|
--- |
|
license: apache-2.0 |
|
--- |
|
# Dataset Card for MedIAnomaly |
|
|
|
## Dataset Description |
|
|
|
**MedIAnomaly** is a benchmark designed to evaluate anomaly detection methods in the medical imaging domain. It provides a standardized evaluation protocol across **seven real-world medical image datasets**, including both **image-level anomaly classification (AnoCls)** and **pixel-level anomaly segmentation (AnoSeg)** tasks. |
|
|
|
All datasets follow a **one-class training setting**, where **only normal (non-anomalous) images are available in the training set**, and the **test set includes both normal and abnormal cases**. This reflects real-world scenarios where anomalies are rare and not annotated during training. |
|
|
|
The benchmark includes a total of **seven datasets**, spanning across various imaging modalities (X-ray, MRI, fundus, dermatoscopy, histopathology), and ensures unified data format and preprocessing to support fair and reproducible comparison of anomaly detection methods. |
|
|
|
 |
|
|
|
## Dataset Source |
|
- **Homepage**: [https://github.com/caiyu6666/MedIAnomaly](https://github.com/caiyu6666/MedIAnomaly) |
|
- **License**: [Apache License 2.0](http://www.apache.org/licenses/LICENSE-2.0) |
|
- **Paper**: Yu Cai et al. _MedIAnomaly: A Comparative Study of Anomaly Detection in Medical Images_, arXiv 2024. |
|
|
|
## Dataset Structure |
|
|
|
| Dataset | Modality | Task | ๐<sub>train</sub> | ๐<sub>test</sub> (Normal+Abnormal) | |
|
|--------------|-----------------------|-------------------|------------------|----------------------------| |
|
| RSNA | Chest X-ray | AnoCls | 3851 | 1000 + 1000 | |
|
| VinDr-CXR | Chest X-ray | AnoCls | 4000 | 1000 + 1000 | |
|
| Brain Tumor | Brain MRI | AnoCls | 1000 | 600 + 600 | |
|
| LAG | Retinal fundus image | AnoCls | 1500 | 811 + 811 | |
|
| ISIC2018 | Dermatoscopic image | AnoCls | 6705 | 909 + 603 | |
|
| Camelyon16 | Histopathology image | AnoCls | 5088 | 1120 + 1113 | |
|
| BraTS2021 | Brain MRI | AnoCls & AnoSeg | 4211 | 828 + 1948 | |
|
|
|
### Notes on Dataset-Specific Definitions |
|
|
|
- **RSNA**: Training images are all normal chest X-rays. Test set contains a balanced mix of normal and pneumonia images. |
|
- **VinDr-CXR**: Training set consists only of normal chest X-rays. Test set includes both normal and abnormal findings. |
|
- **Brain Tumor**: MRI scans. All training samples are healthy brains; test set contains normal and tumor cases. |
|
- **LAG**: Retinal fundus images. Training set includes only normal cases; glaucomatous images appear in test set. |
|
- **ISIC2018**: One-hot multi-label data. Only images with `NV = 1` and all other labels = 0 are considered **normal**. All others (with any other disease present) are considered **abnormal**. |
|
- **Camelyon16**: Histopathological whole-slide patches. Training includes only benign tissue. Abnormal cancerous regions are tested. |
|
- **BraTS2021**: Brain MRI for both classification and segmentation. Training includes only normal images. Test set includes tumor cases with segmentation masks. |
|
|
|
## Example Usage |
|
|
|
### RSNA |
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("randall-lab/medianomaly", name="rsna", split="train", trust_remote_code=True) |
|
# dataset = load_dataset("randall-lab/medianomaly", name="rsna", split="test", trust_remote_code=True) |
|
|
|
# View a sample |
|
example = dataset[0] |
|
image = example["image"] |
|
label = example["label"] # "normal" or "abnormal" |
|
|
|
image.show() |
|
print(f"Label: {label}") |
|
``` |
|
|
|
### Vin-CXR |
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("randall-lab/medianomaly", name="vincxr", split="train", trust_remote_code=True) |
|
# dataset = load_dataset("randall-lab/medianomaly", name="vincxr", split="test", trust_remote_code=True) |
|
|
|
# View a sample |
|
example = dataset[0] |
|
image = example["image"] |
|
label = example["label"] # "normal" or "abnormal" |
|
|
|
image.show() |
|
print(f"Label: {label}") |
|
``` |
|
|
|
### Brain Tumor |
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("randall-lab/medianomaly", name="braintumor", split="train", trust_remote_code=True) |
|
# dataset = load_dataset("randall-lab/medianomaly", name="braintumor", split="test", trust_remote_code=True) |
|
|
|
# View a sample |
|
example = dataset[0] |
|
image = example["image"] |
|
label = example["label"] # "normal" or "abnormal" |
|
|
|
image.show() |
|
print(f"Label: {label}") |
|
``` |
|
|
|
### LAG |
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("randall-lab/medianomaly", name="lag", split="train", trust_remote_code=True) |
|
# dataset = load_dataset("randall-lab/medianomaly", name="lag", split="test", trust_remote_code=True) |
|
|
|
# View a sample |
|
example = dataset[0] |
|
image = example["image"] |
|
label = example["label"] # "normal" or "abnormal" |
|
|
|
image.show() |
|
print(f"Label: {label}") |
|
``` |
|
|
|
### Camelyon16 |
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("randall-lab/medianomaly", name="camelyon16", split="train", trust_remote_code=True) |
|
# dataset = load_dataset("randall-lab/medianomaly", name="camelyon16", split="test", trust_remote_code=True) |
|
|
|
# View a sample |
|
example = dataset[0] |
|
image = example["image"] |
|
label = example["label"] # "normal" or "abnormal" |
|
|
|
image.show() |
|
print(f"Label: {label}") |
|
``` |
|
|
|
### BraTS2021 |
|
```python |
|
from datasets import load_dataset |
|
|
|
# Train |
|
dataset = load_dataset("randall-lab/medianomaly", name="brats2021", split="train", trust_remote_code=True) |
|
|
|
example = dataset[0] |
|
image = example["image"] |
|
label = example["label"] # "normal" or "abnormal" |
|
|
|
image.show() |
|
print(f"Label: {label}") |
|
|
|
# Test |
|
dataset = load_dataset("randall-lab/medianomaly", name="brats2021", split="test", trust_remote_code=True) |
|
|
|
example = dataset[828] # >= 828 is abnormal images with seg mask |
|
image = example["image"] |
|
label = example["label"] # "normal" or "abnormal" |
|
anno = example["annotation"] # None if label is 0, seg mask if label is 1 |
|
|
|
image.show() |
|
anno.show() |
|
print(f"Label: {label}") |
|
``` |
|
|
|
### ISIC2018 |
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("randall-lab/medianomaly", name="isic2018_task3", split="train", trust_remote_code=True) |
|
# dataset = load_dataset("randall-lab/medianomaly", name="isic2018_task3", split="test", trust_remote_code=True) |
|
|
|
# View a sample |
|
example = dataset[0] |
|
image = example["image"] |
|
label = example["label"] # "normal" or "abnormal" |
|
labels = example["labels"] # one-hot multi label for different disease [MEL, NV, BCC, AKIEC, BKL, DF, VASC] |
|
|
|
# Individual binary class labels (0 or 1) |
|
mel_label = example["MEL"] |
|
nv_label = example["NV"] |
|
bcc_label = example["BCC"] |
|
akiec_label = example["AKIEC"] |
|
bkl_label = example["BKL"] |
|
df_label = example["DF"] |
|
vasc_label = example["VASC"] |
|
|
|
image.show() |
|
print(f"Label: {label}") |
|
``` |
|
|
|
If you are using colab, you should update datasets to avoid errors |
|
``` |
|
pip install -U datasets |
|
``` |
|
## Citation |
|
``` |
|
@article{cai2024medianomaly, |
|
title={MedIAnomaly: A comparative study of anomaly detection in medical images}, |
|
author={Cai, Yu and Zhang, Weiwen and Chen, Hao and Cheng, Kwang-Ting}, |
|
journal={arXiv preprint arXiv:2404.04518}, |
|
year={2024} |
|
} |
|
``` |