|
--- |
|
license: apache-2.0 |
|
--- |
|
# Dataset Card for Color dSprites |
|
|
|
## Dataset Description |
|
|
|
The **Color dSprites dataset** is a **synthetic 2D shapes dataset** designed for benchmarking algorithms in **disentangled representation learning** and **unsupervised representation learning**. |
|
|
|
It is a variant of the original **dSprites dataset** introduced in the β-VAE paper. In this version, each object is randomly colored per sample, while the background remains black. This allows researchers to evaluate **robustness to color variation** and assess how well models can learn disentangled representations under color transformations. |
|
|
|
The dataset consists of procedurally generated images of 2D sprites, under controlled variations of **6 known factors of variation**: |
|
|
|
- Object color (1 value in original dSprites, but here a random RGB color ∈ [0.5,1.0] is applied to each object at runtime) |
|
- Object shape (3 values: square, ellipse, heart) |
|
- Object scale (6 values) |
|
- Object orientation (40 values) |
|
- Object position X (32 values) |
|
- Object position Y (32 values) |
|
|
|
All possible combinations of these factors are present exactly once, generating a total of **737,280 images** at a resolution of **64×64 pixels**. Each image is provided along with **Discrete latent classes** (indices for each factor), **Continuous latent values** and **Actual object color used (colorRGB field)**. |
|
|
|
These variants allow systematic testing under **random color of object**. |
|
|
|
 |
|
|
|
The dataset is commonly used for **benchmarking disentanglement learning**, and can be used in conjunction with other variants: |
|
|
|
- [randall-lab/dsprites (default, grayscale)](https://huggingface.co/datasets/randall-lab/dsprites) |
|
- [randall-lab/dsprites-noisy](https://huggingface.co/datasets/randall-lab/dsprites-noisy) |
|
- [randall-lab/dsprites-scream](https://huggingface.co/datasets/randall-lab/dsprites-scream) |
|
|
|
## Dataset Source |
|
- **Homepage**: [https://github.com/google-research/disentanglement_lib/](https://github.com/google-research/disentanglement_lib/tree/master) |
|
- **License**: Apache License 2.0 |
|
- **Paper**: Francesco Locatello et al. _Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations_. ICML 2019. |
|
|
|
## Dataset Structure |
|
|Factors|Possible Classes (Indices)|Values| |
|
|---|---|---| |
|
|color|white=0 (original label, fixed)|Random RGB color ∈ [0.5,1.0] stored in `colorRGB`| |
|
|shape|square=0, ellipse=1, heart=2|1.0, 2.0, 3.0 (categorical)| |
|
|scale|0,...,5|[0.5, 1.0] linearly spaced (6 values)| |
|
|orientation|0,...,39|[0, 2π] radians (40 values)| |
|
|posX|0,...,31|[0, 1] normalized position (32 values)| |
|
|posY|0,...,31|[0, 1] normalized position (32 values)| |
|
|
|
**Note:** In this Color variant, the `color` and `colorValue` fields remain 0 to match the original dSprites format. The **actual applied color** is provided in `colorRGB`, a list of `[R, G, B]` values ∈ [0.5,1.0]. Each image corresponds to a unique combination of these 6 factors. The images are stored in a **row-major order** (fastest-changing factor is `posY`, slowest-changing factor is `color`). |
|
|
|
### Why no train/test split? |
|
The Color dSprites dataset does not provide an official train/test split. It is designed for **representation learning research**, where the goal is to learn disentangled and interpretable latent factors. Since the dataset is a complete Cartesian product of all factor combinations, models typically require access to the full dataset to explore factor-wise variations. |
|
|
|
## Example Usage |
|
Below is a quick example of how to load this dataset via the Hugging Face Datasets library: |
|
```python |
|
from datasets import load_dataset |
|
|
|
# Load the dataset |
|
dataset = load_dataset("randall-lab/dsprites-color", split="train", trust_remote_code=True) |
|
|
|
# Access a sample from the dataset |
|
example = dataset[0] |
|
image = example["image"] |
|
label = example["label"] # [color_idx, shape_idx, scale_idx, orientation_idx, posX_idx, posY_idx] |
|
label_values = example["label_values"] # corresponding continuous values |
|
colorRGB = example["colorRGB"] # Actual RGB color used in this sample |
|
|
|
# Label Classes |
|
color = example["color"] # 0 |
|
shape = example["shape"] # 0-2 |
|
scale = example["scale"] # 0-5 |
|
orientation = example["orientation"] # 0-39 |
|
posX = example["posX"] # 0-31 |
|
posY = example["posY"] # 0-31 |
|
|
|
# Label Values |
|
color_value = example["colorValue"] # 1 |
|
shape_value = example["shapeValue"] # 1.0, 2.0, 3.0 |
|
scale_value = example["scaleValue"] # [0.5, 1] |
|
orientation_value = example["orientationValue"] # [0, 2π] |
|
posX_value = example["posXValue"] # [0, 1] |
|
posY_value = example["posYValue"] # [0, 1] |
|
|
|
# Actual color applied to object |
|
print(f"Actual RGB color: {colorRGB}") |
|
|
|
image.show() # Display the image |
|
print(f"Label (factors): {label}") |
|
print(f"Label values (factors): {label_values}") |
|
``` |
|
If you are using colab, you should update datasets to avoid errors |
|
``` |
|
pip install -U datasets |
|
``` |
|
## Citation |
|
``` |
|
@inproceedings{locatello2019challenging, |
|
title={Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations}, |
|
author={Locatello, Francesco and Bauer, Stefan and Lucic, Mario and Raetsch, Gunnar and Gelly, Sylvain and Sch{\"o}lkopf, Bernhard and Bachem, Olivier}, |
|
booktitle={International Conference on Machine Learning}, |
|
pages={4114--4124}, |
|
year={2019} |
|
} |
|
``` |
|
|