();}
}
//--------------------------VARIABLES------------------------------------//
static fs sc = new fs();
static OutputStream outputStream = System.out;
static Printer w = new Printer(outputStream);
static long lma = Long.MAX_VALUE, lmi = Long.MIN_VALUE;
static int ima = Integer.MAX_VALUE, imi = Integer.MIN_VALUE;
static long mod = 1000000007;
//--------------------------ADMIN_MODE-----------------------------------//
private static void ADMIN_MODE() throws IOException {
if (System.getProperty("ONLINE_JUDGE") == null) {
w = new Printer(new FileOutputStream("output.txt"));
sc = new fs(new FileInputStream("input.txt"));
}
}
static long[] facts;
static {
facts = new long[16];
facts[1] = 1;
for(int i = 2; i < 16; i++) {
facts[i] = i*facts[i-1];
}
}
//----------------------------START--------------------------------------//
public static void main(String[] args)
throws IOException {
ADMIN_MODE();
int[] vis = new int[16];
recurse(0, vis);
int t = sc.ni();while(t-->0)
solve();
w.close();
}
static void recurse(int at, int[] taken) {
if(at == taken.length) {
long sum = 0;
long freq = 0;
for(int i = 0; i < taken.length; i++) {
if(taken[i] == 1) {
freq++;
sum += facts[i];
}
}
combs.add(new pr(sum, freq));
return;
}
taken[at] = 1;
recurse(at+1, taken);
taken[at] = 0;
recurse(at+1, taken);
}
static List<pr> combs = new ArrayList<>();
static void solve() throws IOException {
long sum = sc.nl();
long min = ima;
for(pr i: combs) {
if(i.val > sum) continue;
long curr = i.freq;
long rem = sum-i.val;
char[] strr = Long.toBinaryString(rem).toCharArray();
for(char ch: strr) if(ch=='1') curr++;
min = Math.min(curr, min);
}
w.p(min);
}
static class pr {
long val, freq;
public pr(long val, long freq) {
this.val = val;
this.freq = freq;
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 9bcc983e6aad801022f3035b263c7109 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.StringTokenizer;
public class Main {
static AReader scan = new AReader();
static int MOD = (int)1e9+7;
static int N = 2000010;
static List<Long> p = new ArrayList<>();
static void init(){
long sum = 1;
for(int i = 1;i<=15;i++){
sum *=i;
p.add(sum);
}
}
static int get(long x){
int cnt = 0;
while(x > 0){
cnt++;
x -= x & -x;
}
return cnt;
}
static void slove() {
long n = scan.nextLong();
Collections.sort(p);
int m = 1 << p.size();
int res = 0x3f3f3f3f;
for(int i = 0;i<m;i++){
long s = 0;
for(int j = 0;j<p.size();j++){
if((i >> j & 1) == 1){
s +=p.get(j);
}
}
if(s > n ) continue;
res = Math.min(res,get(i)+get(n-s));
}
System.out.println(res);
}
public static void main(String[] args) {
init();
int T = scan.nextInt();
while (T-- > 0) {
slove();
}
}
}
class AReader {
private BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
private StringTokenizer tokenizer = new StringTokenizer("");
private String innerNextLine() {
try {
return reader.readLine();
} catch (IOException ex) {
return null;
}
}
public boolean hasNext() {
while (!tokenizer.hasMoreTokens()) {
String nextLine = innerNextLine();
if (nextLine == null) {
return false;
}
tokenizer = new StringTokenizer(nextLine);
}
return true;
}
public String nextLine() {
tokenizer = new StringTokenizer("");
return innerNextLine();
}
public String next() {
hasNext();
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
class Pair {
int x;
int y;
public Pair(int x, int y) {
this.x = x;
this.y = y;
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 3c65469b2d02acab4eabcfbccd6fde4c | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | // package faltu;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
import java.util.Map.Entry;
public class Main {
static long LowerBound(long[] a2, long x) { // x is the target value or key
int l=-1,r=a2.length;
while(l+1<r) {
int m=(l+r)>>>1;
if(a2[m]>=x) r=m;
else l=m;
}
return r;
}
static int UpperBound(int a[], int x) {// x is the key or target value
int l=-1,r=a.length;
while(l+1<r) {
int m=(l+r)>>>1;
if(a[m]<=x) l=m;
else r=m;
}
return l+1;
}
public static long getClosest(long val1, long val2,long target)
{
if (target - val1 >= val2 - target)
return val2;
else
return val1;
}
static void ruffleSort(long[] a) {
int n=a.length;
Random r=new Random();
for (int i=0; i<a.length; i++) {
long oi=r.nextInt(n), temp=a[i];
a[i]=a[(int)oi];
a[(int)oi]=temp;
}
Arrays.sort(a);
}
static void ruffleSort(int[] a){
int n=a.length;
Random r=new Random();
for (int i=0; i<a.length; i++) {
int oi=r.nextInt(n), temp=a[i];
a[i]=a[oi];
a[oi]=temp;
}
Arrays.sort(a);
}
int ceilIndex(int input[], int T[], int end, int s){
int start = 0;
int middle;
int len = end;
while(start <= end){
middle = (start + end)/2;
if(middle < len && input[T[middle]] < s && s <= input[T[middle+1]]){
return middle+1;
}else if(input[T[middle]] < s){
start = middle+1;
}else{
end = middle-1;
}
}
return -1;
}
public static int findIndex(long arr[], long t)
{
if (arr == null) {
return -1;
}
int len = arr.length;
int i = 0;
while (i < len) {
if (arr[i] == t) {
return i;
}
else {
i = i + 1;
}
}
return -1;
}
static long gcd(long a, long b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
static int gcd(int a, int b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
static long lcm(long a, long b)
{
return (a / gcd(a, b)) * b;
}
public static int[] swap(int a[], int left, int right)
{
int temp = a[left];
a[left] = a[right];
a[right] = temp;
return a;
}
public static void swap(long x,long max1)
{
long temp=x;
x=max1;
max1=temp;
}
public static int[] reverse(int a[], int left, int right)
{
// Reverse the sub-array
while (left < right) {
int temp = a[left];
a[left++] = a[right];
a[right--] = temp;
}
return a;
}
static int lowerLimitBinarySearch(ArrayList<Integer> A,int B) {
int n =A.size();
int first = 0,second = n;
while(first <second) {
int mid = first + (second-first)/2;
if(A.get(mid) > B) {
second = mid;
}else {
first = mid+1;
}
}
if(first < n && A.get(first) < B) {
first++;
}
return first; //1 index
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
// *******----segement tree implement---*****
// -------------START--------------------------
void buildTree (int[] arr,int[] tree,int start,int end,int treeNode)
{
if(start==end)
{
tree[treeNode]=arr[start];
return;
}
buildTree(arr,tree,start,end,2*treeNode);
buildTree(arr,tree,start,end,2*treeNode+1);
tree[treeNode]=tree[treeNode*2]+tree[2*treeNode+1];
}
void updateTree(int[] arr,int[] tree,int start,int end,int treeNode,int idx,int value)
{
if(start==end)
{
arr[idx]=value;
tree[treeNode]=value;
return;
}
int mid=(start+end)/2;
if(idx>mid)
{
updateTree(arr,tree,mid+1,end,2*treeNode+1,idx,value);
}
else
{
updateTree(arr,tree,start,mid,2*treeNode,idx,value);
}
tree[treeNode]=tree[2*treeNode]+tree[2*treeNode+1];
}
// disjoint set implementation --start
static void makeSet(int n)
{
parent=new int[n];
rank=new int[n];
for(int i=0;i<n;i++)
{
parent[i]=i;
rank[i]=0;
}
}
static void union(int u,int v)
{
u=findpar(u);
v=findpar(v);
if(rank[u]<rank[v])parent[u]=v;
else if(rank[v]<rank[u])parent[v]=u;
else
{
parent[v]=u;
rank[u]++;
}
}
private static int findpar(int node)
{
if(node==parent[node])return node;
return parent[node]=findpar(parent[node]);
}
static int parent[];
static int rank[];
// *************end
static Long MOD=(long) (1e9+7);
static boolean coprime(int a, long l){
return (gcd(a, l) == 1);
}
static long[][] dp;
static long[]dpp;
static ArrayList<Integer>arr;
static boolean[] vis;
static ArrayList<ArrayList<Integer>>adj;
public static void main(String[] args) throws IOException
{
// sieve();
FastReader s = new FastReader();
ArrayList<Long>a=new ArrayList<>();
long val=1;
a.add(val);
for(int i=2;i<=14;i++) {
val*=i;
a.add(val);
}
long tt = s.nextLong();
while(tt-->0) {
long n=s.nextLong();
int ans=Integer.MAX_VALUE;
for(int i=0;i<(1<<14);i++) {
long sum=n;
for(int j=0;j<14;j++) {
if((i&(1<<j))>0)sum-=a.get(j);
}
if(sum<0)continue;
ans=Math.min(ans, Long.bitCount(i)+Long.bitCount(sum));
}
System.out.println(ans);
}
}
static void DFSUtil(int v, boolean[] visited)
{
visited[v] = true;
Iterator<Integer> it = adj.get(v).iterator();
while (it.hasNext()) {
int n = it.next();
if (!visited[n])
DFSUtil(n, visited);
}
}
static long DFS(int n)
{
boolean[] visited = new boolean[n+1];
long cnt=0;
for (int i = 1; i <= n; i++) {
if (!visited[i]) {
DFSUtil(i, visited);
cnt++;
}
}
return cnt;
}
public static String revStr(String str){
String input = str;
StringBuilder input1 = new StringBuilder();
input1.append(input);
input1.reverse();
return input1.toString();
}
public static String sortString(String inputString){
char tempArray[] = inputString.toCharArray();
Arrays.sort(tempArray);
return new String(tempArray);
}
static long myPow(long n, long i){
if(i==0) return 1;
if(i%2==0) return (myPow(n,i/2)%MOD * myPow(n,i/2)%MOD)%MOD;
return (n%MOD* myPow(n,i-i)%MOD)%MOD;
}
static void palindromeSubStrs(String str) {
HashSet<String>set=new HashSet<>();
char[]a =str.toCharArray();
int n=str.length();
int[][]dp=new int[n][n];
for(int g=0;g<n;g++){
for(int i=0,j=g;j<n;j++,i++){
if(!set.contains(str.substring(i,i+1))&&g==0) {
dp[i][j]=1;
set.add(str.substring(i,i+1));
}
else {
if(!set.contains(str.substring(i,j+1))&&isPalindrome(str,i,j)) {
dp[i][j]=1;
set.add(str.substring(i,j+1));
}
}
}
}
int ans=0;
for(int i=0;i<n;i++) {
for(int j=0;j<n;j++) {
System.out.print(dp[i][j]+" ");
if(dp[i][j]==1)ans++;
}
System.out.println();
}
System.out.println(ans);
}
static boolean isPalindrome(String str,int i,int j)
{
while (i < j) {
if (str.charAt(i) != str.charAt(j))
return false;
i++;
j--;
}
return true;
}
static boolean sign(long num) {
return num>0;
}
static boolean isSquare(long x){
if(x==1)return true;
long y=(long) Math.sqrt(x);
return y*y==x;
}
static long power1(long a,long b) {
if(b == 0){
return 1;
}
long ans = power(a,b/2);
ans *= ans;
if(b % 2!=0){
ans *= a;
}
return ans;
}
static void swap(StringBuilder sb,int l,int r)
{
char temp = sb.charAt(l);
sb.setCharAt(l,sb.charAt(r));
sb.setCharAt(r,temp);
}
// function to reverse the string between index l and r
static void reverse(StringBuilder sb,int l,int r)
{
while(l < r)
{
swap(sb,l,r);
l++;
r--;
}
}
// function to search a character lying between index l and r
// which is closest greater (just greater) than val
// and return it's index
static int binarySearch(StringBuilder sb,int l,int r,char val)
{
int index = -1;
while (l <= r)
{
int mid = (l+r)/2;
if (sb.charAt(mid) <= val)
{
r = mid - 1;
}
else
{
l = mid + 1;
if (index == -1 || sb.charAt(index) >= sb.charAt(mid))
index = mid;
}
}
return index;
}
// this function generates next permutation (if there exists any such permutation) from the given string
// and returns True
// Else returns false
static boolean nextPermutation(StringBuilder sb)
{
int len = sb.length();
int i = len-2;
while (i >= 0 && sb.charAt(i) >= sb.charAt(i+1))
i--;
if (i < 0)
return false;
else
{
int index = binarySearch(sb,i+1,len-1,sb.charAt(i));
swap(sb,i,index);
reverse(sb,i+1,len-1);
return true;
}
}
private static int lps(int m ,int n,String s1,String s2,int[][]mat)
{
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++)
{
if(s1.charAt(i-1)==s2.charAt(j-1))mat[i][j]=1+mat[i-1][j-1];
else mat[i][j]=Math.max(mat[i-1][j],mat[i][j-1]);
}
}
return mat[m][n];
}
static String lcs(String X, String Y, int m, int n)
{
int[][] L = new int[m+1][n+1];
// Following steps build L[m+1][n+1] in bottom up fashion. Note
// that L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1]
for (int i=0; i<=m; i++)
{
for (int j=0; j<=n; j++)
{
if (i == 0 || j == 0)
L[i][j] = 0;
else if (X.charAt(i-1) == Y.charAt(j-1))
L[i][j] = L[i-1][j-1] + 1;
else
L[i][j] = Math.max(L[i-1][j], L[i][j-1]);
}
}
// Following code is used to print LCS
int index = L[m][n];
int temp = index;
// Create a character array to store the lcs string
char[] lcs = new char[index+1];
lcs[index] = '\u0000'; // Set the terminating character
// Start from the right-most-bottom-most corner and
// one by one store characters in lcs[]
int i = m;
int j = n;
while (i > 0 && j > 0)
{
// If current character in X[] and Y are same, then
// current character is part of LCS
if (X.charAt(i-1) == Y.charAt(j-1))
{
// Put current character in result
lcs[index-1] = X.charAt(i-1);
// reduce values of i, j and index
i--;
j--;
index--;
}
// If not same, then find the larger of two and
// go in the direction of larger value
else if (L[i-1][j] > L[i][j-1])
i--;
else
j--;
}
return String.valueOf(lcs);
// Print the lcs
// System.out.print("LCS of "+X+" and "+Y+" is ");
// for(int k=0;k<=temp;k++)
// System.out.print(lcs[k]);
}
static long lis(long[] aa2, int n)
{
long lis[] = new long[n];
int i, j;
long max = 0;
for (i = 0; i < n; i++)
lis[i] = 1;
for (i = 1; i < n; i++)
for (j = 0; j < i; j++)
if (aa2[i] >= aa2[j] && lis[i] <= lis[j] + 1)
lis[i] = lis[j] + 1;
for (i = 0; i < n; i++)
if (max < lis[i])
max = lis[i];
return max;
}
static boolean isPalindrome(String str)
{
int i = 0, j = str.length() - 1;
while (i < j) {
if (str.charAt(i) != str.charAt(j))
return false;
i++;
j--;
}
return true;
}
static boolean issafe(int i, int j, int r,int c, char ch)
{
if (i < 0 || j < 0 || i >= r || j >= c|| ch!= '1')return false;
else return true;
}
static long power(long a, long b)
{
a %=MOD;
long out = 1;
while (b > 0) {
if((b&1)!=0)out = out * a % MOD;
a = a * a % MOD;
b >>= 1;
a*=a;
}
return out;
}
static long[] sieve;
public static void sieve()
{
int nnn=(int) 1e6+1;
long nn=(int) 1e6;
sieve=new long[(int) nnn];
int[] freq=new int[(int) nnn];
sieve[0]=0;
sieve[1]=1;
for(int i=2;i<=nn;i++)
{
sieve[i]=1;
freq[i]=1;
}
for(int i=2;i*i<=nn;i++)
{
if(sieve[i]==1)
{
for(int j=i*i;j<=nn;j+=i)
{
if(sieve[j]==1)
{
sieve[j]=0;
}
}
}
}
}
}
class decrease implements Comparator<Long> {
// Used for sorting in ascending order of
// roll number
public int compare(long a, long b)
{
return (int) (b - a);
}
@Override
public int compare(Long o1, Long o2) {
// TODO Auto-generated method stub
return (int) (o2-o1);
}
}
class pair{
long x;
long y;
long c;
public pair(long x,long y) {
this.x=x;
this.y=y;
}
public pair(long x,long y,long c)
{
this.x=x;
this.y=y;
this.c=c;
}
}
class Pair {
int idx;
String str;
public Pair(String str,int idx) {
this.str=str;
this.idx=idx;
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 2ace1b176f5e67c469746bd1c95493e4 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class C {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
List<Long> list = new ArrayList<>();
long fact = 6, num = 4;
while(fact <= (long)1e12) {
list.add(fact);
fact *= num;
num++;
}
int T = in.nextInt();
while(T-- > 0) {
long n = in.nextLong();
int ans = -1;
for(int mask = 0; mask<(1<<list.size()); mask++) {
long sum = n;
for(int i=0; i < list.size(); i++) {
if((mask&(1<<i))!=0) sum -= list.get(i);
}
if(sum<0) continue;
if(ans==-1) ans = Long.bitCount(sum)+Long.bitCount(mask);
else ans = Math.min(ans, Long.bitCount(sum)+Long.bitCount(mask));
}
out.println(ans);
}
out.close();
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | c5bd0266c578020d8dbb6c2e72623373 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class main1{
static long[] inv=new long[16];
static void init(){
inv[0]=inv[1]=1;
for(int i=1;i<=15;i++){
inv[i]=inv[i-1]*i;
}
}
public static void main(String[] args){
Scanner scn=new Scanner(System.in);
init();
int t=scn.nextInt();
while(t-->0){
solve(scn);
}
}
static void solve(Scanner sc){
long n=sc.nextLong();
int ans=Integer.MAX_VALUE;
for(int mask=0;mask<(1<<14);mask++){
long m=n;
for(int i=0;i<15;i++){
if(((mask>>i)&1)==1){
m-=inv[i+1];
}
}
if(m>=0){
ans=Math.min(ans,Long.bitCount(mask)+Long.bitCount(m));
}
}
System.out.println(ans);
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 173d36e0b5204284bee1e1a4be2b18fa | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
public static int INF = 0x3f3f3f3f;
public static int mod = 1000000007;
public static long MAX = (long)1e12;
public static void main(String args[]){
try {
PrintWriter o = new PrintWriter(System.out);
FastScanner sc = new FastScanner();
boolean multiTest = true;
List<Long> factLi = new ArrayList<>();
long fact = 6;
int number = 4;
while(fact <= MAX){
factLi.add(fact);
fact *= number;
number++;
}
int size = 1 << factLi.size();
List<long[]> li = new ArrayList<>(size);
li.add(new long[]{0l, 0l});
for(int mask = 1;mask < size;mask++){
int firstBit = get_first_bit(mask);
long fst = li.get(mask ^ (1 << firstBit))[0] + factLi.get(firstBit);
long snd = countOne(mask);
li.add(new long[]{fst, snd});
}
if(multiTest) {
int t = sc.nextInt(), loop = 0;
while (loop < t) {
loop++;
solve(o, sc, li);
}
} else solve(o, sc, li);
o.close();
} catch (Exception e){
e.printStackTrace();
}
}
static void solve(PrintWriter o, FastScanner sc, List<long[]> li){
try {
long n = sc.nextLong();
long res = countOne(n);
for(long[] a: li){
if(a[0] <= n){
res = Math.min(res, countOne(n - a[0]) + a[1]);
}
}
o.println(res);
} catch (Exception e){
e.printStackTrace();
}
}
public static int get_first_bit(long x){
for(int i=63;i>=0;i--){
if((x & 1l << i) > 0){
return i;
}
}
return -1;
}
public static int countOne(long x){
int count = 0;
for(int i=0;i<64;i++){
if((x & 1l << i) > 0){
count++;
}
}
return count;
}
public static int gcd(int a, int b){
return b == 0 ? a : gcd(b, a%b);
}
public static void reverse(int[] array){
reverse(array, 0 , array.length-1);
}
public static void reverse(int[] array, int left, int right) {
if (array != null) {
int i = left;
for(int j = right; j > i; ++i) {
int tmp = array[j];
array[j] = array[i];
array[i] = tmp;
--j;
}
}
}
public static boolean doubleEqual(double d1, double d2){
if(Math.abs(d1-d2) < 1e-6){
return true;
}
return false;
}
public static long fac(int n){
long ret = 1;
while(n > 0){
ret = ret * n % mod;
n--;
}
return ret;
}
public static long qpow(int n, int m){
long n_ = n, ret = 1;
while(m > 0){
if((m&1) == 1){
ret = ret * n_ % mod;
}
m >>= 1;
n_ = n_ * n_ % mod;
}
return ret;
}
static class FastScanner {
private final InputStream in = System.in;
private final byte[] buffer = new byte[1024];
private int ptr = 0;
private int buflen = 0;
private boolean hasNextByte() {
if (ptr < buflen) {
return true;
} else {
ptr = 0;
try {
buflen = in.read(buffer);
} catch (IOException e) {
e.printStackTrace();
}
if (buflen <= 0) {
return false;
}
}
return true;
}
private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;}
private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126;}
public boolean hasNext() { while (hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte();}
public String next() {
if (!hasNext()) throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while(isPrintableChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public long nextLong() {
if (!hasNext()) throw new NoSuchElementException();
long n = 0;
boolean minus = false;
int b = readByte();
if (b == '-') {
minus = true;
b = readByte();
}
if (b < '0' || '9' < b) {
throw new NumberFormatException();
}
while (true) {
if ('0' <= b && b <= '9') {
n *= 10;
n += b - '0';
} else if (b == -1 || !isPrintableChar(b)) {
return minus ? -n : n;
} else {
throw new NumberFormatException();
}
b = readByte();
}
}
public int nextInt() {
long nl = nextLong();
if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException();
return (int) nl;
}
public double nextDouble() { return Double.parseDouble(next());}
}
public static class fReader {
private static BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
private static StringTokenizer tokenizer = new StringTokenizer("");
private static String next() throws IOException{
while(!tokenizer.hasMoreTokens()){
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
public static int nextInt() throws IOException{
return Integer.parseInt(next());
}
public static Long nextLong() throws IOException{
return Long.parseLong(next());
}
public static double nextDouble() throws IOException{
return Double.parseDouble(next());
}
public static String nextLine() throws IOException{
return reader.readLine();
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 0fa942aa9317761fa589fe9081c81667 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import com.sun.jmx.remote.internal.ArrayQueue;
import java.util.*;
import java.io.*;
public class Solution {
public static void main(String[] args) throws IOException {
Scanner in = new Scanner(System.in);
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringBuffer out = new StringBuffer();
int T = in.nextInt();
ArrayList<Long> list = new ArrayList<>();
long prod = 1, value = 1;
while(prod <= 1_000_000_000_000L) {
prod = prod*(value++);
list.add(prod);
}
int size = list.size();
// System.out.println(size+" "+list);
OUTER:
while (T-->0) {
Long n = in.nextLong();
int ans = findBit(n);
for(int i=0; i<(1<<size); i++) {
long sum = 0;
int count = 0;
for(int j=0; j<size; j++) if((i&(1<<j)) != 0){
sum += list.get(j);
count += 1;
}
if(sum<=n) {
count += findBit(n - sum);
ans = Math.min(ans, count);
}
}
out.append(ans).append("\n");
}
System.out.print(out);
}
private static int findBit(long n) {
int count = 0;
while(n!=0) {
if(n%2==1) {
count += 1;
}
n/=2;
}
return count;
}
private static long gcd(long a, long b) {
if (a==0)
return b;
return gcd(b%a, a);
}
private static int toInt(String s) {
return Integer.parseInt(s);
}
private static long toLong(String s) {
return Long.parseLong(s);
}
private static void print(String s) {
System.out.print(s);
}
private static void println(String s) {
System.out.println(s);
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 23babaf6d6c20888e57c4df6b9376b6d | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class C1646 { //
public static void main(String[] args) throws IOException {
long[] fac = new long[15];
long[] sub = new long[1 << 15];
int[] cnt = new int[sub.length];
fac[0] = 1;
for (int i = 1; i < 15; i++) fac[i] = fac[i - 1] * (i + 1);
for (int i = 1; i < sub.length; i++) {
for (int j = 0; j < fac.length; j++) {
sub[i] += ((i >> j) & 1) * fac[j];
cnt[i] += (i >> j) & 1;
}
}
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
int testCnt = Integer.parseInt(br.readLine());
for (int t = 0; t < testCnt; t++) {
long n = Long.parseLong(br.readLine());
int min = popCnt(n);
for (int i = 1; i < sub.length && sub[i] <= n; i++) {
min = Math.min(min, popCnt(n - sub[i]) + cnt[i]);
}
dbug("");
bw.write(min + "\n");
}
br.close();
bw.close();
}
public static int popCnt(long l) {
if (l < 0) return 20;
long a = l;
int ans = 0;
while (l > 0) {
ans += l & 1;
l >>= 1;
}
dbug("<> <> ", a, ans);
return ans;
}
public static void dbug(String s, long ... a) { /*
String[] line = s.split("<>");
for (int i = 0; i < a.length; i++) {
System.out.print(line[i] + a[i]);
}
System.out.println(line[a.length]); // */
}
public static void print(long[] a) { // /*
for (int i = 0; i < a.length; i++) {
System.out.println(a[i] + " ");
}
System.out.println(); // */
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 409ee77cc9257eafe22f03adec458368 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | // package CODECHEF;
import java.lang.reflect.Array;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Scanner;
public class pracitce {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-- >0){
long n=sc.nextLong();
long []a =new long[14];
long fac=1;
for(int i=1;i<15;i++){
fac=fac*i*1l;
a[i-1]=fac;
}
long res=14,bitcnt=0;
long total=(1<<res);
long ans=-1,sum=0,cnt=0;
for(long i=0;i<total;i++){
sum=cnt=0;
for(int j=0;j<res;j++){
if((i&(1<<j))!=0){
sum+=a[j]*1l;
cnt++;
}
}
if(sum>n)continue;
else{
bitcnt=Long.bitCount((n-sum));
}
if(ans==-1)ans=bitcnt+cnt;
else ans=Math.min(ans,bitcnt+cnt);
}
System.out.println(ans);
}
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 1c79ef9ca7e7a717ff6394e0ffa5a511 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Pranay
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastReader in = new FastReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
CFactorialsAndPowersOfTwo solver = new CFactorialsAndPowersOfTwo();
solver.solve(1, in, out);
out.close();
}
static class CFactorialsAndPowersOfTwo {
public void solve(int testNumber, FastReader in, PrintWriter out) {
int t = in.nextInt();
ArrayList<Long> nums = new ArrayList<>();
long val = 1;
long num = 2;
while (val <= (long) 1e12) {
nums.add(val);
val *= num;
num++;
}
while (t-- > 0) {
long x = in.nextLong();
int ans = Integer.MAX_VALUE;
for (int i = 0; i < (1L << 14); ++i) {
long sum = x;
for (int j = 0; j < 14; ++j) {
if ((i & (1L << j)) > 0) {
sum -= nums.get(j);
}
}
if (sum < 0) {
continue;
}
ans = Math.min(ans, Long.bitCount(sum) + Long.bitCount(i));
}
out.println(ans);
}
}
}
static class FastReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private FastReader.SpaceCharFilter filter;
public FastReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c)) c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9') throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 4391eb1498c7ec08ebbcf01b883e31ae | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Pranay
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastReader in = new FastReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
CFactorialsAndPowersOfTwo solver = new CFactorialsAndPowersOfTwo();
solver.solve(1, in, out);
out.close();
}
static class CFactorialsAndPowersOfTwo {
public void solve(int testNumber, FastReader in, PrintWriter out) {
int t = in.nextInt();
ArrayList<Long> nums = new ArrayList<>();
long val = 1;
long num = 2;
while (val <= (long) 1e12) {
nums.add(val);
val *= num;
num++;
}
while (t-- > 0) {
long x = in.nextLong();
int ans = Integer.MAX_VALUE;
for (int i = 0; i < (1L << 14); ++i) {
long sum = x;
for (int j = 0; j < 14; ++j) {
if ((i & (1L << j)) > 0) {
sum -= nums.get(j);
}
}
if (sum < 0) {
continue;
}
ans = Math.min(ans, Long.bitCount(sum) + Long.bitCount(i));
}
out.println(ans);
}
}
}
static class FastReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private FastReader.SpaceCharFilter filter;
public FastReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c)) c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9') throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 5778c6b9f9571d80594259bded480617 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.lang.*;
import java.io.*;
public class MyClass
{
static FastReader in=new FastReader();
static final Random random=new Random();
static long mod=1000000007L;
static long[] fact = new long[16];
static void init() {
fact[0] = 1;
for(int i=1; i<16; i++)
fact[i] = (i*fact[i-1]);
}
public static void main (String[] args) throws java.lang.Exception
{
init();
int t=in.nextInt();
while(t-->0)
solve();
}
static void solve() {
long n = in.nextLong();
long ans = Integer.MAX_VALUE;
for(int mask=0; mask<(1<<15); mask++) {
long sum = n;
for(int i=0; i<16; i++) {
if(((mask>>i)&1)==1) {
sum -= fact[i+1];
}
}
if(sum<0)
break;
if(sum>=0) {
ans = Math.min(ans, cntSetBit(mask)+cntSetBit(sum));
}
}
System.out.println(ans);
}
static long cntSetBit(long num) {
long ans = 0;
while(num>0) {
if(num%2==1)
ans++;
num /= 2;
}
return ans;
}
static int max(int a, int b)
{
if(a<b)
return b;
return a;
}
static void ruffleSort(int[] a) {
int n=a.length;
for (int i=0; i<n; i++) {
int oi=random.nextInt(n), temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static < E > void print(E res)
{
System.out.println(res);
}
static int gcd(int a,int b)
{
if(b==0)
{
return a;
}
return gcd(b,a%b);
}
static int lcm(int a, int b)
{
return (a / gcd(a, b)) * b;
}
static int abs(int a)
{
if(a<0)
return -1*a;
return a;
}
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
int [] readintarray(int n) {
int res [] = new int [n];
for(int i = 0; i<n; i++)res[i] = nextInt();
return res;
}
long [] readlongarray(int n) {
long res [] = new long [n];
for(int i = 0; i<n; i++)res[i] = nextLong();
return res;
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 991107ca314b71acae1a951782ad21fd | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.Math.abs;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintStream;
import java.lang.reflect.Array;
import java.util.Arrays;
import java.util.Random;
import java.util.Scanner;
import java.io.BufferedReader;
import java.util.StringTokenizer;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
public class Problem_C {
private final static Long INF = 1000_000_000_005L;
public static void main(String[] dummy) {
MyScanner ms = new MyScanner();
PrintStream out = new PrintStream(System.out);
ArrayList<Long> fact = new ArrayList<Long>();
Long x = 1l;
for (int i = 1; x < INF; i++) {
x *= i;
fact.add(x);
}
int testcases = ms.nextInt();
while (testcases-- > 0) {
Long N = ms.nextLong();
int ans = Long.bitCount(N);
for (int mask = 0; mask < (1 << fact.size()); mask++) {
Long curr = N;
for (int i = 0; i < fact.size(); i++)
if ((mask & (1 << i)) != 0)
curr -= fact.get(i);
if (curr >= 0)
ans = min(ans, Integer.bitCount(mask) + Long.bitCount(curr));
}
out.println(ans);
}
out.flush();
out.close();
}
public static void reverseSort(int[] A) { // TODO : Collections.sort always uses Merge sort
ArrayList<Integer> sorted = new ArrayList<>();
for (int x : A)
sorted.add(x);
Collections.sort(sorted, (x, y) -> Integer.compare(y, x));
for (int i = 0; i < A.length; i++)
A[i] = sorted.get(i);
}
static class MyScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 69ce29628194a300ba57a4bb73447dd7 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class power {
static class Node {
int count = 0;
Map<Character, Node> child = new HashMap<>();
}
static BufferedReader bf;
public static void main(String[] args) throws IOException {
bf = new BufferedReader(new InputStreamReader(System.in));
int T = nextInt();
while(T-->0){
long n = Long.parseLong(bf.readLine());
long fact[] = new long[14];
fact[0] = 1;
for(int i = 1;i<fact.length;i++){
fact[i] = (i+1)*fact[i-1];
}
dfs(fact,0,0,0,n);
System.out.println(min);
min = Integer.MAX_VALUE;
}
}
static int min = Integer.MAX_VALUE;
public static void dfs(long[]fact,long sum,int i,int count,long n){
if(sum>n)return ;
if(i == fact.length){
min = Math.min(min,counter(count, n, sum));
return;
}
dfs(fact,sum+fact[i],i+1,count+1,n);
dfs(fact,sum,i+1,count,n);
}
public static int counter(int count,long n,long sum){
long val = n - sum;
int bits = 0;
while(val!=0){
bits += (val & 1);
val = (val>>1);
}
return bits+count;
}
// code for input
public static int nextInt() throws IOException {
return Integer.parseInt(bf.readLine());
}
public static long nextLong() throws IOException {
return Long.parseLong(bf.readLine());
}
public static String nextString() throws IOException {
return bf.readLine();
}
public static int[] nextIntArray(int n) throws IOException {
String[] str = bf.readLine().split(" ");
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = Integer.parseInt(str[i]);
}
return arr;
}
public static long[] nextLongArray(int n) throws IOException {
String[] str = bf.readLine().split(" ");
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = Long.parseLong(str[i]);
}
return arr;
}
public static int[][] newIntMatrix(int r, int c) throws IOException {
int[][] arr = new int[r][c];
for (int i = 0; i < r; i++) {
String[] str = bf.readLine().split(" ");
for (int j = 0; j < c; j++) {
arr[i][j] = Integer.parseInt(str[j]);
}
}
return arr;
}
public static long[][] newLongMatrix(int r, int c) throws IOException {
long[][] arr = new long[r][c];
for (int i = 0; i < r; i++) {
String[] str = bf.readLine().split(" ");
for (int j = 0; j < c; j++) {
arr[i][j] = Long.parseLong(str[j]);
}
}
return arr;
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 74b5601fe0b0e9314573f1cc0156c69f | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class ferrisWheel {
static PrintWriter pw;
static Scanner sc;
public static void main(String[] args) throws IOException, InterruptedException {
pw = new PrintWriter(System.out);
sc = new Scanner(System.in);
int t = sc.nextInt();
while (t-- > 0) {
long n=sc.nextLong();
ArrayList<Long> fact=new ArrayList<>();
fact.add(1l);
for(int i=2;fact.get(i-2)<=n;i++) {
fact.add(fact.get(i-2)*i);
}
int ans=(int)1e9;
int msk=1<<fact.size();
for(int i=0;i<msk;i++) {
long x=0;
int cnt=0;
for(int j=0;j<fact.size();j++) {
if((i&(1<<j))!=0) {
x+=fact.get(j);
cnt++;
}
}
if(x<=n) {
ans=Math.min(ans, cnt+Long.bitCount(n-x));
}
}
pw.println(ans);
}
pw.flush();
}
static class pair implements Comparable<pair> {
// long x,y;
int x, y;
public pair(int x, int y) {
this.x = x;
this.y = y;
}
public String toString() {
return x + " " + y;
}
public boolean equals(Object o) {
if (o instanceof pair) {
pair p = (pair) o;
return p.x == x && p.y == y;
}
return false;
}
public int hashCode() {
return new Long(x).hashCode() * 31 + new Long(y).hashCode();
}
public int compareTo(pair other) {
if (this.x == other.x) {
return Long.compare(this.y, other.y);
}
return Long.compare(this.x, other.x);
}
}
static class tuble implements Comparable<tuble> {
int x;
int y;
int z;
public tuble(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;
}
public String toString() {
return x + " " + y + " " + z;
}
public int compareTo(tuble other) {
if (this.x == other.x) {
if (this.y == other.y) {
return this.z - other.z;
}
return this.y - other.y;
} else {
return this.x - other.x;
}
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(String file) throws IOException {
br = new BufferedReader(new FileReader(file));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public String readAllLines(BufferedReader reader) throws IOException {
StringBuilder content = new StringBuilder();
String line;
while ((line = reader.readLine()) != null) {
content.append(line);
content.append(System.lineSeparator());
}
return content.toString();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 41198023f3fa4d353f266ed732d0e1fb | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.*;
import static java.lang.Math.max;
import static java.lang.Math.min;
public class cf {
static long e97=1000000007;
static HashMap<Long,Integer> h1=new HashMap();
static HashSet<Long> h2=new HashSet<>();
public static void main(String args[]) {
long[] factor=new long[12];
Long[] res=new Long[4096];
long temp1=2;
int t=0;
for (int i = 3; i < 15; i++) {
temp1*=i;
h2.add(temp1);
}
for (Long a : h2) factor[t++]=a;
Arrays.sort(factor);
dfs(factor,0,0,0);
Scanner in = new Scanner(System.in);
int times=in.nextInt();
for (int i = 0; i < times; i++) {
long tar=in.nextLong();
int k=9999;
for (Map.Entry<Long, Integer> entry : h1.entrySet()){
long re=entry.getKey();
int time=entry.getValue();
if(k==1) break;
int temp=0;
String s=Long.toBinaryString(tar-re);
for (char c : s.toCharArray()) {
if(c=='1') temp++;
}
k=min(k,temp+time);
}
System.out.println(k);
}
}
public static void dfs(long[] a, int i,long l,int nums){
h1.put(l+a[i],nums+1);
h1.put(l,nums);
if(i==a.length-1) return;
dfs(a,i+1,l,nums);
dfs(a,i+1,l+a[i],nums+1);
}
/*public static void main(String args[]) {
cfReader in = new cfReader(System.in);
int times=in.nextInt();
StringBuilder sb=new StringBuilder();
l:for (int i = 0; i < times; i++) {
int n=in.nextInt(),k=n/2+1;
int[] arr=new int[n];
for (int j = 0; j < arr.length; j++) arr[j]=in.nextInt();
Arrays.sort(arr);
long[] first=new long[n];
first[0]=arr[0];
for (int j = 1; j < n; j++) {
first[j]=first[j-1]+arr[j];
}
for (int j = 0; j <= n/2; j++) {
if(first[j+1]<first[n-1]-first[n-2-j]&&j+1<n-1-j) {
sb.append("YES\n");
continue l;
}
}
sb.append("NO\n");
}
System.out.println(sb);
}*/
}
class cfPack {
//含01、完全、多重背包,混合背包可并入多重,二维待定
int[] weight, value, multiple;
int nums;
public cfPack(int nums) {
weight = new int[nums];
value = new int[nums];
}
public cfPack(int[] w, int[] v) {
weight = w;
value = v;
nums = weight.length;
}
public cfPack(int[] w, int[] v, int[] m) {
weight = w;
value = v;
multiple = m;
nums = weight.length;
}
public int ZeroOnePack(int volume) {
//dp[i] = Math.max(dp[i-weight[k]]+value[k], dp[i]);
//dp【i】为容积使用i时的最大价值,考虑前k种物品的部分由循环实现
//确保没有物品放入多次,i从大到小————由没有选择k物品的状态转移而来
int[] dp = new int[volume + 8],hash=new int[9003];
for (int k = 0; k < nums; k++) {
for (int i = volume; i > 0; i--) {
hash[max(0,dp[i])]=1;
if(i>=weight[k]) hash[max(0,dp[i - weight[k]] + value[k])]=1;
if (i >= weight[k]) dp[i] = max(dp[i - weight[k]] + value[k], dp[i]);
}
}
for (int i =1; i < hash.length; i++) {
if(hash[i]==0) {System.out.println(i);break;}
}
return dp[volume];
}
public int CompletePack(int volume) {
//与01的差别为i从小到大————每个状态可以由已经选中了k物品的状态转移而来
int[] dp = new int[volume + 1];
for (int k = 0; k < nums; k++) {
for (int i = weight[k]; i < volume + 1; i++) {
if (i >= weight[k]) dp[i] = max(dp[i - weight[k]] + value[k], dp[i]);
}
}
return dp[volume];
}
public int MultiplePack(int volume) {
//多重背包,将每种物品可选的数量二进制化:用1/2/4/8……拼出,化为O(lgn)个新的物品
ArrayList<Integer> w = new ArrayList<>();
ArrayList<Integer> v = new ArrayList<>();
for (int i = 0; i < multiple.length; i++) {
int k = multiple[i]&-multiple[i];
while (true) {
if (k <= multiple[i]) {
w.add(i, k * weight[i]);
v.add(i, k * value[i]);
multiple[i] -= k;
k *= 2;
} else {
k = multiple[i];
if(k!=0) {
w.add(i, k * weight[i]);
v.add(i, k * value[i]);
}
break;
}
}
}
int[] w1 = new int[w.size()], v1 = new int[v.size()];
for (int i = 0; i < w1.length; i++) {
w1[i] = w.get(i);
v1[i] = v.get(i);
}
weight = w1;
value = v1;
nums = weight.length;
return ZeroOnePack(volume);
}
}
class cfReader{
private final static int BUF_SZ = 65536;
BufferedReader in;
StringTokenizer tokenizer;
public cfReader(InputStream in) {
super();
this.in = new BufferedReader(new InputStreamReader(in),BUF_SZ);
tokenizer = new StringTokenizer("");
}
public String next() {
while (!tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(in.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 485bd7660008d8ec60b2d7bf23548d8a | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | //import java.io.IOException;
import java.io.*;
import java.util.*;
public class FactorialsandPowersofTwo {
static InputReader inputReader=new InputReader(System.in);
static BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
static List<LinkedHashSet<Integer>>answer=new ArrayList<>();
static void solve() throws IOException
{
long n=inputReader.nextLong();
TreeSet<Long>twoPowerSet=new TreeSet<>();
// long counter=4;
long fact=6;
List<Long>factorials=new ArrayList<>();
for (int i=4;true;i++)
{
if (fact>n)
{
break;
}
factorials.add(fact);
fact=fact*i;
}
long ans=Long.bitCount(n);
for (int i=0;i<(1<<factorials.size());i++)
{
long sum=n;
for (int j=0;j<factorials.size();j++)
{
if ((i&(1<<j))>0)
{
sum-= factorials.get(j);
}
}
ans=Math.min(ans,Long.bitCount(i)+Long.bitCount(sum));
}
out.println(ans);
}
static PrintWriter out=new PrintWriter((System.out));
static void SortDec(long arr[])
{
List<Long>list=new ArrayList<>();
for(long ele:arr) {
list.add(ele);
}
Collections.sort(list,Collections.reverseOrder());
for (int i=0;i<list.size();i++)
{
arr[i]=list.get(i);
}
}
static void Sort(long arr[])
{
List<Long>list=new ArrayList<>();
for(long ele:arr) {
list.add(ele);
}
Collections.sort(list);
for (int i=0;i<list.size();i++)
{
arr[i]=list.get(i);
}
}
public static void main(String args[])throws IOException
{
int t=inputReader.nextInt();
while (t-->0) {
solve();
}
long s = System.currentTimeMillis();
// out.println(System.currentTimeMillis()-s+"ms");
out.close();
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int snext() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public String readString() {
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 82cb4a4ada283b598dab514f28245fc7 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes |
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.BitSet;
import java.util.Calendar;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.PriorityQueue;
import java.util.SortedSet;
import java.util.Stack;
import java.util.StringTokenizer;
import java.util.TreeMap;
import java.util.TreeSet;
/**
* #
*
* @author pttrung
*/
public class C_Round_774_Div2 {
public static int MOD = 998244353;
public static void main(String[] args) throws FileNotFoundException {
// PrintWriter out = new PrintWriter(new FileOutputStream(new File(
// "output.txt")));
PrintWriter out = new PrintWriter(System.out);
Scanner in = new Scanner();
int T = in.nextInt();
long[] pre = new long[16];
pre[0] = 1;
for (int i = 1; i < pre.length; i++) {
pre[i] = pre[i - 1] * i;
}
mainLoop:
for (int z = 0; z < T; z++) {
long n = in.nextLong();
int total = (1 << pre.length);
int re = Long.bitCount(n);
for (int i = 0; i < total; i++) {
long cur = 0;
for (int j = 0; j < pre.length; j++) {
if (((1 << j) & i) == 0) {
continue;
}
cur += pre[j];
}
if (cur > n) {
continue;
}
//System.out.println(cur);
int tmp = Integer.bitCount(i) + Long.bitCount(n - cur);
re = Integer.min(tmp, re);
}
out.println(re);
}
out.close();
}
static class Move {
int x, y, z;
Move(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;
}
}
static int abs(int a) {
return a < 0 ? -a : a;
}
public static int[] KMP(String val) {
int i = 0;
int j = -1;
int[] result = new int[val.length() + 1];
result[0] = -1;
while (i < val.length()) {
while (j >= 0 && val.charAt(j) != val.charAt(i)) {
j = result[j];
}
j++;
i++;
result[i] = j;
}
return result;
}
public static boolean nextPer(int[] data) {
int i = data.length - 1;
while (i > 0 && data[i] < data[i - 1]) {
i--;
}
if (i == 0) {
return false;
}
int j = data.length - 1;
while (data[j] < data[i - 1]) {
j--;
}
int temp = data[i - 1];
data[i - 1] = data[j];
data[j] = temp;
Arrays.sort(data, i, data.length);
return true;
}
public static int digit(long n) {
int result = 0;
while (n > 0) {
n /= 10;
result++;
}
return result;
}
public static double dist(long a, long b, long x, long y) {
double val = (b - a) * (b - a) + (x - y) * (x - y);
val = Math.sqrt(val);
double other = x * x + a * a;
other = Math.sqrt(other);
return val + other;
}
public static class Point {
int x;
int y;
public Point(int start, int end) {
this.x = start;
this.y = end;
}
public String toString() {
return x + " " + y;
}
}
public static class FT {
long[] data;
FT(int n) {
data = new long[n];
}
public void update(int index, long value) {
while (index < data.length) {
data[index] += value;
index += (index & (-index));
}
}
public long get(int index) {
long result = 0;
while (index > 0) {
result += data[index];
index -= (index & (-index));
}
return result;
}
}
public static long gcd(long a, long b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
public static long pow(long a, int b) {
if (b == 0) {
return 1;
}
if (b == 1) {
return a;
}
long val = pow(a, b / 2);
if (b % 2 == 0) {
return (val * val);
} else {
return (val * ((val * a)));
}
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner() throws FileNotFoundException {
// System.setOut(new PrintStream(new BufferedOutputStream(System.out), true));
br = new BufferedReader(new InputStreamReader(System.in));
//br = new BufferedReader(new InputStreamReader(new FileInputStream(new File("input.txt"))));
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
throw new RuntimeException();
}
}
return st.nextToken();
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
st = null;
try {
return br.readLine();
} catch (Exception e) {
throw new RuntimeException();
}
}
public boolean endLine() {
try {
String next = br.readLine();
while (next != null && next.trim().isEmpty()) {
next = br.readLine();
}
if (next == null) {
return true;
}
st = new StringTokenizer(next);
return st.hasMoreTokens();
} catch (Exception e) {
throw new RuntimeException();
}
}
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 8bf7c7b6759d6c894add19f17c7138c8 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main{
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static long [] fact = new long[17];
static long fact(int n) {
if(fact[n]!=0)
return fact[n];
if(n == 0 || n == 1)
return 1;
return n*fact(n-1);
}
public static void main(String [] args) {
FastReader sc = new FastReader();
int test = sc.nextInt();
for(int i = 0; i < 17; i++) {
fact[i] = fact(i);
}
while(test-- > 0) {
long n = sc.nextLong();
long answer = Long.MAX_VALUE;
for(long i = 0; i < (1 << 13); i++) {
long temp = i, num = n, k = 0;
int count = 3;
while(temp != 0) {
if((temp&1) == 1) {
num-=fact[count];
if(num < 0) {
num+=fact[count];
break;
}
k++;
}
count++;
temp = temp >> 1;
}
while(num!=0) {
if((num & 1) == 1)
k++;
num = num >> 1;
}
if(k < answer)
answer = k;
}
System.out.println(answer);
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 8efe2f5036b2a9a5f8aee7d464ffe78f | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Codeforces774{
static long mod = 1000000007L;
static MyScanner sc = new MyScanner();
static ArrayList<Long> ar = new ArrayList<>();
static void solve() {
long n = sc.nextLong();
long s = sc.nextLong();
long count = 0;
count = s/(n*n);
out.println(count);
}
static void fill(){
ar.add(1l);
long j = 1;
for(long i = 1;i<=14;i++){
ar.add(j*i);
j*=i;
}
}
static void solve2(){
int n = sc.nextInt();
int arr[] = sc.readIntArray(n);
sort(arr);
long pre = arr[0];
long suf = 0;
int i = 1;
int j = n-1;
while(i<j){
pre += arr[i];
suf += arr[j];
if(pre<suf){
out.println("YES");
return;
}
i++;
j--;
}
out.println("NO");
}
static void solve3(){
long n = sc.nextLong();
long ans = Integer.MAX_VALUE;
for(long i = 0;i<=(int)Math.pow(2,15);i++){
long count = 0;
long sum = 0;
for(int j = 0;j<15;j++){
if((i&(1<<j))!=0){
sum+= ar.get(j);
count++;
}
}
if(sum>n) continue;
long temp = n-sum;
while(temp>0){
temp = temp&(temp-1);
count++;
}
ans = Math.min(ans,count);
}
out.println(ans);
}
static String fun(int n){
String str = "";
for(int i = 0;i<n;i++) str+= '0';
return str;
}
static String fun2(int n){
String str = "";
for(int i = 0;i<n;i++) str+= '1';
return str;
}
static long pow(long a, long b) {
if (b == 0) return 1;
long res = pow(a, b / 2);
res = (res * res) % 1_000_000_007;
if (b % 2 == 1) {
res = (res * a) % 1_000_000_007;
}
return res;
}
static int lis(int arr[],int n){
int lis[] = new int[n];
lis[0] = 1;
for(int i = 1;i<n;i++){
lis[i] = 1;
for(int j = 0;j<i;j++){
if(arr[i]>arr[j]){
lis[i] = Math.max(lis[i],lis[j]+1);
}
}
}
int max = Integer.MIN_VALUE;
for(int i = 0;i<n;i++){
max = Math.max(lis[i],max);
}
return max;
}
static boolean isPali(String str){
int i = 0;
int j = str.length()-1;
while(i<j){
if(str.charAt(i)!=str.charAt(j)){
return false;
}
i++;
j--;
}
return true;
}
static long gcd(long a,long b){
if(b==0) return a;
return gcd(b,a%b);
}
static String reverse(String str){
char arr[] = str.toCharArray();
int i = 0;
int j = arr.length-1;
while(i<j){
char temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
i++;
j--;
}
String st = new String(arr);
return st;
}
static boolean isprime(int n){
if(n==1) return false;
if(n==3 || n==2) return true;
if(n%2==0 || n%3==0) return false;
for(int i = 5;i*i<=n;i+= 6){
if(n%i== 0 || n%(i+2)==0){
return false;
}
}
return true;
}
static class Pair implements Comparable<Pair>{
int val;
int ind;
int ans;
Pair(int v,int f){
val = v;
ind = f;
}
public int compareTo(Pair p){
return p.val - this.val;
}
}
public static void main(String[] args) {
out = new PrintWriter(new BufferedOutputStream(System.out));
int t = sc.nextInt();
fill();
// int t= 1;
while(t-- >0){
// solve();
// solve2();
solve3();
}
// Stop writing your solution here. -------------------------------------
out.close();
}
//-----------PrintWriter for faster output---------------------------------
public static PrintWriter out;
//-----------MyScanner class for faster input----------
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int[] readIntArray(int n){
int arr[] = new int[n];
for(int i = 0;i<n;i++){
arr[i] = Integer.parseInt(next());
}
return arr;
}
int[] reverse(int arr[]){
int n= arr.length;
int i = 0;
int j = n-1;
while(i<j){
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
j--;i++;
}
return arr;
}
long[] readLongArray(int n){
long arr[] = new long[n];
for(int i = 0;i<n;i++){
arr[i] = Long.parseLong(next());
}
return arr;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
private static void sort(int[] arr) {
List<Integer> list = new ArrayList<>();
for (int i=0; i<arr.length; i++){
list.add(arr[i]);
}
Collections.sort(list); // collections.sort uses nlogn in backend
for (int i = 0; i < arr.length; i++){
arr[i] = list.get(i);
}
}
private static void sort(long[] arr) {
List<Long> list = new ArrayList<>();
for (int i=0; i<arr.length; i++){
list.add(arr[i]);
}
Collections.sort(list); // collections.sort uses nlogn in backend
for (int i = 0; i < arr.length; i++){
arr[i] = list.get(i);
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 0d86023312950f192c16529f247eeb54 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes |
import java.util.Scanner;
public class Main {
static long[] inv = new long[16];
static void init() {
inv[0] = inv[1] = 1;
for(int i = 1; i <= 15; i++) {
inv[i] = inv[i - 1] * i;
}
}
public static void main(String[] args) {
init();
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t-- > 0) {
solve(sc);
}
}
static void solve(Scanner sc) {
long n = sc.nextLong();
int ans = Integer.MAX_VALUE;
for(int mask = 0; mask < (1 << 14); mask++) {
long m = n;
// 计算阶乘的和
for(int i = 0; i < 15; i++) {
if(((mask >> i) & 1) == 1) {
m -= inv[i + 1];
}
}
if(m >= 0) {
ans = Math.min(ans, Long.bitCount(mask) + Long.bitCount(m));
}
}
System.out.println(ans);
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 25cfef9b05b27f1cf94b09831e2b56b0 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.lang.*;
import java.io.*;
public class C_Factorials_and_Powers_of_Two
{
static int M = 1_000_000_007;
static final PrintWriter out =new PrintWriter(System.out);
static final FastReader fs = new FastReader();
static boolean prime[];
static long ans=Integer.MAX_VALUE;
static ArrayList<Long> al;
public static void main (String[] args) throws java.lang.Exception
{
int t = fs.nextInt();
al= new ArrayList<Long>();
al.add((long)6);
for(int j=4;j<=14;j++){
al.add(al.get(j-4)*(long)j);
}
for(int j=0;j<t;j++){
ans=Integer.MAX_VALUE;
long n=fs.nextLong();
int k=0;
for(int jj=al.size()-1;jj>=0;jj--){
if(al.get(jj)<=n){
k=jj;
break;
}
}
rec(n,0,k);
out.println(ans);
}
out.flush();
}
static void rec(long n,long f,int j){
if(n<0)
return;
ans=Math.min(countSetBits(n)+f,ans);
if(j<0)
return;
rec(n,f,j-1);
rec(n-al.get(j),f+1,j-1);
}
static long countSetBits(long n)
{
long count = 0;
while (n > 0) {
n &= (n - 1);
count++;
}
return count;
}
public static long power(long x, long y)
{
long temp;
if (y == 0)
return 1;
temp = power(x, y / 2);
if (y % 2 == 0)
return modMult(temp,temp);
else {
if (y > 0)
return modMult(x,modMult(temp,temp));
else
return (modMult(temp,temp)) / x;
}
}
static void sieveOfEratosthenes(int n)
{
prime = new boolean[n + 1];
for (int i = 0; i <= n; i++)
prime[i] = true;
prime[0]=false;
if(1<=n)
prime[1]=false;
for (int p = 2; p * p <= n; p++)
{
if (prime[p] == true)
{
for (int i = p * p; i <= n; i += p)
prime[i] = false;
}
}
}
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
int [] arrayIn(int n) throws IOException
{
int arr[] = new int[n];
for(int i=0; i<n; i++)
{
arr[i] = nextInt();
}
return arr;
}
}
public static class Pairs implements Comparable<Pairs>
{
int value,index;
Pairs(int value, int index)
{
this.value = value;
this.index = index;
}
public int compareTo(Pairs p)
{
return Integer.compare(this.value, p.value);
}
}
static final Random random = new Random();
static void ruffleSort(int arr[])
{
int n = arr.length;
for(int i=0; i<n; i++)
{
int j = random.nextInt(n),temp = arr[j];
arr[j] = arr[i];
arr[i] = temp;
}
Arrays.sort(arr);
}
static long nCk(int n, int k) {
return (modMult(fact(n),fastexp(modMult(fact(n-k),fact(k)),M-2)));
}
static long fact (long n) {
long fact =1;
for(int i=1; i<=n; i++) {
fact = modMult(fact,i);
}
return fact%M;
}
static long modMult(long a,long b) {
return a*b%M;
}
static long fastexp(long x, int y){
if(y==1) return x;
long ans = fastexp(x,y/2);
if(y%2 == 0) return modMult(ans,ans);
else return modMult(ans,modMult(ans,x));
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 7782747b634d4bb1a82532da4d85b6ab | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class Main {
public static void main(String args[]) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
int t = Integer.parseInt(in.readLine());
while (t-- > 0) {
long n = Long.parseLong(in.readLine());
long ans = countFactAndPowOf2(n);
out.println(ans);
}
in.close();
out.close();
}
private static long countFactAndPowOf2(long n) {
int finalAns = noOfSetBits(n);
for (int mask=0; mask<=65536; mask++) {
long sum = 0;
for (int j=0; j<16 ; j++) {
if (( (mask >> j) & 1) == 1) sum += factorial(j+1);
if (sum > n) break;
}
if (sum > n) continue;
int ans1 = noOfSetBits(n-sum) + noOfSetBits(mask);
finalAns = Math.min(ans1, finalAns);
}
return finalAns;
}
private static long factorial(int i) {
if (i <= 1) return 1;
return (long)i*factorial(i-1);
}
private static int noOfSetBits(long x) {
int count = 0;
while (x > 0) {
if ((x & 1) == 1) count++;
x >>= 1;
}
return count;
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 29c7be95c543bbb9cbf8a301e2546617 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
static long startTime = System.currentTimeMillis();
// for global initializations and methods starts here
static long[] dp;
static long inf = (long) 1e12 + 5;
static void pre() {
dp = new long[32];
dp[0] = 1L;
for (int i = 1; i < 32; i++) {
dp[i] = dp[i - 1] * i;
if (dp[i] > inf) break;
}
}
// global initialisations and methods end here
static void run() {
boolean tc = true;
AdityaFastIO r = new AdityaFastIO();
//FastReader r = new FastReader();
try (OutputStream out = new BufferedOutputStream(System.out)) {
//long startTime = System.currentTimeMillis();
int testcases = tc ? r.ni() : 1;
int tcCounter = 1;
// Hold Here Sparky------------------->>>
// Solution Starts Here
pre();
start:
while (testcases-- > 0) {
long n = r.nl();
long count = 500;
long sum = 0;
while (sum < (1L << 16)) {
long res = 0L;
long ans1 = 0;
{
int i = 0;
while (i < 16) {
if ((sum & (1L << i)) != 0) {
res += dp[i];
ans1++;
}
i++;
}
}
if (res <= n) {
long ans2 = 0;
long get = n - res;
int i = 0;
while (i < 60) {
if ((get & (1L << i)) != 0) {
ans2++;
}
i++;
}
count = Math.min(count, ans2 + ans1);
}
sum++;
}
out.write((count + " ").getBytes());
out.write(("\n").getBytes());
}
// Solution Ends Here
} catch (IOException e) {
e.printStackTrace();
}
}
static class AdityaFastIO {
final private int BUFFER_SIZE = 1 << 16;
private final DataInputStream din;
private final byte[] buffer;
private int bufferPointer, bytesRead;
public BufferedReader br;
public StringTokenizer st;
public AdityaFastIO() {
br = new BufferedReader(new InputStreamReader(System.in));
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public AdityaFastIO(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String word() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public String line() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
public String readLine() throws IOException {
byte[] buf = new byte[100000001]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int ni() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public long nl() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public double nd() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10);
if (neg) return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead) fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
if (din == null) return;
din.close();
}
}
public static void main(String[] args) throws Exception {
run();
}
static int[] readIntArr(int n, AdityaFastIO r) throws IOException {
int[] arr = new int[n];
for (int i = 0; i < n; i++) arr[i] = r.ni();
return arr;
}
static long[] readLongArr(int n, AdityaFastIO r) throws IOException {
long[] arr = new long[n];
for (int i = 0; i < n; i++) arr[i] = r.nl();
return arr;
}
static List<Integer> readIntList(int n, AdityaFastIO r) throws IOException {
List<Integer> al = new ArrayList<>();
for (int i = 0; i < n; i++) al.add(r.ni());
return al;
}
static List<Long> readLongList(int n, AdityaFastIO r) throws IOException {
List<Long> al = new ArrayList<>();
for (int i = 0; i < n; i++) al.add(r.nl());
return al;
}
static long mod = 998244353;
static long modInv(long base, long e) {
long result = 1;
base %= mod;
while (e > 0) {
if ((e & 1) > 0) result = result * base % mod;
base = base * base % mod;
e >>= 1;
}
return result;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String word() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
String line() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int ni() {
return Integer.parseInt(word());
}
long nl() {
return Long.parseLong(word());
}
double nd() {
return Double.parseDouble(word());
}
}
static int MOD = (int) (1e9 + 7);
static long powerLL(long x, long n) {
long result = 1;
while (n > 0) {
if (n % 2 == 1) result = result * x % MOD;
n = n / 2;
x = x * x % MOD;
}
return result;
}
static long powerStrings(int i1, int i2) {
String sa = String.valueOf(i1);
String sb = String.valueOf(i2);
long a = 0, b = 0;
for (int i = 0; i < sa.length(); i++) a = (a * 10 + (sa.charAt(i) - '0')) % MOD;
for (int i = 0; i < sb.length(); i++) b = (b * 10 + (sb.charAt(i) - '0')) % (MOD - 1);
return powerLL(a, b);
}
static long gcd(long a, long b) {
if (a == 0) return b;
else return gcd(b % a, a);
}
static long lcm(long a, long b) {
return (a * b) / gcd(a, b);
}
static long lower_bound(int[] arr, int x) {
int l = -1, r = arr.length;
while (l + 1 < r) {
int m = (l + r) >>> 1;
if (arr[m] >= x) r = m;
else l = m;
}
return r;
}
static int upper_bound(int[] arr, int x) {
int l = -1, r = arr.length;
while (l + 1 < r) {
int m = (l + r) >>> 1;
if (arr[m] <= x) l = m;
else r = m;
}
return l + 1;
}
static void addEdge(ArrayList<ArrayList<Integer>> graph, int edge1, int edge2) {
graph.get(edge1).add(edge2);
graph.get(edge2).add(edge1);
}
public static class Pair implements Comparable<Pair> {
int first;
int second;
public Pair(int first, int second) {
this.first = first;
this.second = second;
}
public String toString() {
return "(" + first + "," + second + ")";
}
public int compareTo(Pair o) {
// TODO Auto-generated method stub
if (this.first != o.first)
return (int) (this.first - o.first);
else return (int) (this.second - o.second);
}
}
public static class PairC<X, Y> implements Comparable<PairC> {
X first;
Y second;
public PairC(X first, Y second) {
this.first = first;
this.second = second;
}
public String toString() {
return "(" + first + "," + second + ")";
}
public int compareTo(PairC o) {
// TODO Auto-generated method stub
return o.compareTo((PairC) first);
}
}
static boolean isCollectionsSorted(List<Long> list) {
if (list.size() == 0 || list.size() == 1) return true;
for (int i = 1; i < list.size(); i++) if (list.get(i) <= list.get(i - 1)) return false;
return true;
}
static boolean isCollectionsSortedReverseOrder(List<Long> list) {
if (list.size() == 0 || list.size() == 1) return true;
for (int i = 1; i < list.size(); i++) if (list.get(i) >= list.get(i - 1)) return false;
return true;
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | f8c5f0086112f97e80ccf3fca2c4568b | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes |
import java.util.*;
import java.io.*;
public class Main
{
public static void main(String[] args)throws Exception
{
Main ob=new Main();
ob.fun();
}
long two[];
long fac[];
int min;
HashSet<Long> hs;
public void fun()throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw=new PrintWriter(System.out);
two=new long[43];
fac=new long[17];
long x=1l;
for(int i=0;i<=42;i++)
{
two[i]=x;
x=x*2l;
}
x=1l;
fac[0]=1l;
for(long i=1l;i<=16l;i++)
{
x*=i;
fac[(int)i]=x;
}
int t=Integer.parseInt(br.readLine());
while(t-->0)
{
long n=Long.parseLong(br.readLine());
min=Integer.MAX_VALUE;
hs=new HashSet<Long>();
recur(n,0,hs);
pw.println(min);
}
pw.flush();
}
public void recur(long n,int ct,HashSet<Long> hs)
{
if(n==0)
{
min=Math.min(min,ct);
return;
}
if(ct>min)
{
return;
}
long x=floor(two,n);
if(!hs.contains(x))
{
hs.add(x);
recur(n-x,ct+1,hs);
hs.remove(x);
}
x=floor(fac,n);
if(!hs.contains(x))
{
hs.add(x);
recur(n-x,ct+1,hs);
hs.remove(x);
}
}
public long floor(long ar[],long x)
{
int l=0;
int r=ar.length-1;
if(ar[0]>x)
{
return -1;
}
int m=(l+r)/2;
while(l<=r)
{
m=(l+r)/2;
if(ar[m]==x)
{
break;
}
else if(ar[m]<x)
{
l=m+1;
}
else
{
r=m-1;
}
}
if(ar[m]==x)
{
return x;
}
else
{
return ar[r];
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 8 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | c85977e1e2593eb059ffa8d949397d32 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
static ContestScanner sc = new ContestScanner(System.in);
static PrintWriter pw = new PrintWriter(System.out);
static StringBuilder sb = new StringBuilder();
static long mod = (long) 1e9 + 7;
public static void main(String[] args) throws Exception {
prepare();
int T = sc.nextInt();
for(int i = 0; i < T; i++)solve();
//solve();
pw.flush();
}
static ArrayList<Long> fact = new ArrayList<>();
public static void prepare(){
long now = 6;
long max = (long)1e12;
for(long i = 4; i <= 100000; i++){
fact.add(now);
now *= i;
if(now > (long)max){
break;
}
}
}
static HashMap<Long,Long> map;
public static void solve() {
long N = sc.nextLong();
map = new HashMap<>();
dfs(N,new HashSet<>());
//pw.println(map);
pw.println(map.get(N));
}
public static long dfs(long N, HashSet<Long> set){
//pw.println(N);
if(map.containsKey(N)){
return map.get(N);
}
if(set.size() >= 30){
return Long.bitCount(N);
}
long ret = Long.bitCount(N);
for(long v : fact){
if(N < v) break;
if(set.contains(v)){
continue;
}
set.add(v);
ret = Math.min(dfs(N - v, set)+1,ret);
set.remove(v);
}
map.put(N,ret);
return ret;
}
static class GeekInteger {
public static void save_sort(int[] array) {
shuffle(array);
Arrays.sort(array);
}
public static int[] shuffle(int[] array) {
int n = array.length;
Random random = new Random();
for (int i = 0, j; i < n; i++) {
j = i + random.nextInt(n - i);
int randomElement = array[j];
array[j] = array[i];
array[i] = randomElement;
}
return array;
}
public static void save_sort(long[] array) {
shuffle(array);
Arrays.sort(array);
}
public static long[] shuffle(long[] array) {
int n = array.length;
Random random = new Random();
for (int i = 0, j; i < n; i++) {
j = i + random.nextInt(n - i);
long randomElement = array[j];
array[j] = array[i];
array[i] = randomElement;
}
return array;
}
}
}
/**
* 処理は[s, t) の半開区間で指定すること
* 例えばtree[0]の値を取得したい場合はfind(0,1)で取得できる。
* 初期値を設定したい場合は、for(int i = 0; i < N; i++) st.update(i,i+1,A[i]);のようにadd()メソッドを経由しないと正常に動かない
*/
class LazySegmentTree{
long[] tree,lazy;
boolean[] bool;
int N;
long INF = (long)1e18;
public LazySegmentTree(int n){
int now = 1;
while(now < n){
now *= 2;
}
this.N = now;
this.tree = new long[N*2];
Arrays.fill(this.tree,-INF);
this.lazy = new long[N*2];
this.bool = new boolean[N*2];
}
public void eval(int k, int l, int r){
if(bool[k]){
tree[k] = lazy[k];
if(r-l > 1){
lazy[k*2+1] = lazy[k*2+2] = lazy[k];
bool[k*2+1] = bool[k*2+2] = true;
}
bool[k] = false;
}
}
public void update(int a, int b, long x){
update(a,b,x,0,0,N);
}
public void update(int a, int b, long x, int k, int l, int r){
if(r < 0) r = N;
eval(k, l, r);
if(b <= l || r <= a) return;
if(a <= l && r <= b) {
lazy[k] = x;
bool[k] = true;
eval(k, l, r);
}
else {
update(a, b, x, 2*k+1, l, (l+r)/2);
update(a, b, x, 2*k+2, (l+r)/2, r);
tree[k] = Math.max(tree[2*k+1], tree[2*k+2]);
}
return;
}
public long find(int a, int b){
return find(a,b,0,0,N);
}
public long find(int a, int b, int k, int l, int r) {
if(r < 0) r = N;
eval(k, l, r);
if(b <= l || r <= a) return -INF;
if(a <= l && r <= b) return tree[k];
long vl = find(a, b, 2*k+1, l, (l+r)/2);
long vr = find(a, b, 2*k+2, (l+r)/2, r);
return Math.max(vl, vr);
}
}
/**
* refercence : https://github.com/NASU41/AtCoderLibraryForJava/blob/master/ContestIO/ContestScanner.java
*/
class ContestScanner {
private final java.io.InputStream in;
private final byte[] buffer = new byte[1024];
private int ptr = 0;
private int buflen = 0;
private static final long LONG_MAX_TENTHS = 922337203685477580L;
private static final int LONG_MAX_LAST_DIGIT = 7;
private static final int LONG_MIN_LAST_DIGIT = 8;
public ContestScanner(java.io.InputStream in){
this.in = in;
}
public ContestScanner(java.io.File file) throws java.io.FileNotFoundException {
this(new java.io.BufferedInputStream(new java.io.FileInputStream(file)));
}
public ContestScanner(){
this(System.in);
}
private boolean hasNextByte() {
if (ptr < buflen) {
return true;
}else{
ptr = 0;
try {
buflen = in.read(buffer);
} catch (java.io.IOException e) {
e.printStackTrace();
}
if (buflen <= 0) {
return false;
}
}
return true;
}
private int readByte() {
if (hasNextByte()) return buffer[ptr++]; else return -1;
}
private static boolean isPrintableChar(int c) {
return 33 <= c && c <= 126;
}
public boolean hasNext() {
while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++;
return hasNextByte();
}
public String next() {
if (!hasNext()) throw new java.util.NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while(isPrintableChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public long nextLong() {
if (!hasNext()) throw new java.util.NoSuchElementException();
long n = 0;
boolean minus = false;
int b = readByte();
if (b == '-') {
minus = true;
b = readByte();
}
if (b < '0' || '9' < b) {
throw new NumberFormatException();
}
while (true) {
if ('0' <= b && b <= '9') {
int digit = b - '0';
if (n >= LONG_MAX_TENTHS) {
if (n == LONG_MAX_TENTHS) {
if (minus) {
if (digit <= LONG_MIN_LAST_DIGIT) {
n = -n * 10 - digit;
b = readByte();
if (!isPrintableChar(b)) {
return n;
} else if (b < '0' || '9' < b) {
throw new NumberFormatException(
String.format("%d%s... is not number", n, Character.toString(b))
);
}
}
} else {
if (digit <= LONG_MAX_LAST_DIGIT) {
n = n * 10 + digit;
b = readByte();
if (!isPrintableChar(b)) {
return n;
} else if (b < '0' || '9' < b) {
throw new NumberFormatException(
String.format("%d%s... is not number", n, Character.toString(b))
);
}
}
}
}
throw new ArithmeticException(
String.format("%s%d%d... overflows long.", minus ? "-" : "", n, digit)
);
}
n = n * 10 + digit;
}else if(b == -1 || !isPrintableChar(b)){
return minus ? -n : n;
}else{
throw new NumberFormatException();
}
b = readByte();
}
}
public int nextInt() {
long nl = nextLong();
if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException();
return (int) nl;
}
public double nextDouble() {
return Double.parseDouble(next());
}
public long[] nextLongArray(int length){
long[] array = new long[length];
for(int i=0; i<length; i++) array[i] = this.nextLong();
return array;
}
public long[] nextLongArray(int length, java.util.function.LongUnaryOperator map){
long[] array = new long[length];
for(int i=0; i<length; i++) array[i] = map.applyAsLong(this.nextLong());
return array;
}
public int[] nextIntArray(int length){
int[] array = new int[length];
for(int i=0; i<length; i++) array[i] = this.nextInt();
return array;
}
public int[] nextIntArray(int length, java.util.function.IntUnaryOperator map){
int[] array = new int[length];
for(int i=0; i<length; i++) array[i] = map.applyAsInt(this.nextInt());
return array;
}
public double[] nextDoubleArray(int length){
double[] array = new double[length];
for(int i=0; i<length; i++) array[i] = this.nextDouble();
return array;
}
public double[] nextDoubleArray(int length, java.util.function.DoubleUnaryOperator map){
double[] array = new double[length];
for(int i=0; i<length; i++) array[i] = map.applyAsDouble(this.nextDouble());
return array;
}
public long[][] nextLongMatrix(int height, int width){
long[][] mat = new long[height][width];
for(int h=0; h<height; h++) for(int w=0; w<width; w++){
mat[h][w] = this.nextLong();
}
return mat;
}
public int[][] nextIntMatrix(int height, int width){
int[][] mat = new int[height][width];
for(int h=0; h<height; h++) for(int w=0; w<width; w++){
mat[h][w] = this.nextInt();
}
return mat;
}
public double[][] nextDoubleMatrix(int height, int width){
double[][] mat = new double[height][width];
for(int h=0; h<height; h++) for(int w=0; w<width; w++){
mat[h][w] = this.nextDouble();
}
return mat;
}
public char[][] nextCharMatrix(int height, int width){
char[][] mat = new char[height][width];
for(int h=0; h<height; h++){
String s = this.next();
for(int w=0; w<width; w++){
mat[h][w] = s.charAt(w);
}
}
return mat;
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | f3140a9167b312347798f0ce262c0b2b | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
static StringBuilder sb;
static dsu dsu;
static long fact[];
static int mod = (int) (1e9 + 7);
static HashMap<Long,Integer> dp2;
static long []pow;
static int solve2(int bit,long n){
HashSet<Long> hs=new HashSet<>();
int ans=0;
for(int i=0;i<=14;i++){
int mask=(1<<i);
if((mask&bit)>0){
n-=fact[i];
if(hs.contains(fact[i])){
return Integer.MAX_VALUE;
}
hs.add(fact[i]);
}
}
if(n<0)return Integer.MAX_VALUE;
else{
if((hs.contains(1)&&n%2==1)||hs.contains(2)&&((n&2)>0)){
return Integer.MAX_VALUE;
}
for(long i=0;i<62;i++){
long mask=(long)(1l<<i);
if((mask & n)>0)ans++;
}
}
return ans+hs.size();
}
static void solve() {
long n=l();
long pow=(long)(Math.log(n)/Math.log(2));
long tw=p(2,15);
int ans=Integer.MAX_VALUE;
for(int i=0;i<=(int)tw;i++){
int x=solve2(i,n);
ans=Math.min(ans,x);
}
if(ans==Integer.MAX_VALUE)ans=-1;
sb.append(ans+"\n");
}
public static void main(String[] args) {
sb = new StringBuilder();
int test = i();
dp2=new HashMap<>();
fact=new long[15];
fact[0]=fact[1]=1;
pow=new long[41];
for(int i=2;i<fact.length;i++)
{ fact[i]=fact[i-1]*i;}
while (test-- > 0) {
solve();
}
System.out.println(sb);
}
//**************NCR%P******************
static long ncr(int n, int r) {
if (r > n)
return (long) 0;
long res = fact[n] % mod;
// System.out.println(res);
res = ((long) (res % mod) * (long) (p(fact[r], mod - 2) % mod)) % mod;
res = ((long) (res % mod) * (long) (p(fact[n - r], mod - 2) % mod)) % mod;
// System.out.println(res);
return res;
}
static long p(long x, long y)// POWER FXN //
{
if (y == 0)
return 1;
long res = 1;
while (y > 0) {
if (y % 2 == 1) {
res = (res * x) ;
y--;
}
x = (x * x) ;
y = y / 2;
}
return res;
}
//**************END******************
// *************Disjoint set
// union*********//
static class dsu {
int parent[];
dsu(int n) {
parent = new int[n];
for (int i = 0; i < n; i++)
parent[i] = -1;
}
int find(int a) {
if (parent[a] < 0)
return a;
else {
int x = find(parent[a]);
parent[a] = x;
return x;
}
}
void merge(int a, int b) {
a = find(a);
b = find(b);
if (a == b)
return;
parent[b] = a;
}
}
//**************PRIME FACTORIZE **********************************//
static TreeMap<Integer, Integer> prime(long n) {
TreeMap<Integer, Integer> h = new TreeMap<>();
long num = n;
for (int i = 2; i <= Math.sqrt(num); i++) {
if (n % i == 0) {
int nt = 0;
while (n % i == 0) {
n = n / i;
nt++;
}
h.put(i, nt);
}
}
if (n != 1)
h.put((int) n, 1);
return h;
}
//****CLASS PAIR ************************************************
static class Pair implements Comparable<Pair> {
int x;
long y;
Pair(int x, long y) {
this.x = x;
this.y = y;
}
public int compareTo(Pair o) {
return (int) (this.y - o.y);
}
}
//****CLASS PAIR **************************************************
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int Int() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String String() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return String();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
public void flush() {
writer.flush();
}
}
static InputReader in = new InputReader(System.in);
static OutputWriter out = new OutputWriter(System.out);
public static long[] sort(long[] a2) {
int n = a2.length;
ArrayList<Long> l = new ArrayList<>();
for (long i : a2)
l.add(i);
Collections.sort(l);
for (int i = 0; i < l.size(); i++)
a2[i] = l.get(i);
return a2;
}
public static char[] sort(char[] a2) {
int n = a2.length;
ArrayList<Character> l = new ArrayList<>();
for (char i : a2)
l.add(i);
Collections.sort(l);
for (int i = 0; i < l.size(); i++)
a2[i] = l.get(i);
return a2;
}
public static long pow(long x, long y) {
long res = 1;
while (y > 0) {
if (y % 2 != 0) {
res = (res * x);// % modulus;
y--;
}
x = (x * x);// % modulus;
y = y / 2;
}
return res;
}
//GCD___+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
public static long gcd(long x, long y) {
if (x == 0)
return y;
else
return gcd(y % x, x);
}
// ******LOWEST COMMON MULTIPLE
// *********************************************
public static long lcm(long x, long y) {
return (x * (y / gcd(x, y)));
}
//INPUT PATTERN********************************************************
public static int i() {
return in.Int();
}
public static long l() {
String s = in.String();
return Long.parseLong(s);
}
public static String s() {
return in.String();
}
public static int[] readArrayi(int n) {
int A[] = new int[n];
for (int i = 0; i < n; i++) {
A[i] = i();
}
return A;
}
public static long[] readArray(long n) {
long A[] = new long[(int) n];
for (int i = 0; i < n; i++) {
A[i] = l();
}
return A;
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 367fd9f072120056a60afa1a041a719b | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | // JAI SHREE RAM, HAR HAR MAHADEV, HARE KRISHNA
import java.util.*;
import java.util.Map.Entry;
import java.util.stream.*;
import java.lang.*;
import java.math.BigInteger;
import java.text.DecimalFormat;
import java.io.*;
public class Eshan {
static private final String INPUT = "input.txt";
static private final String OUTPUT = "output.txt";
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static StringTokenizer st;
static PrintWriter out = new PrintWriter(System.out);
static DecimalFormat df = new DecimalFormat("0.0000000");
final static int mod = (int) (1e9 + 7);
final static int MAX = Integer.MAX_VALUE;
final static int MIN = Integer.MIN_VALUE;
final static long INF = Long.MAX_VALUE;
final static long NEG_INF = Long.MIN_VALUE;
static Random rand = new Random();
// ======================= MAIN ==================================
public static void main(String[] args) throws IOException {
long time = System.currentTimeMillis();
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
// ==== start ====
input();
// int t = 1;
int t = readInt();
preprocess();
while (t-- > 0) {
solve();
}
out.flush();
// ==== end ====
if (!oj)
System.out.println(Arrays.deepToString(new Object[] { System.currentTimeMillis() - time + " ms" }));
}
private static void solve() throws IOException {
long n = readLong();
int count = Long.bitCount(n);
for (long k : map.keySet()) {
if (k <= n)
count = Math.min(count, map.get(k) + Long.bitCount(n - k));
}
out.println(count);
}
static Map<Long, Integer> map;
private static void preprocess() {
List<Long> fact = new ArrayList<>();
fact.add(1L);
for (int i = 2;; i++) {
long prev = fact.get(i - 2);
if (prev * i > 1e12)
break;
fact.add(prev * i);
}
map = new HashMap<>();
fill(fact, 0, 0L, 0);
}
private static void fill(List<Long> fact, int i, long sum, int t) {
if (i == fact.size()) {
map.put(sum, t);
return;
}
fill(fact, i + 1, sum, t);
fill(fact, i + 1, sum + fact.get(i), t + 1);
}
// cd C:\Users\Eshan Bhatt\Visual Studio Code\Competitive Programming\CodeForces
// javac Eshan.java
// java Eshan
// javac Eshan.java && java Eshan
// ==================== CUSTOM CLASSES ================================
static class Pair implements Comparable<Pair> {
int first, second;
Pair(int first, int second) {
this.first = first;
this.second = second;
}
public int compareTo(Pair o) {
if (this.first != o.first)
return this.second - o.second;
return this.first - o.first;
}
}
static class DequeNode {
DequeNode prev, next;
int val;
DequeNode(int val) {
this.val = val;
}
DequeNode(int val, DequeNode prev, DequeNode next) {
this.val = val;
this.prev = prev;
this.next = next;
}
}
// ======================= FOR INPUT ==================================
private static void input() {
FileInputStream instream = null;
PrintStream outstream = null;
try {
instream = new FileInputStream(INPUT);
outstream = new PrintStream(new FileOutputStream(OUTPUT));
System.setIn(instream);
System.setOut(outstream);
} catch (Exception e) {
System.err.println("Error Occurred.");
}
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
static String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(readLine());
return st.nextToken();
}
static long readLong() throws IOException {
return Long.parseLong(next());
}
static int readInt() throws IOException {
return Integer.parseInt(next());
}
static double readDouble() throws IOException {
return Double.parseDouble(next());
}
static char readCharacter() throws IOException {
return next().charAt(0);
}
static String readString() throws IOException {
return next();
}
static String readLine() throws IOException {
return br.readLine().trim();
}
static int[] readIntArray(int n) throws IOException {
int[] arr = new int[n];
for (int i = 0; i < n; i++)
arr[i] = readInt();
return arr;
}
static int[][] read2DIntArray(int n, int m) throws IOException {
int[][] arr = new int[n][m];
for (int i = 0; i < n; i++)
arr[i] = readIntArray(m);
return arr;
}
static List<Integer> readIntList(int n) throws IOException {
List<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++)
list.add(readInt());
return list;
}
static long[] readLongArray(int n) throws IOException {
long[] arr = new long[n];
for (int i = 0; i < n; i++)
arr[i] = readLong();
return arr;
}
static long[][] read2DLongArray(int n, int m) throws IOException {
long[][] arr = new long[n][m];
for (int i = 0; i < n; i++)
arr[i] = readLongArray(m);
return arr;
}
static List<Long> readLongList(int n) throws IOException {
List<Long> list = new ArrayList<>();
for (int i = 0; i < n; i++)
list.add(readLong());
return list;
}
static char[] readCharArray(int n) throws IOException {
return readString().toCharArray();
}
static char[][] readMatrix(int n, int m) throws IOException {
char[][] mat = new char[n][m];
for (int i = 0; i < n; i++)
mat[i] = readCharArray(m);
return mat;
}
// ========================= FOR OUTPUT ==================================
private static void printIList(List<Integer> list) {
for (int i = 0; i < list.size(); i++)
out.print(list.get(i) + " ");
out.println(" ");
}
private static void printLList(List<Long> list) {
for (int i = 0; i < list.size(); i++)
out.print(list.get(i) + " ");
out.println(" ");
}
private static void printIArray(int[] arr) {
for (int i = 0; i < arr.length; i++)
out.print(arr[i] + " ");
out.println(" ");
}
private static void print2DIArray(int[][] arr) {
for (int i = 0; i < arr.length; i++)
printIArray(arr[i]);
}
private static void printLArray(long[] arr) {
for (int i = 0; i < arr.length; i++)
out.print(arr[i] + " ");
out.println(" ");
}
private static void print2DLArray(long[][] arr) {
for (int i = 0; i < arr.length; i++)
printLArray(arr[i]);
}
// ====================== TO CHECK IF STRING IS NUMBER ========================
private static boolean isInteger(String s) {
try {
Integer.parseInt(s);
} catch (NumberFormatException e) {
return false;
} catch (NullPointerException e) {
return false;
}
return true;
}
private static boolean isLong(String s) {
try {
Long.parseLong(s);
} catch (NumberFormatException e) {
return false;
} catch (NullPointerException e) {
return false;
}
return true;
}
// ==================== FASTER SORT ================================
private static void sort(int[] arr) {
int n = arr.length;
List<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++)
list.add(arr[i]);
Collections.sort(list);
for (int i = 0; i < n; i++)
arr[i] = list.get(i);
}
private static void reverseSort(int[] arr) {
int n = arr.length;
List<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++)
list.add(arr[i]);
Collections.sort(list, Collections.reverseOrder());
for (int i = 0; i < n; i++)
arr[i] = list.get(i);
}
private static void sort(long[] arr) {
int n = arr.length;
List<Long> list = new ArrayList<>();
for (int i = 0; i < n; i++)
list.add(arr[i]);
Collections.sort(list);
for (int i = 0; i < n; i++)
arr[i] = list.get(i);
}
private static void reverseSort(long[] arr) {
int n = arr.length;
List<Long> list = new ArrayList<>();
for (int i = 0; i < n; i++)
list.add(arr[i]);
Collections.sort(list, Collections.reverseOrder());
for (int i = 0; i < n; i++)
arr[i] = list.get(i);
}
// ==================== MATHEMATICAL FUNCTIONS ===========================
private static int gcd(int a, int b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
private static long gcd(long a, long b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
private static int lcm(int a, int b) {
return (a / gcd(a, b)) * b;
}
private static long lcm(long a, long b) {
return (a / gcd(a, b)) * b;
}
private static long power(long a, long b) {
if (b == 0)
return 1L;
long ans = power(a, b >> 1);
ans *= ans;
if ((b & 1) == 1)
ans *= a;
return ans;
}
private static int mod_power(int a, int b, int mod) {
if (b == 0)
return 1;
int temp = mod_power(a, b >> 1, mod);
temp %= mod;
temp = (int) ((1L * temp * temp) % mod);
if ((b & 1) == 1)
temp = (int) ((1L * temp * a) % mod);
return temp;
}
private static int multiply(int a, int b) {
return (int) ((((1L * a) % mod) * ((1L * b) % mod)) % mod);
}
private static boolean isPrime(long n) {
for (long i = 2; i * i <= n; i++) {
if (n % i == 0)
return false;
}
return true;
}
private static long nCr(long n, long r) {
if (n - r > r)
r = n - r;
long ans = 1L;
for (long i = r + 1; i <= n; i++)
ans *= i;
for (long i = 2; i <= n - r; i++)
ans /= i;
return ans;
}
// ==================== Primes using Seive =====================
private static List<Integer> getPrimes(int n) {
boolean[] prime = new boolean[n + 1];
Arrays.fill(prime, true);
for (int i = 2; i * i <= n; i++) {
if (prime[i]) {
for (int j = i * i; j <= n; j += i)
prime[j] = false;
}
}
// return prime;
List<Integer> list = new ArrayList<>();
for (int i = 2; i <= n; i++)
if (prime[i])
list.add(i);
return list;
}
private static int[] SeivePrime(int n) {
int[] primes = new int[n];
for (int i = 0; i < n; i++)
primes[i] = i;
for (int i = 2; i * i < n; i++) {
if (primes[i] != i)
continue;
for (int j = i * i; j < n; j += i) {
if (primes[j] == j)
primes[j] = i;
}
}
return primes;
}
// ==================== STRING FUNCTIONS ================================
private static boolean isPalindrome(String str) {
int i = 0, j = str.length() - 1;
while (i < j)
if (str.charAt(i++) != str.charAt(j--))
return false;
return true;
}
private static String reverseString(String str) {
StringBuilder sb = new StringBuilder(str);
return sb.reverse().toString();
}
private static String sortString(String str) {
int[] arr = new int[256];
for (char ch : str.toCharArray())
arr[ch]++;
StringBuilder sb = new StringBuilder();
for (int i = 0; i < 256; i++)
while (arr[i]-- > 0)
sb.append((char) i);
return sb.toString();
}
// ==================== LIS & LNDS ================================
private static int LIS(int arr[], int n) {
List<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++) {
int idx = find1(list, arr[i]);
if (idx < list.size())
list.set(idx, arr[i]);
else
list.add(arr[i]);
}
return list.size();
}
private static int find1(List<Integer> list, int val) {
int ret = list.size(), i = 0, j = list.size() - 1;
while (i <= j) {
int mid = (i + j) / 2;
if (list.get(mid) >= val) {
ret = mid;
j = mid - 1;
} else {
i = mid + 1;
}
}
return ret;
}
private static int LNDS(int[] arr, int n) {
List<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++) {
int idx = find2(list, arr[i]);
if (idx < list.size())
list.set(idx, arr[i]);
else
list.add(arr[i]);
}
return list.size();
}
private static int find2(List<Integer> list, int val) {
int ret = list.size(), i = 0, j = list.size() - 1;
while (i <= j) {
int mid = (i + j) / 2;
if (list.get(mid) <= val) {
i = mid + 1;
} else {
ret = mid;
j = mid - 1;
}
}
return ret;
}
// =============== Lower Bound & Upper Bound ===========
// less than or equal
private static int lower_bound(List<Integer> list, int val) {
int ans = -1, lo = 0, hi = list.size() - 1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
if (list.get(mid) <= val) {
ans = mid;
lo = mid + 1;
} else {
hi = mid - 1;
}
}
return ans;
}
private static int lower_bound(List<Long> list, long val) {
int ans = -1, lo = 0, hi = list.size() - 1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
if (list.get(mid) <= val) {
ans = mid;
lo = mid + 1;
} else {
hi = mid - 1;
}
}
return ans;
}
private static int lower_bound(int[] arr, int val) {
int ans = -1, lo = 0, hi = arr.length - 1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
if (arr[mid] <= val) {
ans = mid;
lo = mid + 1;
} else {
hi = mid - 1;
}
}
return ans;
}
private static int lower_bound(long[] arr, long val) {
int ans = -1, lo = 0, hi = arr.length - 1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
if (arr[mid] <= val) {
ans = mid;
lo = mid + 1;
} else {
hi = mid - 1;
}
}
return ans;
}
// greater than or equal
private static int upper_bound(List<Integer> list, int val) {
int ans = list.size(), lo = 0, hi = ans - 1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
if (list.get(mid) >= val) {
ans = mid;
hi = mid - 1;
} else {
lo = mid + 1;
}
}
return ans;
}
private static int upper_bound(List<Long> list, long val) {
int ans = list.size(), lo = 0, hi = ans - 1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
if (list.get(mid) >= val) {
ans = mid;
hi = mid - 1;
} else {
lo = mid + 1;
}
}
return ans;
}
private static int upper_bound(int[] arr, int val) {
int ans = arr.length, lo = 0, hi = ans - 1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
if (arr[mid] >= val) {
ans = mid;
hi = mid - 1;
} else {
lo = mid + 1;
}
}
return ans;
}
private static int upper_bound(long[] arr, long val) {
int ans = arr.length, lo = 0, hi = ans - 1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
if (arr[mid] >= val) {
ans = mid;
hi = mid - 1;
} else {
lo = mid + 1;
}
}
return ans;
}
// ==================== UNION FIND =====================
private static int find(int x, int[] parent) {
if (parent[x] == x)
return x;
return parent[x] = find(parent[x], parent);
}
private static boolean union(int x, int y, int[] parent, int[] rank) {
int lx = find(x, parent), ly = find(y, parent);
if (lx == ly)
return false;
if (rank[lx] > rank[ly])
parent[ly] = lx;
else if (rank[lx] < rank[ly])
parent[lx] = ly;
else {
parent[lx] = ly;
rank[ly]++;
}
return true;
}
// ==================== SEGMENT TREE (RANGE SUM) =====================
public static class SegmentTree {
int n;
int[] arr, tree, lazy;
SegmentTree(int arr[]) {
this.arr = arr;
this.n = arr.length;
this.tree = new int[(n << 2)];
this.lazy = new int[(n << 2)];
build(1, 0, n - 1);
}
void build(int id, int start, int end) {
if (start == end)
tree[id] = arr[start];
else {
int mid = (start + end) / 2, left = (id << 1), right = left + 1;
build(left, start, mid);
build(right, mid + 1, end);
tree[id] = tree[left] + tree[right];
}
}
void update(int l, int r, int val) {
update(1, 0, n - 1, l, r, val);
}
void update(int id, int start, int end, int l, int r, int val) {
distribute(id, start, end);
if (end < l || r < start)
return;
if (start == end)
tree[id] += val;
else if (l <= start && end <= r) {
lazy[id] += val;
distribute(id, start, end);
} else {
int mid = (start + end) / 2, left = (id << 1), right = left + 1;
update(left, start, mid, l, r, val);
update(right, mid + 1, end, l, r, val);
tree[id] = tree[left] + tree[right];
}
}
int query(int l, int r) {
return query(1, 0, n - 1, l, r);
}
int query(int id, int start, int end, int l, int r) {
if (end < l || r < start)
return 0;
distribute(id, start, end);
if (start == end)
return tree[id];
else if (l <= start && end <= r)
return tree[id];
else {
int mid = (start + end) / 2, left = (id << 1), right = left + 1;
return query(left, start, mid, l, r) + query(right, mid + 1, end, l, r);
}
}
void distribute(int id, int start, int end) {
if (start == end)
tree[id] += lazy[id];
else {
tree[id] += lazy[id] * (end - start + 1);
lazy[(id << 1)] += lazy[id];
lazy[(id << 1) + 1] += lazy[id];
}
lazy[id] = 0;
}
}
// ==================== TRIE ================================
static class Trie {
class Node {
Node[] children;
boolean isEnd;
Node() {
children = new Node[26];
}
}
Node root;
Trie() {
root = new Node();
}
public void insert(String word) {
Node curr = root;
for (char ch : word.toCharArray()) {
if (curr.children[ch - 'a'] == null)
curr.children[ch - 'a'] = new Node();
curr = curr.children[ch - 'a'];
}
curr.isEnd = true;
}
public boolean find(String word) {
Node curr = root;
for (char ch : word.toCharArray()) {
if (curr.children[ch - 'a'] == null)
return false;
curr = curr.children[ch - 'a'];
}
return curr.isEnd;
}
}
// ==================== FENWICK TREE ================================
static class FT {
long[] tree;
int n;
FT(int[] arr, int n) {
this.n = n;
this.tree = new long[n + 1];
for (int i = 1; i <= n; i++) {
update(i, arr[i - 1]);
}
}
void update(int idx, int val) {
while (idx <= n) {
tree[idx] += val;
idx += idx & -idx;
}
}
long query(int l, int r) {
return getSum(r) - getSum(l - 1);
}
long getSum(int idx) {
long ans = 0L;
while (idx > 0) {
ans += tree[idx];
idx -= idx & -idx;
}
return ans;
}
}
// ==================== BINARY INDEX TREE ================================
static class BIT {
long[][] tree;
int n, m;
BIT(int[][] mat, int n, int m) {
this.n = n;
this.m = m;
tree = new long[n + 1][m + 1];
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
update(i, j, mat[i - 1][j - 1]);
}
}
}
void update(int x, int y, int val) {
while (x <= n) {
int t = y;
while (t <= m) {
tree[x][t] += val;
t += t & -t;
}
x += x & -x;
}
}
long query(int x1, int y1, int x2, int y2) {
return getSum(x2, y2) - getSum(x1 - 1, y2) - getSum(x2, y1 - 1) + getSum(x1 - 1, y1 - 1);
}
long getSum(int x, int y) {
long ans = 0L;
while (x > 0) {
int t = y;
while (t > 0) {
ans += tree[x][t];
t -= t & -t;
}
x -= x & -x;
}
return ans;
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | de3929067a7dbaf032532b148a233ec4 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.lang.*;
import java.io.*;
// Created by @thesupremeone on 3/18/22
public class FactorialsAndPowersOf2 {
long n;
int bitCount;
void solve() {
int ts = getInt();
for (int t = 0; t < ts; t++) {
n = getLong();
bitCount = Long.bitCount(n);
long i = 1;
ArrayList<Long> set = new ArrayList<>();
long fact = 1;
while (fact<=n){
set.add(fact);
fact *= i;
i++;
}
int ans = Integer.MAX_VALUE;
for (int j = 0; j < 1 << set.size(); j++) {
long sum = n;
for (int k = 0; k < set.size(); k++) {
int mask = 1<<k;
if((mask&j)!=0){
sum -= set.get(k);
}
}
if(sum<0) continue;
ans = Math.min(ans, Long.bitCount(sum)+Integer.bitCount(j));
}
println(ans);
}
}
public static void main(String[] args) throws Exception {
if (isOnlineJudge()) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new BufferedWriter(new OutputStreamWriter(System.out));
new FactorialsAndPowersOf2().solve();
out.flush();
} else {
localJudge = new Thread();
in = new BufferedReader(new FileReader("input.txt"));
out = new BufferedWriter(new FileWriter("output.txt"));
localJudge.start();
new FactorialsAndPowersOf2().solve();
out.flush();
localJudge.suspend();
}
}
static boolean isOnlineJudge() {
try {
return System.getProperty("ONLINE_JUDGE") != null
|| System.getProperty("LOCAL") == null;
} catch (Exception e) {
return true;
}
}
// Fast Input & Output
static Thread localJudge = null;
static BufferedReader in;
static StringTokenizer st;
static BufferedWriter out;
static String getLine() {
try {
return in.readLine();
} catch (Exception ignored) {
return "";
}
}
static String getToken() {
if (st == null || !st.hasMoreTokens())
st = new StringTokenizer(getLine());
return st.nextToken();
}
static int getInt() {
return Integer.parseInt(getToken());
}
static long getLong() {
return Long.parseLong(getToken());
}
static void print(Object s) {
try {
out.write(String.valueOf(s));
} catch (Exception ignored) {
}
}
static void println(Object s) {
try {
out.write(String.valueOf(s));
out.newLine();
} catch (Exception ignored) {
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 5d5f0740fbde344257991ce280a9768f | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | //package com.company;
import java.util.Scanner;
public class Main
{
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
long t=1;
t=sc.nextLong();
long[] a=new long[16];
a[0]=1;
for(int i=1;i<16;i++)
{
a[i]=a[i-1]*i;
//System.out.println(a[i]);
}
while(t-->0)
{
long n=sc.nextLong();
long q=n;
long res=0;
while(q>0) {
res += q % 2;
q/=2;
}
long m=(1<<16);
for(int i=1;i<m;i++)
{
long sum=0,k=0;
for(int j=0;j<16;j++)
{
int h=(1<<j);
if((h&i)!=0)
{
k++;
sum+=a[j];
}
}
if(n>sum)
{
q=n-sum;
while(q>0)
{
k+=q%2;
q/=2;
}
}
if(n>=sum)
{
if(k<res)
{
res=k;
}
}
}
System.out.println(res);
}
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 36a2383bf73e8f2223b7e044908768ac | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | //package com.company;
import java.io.*;
import java.util.*;
public class Main
{
public static void main(String[] args)
{
FastScanner in = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
long t=1;
t=in.nextLong();
long[] a=new long[16];
a[0]=1;
for(int i=1;i<16;i++)
{
a[i]=a[i-1]*i;
//System.out.println(a[i]);
}
while(t-->0)
{
long n=in.nextLong();
long q=n;
long res=0;
while(q>0) {
res += q % 2;
q/=2;
}
long m=(1<<16);
for(int i=1;i<m;i++)
{
long sum=0,k=0;
for(int j=0;j<16;j++)
{
int h=(1<<j);
if((h&i)!=0)
{
k++;
sum+=a[j];
}
}
if(n>sum)
{
q=n-sum;
while(q>0)
{
k+=q%2;
q/=2;
}
}
if(n>=sum)
{
if(k<res)
{
res=k;
}
}
}
out.println(res);
}
out.close();
}
private static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
boolean hasNext() {
return st.hasMoreTokens();
}
char[] readCharArray(int n) {
char[] arr = new char[n];
try {
br.read(arr);
br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return arr;
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
long[] readLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 8b308d5a11879f24df00161d7d640e65 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | //package com.company;
import java.util.Scanner;
public class Main
{
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
long t=1;
t=sc.nextLong();
while(t-->0)
{
long n=sc.nextLong();
long q=n;
long res=0;
while(q>0) {
res += q % 2;
q/=2;
}
long[] a=new long[16];
a[0]=1;
for(int i=1;i<16;i++)
{
a[i]=a[i-1]*i;
//System.out.println(a[i]);
}
long m=(1<<16);
for(int i=1;i<m;i++)
{
long sum=0,k=0;
for(int j=0;j<16;j++)
{
int h=(1<<j);
if((h&i)!=0)
{
k++;
sum+=a[j];
}
}
if(n>sum)
{
q=n-sum;
while(q>0)
{
k+=q%2;
q/=2;
}
}
if(n>=sum)
{
if(k<res)
{
res=k;
}
}
}
System.out.println(res);
}
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 5e36794666c18d35e3a55b9a520a9365 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class codeforces_774_C {
private static void solve(FastIOAdapter in, PrintWriter out) {
long n = in.nextLong();
int ans = Long.bitCount(n);
var l = new ArrayList<Long>();
long cur = 1;
for (int i = 1; i * cur <= n; i++) {
cur *= i;
l.add(cur);
}
for (int i = 0; i < 1 << l.size(); i++) {
long taken = 0;
for (int j = 0; j < l.size(); j++) {
if ((i & (1 << j)) != 0) {
taken += l.get(j);
}
}
if (taken <= n) {
ans = Math.min(ans, Long.bitCount(n - taken) + Long.bitCount(i));
}
}
out.println(ans);
}
public static void main(String[] args) throws Exception {
try (FastIOAdapter ioAdapter = new FastIOAdapter()) {
int count = 1;
count = ioAdapter.nextInt();
while (count-- > 0) {
solve(ioAdapter, ioAdapter.out);
}
}
}
static void ruffleSort(int[] arr) {
int n = arr.length;
Random rnd = new Random();
for (int i = 0; i < n; ++i) {
int tmp = arr[i];
int randomPos = i + rnd.nextInt(n - i);
arr[i] = arr[randomPos];
arr[randomPos] = tmp;
}
Arrays.sort(arr);
}
static class FastIOAdapter implements AutoCloseable {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter((System.out))));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
e.printStackTrace();
return null;
}
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
long[] readArrayLong(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
@Override
public void close() throws Exception {
out.flush();
out.close();
br.close();
}
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 7a956bc6c8e5c0b5482af569837d86d5 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class Main {
static long M = (long)(1e12);
static int INF = 0x3f3f3f3f;
static long min;
static long n;
static List<Long> list = new ArrayList<>();
static Set<Long> set = new HashSet<>();
public static void main(String[] args) {
init();
FastScanner sc = new FastScanner();
int T = sc.nextInt();
while (T-- > 0) {
n = sc.nextLong();
min = INF;
solver();
if(min == INF) System.out.println(-1);
else System.out.println(min);
}
}
static void init(){
long res = 1;
long st = 1;
while (res <= M){
res = res * st;
st++;
list.add(res);
}
}
static void solver() {
for(int i = 0; i <= (1 << list.size()); i++){
long curS = 0;
long cntP = 0;
set.clear();
for(long j = 0; j < list.size(); j++){
if(((i >> j) & 1) == 1) {
curS += list.get((int)j);
set.add(list.get((int)j));
cntP++;
}
}
// System.out.println(curS + " " + cntP);
if(curS > n) continue;
else{
long res = n - curS;
for(long k = 0; k < 41; k++){
if(((res >> k) & 1) == 1){
cntP++;
}
}
min = Math.min(min, cntP);
}
}
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 575625a618b0b6691259441e98541ec7 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.Math.abs;
import static java.lang.System.out;
import java.util.*;
import java.io.*;
import java.math.*;
public class C_Factorials_and_Powers_of_Two
{
private static int ans ;
private static void solve(long n, int i,List<Long> arr, int k){
if(i==arr.size()){
ans = min(ans,k + Long.bitCount(n));
return;
}
if(arr.get(i)<=n){
solve(n-arr.get(i),i+1,arr,k+1);
}
solve(n,i+1,arr,k);
}
public static void main(String[] args) throws Exception
{
BufferedReader infile = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(infile.readLine());
// int N = Integer.parseInt(st.nextToken());
// int M = Integer.parseInt(st.nextToken());
// /*
int T = Integer.parseInt(st.nextToken());
StringBuilder sb = new StringBuilder();
FastScanner fs = new FastScanner();
List<Long> set = new ArrayList<>();
long a = 1;
for(int i = 1;i<=15;i++){
a = a*(long)i;
set.add(a);
}
// System.out.println(set.size());
while(T-->0)
{
st = new StringTokenizer(infile.readLine());
// int N = Integer.parseInt(st.nextToken());
long n = Long.parseLong(st.nextToken());
ans = Integer.MAX_VALUE;
long N = n;
Set<Long> s = new HashSet<Long>();
solve(n,0,set,0);
System.out.println(ans);
}
// */
// BufferedReader infile = new BufferedReader(new FileReader());
// System.setOut(new PrintStream(new File()));
}
public static int[] readArr(int N, BufferedReader infile, StringTokenizer st) throws Exception
{
int[] arr = new int[N];
st = new StringTokenizer(infile.readLine());
for(int i=0; i < N; i++)
arr[i] = Integer.parseInt(st.nextToken());
return arr;
}
public static void print(int[] arr)
{
//for debugging only
for(int x: arr)
out.print(x+' ');
out.println();
}
public static long[] readArr2(int N, BufferedReader infile, StringTokenizer st) throws Exception
{
long[] arr = new long[N];
st = new StringTokenizer(infile.readLine());
for(int i=0; i < N; i++)
arr[i] = Long.parseLong(st.nextToken());
return arr;
}
public static boolean isPrime(long n)
{
if(n < 2) return false;
if(n == 2 || n == 3) return true;
if(n%2 == 0 || n%3 == 0) return false;
long sqrtN = (long)Math.sqrt(n)+1;
for(long i = 6L; i <= sqrtN; i += 6) {
if(n%(i-1) == 0 || n%(i+1) == 0) return false;
}
return true;
}
public static long gcd(long a, long b)
{
if(a > b)
a = (a+b)-(b=a);
if(a == 0L)
return b;
return gcd(b%a, a);
}
public static ArrayList<Integer> findDiv(int N)
{
//gens all divisors of N
ArrayList<Integer> ls1 = new ArrayList<Integer>();
ArrayList<Integer> ls2 = new ArrayList<Integer>();
for(int i=1; i <= (int)(Math.sqrt(N)+0.00000001); i++)
if(N%i == 0)
{
ls1.add(i);
ls2.add(N/i);
}
Collections.reverse(ls2);
for(int b: ls2)
if(b != ls1.get(ls1.size()-1))
ls1.add(b);
return ls1;
}
public static void sort(int[] arr)
{
//because Arrays.sort() uses quicksort which is dumb
//Collections.sort() uses merge sort
ArrayList<Integer> ls = new ArrayList<Integer>();
for(int x: arr)
ls.add(x);
Collections.sort(ls);
for(int i=0; i < arr.length; i++)
arr[i] = ls.get(i);
}
public static long power(long x, long y, long p)
{
//0^0 = 1
long res = 1L;
x = x%p;
while(y > 0)
{
if((y&1)==1)
res = (res*x)%p;
y >>= 1;
x = (x*x)%p;
}
return res;
}
//custom multiset (replace with HashMap if needed)
public static void push(TreeMap<Integer, Integer> map, int k, int v)
{
//map[k] += v;
if(!map.containsKey(k))
map.put(k, v);
else
map.put(k, map.get(k)+v);
}
public static void pull(TreeMap<Integer, Integer> map, int k, int v)
{
//assumes map[k] >= v
//map[k] -= v
int lol = map.get(k);
if(lol == v)
map.remove(k);
else
map.put(k, lol-v);
}
public static int[] compress(int[] arr)
{
ArrayList<Integer> ls = new ArrayList<Integer>();
for(int x: arr)
ls.add(x);
Collections.sort(ls);
HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
int boof = 1; //min value
for(int x: ls)
if(!map.containsKey(x))
map.put(x, boof++);
int[] brr = new int[arr.length];
for(int i=0; i < arr.length; i++)
brr[i] = map.get(arr[i]);
return brr;
}
public static long[][] multiply(long[][] left, long[][] right)
{
long MOD = 1000000007L;
int N = left.length;
int M = right[0].length;
long[][] res = new long[N][M];
for(int a=0; a < N; a++)
for(int b=0; b < M; b++)
for(int c=0; c < left[0].length; c++)
{
res[a][b] += (left[a][c]*right[c][b])%MOD;
if(res[a][b] >= MOD)
res[a][b] -= MOD;
}
return res;
}
public static long[][] power(long[][] grid, long pow)
{
long[][] res = new long[grid.length][grid[0].length];
for(int i=0; i < res.length; i++)
res[i][i] = 1L;
long[][] curr = grid.clone();
while(pow > 0)
{
if((pow&1L) == 1L)
res = multiply(curr, res);
pow >>= 1;
curr = multiply(curr, curr);
}
return res;
}
}
class DSU
{
public int[] dsu;
public int[] size;
public DSU(int N)
{
dsu = new int[N+1];
size = new int[N+1];
for(int i=0; i <= N; i++)
{
dsu[i] = i;
size[i] = 1;
}
}
//with path compression, no find by rank
public int find(int x)
{
return dsu[x] == x ? x : (dsu[x] = find(dsu[x]));
}
public void merge(int x, int y)
{
int fx = find(x);
int fy = find(y);
dsu[fx] = fy;
}
public void merge(int x, int y, boolean sized)
{
int fx = find(x);
int fy = find(y);
size[fy] += size[fx];
dsu[fx] = fy;
}
}
class LCA
{
public int N, root;
public ArrayDeque<Integer>[] edges;
private int[] enter;
private int[] exit;
private int LOG = 17; //change this
private int[][] dp;
public LCA(int n, ArrayDeque<Integer>[] edges, int r)
{
N = n; root = r;
enter = new int[N+1];
exit = new int[N+1];
dp = new int[N+1][LOG];
this.edges = edges;
int[] time = new int[1];
//change to iterative dfs if N is large
dfs(root, 0, time);
dp[root][0] = 1;
for(int b=1; b < LOG; b++)
for(int v=1; v <= N; v++)
dp[v][b] = dp[dp[v][b-1]][b-1];
}
private void dfs(int curr, int par, int[] time)
{
dp[curr][0] = par;
enter[curr] = ++time[0];
for(int next: edges[curr])
if(next != par)
dfs(next, curr, time);
exit[curr] = ++time[0];
}
public int lca(int x, int y)
{
if(isAnc(x, y))
return x;
if(isAnc(y, x))
return y;
int curr = x;
for(int b=LOG-1; b >= 0; b--)
{
int temp = dp[curr][b];
if(!isAnc(temp, y))
curr = temp;
}
return dp[curr][0];
}
private boolean isAnc(int anc, int curr)
{
return enter[anc] <= enter[curr] && exit[anc] >= exit[curr];
}
}
class FastScanner
{
//I don't understand how this works lmao
private int BS = 1 << 16;
private char NC = (char) 0;
private byte[] buf = new byte[BS];
private int bId = 0, size = 0;
private char c = NC;
private double cnt = 1;
private BufferedInputStream in;
public FastScanner() {
in = new BufferedInputStream(System.in, BS);
}
public FastScanner(String s) {
try {
in = new BufferedInputStream(new FileInputStream(new File(s)), BS);
} catch (Exception e) {
in = new BufferedInputStream(System.in, BS);
}
}
private char getChar() {
while (bId == size) {
try {
size = in.read(buf);
} catch (Exception e) {
return NC;
}
if (size == -1) return NC;
bId = 0;
}
return (char) buf[bId++];
}
public int nextInt() {
return (int) nextLong();
}
public int[] nextInts(int N) {
int[] res = new int[N];
for (int i = 0; i < N; i++) {
res[i] = (int) nextLong();
}
return res;
}
public long[] nextLongs(int N) {
long[] res = new long[N];
for (int i = 0; i < N; i++) {
res[i] = nextLong();
}
return res;
}
public long nextLong() {
cnt = 1;
boolean neg = false;
if (c == NC) c = getChar();
for (; (c < '0' || c > '9'); c = getChar()) {
if (c == '-') neg = true;
}
long res = 0;
for (; c >= '0' && c <= '9'; c = getChar()) {
res = (res << 3) + (res << 1) + c - '0';
cnt *= 10;
}
return neg ? -res : res;
}
public double nextDouble() {
double cur = nextLong();
return c != '.' ? cur : cur + nextLong() / cnt;
}
public double[] nextDoubles(int N) {
double[] res = new double[N];
for (int i = 0; i < N; i++) {
res[i] = nextDouble();
}
return res;
}
public String next() {
StringBuilder res = new StringBuilder();
while (c <= 32) c = getChar();
while (c > 32) {
res.append(c);
c = getChar();
}
return res.toString();
}
public String nextLine() {
StringBuilder res = new StringBuilder();
while (c <= 32) c = getChar();
while (c != '\n') {
res.append(c);
c = getChar();
}
return res.toString();
}
public boolean hasNext() {
if (c > 32) return true;
while (true) {
c = getChar();
if (c == NC) return false;
else if (c > 32) return true;
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | f6ec8a31a4163b826633e7b3a3363e70 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | /*----------- ---------------*
Author : Ryan Ranaut
__Hope is a big word, never lose it__
------------- --------------*/
import java.io.*;
import java.util.*;
public class Codeforces1 {
static PrintWriter out = new PrintWriter(System.out);
static final int mod = 1_000_000_007;
static int max = (int)(1e6);
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
long[] readLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
/*--------------------------------------------------------------------------*/
//Try seeing general case
//Minimization Maximization - BS..... Connections - Graphs.....
//Greedy not worthy - Try DP
public static void main(String[] args)
{
FastReader s = new FastReader();
List<Long> ls = new ArrayList<>();
long fact = 1;
for(int i=1;i<=15;i++)
{
ls.add(fact);
fact *= i;
}
int t = s.nextInt();
while(t-->0)
{
long ans = Long.MAX_VALUE;
long sum = s.nextLong();
for(long i=0;i<(1L<<15);i++)
{
long s1 = 0;
for(int j=0;j<15;j++)
{
if((i & (1L<<j)) != 0)
s1 += ls.get(j);
}
if(s1>sum) break;
long ops = Long.bitCount(i);
ops += Long.bitCount(sum-s1);
ans = Math.min(ans, ops);
}
out.println(ans);
}
out.close();
}
/*----------------------------------End of the road--------------------------------------*/
static class DSU {
int[] parent;
int[] ranks;
int[] groupSize;
int size;
public DSU(int n) {
size = n;
parent = new int[n];//0 based
ranks = new int[n];
groupSize = new int[n];//Size of each component
for (int i = 0; i < n; i++) {
parent[i] = i;
ranks[i] = 1; groupSize[i] = 1;
}
}
public int find(int x)//Path Compression
{
if (parent[x] == x)
return x;
else
return parent[x] = find(parent[x]);
}
public void union(int x, int y)//Union by rank
{
int x_rep = find(x);
int y_rep = find(y);
if (x_rep == y_rep)
return;
if (ranks[x_rep] < ranks[y_rep])
{
parent[x_rep] = y_rep;
groupSize[y_rep] += groupSize[x_rep];
}
else if (ranks[x_rep] > ranks[y_rep])
{
parent[y_rep] = x_rep;
groupSize[x_rep] += groupSize[y_rep];
}
else {
parent[y_rep] = x_rep;
ranks[x_rep]++;
groupSize[x_rep] += groupSize[y_rep];
}
size--;//Total connected components
}
}
public static int gcd(int x,int y)
{
return y==0?x:gcd(y,x%y);
}
public static long gcd(long x,long y)
{
return y==0L?x:gcd(y,x%y);
}
public static int lcm(int a, int b) {
return (a * b) / gcd(a, b);
}
public static long lcm(long a, long b) {
return (a * b) / gcd(a, b);
}
public static long pow(long a,long b)
{
if(b==0L)
return 1L;
long tmp=1;
while(b>1L)
{
if((b&1L)==1)
tmp*=a;
a*=a;
b>>=1;
}
return (tmp*a);
}
public static long modPow(long a,long b,long mod)
{
if(b==0L)
return 1L;
long tmp=1;
while(b>1L)
{
if((b&1L)==1L)
tmp*=a;
a*=a;
a%=mod;
tmp%=mod;
b>>=1;
}
return (tmp*a)%mod;
}
static long mul(long a, long b) {
return a*b;
}
static long fact(int n) {
long ans=1;
for (int i=2; i<=n; i++) ans=mul(ans, i);
return ans;
}
static long fastPow(long base, long exp) {
if (exp==0) return 1;
long half=fastPow(base, exp/2);
if (exp%2==0) return mul(half, half);
return mul(half, mul(half, base));
}
static void debug(int ...a)
{
for(int x: a)
out.print(x+" ");
out.println();
}
static void debug(long ...a)
{
for(long x: a)
out.print(x+" ");
out.println();
}
static void debugMatrix(int[][] a)
{
for(int[] x:a)
out.println(Arrays.toString(x));
}
static void debugMatrix(long[][] a)
{
for(long[] x:a)
out.println(Arrays.toString(x));
}
static void reverseArray(int[] a) {
int n = a.length;
int[] arr = new int[n];
for (int i = 0; i < n; i++)
arr[i] = a[n - i - 1];
for (int i = 0; i < n; i++)
a[i] = arr[i];
}
static void reverseArray(long[] a) {
int n = a.length;
long[] arr = new long[n];
for (int i = 0; i < n; i++)
arr[i] = a[n - i - 1];
for (int i = 0; i < n; i++)
a[i] = arr[i];
}
static void sort(int[] a)
{
ArrayList<Integer> ls = new ArrayList<>();
for(int x: a) ls.add(x);
Collections.sort(ls);
for(int i=0;i<a.length;i++)
a[i] = ls.get(i);
}
static void sort(long[] a)
{
ArrayList<Long> ls = new ArrayList<>();
for(long x: a) ls.add(x);
Collections.sort(ls);
for(int i=0;i<a.length;i++)
a[i] = ls.get(i);
}
static class Pair{
int x, y;
Pair(int x, int y)
{
this.x = x;
this.y = y;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Pair pair = (Pair) o;
return x == pair.x && y == pair.y;
}
@Override
public int hashCode() {
return Objects.hash(x, y);
}
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | e072a522f546bd48627d08209eb4ea2f | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | /*----------- ---------------*
Author : Ryan Ranaut
__Hope is a big word, never lose it__
------------- --------------*/
import java.io.*;
import java.util.*;
public class Codeforces1 {
static PrintWriter out = new PrintWriter(System.out);
static final int mod = 1_000_000_007;
static int max = (int)(1e6);
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
long[] readLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
/*--------------------------------------------------------------------------*/
//Try seeing general case
//Minimization Maximization - BS..... Connections - Graphs.....
//Greedy not worthy - Try DP
static List<Long> ls;
public static void main(String[] args)
{
FastReader s = new FastReader();
ls = new ArrayList<>();
long fact = 1;
for(int i=2;i<=15;i++)
{
ls.add(fact);
fact *= i;
}
int t = s.nextInt();
while(t-->0)
{
long ans = Long.MAX_VALUE;
long sum = s.nextLong();
hmp = new HashMap<>();
find(0, 0, 0);
long ops = 0;
for(Long key: hmp.keySet())
{
ops = hmp.get(key);
long rem = sum-key;
ops += Long.bitCount(rem);
ans = Math.min(ans, ops);
}
out.println(ans);
}
out.close();
}
static Map<Long, Integer> hmp;
public static void find(int i, long s, int count)
{
if(i == ls.size())
{
hmp.put(s, count);
return ;
}
find(i+1, s+ls.get(i), count+1);
find(i+1, s, count);
}
/*----------------------------------End of the road--------------------------------------*/
static class DSU {
int[] parent;
int[] ranks;
int[] groupSize;
int size;
public DSU(int n) {
size = n;
parent = new int[n];//0 based
ranks = new int[n];
groupSize = new int[n];//Size of each component
for (int i = 0; i < n; i++) {
parent[i] = i;
ranks[i] = 1; groupSize[i] = 1;
}
}
public int find(int x)//Path Compression
{
if (parent[x] == x)
return x;
else
return parent[x] = find(parent[x]);
}
public void union(int x, int y)//Union by rank
{
int x_rep = find(x);
int y_rep = find(y);
if (x_rep == y_rep)
return;
if (ranks[x_rep] < ranks[y_rep])
{
parent[x_rep] = y_rep;
groupSize[y_rep] += groupSize[x_rep];
}
else if (ranks[x_rep] > ranks[y_rep])
{
parent[y_rep] = x_rep;
groupSize[x_rep] += groupSize[y_rep];
}
else {
parent[y_rep] = x_rep;
ranks[x_rep]++;
groupSize[x_rep] += groupSize[y_rep];
}
size--;//Total connected components
}
}
public static int gcd(int x,int y)
{
return y==0?x:gcd(y,x%y);
}
public static long gcd(long x,long y)
{
return y==0L?x:gcd(y,x%y);
}
public static int lcm(int a, int b) {
return (a * b) / gcd(a, b);
}
public static long lcm(long a, long b) {
return (a * b) / gcd(a, b);
}
public static long pow(long a,long b)
{
if(b==0L)
return 1L;
long tmp=1;
while(b>1L)
{
if((b&1L)==1)
tmp*=a;
a*=a;
b>>=1;
}
return (tmp*a);
}
public static long modPow(long a,long b,long mod)
{
if(b==0L)
return 1L;
long tmp=1;
while(b>1L)
{
if((b&1L)==1L)
tmp*=a;
a*=a;
a%=mod;
tmp%=mod;
b>>=1;
}
return (tmp*a)%mod;
}
static long mul(long a, long b) {
return a*b;
}
static long fact(int n) {
long ans=1;
for (int i=2; i<=n; i++) ans=mul(ans, i);
return ans;
}
static long fastPow(long base, long exp) {
if (exp==0) return 1;
long half=fastPow(base, exp/2);
if (exp%2==0) return mul(half, half);
return mul(half, mul(half, base));
}
static void debug(int ...a)
{
for(int x: a)
out.print(x+" ");
out.println();
}
static void debug(long ...a)
{
for(long x: a)
out.print(x+" ");
out.println();
}
static void debugMatrix(int[][] a)
{
for(int[] x:a)
out.println(Arrays.toString(x));
}
static void debugMatrix(long[][] a)
{
for(long[] x:a)
out.println(Arrays.toString(x));
}
static void reverseArray(int[] a) {
int n = a.length;
int[] arr = new int[n];
for (int i = 0; i < n; i++)
arr[i] = a[n - i - 1];
for (int i = 0; i < n; i++)
a[i] = arr[i];
}
static void reverseArray(long[] a) {
int n = a.length;
long[] arr = new long[n];
for (int i = 0; i < n; i++)
arr[i] = a[n - i - 1];
for (int i = 0; i < n; i++)
a[i] = arr[i];
}
static void sort(int[] a)
{
ArrayList<Integer> ls = new ArrayList<>();
for(int x: a) ls.add(x);
Collections.sort(ls);
for(int i=0;i<a.length;i++)
a[i] = ls.get(i);
}
static void sort(long[] a)
{
ArrayList<Long> ls = new ArrayList<>();
for(long x: a) ls.add(x);
Collections.sort(ls);
for(int i=0;i<a.length;i++)
a[i] = ls.get(i);
}
static class Pair{
int x, y;
Pair(int x, int y)
{
this.x = x;
this.y = y;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Pair pair = (Pair) o;
return x == pair.x && y == pair.y;
}
@Override
public int hashCode() {
return Objects.hash(x, y);
}
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 6db2182c20ef409d3c66c949c225d0d5 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.lang.*;
import java.math.BigInteger;
import java.io.*;
public class Main implements Runnable {
public static void main(String[] args) {
new Thread(null, new Main(), "whatever", 1 << 26).start();
}
private FastScanner sc;
private PrintWriter pw;
private HashSet<Long> set;
private long p[];
private int size;
public void run() {
try {
boolean isSumitting = true;
// isSumitting = false;
if (isSumitting) {
pw = new PrintWriter(System.out);
sc = new FastScanner(new BufferedReader(new InputStreamReader(System.in)));
} else {
pw = new PrintWriter(new BufferedWriter(new FileWriter("output.txt")));
sc = new FastScanner(new BufferedReader(new FileReader("input.txt")));
}
} catch (Exception e) {
throw new RuntimeException();
}
set = new HashSet<Long>();
int t = sc.nextInt();
long limit = 1_000_000_000_000l;
long temp = 2l;
int count = 3;
set.add(1l);
set.add(2l);
while (true) {
temp *= (long)count;
count++;
if (temp > limit) break;
set.add(temp);
}
int size = set.size();
p = new long[size];
count = 0;
for (long i : set) {
p[count++] = i;
// System.out.print(p[count - 1] + " ");
}
// System.out.println();
Sorter.sort(p);
// int t = 1;
while (t-- > 0) {
// sc.nextLine();
// System.out.println("for t=" + t);
solve();
}
pw.close();
}
public long mod = 1_000_000_007;
private class Pair {
int first, second;
Pair(int first, int second) {
this.first = first;
this.second = second;
}
}
private long n;
private int x;
public void solve() {
n = sc.nextLong();
x = calculate(n, false, false);
int temp = helper(0, 0, 0, false, false);
pw.println(temp);
}
private int calculate(long n, boolean contains1, boolean contains2) {
long temp = n;
int ans = 0;
for (int i = 40; i >= 0; i--) {
if (temp >= (1l << i)) {
if (i == 1 && contains2) {
return 100;
} else if (i == 0 && contains1) {
return 100;
}
temp -= (1l << i);
ans++;
}
}
return ans;
}
private int helper(int pos, long sum, int count, boolean contains1, boolean contains2) {
if (sum > n) return (int)mod;
if (sum == n) return count;
if (pos == p.length) {
return (count + calculate(n - sum, contains1, contains2));
}
return (int)Math.min(helper(pos + 1, sum, count, contains1, contains2)
, helper(pos + 1, sum + p[pos], count + 1, contains1 || p[pos] == 1l, contains2 || p[pos] == 2l));
}
class FastScanner {
private BufferedReader reader = null;
private StringTokenizer tokenizer = null;
public FastScanner(BufferedReader bf) {
reader = bf;
tokenizer = null;
}
public String next() {
if (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public String nextLine() {
if (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
return reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken("\n");
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public float nextFloat() {
return Float.parseFloat(next());
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
public String[] nextStringArray(int n) {
String[] a = new String[n];
for (int i = 0; i < n; i++) {
a[i] = next();
}
return a;
}
public long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = nextLong();
}
return a;
}
}
private static class Sorter {
public static <T extends Comparable<? super T>> void sort(T[] arr) {
Arrays.sort(arr);
}
public static <T> void sort(T[] arr, Comparator<T> c) {
Arrays.sort(arr, c);
}
public static <T> void sort(T[][] arr, Comparator<T[]> c) {
Arrays.sort(arr, c);
}
public static <T extends Comparable<? super T>> void sort(ArrayList<T> arr) {
Collections.sort(arr);
}
public static <T> void sort(ArrayList<T> arr, Comparator<T> c) {
Collections.sort(arr, c);
}
public static void normalSort(int[] arr) {
Arrays.sort(arr);
}
public static void normalSort(long[] arr) {
Arrays.sort(arr);
}
public static void sort(int[] arr) {
timSort(arr);
}
public static void sort(int[] arr, Comparator<Integer> c) {
timSort(arr, c);
}
public static void sort(int[][] arr, Comparator<Integer[]> c) {
timSort(arr, c);
}
public static void sort(long[] arr) {
timSort(arr);
}
public static void sort(long[] arr, Comparator<Long> c) {
timSort(arr, c);
}
public static void sort(long[][] arr, Comparator<Long[]> c) {
timSort(arr, c);
}
private static void timSort(int[] arr) {
Integer[] temp = new Integer[arr.length];
for (int i = 0; i < arr.length; i++) temp[i] = arr[i];
Arrays.sort(temp);
for (int i = 0; i < arr.length; i++) arr[i] = temp[i];
}
private static void timSort(int[] arr, Comparator<Integer> c) {
Integer[] temp = new Integer[arr.length];
for (int i = 0; i < arr.length; i++) temp[i] = arr[i];
Arrays.sort(temp, c);
for (int i = 0; i < arr.length; i++) arr[i] = temp[i];
}
private static void timSort(int[][] arr, Comparator<Integer[]> c) {
Integer[][] temp = new Integer[arr.length][arr[0].length];
for (int i = 0; i < arr.length; i++)
for (int j = 0; j < arr[0].length; j++)
temp[i][j] = arr[i][j];
Arrays.sort(temp, c);
for (int i = 0; i < arr.length; i++)
for (int j = 0; j < arr[0].length; j++)
temp[i][j] = arr[i][j];
}
private static void timSort(long[] arr) {
Long[] temp = new Long[arr.length];
for (int i = 0; i < arr.length; i++) temp[i] = arr[i];
Arrays.sort(temp);
for (int i = 0; i < arr.length; i++) arr[i] = temp[i];
}
private static void timSort(long[] arr, Comparator<Long> c) {
Long[] temp = new Long[arr.length];
for (int i = 0; i < arr.length; i++) temp[i] = arr[i];
Arrays.sort(temp, c);
for (int i = 0; i < arr.length; i++) arr[i] = temp[i];
}
private static void timSort(long[][] arr, Comparator<Long[]> c) {
Long[][] temp = new Long[arr.length][arr[0].length];
for (int i = 0; i < arr.length; i++)
for (int j = 0; j < arr[0].length; j++)
temp[i][j] = arr[i][j];
Arrays.sort(temp, c);
for (int i = 0; i < arr.length; i++)
for (int j = 0; j < arr[0].length; j++)
temp[i][j] = arr[i][j];
}
}
public long fastPow(long x, long y, long mod) {
if (y == 0) return 1;
if (y == 1) return x % mod;
long temp = fastPow(x, y / 2, mod);
long ans = (temp * temp) % mod;
return (y % 2 == 1) ? (ans * (x % mod)) % mod : ans;
}
public long fastPow(long x, long y) {
if (y == 0) return 1;
if (y == 1) return x;
long temp = fastPow(x, y / 2);
long ans = (temp * temp);
return (y % 2 == 1) ? (ans * x) : ans;
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 4741ba1de14befa75534472b538bf425 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
public class S {
static long solve(ArrayList<Long> coins, long n, int ind, long sum, long itr) {
if (ind < coins.size()) {
return Math.min(solve(coins, n, ind + 1, sum, itr), solve(coins, n, ind + 1, sum + coins.get(ind), itr + 1));
} else {
return Long.bitCount(n - sum) + itr;
}
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
ArrayList<Long> coins = new ArrayList<Long>();
Long a = 1L;
for (int i = 1; i < 15; i++) {
a *= i;
coins.add(a);
}
for (int tt = 0; tt < t; tt++) {
long n = sc.nextLong();
System.out.println(Math.min(Long.bitCount(n), solve(coins, n, 0, 0L, 0L)));
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 7eda39171fc4d2a5728f1152ff233625 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main{
static final int mod=100000007;
static final int maxn=1000+10;
static IO io;
static long[] fac=new long[12];
static HashSet<val> hs=new HashSet<>();
public static void main(String[] args)throws IOException
{
io=new IO();
int t=io.nextInt();
fac[0]=6;
for(int i=1;i<12;i++) {
fac[i]=fac[i-1]*(i+3);
}
for(int i=0;i<(1<<12);i++) {
long tmp=0;
for(int j=0;j<12;j++) {
if( (1&(i>>j)) ==1 ) {
tmp+=fac[j];
}
}
hs.add(new val(tmp,Long.bitCount(i)));
}
while(t>0) {
t--;
solve();
}
io.flush();io.close();
}
private static void solve()throws IOException
{
long maxx=Long.MAX_VALUE;
long n=io.nextLong();
//long maxx=Long.bitCount(n);
for(val x : hs) {
long left=n-x.n;
if(left<0) continue;
maxx=Math.min(maxx,Long.bitCount(left)+x.c);
}
io.println(maxx);
}
public static class val
{
long n;int c;
public val(long n,int c) {
this.n=n;this.c=c;
}
}
static class IO extends PrintWriter {
BufferedReader br;
StringTokenizer st;
// standard input
public IO() { this(System.in, System.out); }
public IO(InputStream i, OutputStream o) {
super(o);
br = new BufferedReader(new InputStreamReader(i));
}
public IO(String problemName) throws IOException {
super(problemName + ".out");
br = new BufferedReader(new FileReader(problemName + ".in"));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public String nextLine() throws IOException {
return br.readLine();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 3e1501f932b6e5cbe76efc6f0ba180cf | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main{
static final int mod=100000007;
static final int maxn=1000+10;
static IO io;
static long[] fac=new long[12];
static HashSet<val> hs=new HashSet<>();
public static void main(String[] args)throws IOException
{
io=new IO();
int t=io.nextInt();
fac[0]=6;
for(int i=1;i<12;i++) {
fac[i]=fac[i-1]*(i+3);
}
for(int i=0;i<(1<<12);i++) {
long tmp=0;
for(int j=0;j<12;j++) {
if( (i&(1<<j)) !=0) {
tmp+=fac[j];
}
}
hs.add(new val(tmp,Long.bitCount(i)));
}
while(t>0) {
t--;
solve();
}
io.flush();io.close();
}
private static void solve()throws IOException
{
long maxx=Long.MAX_VALUE;
long n=io.nextLong();
//long maxx=Long.bitCount(n);
for(val x : hs) {
long left=n-x.n;
if(left<0) continue;
maxx=Math.min(maxx,Long.bitCount(left)+x.c);
}
io.println(maxx);
}
public static class val
{
long n;int c;
public val(long n,int c) {
this.n=n;this.c=c;
}
}
static class IO extends PrintWriter {
BufferedReader br;
StringTokenizer st;
// standard input
public IO() { this(System.in, System.out); }
public IO(InputStream i, OutputStream o) {
super(o);
br = new BufferedReader(new InputStreamReader(i));
}
public IO(String problemName) throws IOException {
super(problemName + ".out");
br = new BufferedReader(new FileReader(problemName + ".in"));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public String nextLine() throws IOException {
return br.readLine();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | e7b1571394470019e01ee301f10263a9 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes |
import java.util.Arrays;
import java.util.HashSet;
import java.util.Scanner;
public class Main {
static long N = 1000000000000L;
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int t = in.nextInt();
long[] a = new long[100];
HashSet<Long> set = new HashSet<>();
int m = 0;
long now = 1L;
while(true) {
set.add(now);
now <<= 1;
if(now > N ) break;
}
now = 1L;
long temp = 1;
while(true) {
if( !set.contains(now) ) {
a[m++] = now;
}
now = now * temp;
temp++;
if(now > N) break;
}
//System.out.println(m);
Arrays.sort(a, 0, m);
while(t-- != 0) {
long n = in.nextLong();
long ans = 60;
for(int i = 0; i < (1 << m); i ++) {
now = 0L;
temp = n;
long res = 0;
for(int j = 0; j < m; j ++) {
if( (i >> j & 1) == 1) {
now += a[j];
res++;
}
}
if(now <= n) {
temp -= now;
}
while (temp != 0) {
if (temp%2 == 1) res++;
temp >>= 1;
}
ans = Math.min(res, ans);
}
System.out.println(ans);
}
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | d7e19891712d7354cd02f5c4ca9f95db | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Queue;
import java.util.StringTokenizer;
/**
*
* @author eslam
*/
public class IncreaseSubarraySums {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() throws FileNotFoundException {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static ArrayList<ArrayList<Long>> powerSet = new ArrayList<>();
public static void main(String[] args) throws IOException {
Queue<Long> fa = new LinkedList<>();
for (int i = 1; i < 15; i++) {
fa.add(factorial(i));
}
getPowerSet(fa);
ArrayList<pair> sum = new ArrayList<>();
for (int i = 0; i < powerSet.size(); i++) {
long s = 0;
for (int j = 0; j < powerSet.get(i).size(); j++) {
s += powerSet.get(i).get(j);
}
sum.add(new pair(s, powerSet.get(i).size()));
}
FastReader input = new FastReader();
BufferedWriter log = new BufferedWriter(new OutputStreamWriter(System.out));
int t = input.nextInt();
while (t-- > 0) {
long n = input.nextLong();
int ans = cnt1(n);
for (int i = 0; i < sum.size(); i++) {
if (sum.get(i).x > n) {
continue;
}
ans = Math.min(ans, sum.get(i).y + cnt1(n - sum.get(i).x));
}
log.write(ans + "\n");
}
log.flush();
}
public static int cnt1(long n) {
String w = Long.toBinaryString(n);
int an = 0;
for (int i = 0; i < w.length(); i++) {
an += (w.charAt(i) - '0');
}
return an;
}
public static void getPowerSet(Queue<Long> a) {
long n = a.poll();
if (!a.isEmpty()) {
getPowerSet(a);
}
int s = powerSet.size();
for (int i = 0; i < s; i++) {
ArrayList<Long> ne = new ArrayList<>();
ne.add(n);
for (int j = 0; j < powerSet.get(i).size(); j++) {
ne.add(powerSet.get(i).get(j));
}
powerSet.add(ne);
}
ArrayList<Long> p = new ArrayList<>();
p.add(n);
powerSet.add(p);
}
static class pair {
long x;
int y;
public pair(long x, int y) {
this.x = x;
this.y = y;
}
@Override
public String toString() {
return x + " " + y;
}
}
public static long factorial(long n) {
long t = n - 1;
while (t > 1) {
n *= t;
t--;
}
return n;
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 409b4ff82ebfdb99ea75b53623688ece | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
public class Factorial_And_Powers_Of_Two {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
long fact[] = new long[15];
fact[0] = 1;
for(int i=1;i<15;i++) {
fact[i] = ((long)i)*fact[i-1];
if(fact[i-1]<=2)
fact[i-1] = -1;
}while(t-->0) {
long n = sc.nextLong();
int ans = Integer.MAX_VALUE;
for(int i=0;i<(1<<15);i++) {
long sum = 0;
boolean lower = true;
for(int j=0;j<15;j++) {
if((i>>j)%2==1&&fact[j]!=-1)
sum += fact[j];
if(sum>n) {
lower = false;
break;
}
}
if(lower) {
int temp = count(i)+count(n-sum);
ans = Math.min(ans, temp);
}
}
System.out.println(ans);
}
}
public static int count(long n) {
int ans = 0;
while(n>0) {
long d = (n&1);
ans += (int)d;
n >>=1;;
}
return ans;
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 258ea9aa79e1c50f32bf2ed7fbe12bce | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
public static Scanner obj = new Scanner(System.in);
public static PrintWriter out = new PrintWriter(System.out);
public static int i() {
return obj.nextInt();
}
public static void main(String[] args) {
int len = i();
while (len-- != 0) {
long n=obj.nextLong();
Vector<Long> v=new Vector<>();
long fac=6;
for(int i=4;true;i++)
{
if(fac>n)break;
v.add(fac);
fac=fac*i;
}
long ans=Integer.MAX_VALUE;
for(int mask=0;mask<(1<<v.size());mask++)
{
long sum=n;
for(int i=0;i<v.size();i++) if((mask&(1<<i))!=0)sum-=v.get(i);
if(sum<0)continue;
int tut=Integer.bitCount(mask)+Long.bitCount(sum);
ans=Math.min(ans, tut);
}
out.println(ans);
}
out.flush();
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 7607b7d8c661640b473eddf796aa5b6d | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
static PrintWriter out;
static Kioken sc;
public static void main(String[] args) throws FileNotFoundException {
boolean t = true;
boolean f = false;
if (f) {
out = new PrintWriter("output.txt");
sc = new Kioken("input.txt");
} else {
out = new PrintWriter((System.out));
sc = new Kioken();
}
int tt = 1;
int n = 21;
long[] fac = new long[n];
fac[0] = 1;
fac[1] = 1;
fac[2] = 2;
fac[3] = 6;
for(int i = 4; i < n; i++){
fac[i] = fac[i-1]*(i);
// out.println(" " + fac[i]);
}
tt = sc.nextInt();
while (tt-- > 0) {
solve(fac);
}
out.flush();
out.close();
}
static long setBit(long v){
int cnt = 0;
while(v > 0){
if((v&1) == 1){
cnt++;
}
v = v >> 1;
}
return (long)cnt;
}
public static void solve(long[] fac) {
long n = sc.nextLong();
int min = Long.bitCount(n);
for(int i = 0; i < (1 << 15); i++){
int temp = i;
long ll = n;
int j = 0;
int cnt = 0;
while(temp > 0){
if((temp&1) != 0){
ll -= fac[j];
cnt++;
}
j++;
temp = temp >> 1;
}
if(ll >= 0){
min = Math.min(min, (cnt + Long.bitCount(ll)));
}
}
out.println(min);
}
public static long gcd(long a, long b) {
while (b != 0) {
long rem = a % b;
a = b;
b = rem;
}
return a;
}
public static long leftShift(long a) {
return (long) Math.pow(2, a);
}
public static boolean[] sieve(int n) {
boolean isPrime[] = new boolean[n + 1];
Arrays.fill(isPrime, true);
isPrime[0] = false;
isPrime[1] = false;
for (int i = 2; i * i <= n; i++) {
if (!isPrime[i])
continue;
for (int j = i * 2; j <= n; j = j + i) {
isPrime[j] = false;
}
}
return isPrime;
}
public static void reverse(int[] arr) {
Arrays.sort(arr);
int n = arr.length;
for (int i = 0; i < arr.length / 2; i++) {
int temp = arr[i];
arr[i] = arr[n - 1 - i];
arr[n - 1 - i] = temp;
}
return;
}
public static int lower_bound(ArrayList<Integer> ar, int k) {
int s = 0, e = ar.size();
while (s != e) {
int mid = s + e >> 1;
if (ar.get(mid) <= k) {
s = mid + 1;
} else {
e = mid;
}
}
return Math.abs(s) - 1;
}
public static int upper_bound(ArrayList<Integer> ar, int k) {
int s = 0;
int e = ar.size();
while (s != e) {
int mid = s + e >> 1;
if (ar.get(mid) < k) {
s = mid + 1;
} else {
e = mid;
}
}
if (s == ar.size()) {
return -1;
}
return s;
}
static class Kioken {
// FileInputStream br = new FileInputStream("input.txt");
BufferedReader br;
StringTokenizer st;
Kioken(String filename) {
try {
FileReader fr = new FileReader(filename);
br = new BufferedReader(fr);
st = new StringTokenizer("");
} catch (Exception e) {
// TODO: handle exception
e.printStackTrace();
}
}
Kioken() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer("");
} catch (Exception e) {
// TODO: handle exception
e.printStackTrace();
}
}
public String next() {
while (!st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
try {
return br.readLine();
} catch (Exception e) {
e.printStackTrace();
}
return null;
}
public boolean hasNext() {
String next = null;
try {
next = br.readLine();
} catch (Exception e) {
}
if (next == null || next.length() == 0) {
return false;
}
st = new StringTokenizer(next);
return true;
}
}
class DSU {
int[] parent, size;
DSU(int n) {
parent = new int[n];
size = new int[n];
for (int i = 0; i < n; i++) {
parent[i] = i;
size[i] = 1;
}
}
int findParent(int i) {
if (parent[i] == i) {
return i;
}
return parent[i] = findParent(parent[i]);
}
void Union(int u, int v) {
int parent_u = findParent(u);
int parent_v = findParent(v);
if (parent_u == parent_v)
return;
// small attached to big, since we want to reduce overall size
if (size[parent_u] < size[parent_v]) {
parent[parent_u] = parent_v;
size[parent_v]++;
} else {
parent[parent_v] = parent_u;
size[parent_u]++;
}
}
}
// SEGMENT-TREE
static class SegmentTree {
int[] arr = new int[4 * 100000];
int[] givenArr;
// HINT: This can be updated with ques.
int build(int index, int l, int r) {
if (l == r) {
return arr[index] = givenArr[l];
}
int mid = (l + r) / 2;
return arr[index] = build(2 * index + 1, l, mid) + build(2 * index + 2, mid + 1, r);
}
SegmentTree(int[] nums) {
givenArr = nums;
build(0, 0, nums.length - 1);
}
// HINT: This can be updated with ques.
void update(int index, int l, int r, int diff, int i) {
if (i >= arr.length) {
return;
}
if (index >= l && index <= r) {
arr[i] = arr[i] + diff;
}
if (index < l || index > r) {
return;
}
int mid = (l + r) / 2;
update(index, l, mid, diff, 2 * i + 1);
update(index, mid + 1, r, diff, 2 * i + 2);
return;
}
void update(int index, int val) {
int diff = val - givenArr[index];
givenArr[index] = val;
update(index, 0, givenArr.length - 1, diff, 0);
}
int query(int left, int right, int l, int r, int i) {
// not overlapping
if (r < left || l > right) {
return 0;
}
// total - overlapping
if (l >= left && r <= right) {
return arr[i];
}
// partial overlapping
int mid = (l + r) / 2;
int le = query(left, right, l, mid, 2 * i + 1);
int ri = query(left, right, mid + 1, r, 2 * i + 2);
return le + ri;
}
// HINT: for max sum, can be changed according to ques.
int query(int l, int r) {
return query(l, r, 0, givenArr.length - 1, 0);
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 1ec1a5de8c122e27f94395cc18e7c88f | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import javax.lang.model.type.IntersectionType;
import javax.swing.*;
import java.lang.reflect.Array;
import java.util.*;
import java.lang.*;
import java.io.*;
public class Main
{
static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
static FastReader sc = new FastReader();
static long [] factorials = new long[15];
public static void main (String[] args) throws java.lang.Exception
{
int t = sc.nextInt();
factorials[0] = factorials[1] = 1;
for(int i = 2;i<15;++i){
factorials[i] = i*factorials[i-1];
}
while(t-->0){
solve();
}
}
public static void solve() {
long n = l();
if(n==1 || n==2 || n==4){
out.println(1);out.flush();return;
}
if(n == 3){
out.println(2);out.flush();return;
}
long ans = Long.MAX_VALUE;
int nob = 14;
while(nob>=0&&factorials[nob]>n){
nob--;
}
// 91009901168
long mask = (1L<<nob) - 1;
for(int i = 0;i<=mask;++i){
long temp = n;
long cdt = 0;
for(int j = 0;j<nob;++j){
if(((1<<j)&i) != 0){
cdt++;
if(temp - factorials[nob-j]<0)break;
temp-=factorials[nob-j];
}
}
cdt+=csb(temp);
ans = Math.min(ans, cdt);
}
out.println(ans);
out.flush();
}
/*
int [] arr = new int[n];
for(int i = 0;i<n;++i){
arr[i] = sc.nextInt();
}
*/
static int csb(long n)
{
int count = 0;
while (n > 0) {
n &= (n - 1);
count++;
}
return count;
}
static void mysort(int[] arr) {
for(int i=0;i<arr.length;i++) {
int rand = (int) (Math.random() * arr.length);
int loc = arr[rand];
arr[rand] = arr[i];
arr[i] = loc;
}
Arrays.sort(arr);
}
static class Pair implements Comparable<Pair>{
int ind;int val;
Pair(int ind,int val){
this.ind=ind;
this.val=val;
}
public int compareTo(Pair o){
return this.val-o.val;
}
}
static int i() {
return sc.nextInt();
}
static String s() {
return sc.next();
}
static long l() {
return sc.nextLong();
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 349a7e0f1577ec8182a4f2f45793495d | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static long ans;
public static void main(String[] args) throws IOException {
FastReader scan = new FastReader();
BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out));
long t = scan.nextInt();
for (int test = 0; test < t; test++) {
long n = scan.nextLong();
ans = Integer.MAX_VALUE;
long fact = 1;
long next = 2;
getSolve(fact, next, n, 0);
System.out.println(ans);
}
}
public static void getSolve(long fact, long next, long n, long step) {
if(n<0){
return;
}
if (next == 16){
// System.out.println(n+" "+step);
getTwoPower(n, step);
return;
}
getSolve(fact * next, next + 1, n - fact, step + 1);
getSolve(fact * next, next + 1, n, step);
}
public static void getTwoPower(long n, long step) {
long pow = 0;
while (n > 0) {
if ((n & 1) == 1) {
pow++;
}
n = n >> 1;
}
ans = Math.min(ans, step + pow);
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 7cb555dc303e7a0bc84c09b41285c9e9 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.math.*;
import java.io.*;
public class C {
static FastScanner fs = new FastScanner();
static PrintWriter pw = new PrintWriter(System.out);
static StringBuilder sb = new StringBuilder("");
public static void main(String[] args) {
ArrayList<Long> fac = new ArrayList<>();
for (int i = 3; i <= 14; i++) {
long p = 1;
for (int j = 1; j <= i; j++) {
p *= j;
}
fac.add(p);
}
int t = fs.nextInt();
for (int tt = 0; tt < t; tt++) {
long n = fs.nextLong();
int ans = 100;
for (int i = 0; i < (1 << 12); i++) {
long n2 = n;
for (int j = 0; j < 12; j++) {
if (((1 << j) & i) == (1 << j)) {
n2 -= fac.get(j);
}
}
if (n2 >= 0) ans = Math.min(ans, Integer.bitCount(i) + Long.bitCount(n2));
}
sb.append(ans + "\n");
}
pw.print(sb.toString());
pw.close();
}
static void sort(int[] a) {
ArrayList<Integer> al = new ArrayList<>();
for (int i : a)
al.add(i);
Collections.sort(al);
for (int i = 0; i < a.length; i++)
a[i] = al.get(i);
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {while (!st.hasMoreTokens()) try {st = new StringTokenizer(br.readLine());} catch (IOException e) {}return st.nextToken();}
int nextInt() {return Integer.parseInt(next());}
long nextLong() {return Long.parseLong(next());}
double nextDouble() {return Double.parseDouble(next());}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | de507452cc7480ee230178b6bf399caa | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.math.*;
import java.io.*;
public class C {
//
static FastScanner fs = new FastScanner();
static PrintWriter pw = new PrintWriter(System.out);
static StringBuilder sb = new StringBuilder("");
public static void main(String[] args) {
ArrayList<Long> fac = new ArrayList<>();
for (int i = 3; i <= 14; i++) {
long p = 1;
for (int j = 1; j <= i; j++) {
p *= j;
}
fac.add(p);
}
int t = fs.nextInt();
for (int tt = 0; tt < t; tt++) {
long n = fs.nextLong();
int ans = 100;
for (int i = 0; i < (1 << 12); i++) {
long n2 = n;
for (int j = 0; j < 12; j++) {
if (((i >> j) & 1) == 1) {
n2 -= fac.get(j);
}
}
if (n2 >= 0) ans = Math.min(ans, Integer.bitCount(i) + Long.bitCount(n2));
}
sb.append(ans + "\n");
}
pw.print(sb.toString());
pw.close();
}
static void sort(int[] a) {
ArrayList<Integer> al = new ArrayList<>();
for (int i : a)
al.add(i);
Collections.sort(al);
for (int i = 0; i < a.length; i++)
a[i] = al.get(i);
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {while (!st.hasMoreTokens()) try {st = new StringTokenizer(br.readLine());} catch (IOException e) {}return st.nextToken();}
int nextInt() {return Integer.parseInt(next());}
long nextLong() {return Long.parseLong(next());}
double nextDouble() {return Double.parseDouble(next());}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 544ffb969deadfbac17cefc80ae6083f | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.math.*;
import java.io.*;
public class C {
static FastScanner fs = new FastScanner();
static PrintWriter pw = new PrintWriter(System.out);
static StringBuilder sb = new StringBuilder("");
public static void main(String[] args) {
ArrayList<Long> fac = new ArrayList<>();
for (int i = 3; i <= 14; i++) {
long p = 1;
for (int j = 1; j <= i; j++) {
p *= j;
}
fac.add(p);
}
int t = fs.nextInt();
for (int tt = 0; tt < t; tt++) {
long n = fs.nextLong();
int ans = 100;
for (int i = 0; i < (1 << 12); i++) {
long n2 = n;
for (int j = 0; j < 12; j++) {
if (((i >> j) & 1) == 1) {
n2 -= fac.get(j);
}
}
if (n2 >= 0) ans = Math.min(ans, Integer.bitCount(i) + Long.bitCount(n2));
}
sb.append(ans + "\n");
}
pw.print(sb.toString());
pw.close();
}
static void sort(int[] a) {
ArrayList<Integer> al = new ArrayList<>();
for (int i : a)
al.add(i);
Collections.sort(al);
for (int i = 0; i < a.length; i++)
a[i] = al.get(i);
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {while (!st.hasMoreTokens()) try {st = new StringTokenizer(br.readLine());} catch (IOException e) {}return st.nextToken();}
int nextInt() {return Integer.parseInt(next());}
long nextLong() {return Long.parseLong(next());}
double nextDouble() {return Double.parseDouble(next());}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | a391740a9ffd8f10fe8c8d3b1562333d | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.lang.Math;
import java.nio.BufferOverflowException;
import java.util.*;
import java.io.*;
import java.lang.Math;
public final class code {
boolean isSub;
code() {
this.isSub = false;
}
static class sortCond implements Comparator<Pair<Integer, Integer>> {
@Override
public int compare(Pair<Integer, Integer> obj, Pair<Integer, Integer> obj1) {
if (obj.getValue() < obj1.getValue()) {
return -1;
} else {
return 1;
}
}
}
static class Pair<f, s> {
f a;
s b;
Pair(f a, s b) {
this.a = a;
this.b = b;
}
f getKey() {
return this.a;
}
s getValue() {
return this.b;
}
}
interface modOperations {
long mod(long a, long b, long mod);
}
static long findBinaryExponentian(long a, long pow, long mod) {
if (pow == 1) {
return a;
} else if (pow == 0) {
return 1;
} else {
long retVal = findBinaryExponentian(a, (int) pow / 2, mod);
return modMul.mod(modMul.mod(retVal, retVal, mod), (pow % 2 == 0) ? 1 : a, mod);
}
}
static long findPow(long a, int b) {
if (b == 1) {
return a;
} else if (b == 0) {
return 1L;
} else {
long res = findPow(a, (int) b / 2);
return res * res * (b % 2 == 1 ? a : 1);
}
}
static int bleft(int ele, ArrayList<Integer> sortedArr) {
int l = 0;
int h = sortedArr.size() - 1;
int ans = -1;
while (l <= h) {
int mid = l + (int) (h - l) / 2;
if (sortedArr.get(mid) < ele) {
l = mid + 1;
} else if (sortedArr.get(mid) >= ele) {
ans = mid;
h = mid - 1;
}
}
return ans;
}
static long gcd(long a, long b) {
long div = b;
long rem = a % b;
while (rem != 0) {
long temp = rem;
rem = div % rem;
div = temp;
}
return div;
}
static int log(long no) {
int i = 0;
while ((1 << i) <= no) {
i += 1;
}
return i - 1;
}
static modOperations modAdd = (long a, long b, long mod) -> {
return (a % mod + b % mod) % mod;
};
static modOperations modSub = (long a, long b, long mod) -> {
return (a % mod - b % mod + mod) % mod;
};
static modOperations modMul = (long a, long b, long mod) -> {
return (a % mod * b % mod) % mod;
};
static modOperations modDiv = (long a, long b, long mod) -> {
return modMul.mod(a, findBinaryExponentian(b, mod - 1, mod), mod);
};
static ArrayList<Integer> primeList(int MAXI) {
int[] prime = new int[MAXI + 1];
ArrayList<Integer> obj = new ArrayList<Integer>();
for (int i = 2; i <= (int) Math.sqrt(MAXI) + 1; i++) {
if (prime[i] == 0) {
obj.add(i);
for (int j = i * i; j <= MAXI; j += i) {
prime[j] = 1;
}
}
}
for (int i = (int) Math.sqrt(MAXI) + 1; i <= MAXI; i++) {
if (prime[i] == 0) {
obj.add(i);
}
}
return obj;
}
static int cal_log(long no) {
int i = 0;
while (i <= no) {
i++;
}
return i - 1;
}
public static void main(String args[]) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
ArrayList<Long> fact = new ArrayList<Long>();
ArrayList<Long> pow = new ArrayList<Long>();
int i = 0, cnt = 1, cases, inc, j;
long res = 1, n, tot, rem,min_op;
for (i = 1; i <= 14; i++) {
res *= cnt;
cnt++;
fact.add(res);
}
res = 1;
for (i = 0; i <= 48; i++) {
pow.add(res);
res *= 2;
}
cases = Integer.parseInt(br.readLine());
while (cases-- != 0) {
n = Long.parseLong(br.readLine());
min_op = findPow(10, 12)+1;
long te=pow.get(14);
for (i = 0; i < te; i++) {
tot = 0L;
inc = 0;
for (j = 0; j < 14; j++) {
if ((pow.get(j) & i) != 0) {
tot += fact.get(j);
inc++;
}
}
if (tot <= n) {
rem = n - tot;
for (j = 0; j <= 48; j++) {
if ((pow.get(j) & rem) != 0) {
inc++;
}
}
min_op = Math.min(min_op, inc);
}
}
System.out.println(min_op);
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 71e2beae827e2cc1542f53cfc808d4c0 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Solution {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static void sort(int a[]){ // int -> long
ArrayList<Integer> arr=new ArrayList<>(); // Integer -> Long
for(int i=0;i<a.length;i++)
arr.add(a[i]);
Collections.sort(arr);
for(int i=0;i<a.length;i++)
a[i]=arr.get(i);
}
private static long gcd(long a, long b){
if(b==0)return a;
return gcd(b,a%b);
}
private static long pow(long x,long y){
if(y==0)return 1;
long temp = pow(x, y/2);
if(y%2==1){
return x*temp*temp;
}
else{
return temp*temp;
}
}
static int log(long n){
if(n<=1)return 0;
long temp = n;
int res = 0;
while(n>1){
res++;
n/=(long)2;
}
return (1<<res)==temp?res:res;
}
static int mod = (int)1e9+7;
static int INF = Integer.MAX_VALUE;
static PrintWriter out;
static FastReader sc ;
public static void main(String[] args) throws IOException {
sc = new FastReader();
out = new PrintWriter(System.out);
// primes();
// ================================ //
int test = sc.nextInt();
list = new ArrayList<>();
long cur = 6;
int idx = 4;
while(cur<=1e12){
list.add(cur);
cur*=(long)idx;
idx++;
}
while (test-- > 0) {
long n= sc.nextLong();
out.println( solver(n));
}
// ================================ //
// int n = sc.nextInt();
// solver();
// ================================ //
out.flush();
}
static ArrayList<Long> list;
public static int solver(long n) {
if(n<=0)return 0;
if(n<=2)return 1;
int m = list.size();
int res = INF;
for(int i=0;i<(1<<m);i++){
long ho = n;
int k=0;
for(int j=0;j<m;j++){
if(((1<<j)&i)!=0){
k++;
ho-=list.get(j);
}
}
if(ho>=0)
res = Math.min(res, k+csb(ho));
}
return res;
}
static int csb(long n){
int res = 0;
while(n>0){
if(n%2==1)res++;
n/=2;
}
return res;
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 317966f742dd9da1eac5c6d9deb1153c | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.io.*;
import java.util.*;
public class codeforces {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static ArrayList<Long> al;
static ArrayList<Long> all;
static Map<Long, Integer> map;
public static void main(String args[]) {
if (System.getProperty("ONLINE_JUDGE") == null) {
// Input is a file
try {
System.setIn(new FileInputStream("input.txt"));
System.setOut(new PrintStream(new FileOutputStream("output.txt")));
} catch (Exception e) {
System.err.println("Error");
}
} else {
// Input is System.in
}
FastReader sc = new FastReader();
// Scanner sc = new Scanner(System.in);
//System.out.println(java.time.LocalTime.now());
al = new ArrayList<>();
all= new ArrayList<>();
map = new HashMap<>();
long start = 2;
al.add(start-1);
while(true){
if(start > 14)break;
al.add(start*al.get(al.size()-1));
start++;
}
allValuesPos(al, all, 0, 0, 0);
//System.out.println(all);
Collections.sort(all);
StringBuilder sb = new StringBuilder();
int t = sc.nextInt();
while(t>0) {
long n = sc.nextLong();
int ans = countSetBits(n);
for(int i = 0; i<all.size(); i++){
if(all.get(i)>n)break;
else {
long newN = n-all.get(i);
int newAns = countSetBits(newN) + map.get(all.get(i));
ans = Math.min(ans, newAns);
}
}
sb.append(ans+"\n");
t--;
}
System.out.println(sb);
}
public static void allValuesPos(ArrayList<Long> al, ArrayList<Long> all, int ind, long asf, int eleUsed){
if(ind == al.size()){
if(asf == 0)return;
all.add(asf);
map.put(asf, eleUsed);
return;
}
allValuesPos(al, all, ind+1, asf, eleUsed);
allValuesPos(al, all, ind+1, asf+al.get(ind), eleUsed+1);
return;
}
//////////nCr////////////////////////////////////////
public static int countSetBits(long n)
{
int count = 0;
while (n > 0) {
n &= (n - 1);
count++;
}
return count;
}
///////// SUM OF EACH DIGIT OF A NUMBER ///////////////
public static long digSum(long a) {
long sum = 0;
while(a>0) {
sum += a%10;
a /= 10;
}
return sum;
}
///////// TO CHECK NUMBER IS PRIME OR NOT ///////////////
public static boolean isPrime(int n) {
if(n<=1)return false;
if(n <= 3)return true;
if(n%2==0 || n%3==0)return false;
for(int i = 5; i*i<=n; i+=6) {
if(n%i == 0 || n%(i+2) == 0)return false;
}
return true;
}
///////// NEXT PRIME NUMBER BIGGER THAN GIVEN NUMBER ///////////////
public static int nextPrime(int n) {
while(true) {
n++;
if(isPrime(n)) break;
}
return n;
}
///////// GCD ///////////////
public static int gcd(int a, int b) {
if(b == 0)return a;
return gcd(b, a%b);
}
///////// LCM ///////////////
public static int lcm(int a, int b) {
return (a*b)/gcd(a,b);
}
///////// IS POWER OF 2 ///////////////
public static boolean isPowerOfTwo (int x){
/* First x in the below expression is
for the case when x is 0 */
return x!=0 && ((x&(x-1)) == 0);
}
}
class Pair{
int x;
int y;
Pair(int x, int y){
this.x = x;
this.y = y;
}
@Override
public boolean equals(Object o) {
if(this == o)return true;
if(o == null || this.getClass() != o.getClass())return false;
Pair p = (Pair)o;
return x == p.x && y == p.y;
}
@Override
public int hashCode(){
return Objects.hash(x , y);
}
// @Override
// public int compareTo(Pair o) {
// }
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 95fcf8ff207a973fd71d53240974346b | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Factorials {
public static void main(String[] args) throws IOException {
BufferedReader f=new BufferedReader(new InputStreamReader(System.in));
int t=Integer.parseInt(f.readLine());
while(t-->0) {
long n=Long.parseLong(f.readLine());
ArrayList<Long> fact=new ArrayList<Long>();
long prod=1;
int s=2;
while(prod<=n) {
fact.add(prod);
prod*=s;
s++;
}
int ans=Integer.MAX_VALUE;
for(int i=0;i<(1<<fact.size());i++) {
long sum=0;
int count=0;
boolean seen1=false;
boolean seen2=false;
for(int j=0;j<fact.size();j++) {
if((i&(1<<j))>0) {
sum+=fact.get(j);
if(fact.get(j)==1) seen1=true;
if(fact.get(j)==2) seen2=true;
count++;
}
}
long need=n-sum;
if(need<0) continue;
if(seen1&&need%2==1) continue;
if(seen2&&(need/2)%2==1) continue;
while(need!=0) {
count+=need%2==1?1:0;
need/=2;
}
if(count<ans) {
ans=count;
}
}
System.out.println(ans);
}
}
}
//2395410832 | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 5496d28f0eda9f2e803c18162ab525e5 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
// when can't think of anything -->>
// 1. In sorting questions try to think about all possibilities like sorting from start, end, middle.
// 2. Two pointers, brute force.
// 3. In graph query questions try to solve it reversely or try to process all the queries in a single parse.
// 4. If order does not matter then just sort the data if constraints allow. It'll never harm.
// 5. In greedy problems if you are just overwhelmed by the possibilities and stuck, try to code whatever you come up with.
// 6. Think like a robot, just consider all the possibilities not probabilities if you still can't solve.
public static void main(String[] args) throws Exception {
FastReader sc = new FastReader();
PrintWriter writer = new PrintWriter(System.out);
Set<List<Integer>> set = new HashSet<>();
List<Integer> midList = new ArrayList<>();
long factorial[] = {1,1,2,6,24,120,720, 5040,40320,362880,3628800,39916800,479001600,6227020800l,87178291200l};
int t = sc.nextInt();
generate(set, midList,1);
while(t-->0) {
long n = sc.nextLong();
int ans = Integer.MAX_VALUE;
for (List<Integer> list : set) {
long sum = 0;
for (int i : list) {
sum+=factorial[i];
}
if(sum <= n) {
int temp = list.size() + Long.bitCount(n-sum);
ans = Math.min(ans, temp);
}
}
if(ans == Integer.MAX_VALUE) ans = -1;
writer.println(ans);
}
writer.flush();
writer.close();
}
public static void generate(Set<List<Integer>> set, List<Integer> midList, int i) {
if(i == 16)return;
List<Integer> copy = new ArrayList<>(midList);
set.add(copy);
midList.add(i);
generate(set, midList, i+1);
// not adding
midList.remove(midList.get(midList.size() - 1));
generate(set, midList, i+1);
}
private static boolean isPrime(int c) {
for (int i = 2; i*i <= c; i++) {
if(c%i==0)return false;
}
return true;
}
private static int find(int a , int arr[]) {
if(arr[a] != a) return arr[a] = find(arr[a], arr);
return arr[a];
}
private static void union(int a, int b, int arr[]) {
int aa = find(a,arr);
int bb = find(b, arr);
arr[aa] = bb;
}
private static int gcd(int a, int b) {
if(a==0)return b;
return gcd(b%a, a);
}
public static int[] readIntArray(int size, FastReader s) {
int[] array = new int[size];
for (int i = 0; i < size; i++) {
array[i] = s.nextInt();
}
return array;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
class Pair implements Comparable<Pair>{
int a;
int b;
Pair(int a, int b){
this.a = a;
this.b = b;
}
@Override
public boolean equals(Object obj) {
if(this == obj) return true;
if(obj == null || obj.getClass()!= this.getClass()) return false;
Pair pair = (Pair) obj;
return (pair.a == this.a && pair.b == this.b);
}
@Override
public int hashCode()
{
return Objects.hash(a,b);
}
@Override
public int compareTo(Pair o) {
if(this.a == o.a) {
return Integer.compare(this.b, o.b);
}else {
return Integer.compare(this.a, o.a);
}
}
@Override
public String toString() {
return this.a + " " + this.b;
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 31cbc8dc07465840dfd0b279ee2b583e | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.lang.Math;
import java.nio.BufferOverflowException;
import java.util.*;
import java.io.*;
import java.lang.Math;
public final class code {
boolean isSub;
code() {
this.isSub = false;
}
static class sortCond implements Comparator<Pair<Integer, Integer>> {
@Override
public int compare(Pair<Integer, Integer> obj, Pair<Integer, Integer> obj1) {
if (obj.getValue() < obj1.getValue()) {
return -1;
} else {
return 1;
}
}
}
static class Pair<f, s> {
f a;
s b;
Pair(f a, s b) {
this.a = a;
this.b = b;
}
f getKey() {
return this.a;
}
s getValue() {
return this.b;
}
}
interface modOperations {
long mod(long a, long b, long mod);
}
static long findBinaryExponentian(long a, long pow, long mod) {
if (pow == 1) {
return a;
} else if (pow == 0) {
return 1;
} else {
long retVal = findBinaryExponentian(a, (int) pow / 2, mod);
return modMul.mod(modMul.mod(retVal, retVal, mod), (pow % 2 == 0) ? 1 : a, mod);
}
}
static long findPow(long a, int b) {
if (b == 1) {
return a;
} else if (b == 0) {
return 1L;
} else {
long res = findPow(a, (int) b / 2);
return res * res * (b % 2 == 1 ? a : 1);
}
}
static int bleft(int ele, ArrayList<Integer> sortedArr) {
int l = 0;
int h = sortedArr.size() - 1;
int ans = -1;
while (l <= h) {
int mid = l + (int) (h - l) / 2;
if (sortedArr.get(mid) < ele) {
l = mid + 1;
} else if (sortedArr.get(mid) >= ele) {
ans = mid;
h = mid - 1;
}
}
return ans;
}
static long gcd(long a, long b) {
long div = b;
long rem = a % b;
while (rem != 0) {
long temp = rem;
rem = div % rem;
div = temp;
}
return div;
}
static int log(long no) {
int i = 0;
while ((1 << i) <= no) {
i += 1;
}
return i - 1;
}
static modOperations modAdd = (long a, long b, long mod) -> {
return (a % mod + b % mod) % mod;
};
static modOperations modSub = (long a, long b, long mod) -> {
return (a % mod - b % mod + mod) % mod;
};
static modOperations modMul = (long a, long b, long mod) -> {
return (a % mod * b % mod) % mod;
};
static modOperations modDiv = (long a, long b, long mod) -> {
return modMul.mod(a, findBinaryExponentian(b, mod - 1, mod), mod);
};
static ArrayList<Integer> primeList(int MAXI) {
int[] prime = new int[MAXI + 1];
ArrayList<Integer> obj = new ArrayList<Integer>();
for (int i = 2; i <= (int) Math.sqrt(MAXI) + 1; i++) {
if (prime[i] == 0) {
obj.add(i);
for (int j = i * i; j <= MAXI; j += i) {
prime[j] = 1;
}
}
}
for (int i = (int) Math.sqrt(MAXI) + 1; i <= MAXI; i++) {
if (prime[i] == 0) {
obj.add(i);
}
}
return obj;
}
static int cal_log(long no) {
int i = 0;
while (i <= no) {
i++;
}
return i - 1;
}
public static void main(String args[]) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
ArrayList<Long> fact = new ArrayList<Long>();
ArrayList<Long> pow = new ArrayList<Long>();
int i = 0, cnt = 1, cases, inc, j;
long res = 1, n, tot, rem,min_op;
for (i = 1; i <= 14; i++) {
res *= cnt;
cnt++;
fact.add(res);
}
res = 1;
for (i = 0; i <= 48; i++) {
pow.add(res);
res *= 2;
}
cases = Integer.parseInt(br.readLine());
while (cases-- != 0) {
n = Long.parseLong(br.readLine());
min_op = findPow(10, 12)+1;
long te=pow.get(14);
for (i = 0; i < te; i++) {
tot = 0L;
inc = 0;
for (j = 0; j < 14; j++) {
if ((pow.get(j) & i) != 0) {
tot += fact.get(j);
inc++;
}
}
if (tot <= n) {
rem = n - tot;
for (j = 0; j <= 48; j++) {
if ((pow.get(j) & rem) != 0) {
inc++;
}
}
min_op = Math.min(min_op, inc);
}
}
System.out.println(min_op);
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 46d4e2358ea88e575ea0c6730fcc41b4 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.SocketTimeoutException;
import java.sql.Array;
import java.sql.SQLOutput;
import java.util.*;
public class Solution {
static class in {
static BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
static StringTokenizer tokenizer = new StringTokenizer("");
static String next() throws IOException {
while (!tokenizer.hasMoreTokens())
tokenizer = new StringTokenizer(reader.readLine());
return tokenizer.nextToken();
}
static int nextInt() throws IOException {
//System.out.println(" I WAS CALLED");
return Integer.parseInt(next());
}
static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
static long nextLong() throws IOException {
return Long.parseLong(next());
}
static String nextLine() {
String str = "";
try {
str = reader.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
private static ArrayList<String> func(int n)
{
ArrayList<String> ret= new ArrayList<>();
if(n==1)
{
ret.add("0");
ret.add("1");
return ret;
}
ArrayList<String> rret=func(n-1);
for(String i:rret)
{
ret.add("0"+i);
}
for(int i=rret.size()-1;i>=0;i--)
{
ret.add("1"+rret.get(i));
}
return ret;
}
static ArrayList<String> arr= new ArrayList<>();
private static void move(int n, int start,int ind, int dest)
{
if(n==1)
{
arr.add(start+" "+dest);
return;
}
move(n-1,start,dest,ind);
arr.add(start+" "+dest);
move(n-1,ind,start,dest);
}
private static HashSet <String>perm(String s)
{
HashSet<String> set= new HashSet<>();
if(s.length()==2)
{
set.add(s);
set.add((s.charAt(1)+""+s.charAt(0)));
return set;
}
for(int i=0;i<s.length();i++)
{
char a=s.charAt(i);
HashSet<String> prv= perm(s.substring(0,i)+s.substring(i+1,s.length()));
for(String curr:prv)set.add(a+curr);
}
return set;
}
static int ways=0;
private static void merge(int l, int mid , int h, long arr[] )
{
int n2= h-mid;
int n1= mid-l+1;
long left[]= new long [n1];
long right[]= new long [n2];
for(int i=0;i<n1;i++)left[i]=arr[l+i];
for(int i=0;i<n2;i++)right[i]=arr[mid+1+i];
int i=0,j=0,k=l;
while(i<n1&& j<n2)
{
if(left[i]<right[j])
{
arr[k]=left[i];
i++;
k++;
}
else
{
arr[k]=right[j];
j++;k++;
}
}
while(i<n1)
{
arr[k]=left[i]
;
i++;
k++;
}
while(j<n2)
{
arr[k]=right[j];
j++;
k++;
}
}
private static void mergesort(int l, int h, long []arr)
{
if(l<h)
{
int mid=l+(h-l)/2;
mergesort(l,mid,arr);
mergesort(mid+1,h,arr);
merge(l,mid,h,arr);
return;
}
}
private static int upper(int l, int h,int target,ArrayList <Integer>arr,boolean[] visited)
{
while(l<h)
{
int mid= l+(h-l)/2;
if(arr.get(mid)>=target)
{
h=mid;
}
else
{
l=mid+1;
}
}
return l;
}
/*private static int bsearch(int l, int h, int [] arr)
{
while(l<h)
{
int mid=l+(h-l)/2;
if( (mid))
}
}*/
private static int bsearch(ArrayList<Integer>arr, int target)
{
int l=0;
int h=arr.size()-1;
while(l<h)
{
int mid= l+(h-l)/2;
if(arr.get(mid)>target)
{
h=mid;
}
else
{
l=mid+1;
}
}
return l;
}
static class Node
{
int a;
Node next;
Node(int a)
{
this.a=a;
}
}
// static void rec(SortedSet<Integer> set,int currpos,int k)
// {
// if(set.size()==1){ System.out.println(set.last());return;}
//
//
//
// }}
static class Point
{
int x,y=0;
Point(int a, int b)
{
this.x=a;
this.y=b;
}
}
static int bfs(ArrayList<String []>maze,boolean[][]visited,Point start, int r, int c)
{
Queue<Point> q= new LinkedList<>();
q.add(start);
int level=0;
while(!q.isEmpty())
{
int m=q.size();
while(m-->0)
{
Point curr=q.poll();
if(curr.x>=r||curr.x<0||curr.y>=c||curr.y<0||visited[curr.x][curr.y]||maze.get(curr.x)[curr.y].equals("X"))continue;
if(maze.get(curr.x)[curr.y].equals("M"))return level;
q.add(new Point(curr.x +1,curr.y));
q.add(new Point(curr.x -1,curr.y));
q.add(new Point(curr.x ,curr.y+1));
q.add(new Point(curr.x ,curr.y-1));
visited[curr.x][curr.y]=true;
}
level++;
}
return -1;
}
private static boolean res(long time, long prod, long[] arr)
{
long tot=0;
for(long i : arr)tot+=time/i;
if(prod<=tot)return true;
else return false;
}
static class Pair
{
int start;
int end ;
Pair(int a , int b){
this.start=a;
this.end=b;
}
}
static int count=0;
static int minRange(int [][]dp, int arr[], int a, int b)
{
int len= b-a+1;
int k=0;
while((1<<k)<=len)k++;
k--;
return Math.min(arr[dp[a][k]],arr[dp[b-(1<<k)+1][k]]);
}
static int [][] sparseTable(int [] arr, int n)
{
int dp[][]= new int[n][50];
for(int i=0;i<n;i++)dp[i][0]=i;
for(int j=1;(1<<j)<=n;j++)
{
for(int i=0;(i+(1<<j)-1)<n;i++)
{
if(arr[dp[i][j-1]]<arr[dp[i+(1<<(j-1))][j-1]])
{
dp[i][j]=dp[i][j-1];
}
else
{
dp[i][j]=dp[i+(1<<(j-1))][j-1];
}
}
}
return dp;
}
static void RobinCarp(char[] pat, char[]str, int prime)
{
long p=31l;
long pow=p;
long mod=1000000007l;
int n=str.length;
long []dp= new long[n];
long dhv2=pat[0]-'a'+1;
for(int i=1;i<pat.length;i++)
{
dhv2=(dhv2+ (pat[i]-'a'+1)*pow)%mod;
pow=(pow*p)%mod;
}
long pa[]=new long[str.length];
dp[0]=str[0]-'a'+1;
pa[0]=1;
pow=p;
for(int i=1;i<str.length;i++)
{
dp[i]=((dp[i-1]+(str[i]-'a'+1)*pow)%mod);
pa[i]=pow;
pow=(pow*p)%mod;
}
int sp=0;
int end=pat.length-1;
ArrayList<Integer> ans= new ArrayList<>();
while(end<str.length)
{
long rsum=dp[end];
if(sp>0) rsum=(rsum-dp[sp-1]+mod)%mod;
if(rsum==(dhv2*pa[sp])%mod)ans.add(sp+1);
sp++;
end++;
}
System.out.println(ans.size());
}
// private static bsearch(int i, int j , int a, int b, char[] arr, long dp[], long pow)
// {
// int l=
// }
// int minimumDeviation(int[] nums)
// {
//
// PriorityQueue<Integer>maxH= new PriorityQueue<Integer>((o1,o2)->o2-o1);
// int min= Integer.MAX_VALUE;
// for( int i: nums)
// {
// if(i%2==1)i=2*i;
// min=Math.min(min,i);
// maxH.add(i);
//
// }
//
// while(maxH.peek()%2==0)
// {
// int a =maxH.poll();
// min=Math.min(min,a/2);
// maxH.add(a/2);
// }
// return maxH.peek()-min;
//
// }
private static ArrayList<ArrayList<Long>> make_subset(long[] fact, int n)
{
ArrayList<ArrayList<Long>> ret= new ArrayList<ArrayList<Long>>();
for(int i=0;i<(1<<n);i++)
{
ArrayList<Long> temp= new ArrayList<>();
long sum=0;
for(int j=0;j<15;j++)
{
if((i&(1<<j))>0){temp.add(fact[j]);sum+=fact[j];}
}
temp.add(sum);
ret.add(temp);
}
return ret;
}
private static int count_set_bit(long n)
{
int count =0;
while(n>0)
{
count+= n&1;
n=n>>1;
}
return count;
}
public static void main(String[] args) throws IOException
{
StringBuilder str= new StringBuilder();
long fact[]= new long[15];
fact[0]=1l;
fact[1]=1l;
for(int i=2;i<15;i++)fact[i]=fact[i-1]*i;
// long arr[]= new long [3];
// arr[0]=0;
// arr[1]=1;
// arr[2]=2;
// ArrayList<ArrayList<Long>>tt=(make_subset(arr,3));
// for(ArrayList<Long> temp: tt)
// {
// System.out.println(temp.toString());
// }
// System.out.println(count_set_bit(6l));
// return;
ArrayList<ArrayList<Long>> ret= make_subset(fact, 15);
long n= in.nextLong();
while(n-->0)
{
int k=Integer.MAX_VALUE;
long num= in.nextLong();
for(int i=0;i< ret.size();i++)
{
int el_fact=ret.get(i).size()-1;
long sum_fact=ret.get(i).get(el_fact);
long remain=num-sum_fact;
if(remain>=0){
int el_power= count_set_bit(remain);
// if(el_power+el_fact==1){
// System.out.println(el_fact);
// System.out.println(sum_fact);
// System.out.println(el_power);}
k=Math.min(k,el_power+el_fact);}
}
if(k==Integer.MAX_VALUE)str.append(-1);
else str.append(k);
str.append('\n');
}
System.out.println(str);
}
}
class Nodee
{
boolean isEnd;
Nodee[] arr=new Nodee [26];
}
class Trie
{
final Nodee root;
Trie()
{
root=new Nodee();
}
void insert(String s)
{
Nodee curr=root;
for(int i=0;i<s.length();i++)
{
if(curr.arr[s.charAt(i)-'a']==null)curr.arr[s.charAt(i)-'a']=new Nodee();
curr=curr.arr[s.charAt(i)-'a'];
}
curr.isEnd=true;
}
boolean search(String word)
{
Nodee curr=root;
for(int i=0;i<word.length();i++)
{
char ch= word.charAt(i);
if(curr.arr[ch-'a']==null)return false;
curr=curr.arr[ch-'a'];
}
return curr.isEnd;
}
private boolean start(String word)
{
Nodee curr=root;
for(int i=0;i<word.length();i++)
{
char ch= word.charAt(i);
if(curr.arr[ch-'a']==null)return false;
curr=curr.arr[ch-'a'];
}
return true;
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 42c3765bd9da570c21ed9e8af3c9933e | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.HashMap;
import java.util.TreeMap;
public class C {
private static HashMap<Long, Integer> repository;
public static void main(String args[]) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int t = Integer.parseInt(br.readLine().trim());
StringBuilder sb = new StringBuilder();
preprocess();
while (t-- > 0) {
long N = Long.parseLong(br.readLine().trim());
sb.append(solve(N)).append("\n");
}
br.close();
System.out.println(sb);
}
private static void preprocess() {
final long MAX = (long) 1e12;
long start = 6;
repository = new HashMap<>();
for (int i = 4; start < MAX; i++) {
HashMap<Long, Integer> temp = new HashMap<>();
for (long x : repository.keySet()) {
long key = x + start;
temp.put(key, Math.min(repository.getOrDefault(key, 100), repository.get(x) + 1));
}
for (long x : temp.keySet())
repository.put(x, Math.min(temp.get(x), repository.getOrDefault(x, 100)));
repository.put(start, 1);
start *= i;
}
// TreeMap<Long, Integer> map = new TreeMap<>(repository);
// System.out.println(map);
}
private static int solve(Long N) {
int ret = Long.bitCount(N);
for (long i : repository.keySet()) {
if (i <= N)
ret = Math.min(ret, repository.get(i) + Long.bitCount(N - i));
}
return ret;
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 8313b7591b183a73e3f969006aefe2dc | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class C_Factorials_and_Powers_of_Two{
static final int MOD = (int) 1e9 + 7;
public static void main (String[] args){
FastReader s = new FastReader();
int t=1;t=s.ni();
for(int test=1;test<=t;test++){
long n=s.nl();
List<Long> factorials = new ArrayList<>();
long prod = 2;
for (int i = 3; true; i++) {
prod *= i;
factorials.add(prod);
if (prod > n)
break;
}
int ans = Integer.MAX_VALUE;
for (int mask = 0; mask < (1 << factorials.size()); mask++) {
long sum = n;
for (int j = 0; j < factorials.size(); j++) {
if ((mask & (1 << j)) != 0) {
sum -= factorials.get(j);
}
}
ans = Math.min(ans, Integer.bitCount(mask) + Long.bitCount(sum));
}
System.out.println(ans);
}
}
static class FastReader {
BufferedReader br; StringTokenizer st;
public FastReader(){
br = new BufferedReader(new InputStreamReader(System.in));}
int ni() { return Integer.parseInt(next()); }
long nl() { return Long.parseLong(next()); }
String next(){
while (st == null || !st.hasMoreElements()) {try {st = new StringTokenizer(br.readLine());}
catch (IOException e){e.printStackTrace();}}return st.nextToken();}
String nextLine(){String str = "";try {str = br.readLine();}catch (IOException e)
{e.printStackTrace();}return str;}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 44105333ceb141792789b601a45458df | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
static class JoinSet {
int[] fa;
JoinSet(int n) {
fa = new int[n];
for (int i = 0; i < n; i++) fa[i] = i;
}
int find(int t) {
if (t != fa[t]) fa[t] = find(fa[t]);
return fa[t];
}
void join(int x, int y) {
x = find(x);
y = find(y);
fa[x] = y;
}
}
static BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
static BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
static int mod = (int)998244353;
static int[][] dirs = new int[][]{{0,1},{0,-1},{1,0},{-1,0}};
static boolean[] prime = new boolean[1000];
static {
for (int i = 2; i < prime.length; i++) prime[i] = true;
for (int i = 2; i < prime.length; i++) {
if (prime[i]) {
for (int k = 2; i * k < prime.length; k++) {
prime[i * k] = false;
}
}
}
}
static long gcd(long a, long b) {
return b == 0 ? a : gcd(b, a % b);
}
static long lcm(long a, long b) {
return a * b / gcd(a, b);
}
static int get() throws Exception {
String ss = bf.readLine();
if (ss.contains(" ")) ss = ss.substring(0, ss.indexOf(" "));
return Integer.parseInt(ss);
}
static long getx() throws Exception {
String ss = bf.readLine();
if (ss.contains(" ")) ss = ss.substring(0, ss.indexOf(" "));
return Long.parseLong(ss);
}
static int[] getint() throws Exception {
String[] s = bf.readLine().split(" ");
int[] a = new int[s.length];
for (int i = 0; i < a.length; i++) {
a[i] = Integer.parseInt(s[i]);
}
return a;
}
static long[] getlong() throws Exception {
String[] s = bf.readLine().split(" ");
long[] a = new long[s.length];
for (int i = 0; i < a.length; i++) {
a[i] = Long.parseLong(s[i]);
}
return a;
}
static String getstr() throws Exception {
return bf.readLine();
}
static void println() throws Exception {
bw.write("\n");
}
static void print(int a) throws Exception {
bw.write(a + "\n");
}
static void print(long a) throws Exception {
bw.write(a + "\n");
}
static void print(String a) throws Exception {
bw.write(a + "\n");
}
static void print(int[] a) throws Exception {
for (int i : a) {
bw.write(i + " ");
}
println();
}
static void print(long[] a) throws Exception {
for (long i : a) {
bw.write(i + " ");
}
println();
}
static void print(char[] a) throws Exception {
for (char i : a) {
bw.write(i +"");
}
println();
}
static long pow(long a, long b) {
long ans = 1;
while (b > 0) {
if ((b & 1) == 1) {
ans *= a;
}
a *= a;
b >>= 1;
}
return ans;
}
static int powmod(long a, long b, int mod) {
long ans = 1;
while (b > 0) {
if ((b & 1) == 1) {
ans = ans * a % mod;
}
a = a * a % mod;
b >>= 1;
}
return (int) ans;
}
static void sort(int[] a) {
int n = a.length;
Integer[] b = new Integer[n];
for (int i = 0; i < n; i++) b[i] = a[i];
Arrays.sort(b);
for (int i = 0; i < n; i++) a[i] = b[i];
}
static void sort(long[] a) {
int n = a.length;
Long[] b = new Long[n];
for (int i = 0; i < n; i++) b[i] = a[i];
Arrays.sort(b);
for (int i = 0; i < n; i++) a[i] = b[i];
}
static int max(int a, int b) {
return Math.max(a,b);
}
static int min(int a, int b) {
return Math.min(a,b);
}
static long max(long a, long b) {
return Math.max(a,b);
}
static long min(long a, long b) {
return Math.min(a,b);
}
static int max(int[] a) {
int max = a[0];
for(int i : a) max = max(max,i);
return max;
}
static int min(int[] a) {
int min = a[0];
for(int i : a) min = min(min,i);
return min;
}
static long max(long[] a) {
long max = a[0];
for(long i : a) max = max(max,i);
return max;
}
static long min(long[] a) {
long min = a[0];
for(long i : a) min = min(min,i);
return min;
}
public static void main(String[] args) throws Exception {
int t = get();
while (t-- > 0){
long n = getx();
List<Long> list = new ArrayList<>();
long x = 6, k = 4;
while(x <= n){
list.add(x);
x *= k;
k++;
}
int ans = Long.bitCount(n);
for (int i = 0; i < (1<<12); i++){
long n2 = n;
int len = list.size();
for(int j = 0;j < len;j++){
if(((i>>j)&1) == 1){
n2 -= list.get(j);
}
}
if(n2 >= 0){
ans = min(ans,Integer.bitCount(i)+Long.bitCount(n2));
}
}
print(ans);
}
bw.flush();
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 7d89725287163f643a1a07808f45311b | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class new1{
static long mod = 1000000007;
public static long gcd(long a, long b)
{
if (a == 0)
return b;
return gcd(b%a, a);
}
public static void main(String[] args) throws IOException{
BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out));
FastReader s = new FastReader();
int t = s.nextInt();
for(int z = 0; z < t; z++) {
long n = s.nextLong();
long[] fact = new long[16];
fact[0] = 1;
for(int i = 1; i < 16; i++) {
fact[i] = fact[i - 1] * i;
}
int min = Integer.MAX_VALUE;
for(int i = 0; i < (int) Math.pow(2, 14); i++) {
long aa = 0;
int count = 0;
long a1 = i; int j = 1;
while(a1 > 0) {
if(a1 % 2 == 1) {
aa = aa + fact[j];
count++;
}
a1 = a1 / 2;
j++;
}
long exp = n - aa;
//if(i == 4) System.out.println(exp + " " + aa + " " + count);
if(exp > 0) {
while(exp > 0) {
if(exp % 2 == 1) {
count++;
}
exp = exp / 2;
}
// if(i == 0) System.out.println(count);
}
else if(exp < 0) count = Integer.MAX_VALUE;
min = Math.min(min, count);
//if(count == 1) System.out.println(count + " " + i);
}
output.write(min + "\n");
}
output.flush();
}
}
class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 68a6aa75970eba185f7614b1098fa472 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.*;
import java.util.*;
import static java.lang.Integer.numberOfLeadingZeros;
import static java.lang.Integer.parseInt;
import static java.lang.Long.parseLong;
import static java.lang.Double.parseDouble;
public class Main {
public static long[] fact = new long[20];
public static long[] took = new long[20];
public static long ans = 100;
public static void main(String[] args) throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
int t = nextInt();
fact[0] = 1;
for (int i = 1; i <= 19; i++) {
fact[i] = fact[i-1] * i;
}
while (t-- > 0) {
ans = 100;
long n = nextLong();
for (int i = 0; i <= 15; i++) {
perm(n, 0, i, 0, 0);
}
out.println(ans);
}
in.close();
out.close();
}
public static int numOfOnes(long a) {
int ans = 0;
while (a > 0) {
ans += (a % 2);
a /= 2;
}
return ans;
}
public static void perm(long n, int start, int k, int sum, long sumFact) {
if (sum == k) {
if (sumFact <= n) {
ans = Math.min(ans, k + numOfOnes(n - sumFact));
}
return;
}
for (int i = start; i <= 15; i++) {
if (took[i] == 0 && fact[i] + sumFact <= n) {
took[i] = 1;
perm(n, i + 1, k, sum + 1, sumFact + fact[i]);
took[i] = 0;
}
}
}
static BufferedReader in;
static PrintWriter out;
static StringTokenizer tok;
static int nextInt() throws IOException {
return parseInt(next());
}
static long nextLong() throws IOException {
return parseLong(next());
}
static double nextDouble() throws IOException {
return parseDouble(next());
}
static String next() throws IOException {
while (tok == null || !tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
}
class Interval {
int xL, xR, yL, yR, num;
public Interval(int xL, int xR, int yL, int yR, int num) {
this.xL = xL;
this.xR = xR;
this.yL = yL;
this.yR = yR;
this.num = num;
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 281e553f5409998c5bbb2f6b0e6356ca | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Q1646C {
static int mod = (int) (1e9 + 7);
static void solve() {
long fact = 1;
long n = l();
ArrayList<Long> factorials = new ArrayList<>();
factorials.add((long) 1);
for (int i = 1; i <= 14; i++) {
fact *= i;
factorials.add(fact);
}
int ans = Integer.MAX_VALUE;
for (int i = 0; i < (1 << factorials.size()); i++) {
long sum = 0;
int count = 0;
for (int j = 0; j < factorials.size(); j++) {
if ((i & (1 << j)) != 0) {
sum += factorials.get(j);
count++;
}
}
if (sum > n) {
continue;
}
long rem = n - sum;
if (((i & 1) != 0 && (rem & 1) != 0) || ((i & 2) != 0 && (rem & 2) != 0)) {
continue;
}
// System.out.println(rem);
ans = Math.min(ans, count + helper(rem));
}
System.out.println(ans);
return;
}
public static int helper(long val) {
int ans = 0;
while (val > 0) {
ans++;
val = val & (val - 1);
}
return ans;
}
public static void main(String[] args) {
int test = i();
while (test-- > 0) {
solve();
}
}
// ----->segmentTree--> segTree as class
// ----->lazy_Seg_tree --> lazy_Seg_tree as class
// -----> Trie --->Trie as class
// ----->fenwick_Tree ---> fenwick_Tree
// -----> POWER ---> long power(long x, long y) <----
// -----> LCM ---> long lcm(long x, long y) <----
// -----> GCD ---> long gcd(long x, long y) <----
// -----> SIEVE --> ArrayList<Integer> sieve(int N) <-----
// -----> NCR ---> long ncr(int n, int r) <----
// -----> BINARY_SEARCH ---> int binary_Search(long[]arr,long x) <----
// -----> (SORTING OF LONG, CHAR,INT) -->long[] sortLong(long[] a2)<--
// ----> DFS ---> void dfs(ArrayList<ArrayList<Integer>>edges,int child,int
// parent)<---
// ---> NODETOROOT --> ArrayList<Integer>
// node2Root(ArrayList<ArrayList<Integer>>edges,int child,int parent,int tofind)
// <--
// ---> LEVELS_TREE -->levels_Trees(ArrayList<HashSet<Integer>> edges, int
// child, int parent,int[]level,int currLevel) <--
// ---> K_THPARENT --> int k_thparent(int node,int[][]parent,int k) <---
// ---> TWOPOWERITHPARENTFILL --> void twoPowerIthParentFill(int[][]parent) <---
// -----> (INPUT OF INT,LONG ,STRING) -> int i() long l() String s()<-
// tempstart
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int Int() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String String() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return String();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static InputReader in = new InputReader(System.in);
public static int i() {
return in.Int();
}
public static long l() {
String s = in.String();
return Long.parseLong(s);
}
public static String s() {
return in.String();
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 91087f87fde4a6b54e787284ddee7b33 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
public static Scanner obj = new Scanner(System.in);
public static PrintWriter out = new PrintWriter(System.out);
public static int bits(long n)
{
int c=0;
while(n>0)
{
if(n%2!=0)c++;
n=n/2;
}
return c;
}
public static void main(String[] args) {
int len = obj.nextInt();
while (len-- != 0) {
long n = obj.nextLong();
long ans = bits(n);
Vector<Long> fact = new Vector<>();
long val = 1;
for (int i = 2; val<=n; i++) {
fact.add(val);
val *= i;
}
for(int i=0;i<(1<<fact.size());i++)
{
long gg=0,cc=0;
for(int j=0;j<=fact.size();j++)
{
int check=(1<<j)&i;
if(check!=0) {
gg+=fact.get(j);
cc++;
}
}
if(gg<=n)ans=Math.min(ans,cc+bits(n-gg));
}
out.println(ans);
}
out.flush();
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 82bd8beedf240fd67a74ee50c039fa31 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.io.*;
import java.math.*;
public class Main{
public static void main(String[]args){
long s = System.currentTimeMillis();
new Solver().run();
System.err.println(System.currentTimeMillis()-s+"ms");
}
}
class Solver{
final long mod = (long)1e9+7l;
final boolean DEBUG = true, MULTIPLE_TC = true;
final int MASK_LT = 32_768, oo = (int)1e8;
FastReader sc;
PrintWriter out;
long N, factorial[];
void init(){
N = nl();
}
int calcCost(int mask){
long n = N;
int cost = 0;
int pow2 = 1;
for(int i = 0; i < 15; i++){
if((mask & 1) == 1){
cost += 1;
n -= factorial[i];
if(n < 0){
return oo;
}
}
mask /= 2;
}
cost += Long.bitCount(n);
return cost;
}
void calcFactorials(int upTill){
factorial = new long[upTill + 1];
factorial[0] = 1l;
for(int i = 1; i <= upTill; i++){
factorial[i] = factorial[i - 1] * (i * 1l);
}
}
void process(int testNumber){
init();
int res = oo;
for(int mask = 0; mask < MASK_LT; mask++){
int val = calcCost(mask);
res = Math.min(res, val);
}
pn(res);
}
void run(){
calcFactorials(14);
sc = new FastReader();
out = new PrintWriter(System.out);
int t = MULTIPLE_TC ? ni() : 1;
for(int test = 1; test <= t; test++){
process(test);
}
out.flush();
}
void trace(Object... o){ if(!DEBUG) return; System.err.println(Arrays.deepToString(o)); };
void pn(Object o){ out.println(o); }
void p(Object o){ out.print(o); }
int ni(){ return Integer.parseInt(sc.next()); }
long nl(){ return Long.parseLong(sc.next()); }
double nd(){ return Double.parseDouble(sc.next()); }
String nln(){ return sc.nextLine(); }
long gcd(long a, long b){ return (b==0)?a:gcd(b,a%b);}
int gcd(int a, int b){ return (b==0)?a:gcd(b,a%b); }
class FastReader{
BufferedReader br;
StringTokenizer st;
public FastReader(){
br = new BufferedReader(new InputStreamReader(System.in));
}
String next(){
while (st == null || !st.hasMoreElements()){
try{ st = new StringTokenizer(br.readLine()); } catch (IOException e){ e.printStackTrace(); }
}
return st.nextToken();
}
String nextLine(){
String str = "";
try{ str = br.readLine(); } catch (IOException e) { e.printStackTrace(); }
return str;
}
}
}
class pair implements Comparable<pair> {
int first, second;
public pair(int first, int second){
this.first = first;
this.second = second;
}
@Override
public int compareTo(pair ob){
if(this.first != ob.first)
return this.first - ob.first;
return this.second - ob.second;
}
@Override
public String toString(){
return this.first + " " + this.second;
}
static public pair from(int f, int s){
return new pair(f, s);
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | fc98c2ec66c270791423c73a966c5e24 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | // package practice;
import java.io.*;
import java.util.*;
public class cp
{
public static int logbase2(double n) {
int count = 0;
while(n >= 2) {
n /= 2;
count++;
}
return count;
}
public static void clear(int arr[]) {
for(int i = 0;i < arr.length;i++) {
arr[i] = 0;
}
}
public static void main(String[] args) throws IOException
{
//Your Solve
// Reader s = new Reader();
FastReader s = new FastReader();
// Scanner s = new Scanner(System.in);
int t = s.nextInt();
ArrayList<Long> list = new ArrayList<>();
long num = 6;
for(long i = 4;num <= 1e12;i++) {
list.add(num);
num *= i;
}
// System.out.println(list);
ArrayList<Pair> sumOfPerm = new ArrayList<>();
sumAllPerm(0, 0,sumOfPerm,list,0);
Collections.sort(sumOfPerm, new Comparator<Pair>() {
@Override
public int compare(final Pair o1, final Pair o2) {
// TODO: implement your logic here
return o1.sum > o2.sum ? 1 : -1;
}
});
// for(int i = 0;i < 100;i++) {
// System.out.println(sumOfPerm.get(i).sum);
// }
for(int p = 0;p < t;p++) {
long n = s.nextLong();
long ans = Integer.MAX_VALUE;
for(int i = 0;i < sumOfPerm.size();i++) {
if(sumOfPerm.get(i).sum>n) {
break;
}
String binary = Long.toBinaryString(n-sumOfPerm.get(i).sum);
int count1 = 0;
for(int j = 0;j < binary.length();j++) {
if(binary.charAt(j) == '1') {
count1++;
}
}
long smallAns = sumOfPerm.get(i).count + count1;
ans = Math.min(ans, smallAns);
}
System.out.println(ans);
}
}
public static void sumAllPerm(long sumTillNow,int start,ArrayList<Pair> sumOfPerm,ArrayList<Long> list,int count){
if(start == list.size()) {
sumOfPerm.add(new Pair(count,sumTillNow));
return;
}
sumAllPerm(sumTillNow,start+1,sumOfPerm,list,count);
sumAllPerm(sumTillNow+list.get(start), start+1, sumOfPerm, list,count+1);
}
public static int binarySearch(ArrayList<Integer> arr, int target) {
int s = 0,e = arr.size()-1;
int mid = (s+e)/2;
int ans = -1;
while(s<=e) {
mid = (s+e)/2;
if(arr.get(mid)<=target) {
ans = mid;
s = mid+1;
}else{
e = mid-1;
}
}
return ans;
}
public static Vector<Integer> sieveOfEratosthenes(int n)
{
// Create a boolean array
// "prime[0..n]" and
// initialize all entries
// it as true. A value in
// prime[i] will finally be
// false if i is Not a
// prime, else true.
boolean prime[] = new boolean[n + 1];
for (int i = 0; i <= n; i++)
prime[i] = true;
for (int p = 2; p * p <= n; p++)
{
// If prime[p] is not changed, then it is a
// prime
if (prime[p] == true)
{
// Update all multiples of p
for (int i = p * p; i <= n; i += p)
prime[i] = false;
}
}
Vector<Integer> v = new Vector<>();
// Print all prime numbers
for (int i = 2; i <= n; i++)
{
if (prime[i] == true)
v.add(i);
}
return v;
}
static long binomialCoeff(long n, long k)
{
long res = 1;
// Since C(n, k) = C(n, n-k)
if (k > n - k)
k = n - k;
// Calculate value of
// [n * (n-1) *---* (n-k+1)] / [k * (k-1) *----* 1]
for (int i = 0; i < k; ++i) {
res *= (n - i);
res /= (i + 1);
}
return res;
}
public static void shuffleArray(int[] ar)
{
// If running on Java 6 or older, use `new Random()` on RHS here
Random rnd = new Random();
for (int i = ar.length - 1; i > 0; i--)
{
int index = rnd.nextInt(i + 1);
// Simple swap
int a = ar[index];
ar[index] = ar[i];
ar[i] = a;
}
}
/* Iterative Function to calculate (x^y) in O(log y) */
static long power(long x, long y, long p)
{
long res = 1; // Initialize result
x = x % p; // Update x if it is more than or
// equal to p
if (x == 0)
return 0; // In case x is divisible by p;
while (y > 0)
{
// If y is odd, multiply x with result
if ((y & 1) != 0)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
static long getPairsCount(int n, long sum,long arr[])
{
HashMap<Long, Integer> hm = new HashMap<>();
// Store counts of all elements in map hm
for (int i = 0; i < n; i++) {
// initializing value to 0, if key not found
if (!hm.containsKey(arr[i]))
hm.put(arr[i], 0);
hm.put(arr[i], hm.get(arr[i]) + 1);
}
long twice_count = 0;
// iterate through each element and increment the
// count (Notice that every pair is counted twice)
for (int i = 0; i < n; i++) {
if (hm.get(sum - arr[i]) != null)
twice_count += hm.get(sum - arr[i]);
// if (arr[i], arr[i]) pair satisfies the
// condition, then we need to ensure that the
// count is decreased by one such that the
// (arr[i], arr[i]) pair is not considered
if (sum - arr[i] == arr[i])
twice_count--;
}
// return the half of twice_count
return twice_count / 2;
}
public static<T,V> HashMap<T,V>
sortByValue(HashMap<T,V> hm)
{
// Create a list from elements of HashMap
List<Map.Entry<T,V> > list
= new LinkedList<Map.Entry<T,V> >(
hm.entrySet());
// Sort the list using lambda expression
Collections.sort(
list,
(i1,
i2) -> ((String) i1.getValue()).compareTo((String) i2.getValue()));
// put data from sorted list to hashmap
HashMap<T,V> temp
= new LinkedHashMap<T,V>();
for (Map.Entry<T,V> aa : list) {
temp.put(aa.getKey(), aa.getValue());
}
return temp;
}
public static<T> HashMap<T,Integer>
sortByValueDescending(HashMap<T,Integer> unSortedMap)
{
LinkedHashMap<T,Integer> reverseSortedMap = new LinkedHashMap<>();
unSortedMap.entrySet().stream().sorted(Map.Entry.comparingByValue(Comparator.reverseOrder()))
.forEachOrdered(x -> reverseSortedMap.put(x.getKey(), x.getValue()));
return reverseSortedMap;
}
static int lower_bound(long array[], long key,long start,long end)
{
// Initialize starting index and
// ending index
long low = start, high = end;
long mid;
// Till high does not crosses low
while (low < high) {
// Find the index of the middle element
mid = low + (high - low) / 2;
// If key is less than or equal
// to array[mid], then find in
// left subarray
if (key <= array[(int)mid]) {
high = mid;
}
// If key is greater than array[mid],
// then find in right subarray
else {
low = mid + 1;
}
}
// If key is greater than last element which is
// array[n-1] then lower bound
// does not exists in the array
if (low < end && array[(int)low] < key) {
low++;
}
// Returning the lower_bound index
return (int)low;
}
static int upper_bound(long array[], long key,long start,long end)
{
// Initialize starting index and
// ending index
long low = start, high = end;
long mid;
// Till high does not crosses low
while (low < high) {
// Find the index of the middle element
mid = low + (high - low) / 2;
// If key is less than or equal
// to array[mid], then find in
// left subarray
if (key >= array[(int)mid]) {
low = mid+1;
}
// If key is greater than array[mid],
// then find in right subarray
else {
high = mid;
}
}
// If key is greater than last element which is
// array[n-1] then lower bound
// does not exists in the array
if (low < end && array[(int)low] <= key) {
low++;
}
// Returning the lower_bound index
return (int)low;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static class Reader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(
new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') {
if (cnt != 0) {
break;
}
else {
continue;
}
}
buf[cnt++] = (byte)c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0,
BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
}
class Pair{
int count;
long sum;
Pair(int count,long sum) {
this.count = count;
this.sum = sum;
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 6c246e7fb9340e0e5f81c882037910b2 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class Main{
static List<Long> list=new ArrayList<>();
static void init(){
long res=1;
long cnt=1;
while (res<=1e12){
res*=cnt;
list.add(res);
cnt++;
}
}
static int count(long num){
return Long.bitCount(num);
}
static void dfs(int u,long x,long num){
if(u>=list.size()||x<=0) return;
if(x-list.get(u)>=0){
ans=Math.min(ans,num+1+count(x-list.get(u)));
dfs(u+1,x-list.get(u),num+1);
}
ans=Math.min(ans,num+count(x));
dfs(u+1,x,num);
}
static long ans=1<<30;
static void solve() {
ans=1<<30;
dfs(0,in.nextLong(),0);
out.println(ans);
}
public static void main(String[] args) throws Exception {
int cnt=in.nextInt();
init();
while (cnt-->0){
solve();
}
out.flush();
}
static class FastReader{
StringTokenizer st;
BufferedReader br;
public FastReader(){
br=new BufferedReader(new InputStreamReader(System.in));
}
String next(){
while (st==null||!st.hasMoreElements()){
try {
st=new StringTokenizer(br.readLine());
}catch (IOException e){
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static PrintWriter out = new PrintWriter(System.out);
static FastReader in = new FastReader();
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | b9ab989b3c073763260656d1f538dce4 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
/**
* @author 邶风
* @data 2022/3/4 23:55
*/
public class Main {
static class FastReader{
StringTokenizer st;
BufferedReader br;
public FastReader(){
br=new BufferedReader(new InputStreamReader(System.in));
}
String next(){
while (st==null||!st.hasMoreElements()){
try {
st=new StringTokenizer(br.readLine());
}catch (IOException e){
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static PrintWriter out = new PrintWriter(System.out);
static FastReader in = new FastReader();
static Set<Long> set=new TreeSet<>();
static void init(){
long res=1;
int n=2;
while (res<=1e12){
set.add(res);
res=res*n;
n++;
}
// res=4;
// while (res<=1e12){
// set.add(res);
// res*=2;
// }
for(long v:set){
list.add(v);
}
}
static List<Long> list=new ArrayList<>();
static int ans;
static void dfs(int u,long x,int num){
if(x==0||u>=list.size()){
return;
}
if(x-list.get(u)>=0){
ans=Math.min(num +count(x-list.get(u)),ans);
dfs(u+1,x-list.get(u),num+1);
}
ans=Math.min(num-1+count(x),ans);
dfs(u+1,x,num);
}
static int count(long x){
int res=0;
while (x!=0){
if((x&1)==1) res++;
x/=2;
}
return res;
}
static void solve(){
long n=in.nextLong();
ans=1<<30;
dfs(0,n,1);
out.println(ans);
}
public static void main(String[] args) {
int t=in.nextInt();
init();
while (t-->0){
solve();
out.flush();
}
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 8663b9dd32f3307efb645c278b8ee483 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class CodeForces {
public static void main(String[] args) throws Exception {
BufferedReader s = new BufferedReader(new InputStreamReader(System.in));
PrintWriter w = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
StringTokenizer st = new StringTokenizer(s.readLine());
int t = Integer.parseInt(st.nextToken());
long[] factorials = new long[12];
factorials[0] = 6;
for (int i = 1; i < 12; i++) {
factorials[i] = (i + 3) * factorials[i - 1];
}
HashSet<Value> choices = new HashSet<Value>();
for (int i = 0; i < (1 << 12); i++) {
long temp = 0;
for (int x = 0; x < 12; x++) {
if (((1 << x) & i) != 0) {
temp += factorials[x];
}
}
choices.add(new Value(temp, Long.bitCount(i)));
}
for (int i = 0; i < t; i++) {
st = new StringTokenizer(s.readLine());
long n = Long.parseLong(st.nextToken());
long ans = Long.MAX_VALUE;
for (Value x: choices) {
long rem = n - x.n;
if (rem < 0) {
continue;
}
ans = Math.min(ans, x.count + Long.bitCount(rem));
}
w.println(ans);
}
w.close();
}
public static class Value {
long n;
int count;
public Value(long n, int count) {
this.n = n;
this.count = count;
}
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | d70a066a5a090ede9f708704057b9939 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class CF_774 {
static FastScanner fs;
static FastWriter fw;
static boolean checkOnlineJudge = System.getProperty("ONLINE_JUDGE") == null;
private static final int[][] kdir = new int[][]{{-1, 2}, {-2, 1}, {-2, -1}, {-1, -2}, {1, -2}, {2, -1}, {2, 1}, {1, 2}};
private static final int[][] dir = new int[][]{{-1, 0}, {1, 0}, {0, 1}, {0, -1}};
private static final int iMax = (int) (1e9 + 100), iMin = (int) (-1e9 - 100);
private static final long lMax = (long) (1e18 + 100), lMin = (long) (-1e18 - 100);
private static final int mod1 = (int) (1e9 + 7);
private static final int mod2 = 998244353;
private static final long[] fact_arr = new long[15];
public static void main(String[] args) throws IOException {
fs = new FastScanner();
fw = new FastWriter();
fact_arr[0] = 1;
for (int i = 1; i <= 14; i++)
fact_arr[i] = (i * fact_arr[i - 1]);
int t = 1;
t = fs.nextInt();
while (t-- > 0) {
solve();
}
fw.out.close();
}
private static long n;
private static Set<Long> set;
private static void solve() {
n = fs.nextLong();
set = new HashSet<>();
int result = util(1, 0);
fw.out.println(result);
}
private static int util(int i, long sum) {
if (sum > n)
return iMax;
if (i >= 15) {
long left = n - sum;
int cnt = 0;
for (int bit = 0; bit < 64; bit++) {
if (((left >> bit) & 1) == 1) {
cnt++;
if (set.contains((1L << bit)))
return iMax;
}
}
return (set.size() + cnt);
}
set.add(fact_arr[i]);
int ans1 = util(i + 1, sum + fact_arr[i]);
set.remove(fact_arr[i]);
int ans2 = util(i + 1, sum);
return Math.min(ans1, ans2);
}
private static class UnionFind {
private final int[] parent;
private final int[] rank;
UnionFind(int n) {
parent = new int[n + 5];
rank = new int[n + 5];
for (int i = 0; i <= n; i++) {
parent[i] = i;
rank[i] = 0;
}
}
private int find(int i) {
if (parent[i] == i)
return i;
return parent[i] = find(parent[i]);
}
private void union(int a, int b) {
a = find(a);
b = find(b);
if (a != b) {
if (rank[a] < rank[b]) {
int temp = a;
a = b;
b = temp;
}
parent[b] = a;
if (rank[a] == rank[b])
rank[a]++;
}
}
}
private static long gcd(long a, long b) {
return (b == 0 ? a : gcd(b, a % b));
}
private static long lcm(long a, long b) {
return ((a * b) / gcd(a, b));
}
private static long pow(long a, long b, int mod) {
long result = 1;
while (b > 0) {
if ((b & 1L) == 1) {
result = (result * a) % mod;
}
a = (a * a) % mod;
b >>= 1;
}
return result;
}
private static long ceilDiv(long a, long b) {
return ((a + b - 1) / b);
}
private static long getMin(long... args) {
long min = lMax;
for (long arg : args)
min = Math.min(min, arg);
return min;
}
private static long getMax(long... args) {
long max = lMin;
for (long arg : args)
max = Math.max(max, arg);
return max;
}
private static boolean isPalindrome(String s, int l, int r) {
int i = l, j = r;
while (j - i >= 1) {
if (s.charAt(i) != s.charAt(j))
return false;
i++;
j--;
}
return true;
}
private static List<Integer> primes(int n) {
boolean[] primeArr = new boolean[n + 5];
Arrays.fill(primeArr, true);
for (int i = 2; (i * i) <= n; i++) {
if (primeArr[i]) {
for (int j = i * i; j <= n; j += i) {
primeArr[j] = false;
}
}
}
List<Integer> primeList = new ArrayList<>();
for (int i = 2; i <= n; i++) {
if (primeArr[i])
primeList.add(i);
}
return primeList;
}
private static class Pair<U, V> {
private final U first;
private final V second;
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Pair<?, ?> pair = (Pair<?, ?>) o;
return first.equals(pair.first) && second.equals(pair.second);
}
@Override
public int hashCode() {
return Objects.hash(first, second);
}
@Override
public String toString() {
return "(" + first + ", " + second + ")";
}
private Pair(U ff, V ss) {
this.first = ff;
this.second = ss;
}
}
private static <T> void randomizeArr(T[] arr, int n) {
Random r = new Random();
for (int i = (n - 1); i > 0; i--) {
int j = r.nextInt(i + 1);
swap(arr, i, j);
}
}
private static Integer[] readIntArray(int n) {
Integer[] arr = new Integer[n];
for (int i = 0; i < n; i++)
arr[i] = fs.nextInt();
return arr;
}
private static List<Integer> readIntList(int n) {
List<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++)
list.add(fs.nextInt());
return list;
}
private static <T> void swap(T[] arr, int i, int j) {
T temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
private static <T> void displayArr(T[] arr) {
for (T x : arr)
fw.out.print(x + " ");
fw.out.println();
}
private static <T> void displayList(List<T> list) {
for (T x : list)
fw.out.print(x + " ");
fw.out.println();
}
private static class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner() throws IOException {
if (checkOnlineJudge)
this.br = new BufferedReader(new FileReader("src/input.txt"));
else
this.br = new BufferedReader(new InputStreamReader(System.in));
this.st = new StringTokenizer("");
}
public String next() {
while (!st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException err) {
err.printStackTrace();
}
}
return st.nextToken();
}
public String nextLine() {
if (st.hasMoreTokens()) {
return st.nextToken("").trim();
}
try {
return br.readLine().trim();
} catch (IOException err) {
err.printStackTrace();
}
return "";
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
private static class FastWriter {
PrintWriter out;
FastWriter() throws IOException {
if (checkOnlineJudge)
out = new PrintWriter(new FileWriter("src/output.txt"));
else
out = new PrintWriter(System.out);
}
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | ea0c6065a6739df60232009d8c91526c | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class CF_774 {
static FastScanner fs;
static FastWriter fw;
static boolean checkOnlineJudge = System.getProperty("ONLINE_JUDGE") == null;
private static final int[][] kdir = new int[][]{{-1, 2}, {-2, 1}, {-2, -1}, {-1, -2}, {1, -2}, {2, -1}, {2, 1}, {1, 2}};
private static final int[][] dir = new int[][]{{-1, 0}, {1, 0}, {0, 1}, {0, -1}};
private static final int iMax = (int) (1e9 + 100), iMin = (int) (-1e9 - 100);
private static final long lMax = (long) (1e18 + 100), lMin = (long) (-1e18 - 100);
private static final int mod1 = (int) (1e9 + 7);
private static final int mod2 = 998244353;
private static final long[] fact_arr = new long[15];
public static void main(String[] args) throws IOException {
fs = new FastScanner();
fw = new FastWriter();
fact_arr[0] = 1;
for (int i = 1; i <= 14; i++)
fact_arr[i] = (i * fact_arr[i - 1]);
int t = 1;
t = fs.nextInt();
while (t-- > 0) {
solve();
}
fw.out.close();
}
private static long n;
private static Set<Long> set;
private static void solve() {
n = fs.nextLong();
set = new HashSet<>();
long result = util(1, 0);
fw.out.println(result);
}
private static long util(int i, long sum) {
if (sum > n)
return iMax;
if (i >= 15) {
long left = n - sum;
List<Long> setBit_nums = new ArrayList<>();
for (int bit = 0; bit < 64; bit++) {
if (((left >> bit) & 1) == 1)
setBit_nums.add((1L << bit));
}
for (long x : setBit_nums) {
if (set.contains(x))
return iMax;
}
return (set.size() + setBit_nums.size());
}
set.add(fact_arr[i]);
long ans1 = util(i + 1, sum + fact_arr[i]);
set.remove(fact_arr[i]);
long ans2 = util(i + 1, sum);
return Math.min(ans1, ans2);
}
private static class UnionFind {
private final int[] parent;
private final int[] rank;
UnionFind(int n) {
parent = new int[n + 5];
rank = new int[n + 5];
for (int i = 0; i <= n; i++) {
parent[i] = i;
rank[i] = 0;
}
}
private int find(int i) {
if (parent[i] == i)
return i;
return parent[i] = find(parent[i]);
}
private void union(int a, int b) {
a = find(a);
b = find(b);
if (a != b) {
if (rank[a] < rank[b]) {
int temp = a;
a = b;
b = temp;
}
parent[b] = a;
if (rank[a] == rank[b])
rank[a]++;
}
}
}
private static long gcd(long a, long b) {
return (b == 0 ? a : gcd(b, a % b));
}
private static long lcm(long a, long b) {
return ((a * b) / gcd(a, b));
}
private static long pow(long a, long b, int mod) {
long result = 1;
while (b > 0) {
if ((b & 1L) == 1) {
result = (result * a) % mod;
}
a = (a * a) % mod;
b >>= 1;
}
return result;
}
private static long ceilDiv(long a, long b) {
return ((a + b - 1) / b);
}
private static long getMin(long... args) {
long min = lMax;
for (long arg : args)
min = Math.min(min, arg);
return min;
}
private static long getMax(long... args) {
long max = lMin;
for (long arg : args)
max = Math.max(max, arg);
return max;
}
private static boolean isPalindrome(String s, int l, int r) {
int i = l, j = r;
while (j - i >= 1) {
if (s.charAt(i) != s.charAt(j))
return false;
i++;
j--;
}
return true;
}
private static List<Integer> primes(int n) {
boolean[] primeArr = new boolean[n + 5];
Arrays.fill(primeArr, true);
for (int i = 2; (i * i) <= n; i++) {
if (primeArr[i]) {
for (int j = i * i; j <= n; j += i) {
primeArr[j] = false;
}
}
}
List<Integer> primeList = new ArrayList<>();
for (int i = 2; i <= n; i++) {
if (primeArr[i])
primeList.add(i);
}
return primeList;
}
private static class Pair<U, V> {
private final U first;
private final V second;
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Pair<?, ?> pair = (Pair<?, ?>) o;
return first.equals(pair.first) && second.equals(pair.second);
}
@Override
public int hashCode() {
return Objects.hash(first, second);
}
@Override
public String toString() {
return "(" + first + ", " + second + ")";
}
private Pair(U ff, V ss) {
this.first = ff;
this.second = ss;
}
}
private static <T> void randomizeArr(T[] arr, int n) {
Random r = new Random();
for (int i = (n - 1); i > 0; i--) {
int j = r.nextInt(i + 1);
swap(arr, i, j);
}
}
private static Integer[] readIntArray(int n) {
Integer[] arr = new Integer[n];
for (int i = 0; i < n; i++)
arr[i] = fs.nextInt();
return arr;
}
private static List<Integer> readIntList(int n) {
List<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++)
list.add(fs.nextInt());
return list;
}
private static <T> void swap(T[] arr, int i, int j) {
T temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
private static <T> void displayArr(T[] arr) {
for (T x : arr)
fw.out.print(x + " ");
fw.out.println();
}
private static <T> void displayList(List<T> list) {
for (T x : list)
fw.out.print(x + " ");
fw.out.println();
}
private static class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner() throws IOException {
if (checkOnlineJudge)
this.br = new BufferedReader(new FileReader("src/input.txt"));
else
this.br = new BufferedReader(new InputStreamReader(System.in));
this.st = new StringTokenizer("");
}
public String next() {
while (!st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException err) {
err.printStackTrace();
}
}
return st.nextToken();
}
public String nextLine() {
if (st.hasMoreTokens()) {
return st.nextToken("").trim();
}
try {
return br.readLine().trim();
} catch (IOException err) {
err.printStackTrace();
}
return "";
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
private static class FastWriter {
PrintWriter out;
FastWriter() throws IOException {
if (checkOnlineJudge)
out = new PrintWriter(new FileWriter("src/output.txt"));
else
out = new PrintWriter(System.out);
}
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 573330c1b95b8fb97df60d3bfff08094 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class CF_774 {
static FastScanner fs;
static FastWriter fw;
static boolean checkOnlineJudge = System.getProperty("ONLINE_JUDGE") == null;
private static final int[][] kdir = new int[][]{{-1, 2}, {-2, 1}, {-2, -1}, {-1, -2}, {1, -2}, {2, -1}, {2, 1}, {1, 2}};
private static final int[][] dir = new int[][]{{-1, 0}, {1, 0}, {0, 1}, {0, -1}};
private static final int iMax = (int) (1e9 + 100), iMin = (int) (-1e9 - 100);
private static final long lMax = (long) (1e18 + 100), lMin = (long) (-1e18 - 100);
private static final int mod1 = (int) (1e9 + 7);
private static final int mod2 = 998244353;
private static final long[] fact_arr = new long[15];
public static void main(String[] args) throws IOException {
fs = new FastScanner();
fw = new FastWriter();
fact_arr[0] = 1;
for (int i = 1; i <= 14; i++)
fact_arr[i] = (i * fact_arr[i - 1]);
int t = 1;
t = fs.nextInt();
while (t-- > 0) {
solve();
}
fw.out.close();
}
private static long n;
private static void solve() {
n = fs.nextLong();
long result = util(1, 0, new HashSet<>());
fw.out.println(result);
}
private static long util(int i, long sum, Set<Long> set) {
if (sum > n)
return iMax;
if (i >= 15) {
long left = n - sum;
List<Long> setBit_nums = new ArrayList<>();
for (int bit = 0; bit < 64; bit++) {
if (((left >> bit) & 1) == 1)
setBit_nums.add((1L << bit));
}
for (long x : setBit_nums) {
if (set.contains(x))
return iMax;
}
return (set.size() + setBit_nums.size());
}
set.add(fact_arr[i]);
long ans1 = util(i + 1, sum + fact_arr[i], set);
set.remove(fact_arr[i]);
long ans2 = util(i + 1, sum, set);
return Math.min(ans1, ans2);
}
private static class UnionFind {
private final int[] parent;
private final int[] rank;
UnionFind(int n) {
parent = new int[n + 5];
rank = new int[n + 5];
for (int i = 0; i <= n; i++) {
parent[i] = i;
rank[i] = 0;
}
}
private int find(int i) {
if (parent[i] == i)
return i;
return parent[i] = find(parent[i]);
}
private void union(int a, int b) {
a = find(a);
b = find(b);
if (a != b) {
if (rank[a] < rank[b]) {
int temp = a;
a = b;
b = temp;
}
parent[b] = a;
if (rank[a] == rank[b])
rank[a]++;
}
}
}
private static long gcd(long a, long b) {
return (b == 0 ? a : gcd(b, a % b));
}
private static long lcm(long a, long b) {
return ((a * b) / gcd(a, b));
}
private static long pow(long a, long b, int mod) {
long result = 1;
while (b > 0) {
if ((b & 1L) == 1) {
result = (result * a) % mod;
}
a = (a * a) % mod;
b >>= 1;
}
return result;
}
private static long ceilDiv(long a, long b) {
return ((a + b - 1) / b);
}
private static long getMin(long... args) {
long min = lMax;
for (long arg : args)
min = Math.min(min, arg);
return min;
}
private static long getMax(long... args) {
long max = lMin;
for (long arg : args)
max = Math.max(max, arg);
return max;
}
private static boolean isPalindrome(String s, int l, int r) {
int i = l, j = r;
while (j - i >= 1) {
if (s.charAt(i) != s.charAt(j))
return false;
i++;
j--;
}
return true;
}
private static List<Integer> primes(int n) {
boolean[] primeArr = new boolean[n + 5];
Arrays.fill(primeArr, true);
for (int i = 2; (i * i) <= n; i++) {
if (primeArr[i]) {
for (int j = i * i; j <= n; j += i) {
primeArr[j] = false;
}
}
}
List<Integer> primeList = new ArrayList<>();
for (int i = 2; i <= n; i++) {
if (primeArr[i])
primeList.add(i);
}
return primeList;
}
private static class Pair<U, V> {
private final U first;
private final V second;
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Pair<?, ?> pair = (Pair<?, ?>) o;
return first.equals(pair.first) && second.equals(pair.second);
}
@Override
public int hashCode() {
return Objects.hash(first, second);
}
@Override
public String toString() {
return "(" + first + ", " + second + ")";
}
private Pair(U ff, V ss) {
this.first = ff;
this.second = ss;
}
}
private static <T> void randomizeArr(T[] arr, int n) {
Random r = new Random();
for (int i = (n - 1); i > 0; i--) {
int j = r.nextInt(i + 1);
swap(arr, i, j);
}
}
private static Integer[] readIntArray(int n) {
Integer[] arr = new Integer[n];
for (int i = 0; i < n; i++)
arr[i] = fs.nextInt();
return arr;
}
private static List<Integer> readIntList(int n) {
List<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++)
list.add(fs.nextInt());
return list;
}
private static <T> void swap(T[] arr, int i, int j) {
T temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
private static <T> void displayArr(T[] arr) {
for (T x : arr)
fw.out.print(x + " ");
fw.out.println();
}
private static <T> void displayList(List<T> list) {
for (T x : list)
fw.out.print(x + " ");
fw.out.println();
}
private static class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner() throws IOException {
if (checkOnlineJudge)
this.br = new BufferedReader(new FileReader("src/input.txt"));
else
this.br = new BufferedReader(new InputStreamReader(System.in));
this.st = new StringTokenizer("");
}
public String next() {
while (!st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException err) {
err.printStackTrace();
}
}
return st.nextToken();
}
public String nextLine() {
if (st.hasMoreTokens()) {
return st.nextToken("").trim();
}
try {
return br.readLine().trim();
} catch (IOException err) {
err.printStackTrace();
}
return "";
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
private static class FastWriter {
PrintWriter out;
FastWriter() throws IOException {
if (checkOnlineJudge)
out = new PrintWriter(new FileWriter("src/output.txt"));
else
out = new PrintWriter(System.out);
}
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 7101b068f811cc1994e9c8bf70ac1cc4 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
public static Scanner obj = new Scanner(System.in);
public static PrintWriter out = new PrintWriter(System.out);
public static int i() {
return obj.nextInt();
}
public static void main(String[] args) {
int len = i();
while (len-- != 0) {
long n=obj.nextLong();
Vector<Long> v=new Vector<>();
long fac=6;
for(int i=4;true;i++)
{
if(fac>n)break;
v.add(fac);
fac=fac*i;
}
long ans=Integer.MAX_VALUE;
for(int mask=0;mask<(1<<v.size());mask++)
{
long sum=n;
for(int i=0;i<v.size();i++) if((mask&(1<<i))!=0)sum-=v.get(i);
if(sum<0)continue;
int tut=Integer.bitCount(mask)+Long.bitCount(sum);
ans=Math.min(ans, tut);
}
out.println(ans);
}
out.flush();
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | db022c1721cc20ab3ffffe0b0b3b1eb6 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class CodeForces {
/*-------------------------------------------EDITING CODE STARTS HERE-------------------------------------------*/
public static void solve(int tCase) throws IOException {
long n = sc.nextLong();
if(n%2==1)out.println(1 + find(0,n-1));
else out.println(find(0,n));
}
private static int find(int i,long n){
if(i==fact.length){
int cnt = 0;
while (n>0){
if((n & 1) == 1)cnt++;
n>>=1;
}
return cnt;
}
int c1 = 10000;
if(n >=fact[i])c1 = 1 + find(i+1,n-fact[i]);
int c2 = find(i+1,n);
return Math.min(c1,c2);
}
static long[] fact;
private static void pre(){
fact = new long[15];
fact[0] = 1;
for(int i=1;i<15;i++)fact[i] = fact[i-1] * i;
}
public static void main(String[] args) throws IOException {
openIO();
int testCase = 1;
testCase = sc. nextInt();
pre();
for (int i = 1; i <= testCase; i++) solve(i);
closeIO();
}
/*-------------------------------------------EDITING CODE ENDS HERE-------------------------------------------*/
/*--------------------------------------HELPER FUNCTIONS STARTS HERE-----------------------------------------*/
public static int mod = (int) 1e9 + 7;
// public static int mod = 998244353;
public static int inf_int = (int) 2e9;
public static long inf_long = (long) 2e18;
public static void _sort(int[] arr, boolean isAscending) {
int n = arr.length;
List<Integer> list = new ArrayList<>();
for (int ele : arr) list.add(ele);
Collections.sort(list);
if (!isAscending) Collections.reverse(list);
for (int i = 0; i < n; i++) arr[i] = list.get(i);
}
public static void _sort(long[] arr, boolean isAscending) {
int n = arr.length;
List<Long> list = new ArrayList<>();
for (long ele : arr) list.add(ele);
Collections.sort(list);
if (!isAscending) Collections.reverse(list);
for (int i = 0; i < n; i++) arr[i] = list.get(i);
}
// time : O(1), space : O(1)
public static int _digitCount(long num,int base){
// this will give the # of digits needed for a number num in format : base
return (int)(1 + Math.log(num)/Math.log(base));
}
// time : O(n), space: O(n)
public static long _fact(int n){
// simple factorial calculator
long ans = 1;
for(int i=2;i<=n;i++)
ans = ans * i % mod;
return ans;
}
// time for pre-computation of factorial and inverse-factorial table : O(nlog(mod))
public static long[] factorial , inverseFact;
public static void _ncr_precompute(int n){
factorial = new long[n+1];
inverseFact = new long[n+1];
factorial[0] = inverseFact[0] = 1;
for (int i = 1; i <=n; i++) {
factorial[i] = (factorial[i - 1] * i) % mod;
inverseFact[i] = _modExpo(factorial[i], mod - 2);
}
}
// time of factorial calculation after pre-computation is O(1)
public static int _ncr(int n,int r){
if(r > n)return 0;
return (int)(factorial[n] * inverseFact[r] % mod * inverseFact[n - r] % mod);
}
public static int _npr(int n,int r){
if(r > n)return 0;
return (int)(factorial[n] * inverseFact[n - r] % mod);
}
// euclidean algorithm time O(max (loga ,logb))
public static long _gcd(long a, long b) {
while (a>0){
long x = a;
a = b % a;
b = x;
}
return b;
// if (a == 0)
// return b;
// return _gcd(b % a, a);
}
// lcm(a,b) * gcd(a,b) = a * b
public static long _lcm(long a, long b) {
return (a / _gcd(a, b)) * b;
}
// binary exponentiation time O(logn)
public static long _modExpo(long x, long n) {
long ans = 1;
while (n > 0) {
if ((n & 1) == 1) {
ans *= x;
ans %= mod;
n--;
} else {
x *= x;
x %= mod;
n >>= 1;
}
}
return ans;
}
// function to find a/b under modulo mod. time : O(logn)
public static long _modInv(long a,long b){
return (a * _modExpo(b,mod-2)) % mod;
}
//sieve or first divisor time : O(mx * log ( log (mx) ) )
public static int[] _seive(int mx){
int[] firstDivisor = new int[mx+1];
for(int i=0;i<=mx;i++)firstDivisor[i] = i;
for(int i=2;i*i<=mx;i++)
if(firstDivisor[i] == i)
for(int j = i*i;j<=mx;j+=i)
firstDivisor[j] = i;
return firstDivisor;
}
// check if x is a prime # of not. time : O( n ^ 1/2 )
private static boolean _isPrime(long x){
for(long i=2;i*i<=x;i++)
if(x%i==0)return false;
return true;
}
static class Pair<K, V>{
K ff;
V ss;
public Pair(K ff, V ss) {
this.ff = ff;
this.ss = ss;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || this.getClass() != o.getClass()) return false;
Pair<?, ?> pair = (Pair<?, ?>) o;
return ff.equals(pair.ff) && ss.equals(pair.ss);
}
@Override
public int hashCode() {
return Objects.hash(ff, ss);
}
@Override
public String toString(){
return ff.toString()+" "+ss.toString();
}
}
/*--------------------------------------HELPER FUNCTIONS ENDS HERE-----------------------------------------*/
/*-------------------------------------------FAST INPUT STARTS HERE---------------------------------------------*/
static FastestReader sc;
static PrintWriter out;
private static void openIO() throws IOException {
sc = new FastestReader();
out = new PrintWriter(System.out);
}
public static void closeIO() throws IOException {
out.flush();
out.close();
sc.close();
}
private static final class FastestReader {
private static final int BUFFER_SIZE = 1 << 16;
private final DataInputStream din;
private final byte[] buffer;
private int bufferPointer, bytesRead;
public FastestReader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public FastestReader(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
private static boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private int skip() throws IOException {
int b;
//noinspection StatementWithEmptyBody
while ((b = read()) != -1 && isSpaceChar(b)) {
}
return b;
}
public String next() throws IOException {
int b = skip();
final StringBuilder sb = new StringBuilder();
while (!isSpaceChar(b)) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = read();
}
return sb.toString();
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) {
return -ret;
}
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) {
return -ret;
}
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg) {
return -ret;
}
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) {
buffer[0] = -1;
}
}
private byte read() throws IOException {
if (bufferPointer == bytesRead) {
fillBuffer();
}
return buffer[bufferPointer++];
}
public void close() throws IOException {
din.close();
}
}
/*---------------------------------------------FAST INPUT ENDS HERE ---------------------------------------------*/
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 93b911490d46ff1a86598d9e010f96a3 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class CodeForces {
/*-------------------------------------------EDITING CODE STARTS HERE-------------------------------------------*/
public static void solve(int tCase) throws IOException {
long n = sc.nextLong();
if(n%2==1)out.println(1 + find(0,n-1));
else out.println(find(0,n));
}
private static int find(int i,long n){
if(i==fact.length){
int cnt = 0;
while (n>0){
if(n % 2 ==1)cnt++;
n>>=1;
}
return cnt;
}
int c1 = 10000;
if(n >=fact[i])c1 = 1 + find(i+1,n-fact[i]);
int c2 = find(i+1,n);
return Math.min(c1,c2);
}
static long[] fact;
private static void pre(){
fact = new long[15];
fact[0] = 1;
for(int i=1;i<15;i++)fact[i] = fact[i-1] * i;
}
public static void main(String[] args) throws IOException {
openIO();
int testCase = 1;
testCase = sc. nextInt();
pre();
for (int i = 1; i <= testCase; i++) solve(i);
closeIO();
}
/*-------------------------------------------EDITING CODE ENDS HERE-------------------------------------------*/
/*--------------------------------------HELPER FUNCTIONS STARTS HERE-----------------------------------------*/
public static int mod = (int) 1e9 + 7;
// public static int mod = 998244353;
public static int inf_int = (int) 2e9;
public static long inf_long = (long) 2e18;
public static void _sort(int[] arr, boolean isAscending) {
int n = arr.length;
List<Integer> list = new ArrayList<>();
for (int ele : arr) list.add(ele);
Collections.sort(list);
if (!isAscending) Collections.reverse(list);
for (int i = 0; i < n; i++) arr[i] = list.get(i);
}
public static void _sort(long[] arr, boolean isAscending) {
int n = arr.length;
List<Long> list = new ArrayList<>();
for (long ele : arr) list.add(ele);
Collections.sort(list);
if (!isAscending) Collections.reverse(list);
for (int i = 0; i < n; i++) arr[i] = list.get(i);
}
// time : O(1), space : O(1)
public static int _digitCount(long num,int base){
// this will give the # of digits needed for a number num in format : base
return (int)(1 + Math.log(num)/Math.log(base));
}
// time : O(n), space: O(n)
public static long _fact(int n){
// simple factorial calculator
long ans = 1;
for(int i=2;i<=n;i++)
ans = ans * i % mod;
return ans;
}
// time for pre-computation of factorial and inverse-factorial table : O(nlog(mod))
public static long[] factorial , inverseFact;
public static void _ncr_precompute(int n){
factorial = new long[n+1];
inverseFact = new long[n+1];
factorial[0] = inverseFact[0] = 1;
for (int i = 1; i <=n; i++) {
factorial[i] = (factorial[i - 1] * i) % mod;
inverseFact[i] = _modExpo(factorial[i], mod - 2);
}
}
// time of factorial calculation after pre-computation is O(1)
public static int _ncr(int n,int r){
if(r > n)return 0;
return (int)(factorial[n] * inverseFact[r] % mod * inverseFact[n - r] % mod);
}
public static int _npr(int n,int r){
if(r > n)return 0;
return (int)(factorial[n] * inverseFact[n - r] % mod);
}
// euclidean algorithm time O(max (loga ,logb))
public static long _gcd(long a, long b) {
while (a>0){
long x = a;
a = b % a;
b = x;
}
return b;
// if (a == 0)
// return b;
// return _gcd(b % a, a);
}
// lcm(a,b) * gcd(a,b) = a * b
public static long _lcm(long a, long b) {
return (a / _gcd(a, b)) * b;
}
// binary exponentiation time O(logn)
public static long _modExpo(long x, long n) {
long ans = 1;
while (n > 0) {
if ((n & 1) == 1) {
ans *= x;
ans %= mod;
n--;
} else {
x *= x;
x %= mod;
n >>= 1;
}
}
return ans;
}
// function to find a/b under modulo mod. time : O(logn)
public static long _modInv(long a,long b){
return (a * _modExpo(b,mod-2)) % mod;
}
//sieve or first divisor time : O(mx * log ( log (mx) ) )
public static int[] _seive(int mx){
int[] firstDivisor = new int[mx+1];
for(int i=0;i<=mx;i++)firstDivisor[i] = i;
for(int i=2;i*i<=mx;i++)
if(firstDivisor[i] == i)
for(int j = i*i;j<=mx;j+=i)
firstDivisor[j] = i;
return firstDivisor;
}
// check if x is a prime # of not. time : O( n ^ 1/2 )
private static boolean _isPrime(long x){
for(long i=2;i*i<=x;i++)
if(x%i==0)return false;
return true;
}
static class Pair<K, V>{
K ff;
V ss;
public Pair(K ff, V ss) {
this.ff = ff;
this.ss = ss;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || this.getClass() != o.getClass()) return false;
Pair<?, ?> pair = (Pair<?, ?>) o;
return ff.equals(pair.ff) && ss.equals(pair.ss);
}
@Override
public int hashCode() {
return Objects.hash(ff, ss);
}
@Override
public String toString(){
return ff.toString()+" "+ss.toString();
}
}
/*--------------------------------------HELPER FUNCTIONS ENDS HERE-----------------------------------------*/
/*-------------------------------------------FAST INPUT STARTS HERE---------------------------------------------*/
static FastestReader sc;
static PrintWriter out;
private static void openIO() throws IOException {
sc = new FastestReader();
out = new PrintWriter(System.out);
}
public static void closeIO() throws IOException {
out.flush();
out.close();
sc.close();
}
private static final class FastestReader {
private static final int BUFFER_SIZE = 1 << 16;
private final DataInputStream din;
private final byte[] buffer;
private int bufferPointer, bytesRead;
public FastestReader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public FastestReader(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
private static boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private int skip() throws IOException {
int b;
//noinspection StatementWithEmptyBody
while ((b = read()) != -1 && isSpaceChar(b)) {
}
return b;
}
public String next() throws IOException {
int b = skip();
final StringBuilder sb = new StringBuilder();
while (!isSpaceChar(b)) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = read();
}
return sb.toString();
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) {
return -ret;
}
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) {
return -ret;
}
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg) {
return -ret;
}
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) {
buffer[0] = -1;
}
}
private byte read() throws IOException {
if (bufferPointer == bytesRead) {
fillBuffer();
}
return buffer[bufferPointer++];
}
public void close() throws IOException {
din.close();
}
}
/*---------------------------------------------FAST INPUT ENDS HERE ---------------------------------------------*/
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | afafe1646c8e19cffc8186fab5691cc1 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class CodeForces {
/*-------------------------------------------EDITING CODE STARTS HERE-------------------------------------------*/
public static void solve(int tCase) throws IOException {
long[] fact = new long[15];
fact[0] = 1;
for(int i=1;i<15;i++)fact[i] = fact[i-1] * i;
long n = sc.nextLong();
if(n%2==1)out.println(1 + find(0,n-1,fact));
else out.println(find(0,n,fact));
}
private static int find(int i,long n,long[] fact){
if(i==fact.length){
int cnt = 0;
while (n>0){
if(n % 2 ==1)cnt++;
n>>=1;
}
return cnt;
}
int c1 = 10000;
if(n >=fact[i])c1 = 1 + find(i+1,n-fact[i],fact);
int c2 = find(i+1,n,fact);
return Math.min(c1,c2);
}
public static void main(String[] args) throws IOException {
openIO();
int testCase = 1;
testCase = sc. nextInt();
for (int i = 1; i <= testCase; i++) solve(i);
closeIO();
}
/*-------------------------------------------EDITING CODE ENDS HERE-------------------------------------------*/
/*--------------------------------------HELPER FUNCTIONS STARTS HERE-----------------------------------------*/
public static int mod = (int) 1e9 + 7;
// public static int mod = 998244353;
public static int inf_int = (int) 2e9;
public static long inf_long = (long) 2e18;
public static void _sort(int[] arr, boolean isAscending) {
int n = arr.length;
List<Integer> list = new ArrayList<>();
for (int ele : arr) list.add(ele);
Collections.sort(list);
if (!isAscending) Collections.reverse(list);
for (int i = 0; i < n; i++) arr[i] = list.get(i);
}
public static void _sort(long[] arr, boolean isAscending) {
int n = arr.length;
List<Long> list = new ArrayList<>();
for (long ele : arr) list.add(ele);
Collections.sort(list);
if (!isAscending) Collections.reverse(list);
for (int i = 0; i < n; i++) arr[i] = list.get(i);
}
// time : O(1), space : O(1)
public static int _digitCount(long num,int base){
// this will give the # of digits needed for a number num in format : base
return (int)(1 + Math.log(num)/Math.log(base));
}
// time : O(n), space: O(n)
public static long _fact(int n){
// simple factorial calculator
long ans = 1;
for(int i=2;i<=n;i++)
ans = ans * i % mod;
return ans;
}
// time for pre-computation of factorial and inverse-factorial table : O(nlog(mod))
public static long[] factorial , inverseFact;
public static void _ncr_precompute(int n){
factorial = new long[n+1];
inverseFact = new long[n+1];
factorial[0] = inverseFact[0] = 1;
for (int i = 1; i <=n; i++) {
factorial[i] = (factorial[i - 1] * i) % mod;
inverseFact[i] = _modExpo(factorial[i], mod - 2);
}
}
// time of factorial calculation after pre-computation is O(1)
public static int _ncr(int n,int r){
if(r > n)return 0;
return (int)(factorial[n] * inverseFact[r] % mod * inverseFact[n - r] % mod);
}
public static int _npr(int n,int r){
if(r > n)return 0;
return (int)(factorial[n] * inverseFact[n - r] % mod);
}
// euclidean algorithm time O(max (loga ,logb))
public static long _gcd(long a, long b) {
while (a>0){
long x = a;
a = b % a;
b = x;
}
return b;
// if (a == 0)
// return b;
// return _gcd(b % a, a);
}
// lcm(a,b) * gcd(a,b) = a * b
public static long _lcm(long a, long b) {
return (a / _gcd(a, b)) * b;
}
// binary exponentiation time O(logn)
public static long _modExpo(long x, long n) {
long ans = 1;
while (n > 0) {
if ((n & 1) == 1) {
ans *= x;
ans %= mod;
n--;
} else {
x *= x;
x %= mod;
n >>= 1;
}
}
return ans;
}
// function to find a/b under modulo mod. time : O(logn)
public static long _modInv(long a,long b){
return (a * _modExpo(b,mod-2)) % mod;
}
//sieve or first divisor time : O(mx * log ( log (mx) ) )
public static int[] _seive(int mx){
int[] firstDivisor = new int[mx+1];
for(int i=0;i<=mx;i++)firstDivisor[i] = i;
for(int i=2;i*i<=mx;i++)
if(firstDivisor[i] == i)
for(int j = i*i;j<=mx;j+=i)
firstDivisor[j] = i;
return firstDivisor;
}
// check if x is a prime # of not. time : O( n ^ 1/2 )
private static boolean _isPrime(long x){
for(long i=2;i*i<=x;i++)
if(x%i==0)return false;
return true;
}
static class Pair<K, V>{
K ff;
V ss;
public Pair(K ff, V ss) {
this.ff = ff;
this.ss = ss;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || this.getClass() != o.getClass()) return false;
Pair<?, ?> pair = (Pair<?, ?>) o;
return ff.equals(pair.ff) && ss.equals(pair.ss);
}
@Override
public int hashCode() {
return Objects.hash(ff, ss);
}
@Override
public String toString(){
return ff.toString()+" "+ss.toString();
}
}
/*--------------------------------------HELPER FUNCTIONS ENDS HERE-----------------------------------------*/
/*-------------------------------------------FAST INPUT STARTS HERE---------------------------------------------*/
static FastestReader sc;
static PrintWriter out;
private static void openIO() throws IOException {
sc = new FastestReader();
out = new PrintWriter(System.out);
}
public static void closeIO() throws IOException {
out.flush();
out.close();
sc.close();
}
private static final class FastestReader {
private static final int BUFFER_SIZE = 1 << 16;
private final DataInputStream din;
private final byte[] buffer;
private int bufferPointer, bytesRead;
public FastestReader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public FastestReader(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
private static boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private int skip() throws IOException {
int b;
//noinspection StatementWithEmptyBody
while ((b = read()) != -1 && isSpaceChar(b)) {
}
return b;
}
public String next() throws IOException {
int b = skip();
final StringBuilder sb = new StringBuilder();
while (!isSpaceChar(b)) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = read();
}
return sb.toString();
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) {
return -ret;
}
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) {
return -ret;
}
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg) {
return -ret;
}
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) {
buffer[0] = -1;
}
}
private byte read() throws IOException {
if (bufferPointer == bytesRead) {
fillBuffer();
}
return buffer[bufferPointer++];
}
public void close() throws IOException {
din.close();
}
}
/*---------------------------------------------FAST INPUT ENDS HERE ---------------------------------------------*/
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | fbb02f793029b811961c62d5467d15b7 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class B{
static int find(long num) {
return Long.bitCount(num);
}
public static void main(String[] args)
{
FastScanner fs = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
long[] fact = new long[15];
fact[0] = 1;
for(int i=1;i<=14;i++) {
fact[i] = i * fact[i-1];
}
int t = fs.nextInt();
for(int tt=0;tt<t;tt++) {
long n = fs.nextLong();
int ans = find(n);
for(int i=0;i<(1 << 15);i++) {
int count = 0;
long sum = 0;
for(int pos=0;pos<=14;pos++) {
if(((1<<pos) & i) != 0) {
count += 1;
sum += fact[pos];
}
}
if(sum <= n) {
ans = Math.min(ans, count + find(n - sum));
}
}
out.println(ans);
}
out.close();
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
public static long[] sort(long[] arr)
{
List<Long> temp = new ArrayList();
for(long i:arr)temp.add(i);
Collections.sort(temp);
int start = 0;
for(long i:temp)arr[start++]=i;
return arr;
}
public static String rev(String str)
{
char[] arr = str.toCharArray();
char[] ret = new char[arr.length];
int start = arr.length-1;
for(char i:arr)ret[start--] = i;
String ret1 = "";
for(char ch:ret)ret1+=ch;
return ret1;
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 30645f409071a73a844679b856dcd70a | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | //package factorialsandpowersoftwo;
import java.util.*;
import java.io.*;
public class factorialsandpowersoftwo {
public static void main(String[] args) throws IOException {
BufferedReader fin = new BufferedReader(new InputStreamReader(System.in));
int t = Integer.parseInt(fin.readLine());
StringBuilder fout = new StringBuilder();
long[] f = new long[15];
long[] fSums = new long[(int) Math.pow(2, 15)];
int[] cnt = new int[(int) Math.pow(2, 15)];
f[0] = 1;
for(int i = 1; i < 15; i++) {
f[i] = f[i - 1] * (i + 1);
}
for(int i = 0; i < fSums.length; i++) {
char[] c = Integer.toBinaryString(i).toCharArray();
for(int j = 1; j < 15; j++) { //j = 1 since we can't have 1 in our factorial
if(c.length > j && c[j] == '1') {
cnt[i] ++;
fSums[i] += f[j];
}
}
}
while(t-- > 0) {
long n = Long.parseLong(fin.readLine());
int ans = Integer.MAX_VALUE;
for(int i = 0; i < fSums.length; i++) {
long next = n - fSums[i];
int curAns = cnt[i];
char[] c = Long.toBinaryString(next).toCharArray();
for(char ch : c) {
if(ch == '1') {
curAns ++;
}
}
// if(ans > curAns) {
// System.out.println(i + " " + curAns + " " + fSums[i] + " " + next);
// System.out.println(String.valueOf(c));
// }
ans = Math.min(ans, curAns);
}
fout.append(ans).append("\n");
}
System.out.print(fout);
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 454a339b7a0e0015182e8039b83f1f19 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class codeforces {
static class in {
static BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
static StringTokenizer tokenizer = new StringTokenizer("");
static String next() throws IOException {
while (!tokenizer.hasMoreTokens())
tokenizer = new StringTokenizer(reader.readLine());
return tokenizer.nextToken();
}
static int nextInt() throws IOException {
//System.out.println(" I WAS CALLED");
return Integer.parseInt(next());
}
static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
static long nextLong() throws IOException {
return Long.parseLong(next());
}
static String nextLine() {
String str = "";
try {
str = reader.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
// static class AVLTreePBDS { private Node root; private boolean multi;
//
// AVLTreePBDS(boolean multi) {
// this.root = null;
// this.multi = multi;
// }
//
// int size() {
// return size(root);
// }
//
// boolean isEmpty() {
// return size(root) == 0;
// }
//
// boolean contains(int key) {
// return contains(root, key);
// }
//
// void add(int key) {
// root = add(root, key);
// }
//
// void remove(int key) {
// root = remove(root, key);
// }
//
// Integer first() {
// Node min = findMin(root);
// return min != null ? min.key : null;
// }
//
// Integer last() {
// Node max = findMax(root);
// return max != null ? max.key : null;
// }
//
// Integer poolFirst() {
// Node min = findMin(root);
// if (min != null) {
// remove(min.key);
// return min.key;
// }
// return null;
// }
//
// Integer poolLast() {
// Node max = findMax(root);
// if (max != null) {
// remove(max.key);
// return max.key;
// }
// return null;
// }
//
// // min >= key
// Integer ceiling(int key) {
// return contains(key) ? key : higher(key);
// }
//
// // max <= key
// Integer floor(int key) {
// return contains(key) ? key : lower(key);
// }
//
// // min > key
// Integer higher(int key) {
// Node min = higher(root, key);
// return min == null ? null : min.key;
// }
//
// private Node higher(Node cur, int key) {
// if (cur == null)
// return null;
//
// if (cur.key <= key)
// return higher(cur.right, key);
//
// // cur.key > key
// Node left = higher(cur.left, key);
// return left == null ? cur : left;
// }
//
// // max < key
// Integer lower(int key) {
// Node max = lower(root, key);
// return max == null ? null : max.key;
// }
//
// private Node lower(Node cur, int key) {
// if (cur == null)
// return null;
//
// if (cur.key >= key)
// return lower(cur.left, key);
//
// // cur.key < key
// Node right = lower(cur.right, key);
// return right == null ? cur : right;
// }
//
// private class Node {
// int key, height, size;
// Node left, right;
//
// Node(int key) {
// this.key = key;
// height = size = 1;
// left = right = null;
// }
// private void preOrder(Node root , StringBuilder ans) {
// if(root == null) return;
// if(root.left != null) preOrder(root.left,ans );
// ans.append(root.key+",");
// if(root.right!=null) preOrder(root.right, ans);
// }
// public String toString() {
// StringBuilder res = new StringBuilder();
// preOrder(root, res);
// return "[" + String.valueOf(res.substring(0 , res.length()-1)) +"]" ;
// }
// }
//
// private int height(Node cur) {
// return cur == null ? 0 : cur.height;
// }
//
// private int balanceFactor(Node cur) {
// return height(cur.right) - height(cur.left);
// }
//
// private int size(Node cur) {
// return cur == null ? 0 : cur.size;
// }
//
// // fixVertex
// private void fixHeightAndSize(Node cur) {
// cur.height = Math.max(height(cur.left), height(cur.right)) + 1;
// cur.size = size(cur.left) + size(cur.right) + 1;
// }
//
// private Node rotateRight(Node cur) {
// Node prevLeft = cur.left;
// cur.left = prevLeft.right;
// prevLeft.right = cur;
// fixHeightAndSize(cur);
// fixHeightAndSize(prevLeft);
// return prevLeft;
// }
//
// private Node rotateLeft(Node cur) {
// Node prevRight = cur.right;
// cur.right = prevRight.left;
// prevRight.left = cur;
// fixHeightAndSize(cur);
// fixHeightAndSize(prevRight);
// return prevRight;
// }
//
// private Node balance(Node cur) {
// fixHeightAndSize(cur);
// if (balanceFactor(cur) == 2) {
// if (balanceFactor(cur.right) < 0)
// cur.right = rotateRight(cur.right);
// return rotateLeft(cur);
// }
// if (balanceFactor(cur) == -2) {
// if (balanceFactor(cur.left) > 0)
// cur.left = rotateLeft(cur.left);
// return rotateRight(cur);
// }
// return cur;
// }
//
// private boolean contains(Node cur, int key) {
// if (cur == null)
// return false;
// else if (key < cur.key)
// return contains(cur.left, key);
// else if (key > cur.key)
// return contains(cur.right, key);
// else
// return true;
// }
//
// private Node add(Node cur, int key) {
// if (cur == null)
// return new Node(key);
//
// if (key < cur.key)
// cur.left = add(cur.left, key);
// else if (key > cur.key || multi)
// cur.right = add(cur.right, key);
//
// return balance(cur);
// }
//
// private Node findMin(Node cur) {
// return cur.left != null ? findMin(cur.left) : cur;
// }
//
// private Node findMax(Node cur) {
// return cur.right != null ? findMax(cur.right) : cur;
// }
//
// private Node removeMin(Node cur) {
// if (cur.left == null)
// return cur.right;
//
// cur.left = removeMin(cur.left);
// return balance(cur);
// }
//
// private Node removeMax(Node cur) {
// if (cur.right == null)
// return cur.left;
//
// cur.right = removeMax(cur.right);
// return balance(cur);
// }
//
// private Node remove(Node cur, int key) {
// if (cur == null)
// return null;
//
// if (key < cur.key)
// cur.left = remove(cur.left, key);
// else if (key > cur.key)
// cur.right = remove(cur.right, key);
// else { // k == cur.key
// Node prevLeft = cur.left;
// Node prevRight = cur.right;
//
// if (prevRight == null)
// return prevLeft;
//
// Node min = findMin(prevRight);
// min.right = removeMin(prevRight);
// min.left = prevLeft;
//
// return balance(min);
// }
//
// return balance(cur);
// }
//
// int orderOfKey(int key) {
// return orderOfKey(root, key);
// }
//
// // count < key
// private int orderOfKey(Node cur, int key) {
// if (cur == null)
// return 0;
//
// if (cur.key < key)
// return size(cur.left) + 1 + orderOfKey(cur.right, key);
//
// if(cur.key > key || (multi && cur.left!=null && cur.left.key == key))
// return orderOfKey(cur.left, key);
//// cur.key == key
// return size(cur.left);
//
// }
//
// Integer findByOrder(int pos) {
// return size(root) > pos ? findByOrder(root, pos) : null;
// }
//
// // get i-th
// private int findByOrder(Node cur, int pos) {
// if (size(cur.left) > pos)
// return findByOrder(cur.left, pos);
//
// if (size(cur.left) == pos)
// return cur.key;
//
// // size(cur.left) < pos
// return findByOrder(cur.right, pos - 1 - size(cur.left));
// }
// public String toString() {
// return String.valueOf(this.root) ;
// }
// }
static void merge(int[] arr, int l, int m, int r) {
// Find sizes of two subarrays to be merged
int n1 = m - l + 1;
int n2 = r - m;
/* Create temp arrays */
int[] L = new int[n1];
int[] R = new int[n2];
/*Copy data to temp arrays*/
System.arraycopy(arr, l, L, 0, n1);
for (int j = 0; j < n2; ++j)
R[j] = arr[m + 1 + j];
int i = 0, j = 0;
// Initial index of merged subarray array
int k = l;
while (i < n1 && j < n2) {
if (L[i] <= R[j]) {
arr[k] = L[i];
i++;
}
else {
arr[k] = R[j];
j++;
}
k++;
}
/* Copy remaining elements of L[] if any */
while (i < n1) {
arr[k] = L[i];
i++;
k++;
}
/* Copy remaining elements of R[] if any */
while (j < n2) {
arr[k] = R[j];
j++;
k++;
}
}
static void sort(int[] arr, int l, int r) {
if (l < r) {
// Find the middle point
int m =l+ (r-l)/2;
// Sort first and second halves
sort(arr, l, m);
sort(arr, m + 1, r);
// Merge the sorted halves
merge(arr, l, m, r);
}
}
public static void main(String[] args) throws IOException {
int t =in.nextInt();
StringBuilder st = new StringBuilder();
long[] fact = new long[14];
fact[0]=1L;
for(int i=1;i<14;i++)fact[i]=fact[i-1]*(i+1);
//System.out.println(Arrays.toString(fact));
while (t>0){
long n= in.nextLong();
long ans= Integer.MAX_VALUE;
long N = (long)Math.pow(2, fact.length);
for(long mask=0;mask<N;mask++){
long temp=n;
int count=0;
for(int i=0;i<14;i++){
if((mask&(1L<<i))>0){
temp=temp-fact[13-i];
count++;
}
if(temp<=0)break;
}
if(temp>=0){
for(int i=0;i<63;i++){
if((temp&(1L<<i))>0)count++;
}
ans=Math.min(count,ans);
}
}
if(ans==Integer.MAX_VALUE)st.append(-1);
else st.append(ans);
st.append('\n');
t--;
}
System.out.println(st);
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 44169cc22b26f35678c8bb5ded25d35f | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | /* package codechef; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class C_Factorials_and_Powers_of_Two
{
static final PrintWriter out =new PrintWriter(System.out);
static final FastReader sc = new FastReader();
static long m = 998244353;
static ArrayList<Long> arr;
static long ans ;
public static void main (String[] args) throws java.lang.Exception
{
// ArrayList<Long> arr = sieveOfEratosthenes(10000);
long t = sc.nextLong();
while(t-- >0)
{
long n = sc.nextLong();
arr = new ArrayList<>();
for(int i=3 ; i<=15 ; i++){
long xx = factorial(i);
arr.add(xx);
}
// out.println(arr);
ans=Long.MAX_VALUE;
int z =0;
for(int i=0 ; i<arr.size() ; i++)
{
if(arr.get(i)<=n)
{
z=i;
}
else break;
}
solve(n,0,z);
out.println(ans);
// 378404098055
}
out.flush();
}
static void solve(long n , long f , int j)
{
if(n<0) return;
ans = Math.min(ans,(countSetBits(n)+f));
if(j<0) return ;
solve(n,f,j-1);
solve(n-arr.get((int) j),f+1,j-1);
}
static long countSetBits(long n)
{
long count=0;
while(n>0)
{
if((n&1)>0) count++;
n = n>>1;
}
return count;
}
static long factorial(long n)
{
if(n==0 || n==1) return 1;
return factorial(n-1)*n;
}
static int[] reverseArray(int arr[])
{
int arr1[] = new int[arr.length];
int j=0;
for(int i=arr.length-1 ;i>=0 ; i--)
{
arr1[j] = arr[i];
j++;
}
return arr1;
}
static int maxSubArraySum(ArrayList<Integer> a)
{
int size = a.size();
int max_so_far = Integer.MIN_VALUE, max_ending_here = 0;
for (int i = 0; i < size; i++)
{
max_ending_here = max_ending_here + a.get(i);
if (max_so_far < max_ending_here)
max_so_far = max_ending_here;
if (max_ending_here < 0)
max_ending_here = 0;
}
return max_so_far;
}
static void printArray(int[] arr1)
{
for(int i=0 ; i<arr1.length ; i++)
{
out.print(arr1[i]+" ");
}
out.println();
}
public static class Pair
{
long a;
long b;
long c ;
Pair(long a , long b , long c)
{
this.a=a;
this.b=b;
this.c=c;
}
}
static class Sort implements Comparator<Pair> {
// Method
// Sorting in ascending order of roll number
public int compare(Pair a, Pair b)
{
return (int) (a.a - b.a);
}
}
static boolean isPrime(long n)
{
// Corner cases
if (n <= 1)
return false;
if (n <= 3)
return true;
// This is checked so that we can skip
// middle five numbers in below loop
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
static ArrayList<Long> sieveOfEratosthenes(long n)
{
boolean[] prime = new boolean[(int) (n + 1)];
for (int i = 0; i <= n; i++)
prime[i] = true;
prime[0]=false;
if(1<=n)
prime[1]=false; ArrayList<Long> arr = new ArrayList<>();
for (int p = 2; p * p <= n; p++)
{
if (prime[p] == true)
{
if(p!=2 && p!=3 )
arr.add((long) p);
for (int i = p * p; i <= n; i += p)
prime[i] = false;
}
}
return arr;
}
static int count(String s)
{
int count=0;
for(int i=0 ; i<s.length() ; i++)
{
if(s.charAt(i)=='1' ) count++;
}
return count;
}
static long gcd(long a , long b)
{
if(b==0) return a;
return gcd(b,a%b);
}
static long lcm(long a , long b)
{
return (a*b)/gcd(a,b);
}
static long fastPower(long a , long b , long n )
{
long res=1;
while(b>0)
{
if((b&1)!=0)
{
res = (res%n * a%n)%n;
}
a = (a%n * a%n)%n;
b=b>>1;
}
return res;
}
static long modexp(long x, long n)
{
if (n == 0) {
return 1;
}
else if (n % 2 == 0) {
return modexp((x * x) % m, n / 2);
}
else {
return (x * modexp((x * x) % m, (n - 1) / 2) % m);
}
}
static long getFractionModulo(long a, long b)
{
long c = gcd(a, b);
a = a / c;
b = b / c;
long d = modexp(b, m - 2);
long ans = ((a % m) * (d % m)) % m;
return ans;
}
public static long power(long x, long y)
{
long temp;
if (y == 0)
return 1;
temp = power(x, y / 2);
if (y % 2 == 0)
return modMult(temp,temp);
else {
if (y > 0)
return modMult(x,modMult(temp,temp));
else
return (modMult(temp,temp)) / x;
}
}
static long modMult(long a,long b) {
return a*b%m;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 6cabeed954fa5dedc7c614f766047183 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | /* package codechef; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Codechef
{static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
static int mod = 998244353 ;
static int N = 200005;
static long factorial_num_inv[] = new long[N+1];
static long natual_num_inv[] = new long[N+1];
static long fact[] = new long[N+1];
static void InverseofNumber()
{
natual_num_inv[0] = 1;
natual_num_inv[1] = 1;
for (int i = 2; i <= N; i++)
natual_num_inv[i] = natual_num_inv[mod % i] * (mod - mod / i) % mod;
}
static void InverseofFactorial()
{
factorial_num_inv[0] = factorial_num_inv[1] = 1;
for (int i = 2; i <= N; i++)
factorial_num_inv[i] = (natual_num_inv[i] * factorial_num_inv[i - 1]) % mod;
}
static long nCrModP(long N, long R)
{
long ans = ((fact[(int)N] * factorial_num_inv[(int)R]) % mod * factorial_num_inv[(int)(N - R)]) % mod;
return ans%mod;
}
static boolean prime[];
static void sieveOfEratosthenes(int n)
{
prime = new boolean[n+1];
for (int i = 0; i <= n; i++)
prime[i] = true;
for (int p = 2; p * p <= n; p++)
{
// If prime[p] is not changed, then it is a
// prime
if (prime[p] == true)
{
// Update all multiples of p
for (int i = p * p; i <= n; i += p)
prime[i] = false;
}
}
}
//static int distance[];
static long min = 100;
static int size = 0;
public static void main (String[] args) throws java.lang.Exception
{
// InverseofNumber();
// InverseofFactorial();
// fact[0] = 1;
// for (long i = 1; i <= 2*100000; i++)
// {
// fact[(int)i] = (fact[(int)i - 1] * i) % mod;
// }
FastReader scan = new FastReader();
PrintWriter pw = new PrintWriter(System.out);
List<Long> a = new ArrayList<Long>();
long x = 1;
for(long i=1;i<=15;i++){
x = x*i;
a.add(x);
}
size = a.size();
int t = scan.nextInt();
while(t-->0){
long n = scan.nextLong();
min = 100;
fun(n,a,0,0,0);
pw.println(min);
pw.flush();
}
}
static void fun(long n,List<Long> a,int index,int count,long sum){
if(index==size){
long val = n-sum;
if(val>=0){
long bits = bit_count(val);
// System.out.println(val+" "+bits);
if(bits+count<min)
min = bits+count;}
return;
}
fun(n,a,index+1,count,sum);
fun(n,a,index+1,count+1,sum+a.get(index));
}
static long bit_count(long val){
long x =1 ;
long bits = 0;
while(x<=val){
if((x&val)!=0)
bits++;
x = x<<1;
}
return bits;
}
//static long bin_exp_mod(long a,long n){
// long res = 1;
// while(n!=0){
// if(n%2==1){
// res = ((res)*(a));
// }
// n = n/2;
// a = ((a)*(a));
// }
// return res;
//}
//static long bin_exp_mod(long a,long n){
// long mod = 998244353;
// long res = 1;
// while(n!=0){
// if(n%2==1){
// res = ((res%mod)*(a%mod))%mod;
// }
// n = n/2;
// a = ((a%mod)*(a%mod))%mod;
// }
// res = res%mod;
// return res;
//}
// static long gcd(long a,long b){
// if(a==0)
// return b;
// return gcd(b%a,a);
// }
// static long lcm(long a,long b){
// return (a/gcd(a,b))*b;
// }
}
class Pair{
int x,y;
Pair(int x,int y){
this.x = x;
this.y = y;
}
//public boolean equals(Object obj) {
// // TODO Auto-generated method stub
// if(obj instanceof Pair)
// {
// Pair temp = (Pair) obj;
// if(this.x.equals(temp.x) && this.y.equals(temp.y))
// return true;
// }
// return false;
//}
//@Override
//public int hashCode() {
// // TODO Auto-generated method stub
// return (this.x.hashCode() + this.y.hashCode());
//}
}
//class Compar implements Comparator<Pair>{
// public int compare(Pair p1,Pair p2){
// if(p1.y==p2.y)
// return 0;
// else if(p1.y<p2.y)
// return -1;
// else
// return 1;
// }
//}
//class DisjointSet{
// Map<Long,Node> map = new HashMap<>();
// class Node{
// long data;
// Node parent;
// int rank;
// }
// public void makeSet(long data){
// Node node = new Node();
// node.data = data;
// node.parent = node;
// node.rank = 0;
// map.put(data,node);
// }
// //here we just need the rank of parent to be exact
// public void union(long data1,long data2){
// Node node1 = map.get(data1);
// Node node2 = map.get(data2);
// Node parent1 = findSet(node1);
// Node parent2 = findSet(node2);
// if(parent1.data==parent2.data){
// return;
// }
// if(parent1.rank>=parent2.rank){
// parent1.rank = (parent1.rank==parent2.rank)?parent1.rank+1:parent1.rank;
// parent2.parent = parent1;
// }
// else{
// parent1.parent = parent2;
// }
// }
// public long findSet(long data){
// return findSet(map.get(data)).data;
// }
// private Node findSet(Node node){
// Node parent = node.parent;
// if(parent==node){
// return parent;
// }
// node.parent = findSet(node.parent);
// return node.parent;
// }
// }
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 12552b7e3bd8636fe741719347840cd3 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
public class Main
{
static Scanner sc = new Scanner(System.in); static int min(int x, int y){return Math.min(x, y);}
static int TEN(int x){if(x==0) return 1; return 10*TEN(x-1);} static int INF = TEN(9)+9;
static int max(int x, int y){return Math.max(x, y);} static int abs(int x){return Math.abs(x);}
static boolean Check(int N, int pos){ int x = (N&(1<<pos)); if(x>0) return true; return false;}
static int Set(int N, int pos){return N|(1<<pos);} static int Toggle(int N, int pos){return N^(1<<pos);}
static int Off(int N, int pos){if(Check(N,pos)==false) return N; return Toggle(N,pos);}
static int in(){int a = sc.nextInt(); return a;} static void println(int n){System.out.println(n);}
static void print(int n){System.out.print(n);} static void print(char c){System.out.print(c);}
static void print(int arr[]){for(int a: arr) System.out.print(a + " "); System.out.println();}
static ArrayList<Long>facts = new ArrayList<Long>();
static ArrayList<Long>sums = new ArrayList<Long>();
static long n;
static int Cnt(Long x)
{
int ret = 0;
while(x>0)
{
if(x%2==1) ret++;
x/=2;
}
return ret;
}
static void Solve()
{
long i, j, k, l, m, x, y, w, p, q, t;
n = sc.nextLong(); long ans = 1000000;
int sz = facts.size();
for(int mask=0; mask<(1<<sz); mask++)
{
long sum = 0, cnt = 0;
for(i=0; i<sz; i++)
{
if((mask&(1<<i))>0){
sum = sum+facts.get((int)i); cnt++;
}
}
if(sum<=n)ans = Math.min(ans, cnt+Cnt(n-sum));
}
System.out.println(ans);
}
public static void main(String []args)
{
int tc = sc.nextInt();int i, j;
facts.add((long)6);
for(i=4, j=1; i<=15 ; i++, j++)
{
facts.add(facts.get(j-1)*i);
}
//System.out.println(facts.get(i-1));
while(tc-->0)
{
Solve();
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 68ffed2e949213da2e234907ed1e6202 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.lang.*;
import java.io.*;
public class Main
{
static long mod = (int)1e9+7;
// static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
public static void main (String[] args) throws java.lang.Exception
{
FastReader sc =new FastReader();
int t=sc.nextInt();
// int t=1;
while(t-->0)
{
long n = sc.nextLong();
long ans = Long.MAX_VALUE;
ArrayList<Long> fact = new ArrayList<>();
long fact_pro = 6;
for(int i=4;true;i++)
{
if(fact_pro > n)
{
break;
}
fact.add(fact_pro);
fact_pro *= i;
}
for(int i=0;i<(1 << fact.size());i++)
{
long sum = 0;
for(int j=0;j<fact.size();j++)
{
if((i & (1 << j)) != 0)
{
sum += fact.get(j);
}
}
if(sum > n)
{
break;
}
long temp = Integer.bitCount(i);
temp += Long.bitCount(n - sum);
ans = Math.min(ans , temp);
}
System.out.println(ans);
}
}
static long countSetBits(long n)
{
long count = 0;
while (n > 0) {
n &= (n - 1);
count++;
}
return count;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
float nextFloat()
{
return Float.parseFloat(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long[] readArrayLong(int n) {
long[] a=new long[n];
for (int i=0; i<n; i++) a[i]=nextLong();
return a;
}
}
public static int[] radixSort2(int[] a)
{
int n = a.length;
int[] c0 = new int[0x101];
int[] c1 = new int[0x101];
int[] c2 = new int[0x101];
int[] c3 = new int[0x101];
for(int v : a) {
c0[(v&0xff)+1]++;
c1[(v>>>8&0xff)+1]++;
c2[(v>>>16&0xff)+1]++;
c3[(v>>>24^0x80)+1]++;
}
for(int i = 0;i < 0xff;i++) {
c0[i+1] += c0[i];
c1[i+1] += c1[i];
c2[i+1] += c2[i];
c3[i+1] += c3[i];
}
int[] t = new int[n];
for(int v : a)t[c0[v&0xff]++] = v;
for(int v : t)a[c1[v>>>8&0xff]++] = v;
for(int v : a)t[c2[v>>>16&0xff]++] = v;
for(int v : t)a[c3[v>>>24^0x80]++] = v;
return a;
}
static void reverse_sorted(int[] arr)
{
ArrayList<Integer> list = new ArrayList<>();
for(int i=0;i<arr.length;i++)
{
list.add(arr[i]);
}
Collections.sort(list , Collections.reverseOrder());
for(int i=0;i<arr.length;i++)
{
arr[i] = list.get(i);
}
}
static int LowerBound(int a[], int x) { // x is the target value or key
int l=-1,r=a.length;
while(l+1<r) {
int m=(l+r)>>>1;
if(a[m]>=x) r=m;
else l=m;
}
return r;
}
static int UpperBound(ArrayList<Integer> list, int x) {// x is the key or target value
int l=-1,r=list.size();
while(l+1<r) {
int m=(l+r)>>>1;
if(list.get(m)<=x) l=m;
else r=m;
}
return l+1;
}
public static HashMap<Integer, Integer> sortByValue(HashMap<Integer, Integer> hm)
{
// Create a list from elements of HashMap
List<Map.Entry<Integer, Integer> > list =
new LinkedList<Map.Entry<Integer, Integer> >(hm.entrySet());
// Sort the list
Collections.sort(list, new Comparator<Map.Entry<Integer, Integer> >() {
public int compare(Map.Entry<Integer, Integer> o1,
Map.Entry<Integer, Integer> o2)
{
return (o1.getValue()).compareTo(o2.getValue());
}
});
// put data from sorted list to hashmap
HashMap<Integer, Integer> temp = new LinkedHashMap<Integer, Integer>();
for (Map.Entry<Integer, Integer> aa : list) {
temp.put(aa.getKey(), aa.getValue());
}
return temp;
}
static class Queue_Pair implements Comparable<Queue_Pair> {
int first , second;
public Queue_Pair(int first, int second) {
this.first=first;
this.second=second;
}
public int compareTo(Queue_Pair o) {
return Integer.compare(o.first, first);
}
}
static void leftRotate(int arr[], int d, int n)
{
for (int i = 0; i < d; i++)
leftRotatebyOne(arr, n);
}
static void leftRotatebyOne(int arr[], int n)
{
int i, temp;
temp = arr[0];
for (i = 0; i < n - 1; i++)
arr[i] = arr[i + 1];
arr[n-1] = temp;
}
static boolean isPalindrome(String str)
{
// Pointers pointing to the beginning
// and the end of the string
int i = 0, j = str.length() - 1;
// While there are characters to compare
while (i < j) {
// If there is a mismatch
if (str.charAt(i) != str.charAt(j))
return false;
// Increment first pointer and
// decrement the other
i++;
j--;
}
// Given string is a palindrome
return true;
}
static boolean palindrome_array(char arr[], int n)
{
// Initialise flag to zero.
int flag = 0;
// Loop till array size n/2.
for (int i = 0; i <= n / 2 && n != 0; i++) {
// Check if first and last element are different
// Then set flag to 1.
if (arr[i] != arr[n - i - 1]) {
flag = 1;
break;
}
}
// If flag is set then print Not Palindrome
// else print Palindrome.
if (flag == 1)
return false;
else
return true;
}
static boolean allElementsEqual(int[] arr,int n)
{
int z=0;
for(int i=0;i<n-1;i++)
{
if(arr[i]==arr[i+1])
{
z++;
}
}
if(z==n-1)
{
return true;
}
else
{
return false;
}
}
static boolean allElementsDistinct(int[] arr,int n)
{
int z=0;
for(int i=0;i<n-1;i++)
{
if(arr[i]!=arr[i+1])
{
z++;
}
}
if(z==n-1)
{
return true;
}
else
{
return false;
}
}
public static void reverse(int[] array)
{
// Length of the array
int n = array.length;
// Swaping the first half elements with last half
// elements
for (int i = 0; i < n / 2; i++) {
// Storing the first half elements temporarily
int temp = array[i];
// Assigning the first half to the last half
array[i] = array[n - i - 1];
// Assigning the last half to the first half
array[n - i - 1] = temp;
}
}
public static void reverse_Long(long[] array)
{
// Length of the array
int n = array.length;
// Swaping the first half elements with last half
// elements
for (int i = 0; i < n / 2; i++) {
// Storing the first half elements temporarily
long temp = array[i];
// Assigning the first half to the last half
array[i] = array[n - i - 1];
// Assigning the last half to the first half
array[n - i - 1] = temp;
}
}
static boolean isSorted(int[] a)
{
for (int i = 0; i < a.length - 1; i++)
{
if (a[i] > a[i + 1]) {
return false;
}
}
return true;
}
static boolean isReverseSorted(int[] a)
{
for (int i = 0; i < a.length - 1; i++)
{
if (a[i] < a[i + 1]) {
return false;
}
}
return true;
}
static int[] rearrangeEvenAndOdd(int arr[], int n)
{
ArrayList<Integer> list = new ArrayList<>();
for(int i=0;i<n;i++)
{
if(arr[i]%2==0)
{
list.add(arr[i]);
}
}
for(int i=0;i<n;i++)
{
if(arr[i]%2!=0)
{
list.add(arr[i]);
}
}
int len = list.size();
int[] array = list.stream().mapToInt(i->i).toArray();
return array;
}
static long[] rearrangeEvenAndOddLong(long arr[], int n)
{
ArrayList<Long> list = new ArrayList<>();
for(int i=0;i<n;i++)
{
if(arr[i]%2==0)
{
list.add(arr[i]);
}
}
for(int i=0;i<n;i++)
{
if(arr[i]%2!=0)
{
list.add(arr[i]);
}
}
int len = list.size();
long[] array = list.stream().mapToLong(i->i).toArray();
return array;
}
static boolean isPrime(long n)
{
// Check if number is less than
// equal to 1
if (n <= 1)
return false;
// Check if number is 2
else if (n == 2)
return true;
// Check if n is a multiple of 2
else if (n % 2 == 0)
return false;
// If not, then just check the odds
for (long i = 3; i <= Math.sqrt(n); i += 2)
{
if (n % i == 0)
return false;
}
return true;
}
static long getSum(long n)
{
long sum = 0;
while (n != 0)
{
sum = sum + n % 10;
n = n/10;
}
return sum;
}
static int gcd(int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
static long gcdLong(long a, long b)
{
if (b == 0)
return a;
return gcdLong(b, a % b);
}
static void swap(int i, int j)
{
int temp = i;
i = j;
j = temp;
}
static int countDigit(int n)
{
return (int)Math.floor(Math.log10(n) + 1);
}
}
class Pair
{
int first;
int second;
Pair(int first , int second)
{
this.first = first;
this.second = second;
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 849ab15a927a26f100e893e43cca1862 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
public static Scanner sc = new Scanner(System.in);
public static PrintWriter pw = new PrintWriter(System.out);
public static void main(String[] args) {
int t = sc.nextInt();
while( t > 0 ) {
solve();
t--;
}
pw.flush();
}
static void solve() {
long N = sc.nextLong();
long[] f = new long[15];
int ans = 1<<10;
f[0] = 1;
for( int i = 1; i <= 14; i++ ) {
f[i] = f[i-1]*(long)i;
if( f[i-1] <= 2 ) f[i-1] = -1;
}
for( int S = 0; S < 1<<15; S++ ) {
long sum = 0;
boolean lower = true;
for( int i = 0; i < 15; i++ ) {
if( (S>>i)%2 == 1 && f[i] != -1 ) sum += f[i];
if( sum > N ) {
lower = false;
break;
}
}
if( lower ) {
int val = popcount(S)+popcount(N-sum);
ans = Math.min(ans,val);
}
}
pw.println(ans);
}
static int popcount(long N) {
int res = 0;
while( N > 0 ) {
long d = N&1;
res += (int)d;
N >>= 1;
}
return res;
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | df3a281ed988b36d5756d86d57364735 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | // package practise;
import java.io.*;
import java.util.*;
public class C {
static HashMap<List<Long>,Integer> dp;
// static int dp[];
static Reader sc;
static PrintWriter w;
public static void main(String[] args) throws IOException {
sc = new Reader();
w = new PrintWriter(System.out);
int t=sc.nextInt();
while(t-->0) {
solve();
}
w.close();
}
static void solve() throws IOException {
long n=sc.nextLong();
List<Long> factorials = new ArrayList<>();
long prod=6;
for(int i=4;true;i++) {
if(prod>n)break;
factorials.add(prod);
prod*=i;
}
int ans=Integer.MAX_VALUE;
for(int mask=0;mask< (1<<factorials.size());mask++) {
// 101 means chhose factorial.get(10+ fact[2];
long sum=0;
for(int j=0;j<factorials.size();j++) {
if( (mask & (1<<j))!=0) {
sum+=factorials.get(j);
}
}
if(sum<=n) {
ans=Math.min(ans, Long.bitCount(mask)+Long.bitCount(n-sum));
}
}
w.println(ans);
}
static int countSetBits(long n)
{
int count = 0;
while (n > 0L) {
n &= (n - 1L);
count++;
}
return count;
}
static class FenwickTree{
int tree[];
void contructFenwickTree(int ar[],int n) {
tree= new int[n+1];
for(int i=0;i<ar.length;i++) {
update(i,ar[i],n);
}
}
void update(int i,int delta,int n) { //delta means newValue - preValue.
//i is index of array.
i++;
while(i<=n) {
tree[i]+=delta;
i=i+Integer.lowestOneBit(i);
}
}
int getSum(int i ){
int sum=0;
i++;
while(i>0) {
sum+=tree[i];
i-=Integer.lowestOneBit(i);
}
return sum;
}
int rangeOfSum(int i,int j) {
return getSum(j)-getSum(i-1);
}
}
static ArrayList<Integer> findDiv(int N)
{
//gens all divisors of N
ArrayList<Integer> ls1 = new ArrayList<Integer>();
ArrayList<Integer> ls2 = new ArrayList<Integer>();
for(int i=1; i <= (int)(Math.sqrt(N)+0.00000001); i++)
if(N%i == 0)
{
ls1.add(i);
ls2.add(N/i);
}
Collections.reverse(ls2);
for(int b: ls2)
if(b != ls1.get(ls1.size()-1))
ls1.add(b);
return ls1;
}
static void sort(int[] arr)
{
//because Arrays.sort() uses quicksort which is dumb
//Collections.sort() uses merge sort
ArrayList<Integer> ls = new ArrayList<Integer>();
for(int x: arr)
ls.add(x);
Collections.sort(ls);
for(int i=0; i < arr.length; i++)
arr[i] = ls.get(i);
}
static void sort(long[] arr)
{
//because Arrays.sort() uses quicksort which is dumb
//Collections.sort() uses merge sort
ArrayList<Long> ls = new ArrayList<>();
for(long x: arr)
ls.add(x);
Collections.sort(ls);
for(int i=0; i < arr.length; i++)
arr[i] = ls.get(i);
}
static long power(long x, long y, long p)
{
//0^0 = 1
long res = 1L;
x = x%p;
while(y > 0)
{
if((y&1)==1)
res = (res*x)%p;
y >>= 1;
x = (x*x)%p;
}
return res;
}
static long power(long x, long y)
{
long res = 1; // Initialize result
while (y > 0)
{
// If y is odd, multiply x with result
if ((y & 1) != 0)
res = res * x;
// y must be even now
y = y >> 1; // y = y/2
x = x * x; // Change x to x^2
}
return res;
}
static class Reader // here reader class is defined.
{
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1)
{
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
{
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.')
{
while ((c = read()) >= '0' && c <= '9')
{
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
}
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 82bda64000bc9234a9b5a5c3b69beeaf | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Random;
import java.util.StringTokenizer;
import java.util.List;
import java.util.Collections;
import java.io.DataInputStream;
import java.io.FileInputStream;
import java.util.Comparator;
import java.util.Set;
import java.util.ArrayDeque;
import java.util.TreeMap;
import java.util.Iterator;
import java.util.HashSet;
import java.util.Map;
import java.util.HashMap;
public class Master {
private static FastScanner fs = new FastScanner();
private static PrintWriter out = new PrintWriter(System.out);
// private static Kattio io = new Kattio(System.in, System.out);
private static Reader io = new Reader();
public static void main(String[] args) throws IOException {
int t = fs.nextInt();
outer:while(t-->0)
{
long n = fs.nextLong();
List<Long> list = new ArrayList<>();
long ans1 =1;
for(int ad =1;true;ad++)
{
if(ans1>n)
{
break;
}
ans1 *=ad;
list.add(ans1);
}
int ans =Long.bitCount(n);
for(int mask=0;mask<(1<<list.size());mask++)
{
long sum =n;
for(int i=0;i<32;i++)
{
if(((mask>>i)&1)==1)
{
sum -=(list.get(i));
}
}
if(sum<0)
{
continue;
}
ans = Math.min(ans,Long.bitCount(mask)+Long.bitCount(sum));
}
System.out.println(ans);
}
}
// 5 4 3 2 1
static final Random random=new Random();
static void ruffleSort(int [] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n); int temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
int [] sort(int [] arr)
{
List<Integer> list = new ArrayList<>();
for(int i : arr) list.add(i);
Collections.sort(list);
int res[] = new int[arr.length];
for(int i=0;i<arr.length;i++) res[i] = list.get(i);
return res;
}
void debug(int a)
{
System.out.println("This is var "+a);
}
}
static class Reader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(
new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') {
if (cnt != 0) {
break;
}
else {
continue;
}
}
buf[cnt++] = (byte)c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0,
BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
} | Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output | |
PASSED | 34d6b9b258e40b512a205092472b0cf9 | train_110.jsonl | 1646408100 | A number is called powerful if it is a power of two or a factorial. In other words, the number $$$m$$$ is powerful if there exists a non-negative integer $$$d$$$ such that $$$m=2^d$$$ or $$$m=d!$$$, where $$$d!=1\cdot 2\cdot \ldots \cdot d$$$ (in particular, $$$0! = 1$$$). For example $$$1$$$, $$$4$$$, and $$$6$$$ are powerful numbers, because $$$1=1!$$$, $$$4=2^2$$$, and $$$6=3!$$$ but $$$7$$$, $$$10$$$, or $$$18$$$ are not.You are given a positive integer $$$n$$$. Find the minimum number $$$k$$$ such that $$$n$$$ can be represented as the sum of $$$k$$$ distinct powerful numbers, or say that there is no such $$$k$$$. | 256 megabytes | //import java.lang.reflect.Array;
import java.util.*;
import java.lang.reflect.Array;
import javax.print.DocFlavor.STRING;
import javax.swing.Popup;
import javax.swing.plaf.synth.SynthStyleFactory;
public class Simple{
public static class Pair implements Comparable<Pair>{
int val;
int freq = 0;
Pair prev ;
Pair next;
boolean bool = false;
public Pair(int val,int freq){
this.val = val;
this.freq= freq;
}
public int compareTo(Pair p){
// if(p.freq == this.freq){
// return this.val - p.freq;
// };
// if(this.freq > p.freq)return -1;
// return 1;
return (p.freq-p.val) - (this.freq - this.val);
}
}
public static long factorial(long n)
{
// single line to find factorial
return (n == 1 || n == 0) ? 1 : n * factorial(n - 1);
}
static long m = 998244353;
// Function to return the GCD of given numbers
static long gcd(int a, int b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
// Recursive function to return (x ^ n) % m
static long modexp(long x, long n)
{
if (n == 0) {
return 1;
}
else if (n % 2 == 0) {
return modexp((x * x) % m, n / 2);
}
else {
return (x * modexp((x * x) % m, (n - 1) / 2) % m);
}
}
// Function to return the fraction modulo mod
// static long getFractionModulo(long a, long b)
// {
// long c = gcd(a, b);
// a = a / c;
// b = b / c;
// // (b ^ m-2) % m
// long d = modexp(b, m - 2);
// // Final answer
// long ans = ((a % m) * (d % m)) % m;
// return ans;
// }
// public static long bs(long lo,long hi,long fact,long num){
// long help = num/fact;
// long ans = hi;
// while(lo<=hi){
// long mid = (lo+hi)/2;
// if(mid/)
// }
// }
// public static boolean isPrime(int n)
// {
// // Check if number is less than
// // equal to 1
// if (n <= 1)
// return false;
// // Check if number is 2
// else if (n == 2)
// return true;
// // Check if n is a multiple of 2
// else if (n % 2 == 0)
// return false;
// // If not, then just check the odds
// for (int i = 3; i <= sqrt(n); i += 2)
// {
// if (n % i == 0)
// return false;
// }
// return true;
// }
// public static int countDigit(long n)
// {
// int count = 0;
// while (n != 0) {
// n = n / 10;
// ++count;
// }
// return count;
// }
// static ArrayList<Long> al ;
// static boolean checkperfectsquare(long n)
// {
// // If ceil and floor are equal
// // the number is a perfect
// // square
// if (processesh.ceil((double)processesh.sqrt(n)) ==
// processesh.floor((double)processesh.sqrt(n)))
// {
// return true;
// }
// else
// {
// return false;
// }
// }
public static void decToBinary(int n,int arr[],int j)
{
// Size of an integer is assumed to be 32 bits
for (int i = 31; i >= 0; i--) {
int k = n >> i;
if ((k & 1) > 0){
arr[j]++;
}
j++;
}
}
public static class Node{
//int u;
long v;
long w;
public Node(long v,long w){
//this.u = u;
this.v=v;
this.w=w;
}
}
public static boolean[] sieve(int n){
boolean isPrime[] = new boolean[n+1];
Arrays.fill(isPrime, true);
isPrime[0] = false;
isPrime[1] = false;
for(int i=2;i*i<=n;i++){
if(!isPrime[i])continue;
for(int j= i*2;j<=n;j=j+i){
isPrime[j] = false;
}
}
return isPrime;
}
static long power(long x, long y, long p)
{
long res = 1; // Initialize result
x = x % p; // Update x if it is more
// than or equal to p
while (y > 0)
{
// If y is odd, multiply
// x with result
if ((y & 1) > 0)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// static int modInverse(int a, int p)
// {
// return power(a, p - 2, p);
// }
public static void bfs(ArrayList<ArrayList<Integer>> adj,boolean vis[],int dis[]){
vis[0] = true;
Queue<Integer> q = new LinkedList<>();
q.add(0);
int count = 0;
while(!q.isEmpty()){
int size = q.size();
for(int j = 0;j<size;j++){
int poll = q.poll();
dis[poll] = count;
vis[poll] = true;
for(Integer x : adj.get(poll)){
if(!vis[x]){
q.add(x);
}
}
}
count++;
}
}
// static void swap(int[] arr, int i, int j)
// {
// int temp = arr[i];
// arr[i] = arr[j];
// arr[j] = temp;
// }
public static boolean isSorted(int arr[],int[] copy,int n){
for(int i=0;i<n;i++){
if(arr[i]!=copy[i])return false;
}
return true;
}
public static class DSU{
int par[];
int rank[];//rank denotes the height of graph
public DSU(int n){
par = new int[n];
for(int i=0;i<n;i++){
par[i] = i;
}
rank = new int[n];
}
public int findPar(int node){
if(par[node]==node)return node;
par[node] = findPar(par[node]);
return par[node];
}
public void union(int u,int v){
u = findPar(u);
v = findPar(v);
if(rank[v]>rank[u]){
par[u] = v;
}
else if(rank[v]<rank[u]){
par[v] = u;
}
else{
rank[u]++;
par[v] = u;
}
}
}
public static long modFact(int n,int k)
{
long M = 998244353;
long f = 1;
for (int i = 1; i <= n; i++){
if(i==k+1)continue;
f = (f%M*i%m) % M; // Now f never can
} // exceed 10^9+7
return f;
}
public static class Item{
int val;
int index;
public Item(int val,int index){
this.val = val;
this.index = index;
}
}
public static void mergeSortCount(Item[] itemArr,int count[],int n,int i,int j){
if(i>=j)return;
int mid = (i+j)/2;
mergeSortCount(itemArr, count, n, i, mid);
mergeSortCount(itemArr, count, n, mid+1, j);
mergeCount(itemArr,count,i,mid+1,mid,j);
}
public static void mergeCount(Item[] itemArr,int count[],int i1,int i2,int j1,int j2){
int size = j2 - i1+1;
Item[] sortedItems = new Item[size];
int index = 0;
int i11 = i1;
//int j11 = j2;
int i22 = i2;
//int j22 = j2;
while(i11<=j1 && i22 <=j2 ){
if(itemArr[i11].val < itemArr[i22].val){
count[itemArr[i11].index]+= (j2-i22+1);
sortedItems[index++] = itemArr[i11++];
}
else{
sortedItems[index++] = itemArr[i22++];
}
}
while(i11<=j1){
sortedItems[index++] = itemArr[i11++];
}
while(i22<=j2){
sortedItems[index++] = itemArr[i22++];
}
index=0;
for(int i=i1;i<=j2;i++){
itemArr[i] = sortedItems[index++];
}
}
static int countSetBits(long n)
{
int count = 0;
while (n > 0) {
count += n & 1;
n >>= 1;
}
return count;
}
public static void backtrck(int i,ArrayList<Set<Long>>al,int count,long something[],long curr){
if(i>=14){
return;
}
al.get(count).add(curr);
//System.out.println(curr+" "+count);
backtrck(i+1, al, count+1, something, curr+ something[i]);
backtrck(i+1, al, count, something, curr);
}
public static void main(String args[]){
//System.out.println("Hello Java");
Scanner s = new Scanner(System.in);
int t = s.nextInt();
for(int t1 = 1;t1<=t;t1++){
long n = s.nextLong();
int count = countSetBits(n);
//long last = (long)Math.pow(10,12);
//long x =3;
long something[] = new long[16];
long sum = 6;
long x = 4;
ArrayList<Set<Long>> al = new ArrayList<>();
for(int i=0;i<=14;i++)al.add(new HashSet<>());
for(int i=0;i<14;i++){
something[i] = sum;
sum*=x;
x++;
//System.out.println(sum);
}
backtrck(0, al, 0, something, (long)0);
for(int u =1;u<=14;u++){
for(Long x1 : al.get(u)){
if(x1>n)continue;
count = Math.min(count,u+countSetBits(n-x1));
//System.out.print(x1+" " );
}
//System.out.println();
}
System.out.println(count);
}
}
}
/*
*/
| Java | ["4\n\n7\n\n11\n\n240\n\n17179869184"] | 3 seconds | ["2\n3\n4\n1"] | NoteIn the first test case, $$$7$$$ can be represented as $$$7=1+6$$$, where $$$1$$$ and $$$6$$$ are powerful numbers. Because $$$7$$$ is not a powerful number, we know that the minimum possible value of $$$k$$$ in this case is $$$k=2$$$.In the second test case, a possible way to represent $$$11$$$ as the sum of three powerful numbers is $$$11=1+4+6$$$. We can show that there is no way to represent $$$11$$$ as the sum of two or less powerful numbers. In the third test case, $$$240$$$ can be represented as $$$240=24+32+64+120$$$. Observe that $$$240=120+120$$$ is not a valid representation, because the powerful numbers have to be distinct. In the fourth test case, $$$17179869184=2^{34}$$$, so $$$17179869184$$$ is a powerful number and the minimum $$$k$$$ in this case is $$$k=1$$$. | Java 11 | standard input | [
"bitmasks",
"brute force",
"constructive algorithms",
"dp",
"math"
] | ff0b041d54755984df3706aae78d8ff2 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 100$$$). Description of the test cases follows. A test case consists of only one line, containing one integer $$$n$$$ ($$$1\le n\le 10^{12}$$$). | 1,500 | For each test case print the answer on a separate line. If $$$n$$$ can not be represented as the sum of distinct powerful numbers, print $$$-1$$$. Otherwise, print a single positive integer — the minimum possible value of $$$k$$$. | standard output |
Subsets and Splits