template
stringlengths 20
4.72k
|
---|
template<typename T>
PFC_INLINE complex<T> rcbrt_z(const complex<T> &c_)
{
// component-wise cubic root
typedef typename math<T>::scalar_t scalar_t;
return complex<T>(c_.real?c_.real<0?-std::pow(-c_.real, scalar_t(-1.0/3.0)):std::pow(c_.real, scalar_t(-1.0/3.0)):0,
c_.imag?c_.imag<0?-std::pow(-c_.imag, scalar_t(-1.0/3.0)):std::pow(c_.imag, scalar_t(-1.0/3.0)):0);
} |
template<typename T>
PFC_INLINE typename math<T>::scalar_t norm(const complex<T> &c_)
{
// norm of the complex (=complex length)
return std::sqrt(c_.real*c_.real+c_.imag*c_.imag);
} |
template<typename T>
PFC_INLINE typename math<T>::scalar_t rnorm(const complex<T> &c_)
{
// reciprocal norm of the complex
typedef typename math<T>::scalar_t scalar_t;
scalar_t n2=c_.real*c_.real+c_.imag*c_.imag;
PFC_ASSERT_PEDANTIC(n2);
return scalar_t(1)/std::sqrt(n2);
} |
template<typename T>
PFC_INLINE typename math<T>::scalar_t rnorm_z(const complex<T> &c_)
{
// reciprocal norm of the vector
typedef typename math<T>::scalar_t scalar_t;
scalar_t n2=c_.real*c_.real+c_.imag*c_.imag;
return n2>0?scalar_t(1)/std::sqrt(n2):0;
} |
template<typename T>
PFC_INLINE typename math<T>::scalar_t norm2(const complex<T> &c_)
{
// squared norm of the complex
return c_.real*c_.real+c_.imag*c_.imag;
} |
template<typename T>
PFC_INLINE typename math<T>::scalar_t rnorm2(const complex<T> &c_)
{
// reciprocal squared norm of the complex
typedef typename math<T>::scalar_t scalar_t;
scalar_t n2=c_.real*c_.real+c_.imag*c_.imag;
PFC_ASSERT_PEDANTIC(n2);
return scalar_t(1)/n2;
} |
template<typename T>
PFC_INLINE typename math<T>::scalar_t rnorm2_z(const complex<T> &c_)
{
// reciprocal squared norm of the vector
typedef typename math<T>::scalar_t scalar_t;
scalar_t v=c_.real*c_.real+c_.imag*c_.imag;
return v>0?scalar_t(1)/v:0;
} |
template<typename T>
PFC_INLINE complex<T> unit(const complex<T> &c_)
{
// unit complex of the complex
typedef typename math<T>::scalar_t scalar_t;
scalar_t n2=c_.real*c_.real+c_.imag*c_.imag;
PFC_ASSERT_PEDANTIC(n2);
scalar_t rs=scalar_t(1)/std::sqrt(n2);
return complex<T>(c_.real*rs, c_.imag*rs);
} |
template<typename T>
PFC_INLINE complex<T> unit_z(const complex<T> &c_)
{
// unit complex of the complex. if |c|=0, return c=[0, 0]
typedef typename math<T>::scalar_t scalar_t;
scalar_t rs=c_.real*c_.real+c_.imag*c_.imag;
if(!rs)
return complex<T>(0, 0);
rs=scalar_t(1)/std::sqrt(rs);
return complex<T>(c_.real*rs, c_.imag*rs);
} |
template<typename T>
PFC_INLINE complex<T> conj(const complex<T> &c_)
{
// conjugate of the complex
return complex<T>(c_.real, -c_.imag);
} |
template<typename T>
PFC_INLINE typename math<T>::scalar_t dot(const complex<T> &c0_, const complex<T> &c1_)
{
// dot-product of complex numbers
return c0_.real*c1_.real+c0_.imag*c1_.imag;
} |
template<typename T>
PFC_INLINE typename math<T>::scalar_t dot1(const complex<T> &c_)
{
// dot-product with [1, 1]
return c_.real+c_.imag;
} |
template<typename T>
PFC_INLINE typename math<T>::scalar_t arg(const complex<T> &c_)
{
// argument of the complex
return atan2(c_.imag, c_.real);
} |
template<typename T>
PFC_INLINE void neg(complex<T> &c_)
{
// negate the complex
c_.real=-c_.real;
c_.imag=-c_.imag;
} |
template<typename T, class Rng>
PFC_INLINE void rand_u(complex<T> &cr_, Rng &rng_)
{
// random unit complex number (even distribution on unit circle)
sincos(cr_.real, cr_.imag, typename math<T>::scalar_t(rng_.rand_ureal1())*math<T>::two_pi);
} |
template<typename T, class Rng>
PFC_INLINE void rand_real1(complex<T> &cr_, Rng &rng_)
{
// random complex number where each component is in range [-1, 1]
typedef typename math<T>::scalar_t scalar_t;
cr_.real=scalar_t(rng_.rand_real1());
cr_.imag=scalar_t(rng_.rand_real1());
} |
template<typename T, class Rng>
PFC_INLINE void rand_ureal1(complex<T> &cr_, Rng &rng_)
{
// random complex number where each component is in range [0, 1]
typedef typename math<T>::scalar_t scalar_t;
cr_.real=scalar_t(rng_.rand_ureal1());
cr_.imag=scalar_t(rng_.rand_ureal1());
} |
template<typename T>
PFC_INLINE complex<T> smoothstep(const complex<T> &c_)
{
// component-wise smoothstep function
typedef typename math<T>::scalar_t scalar_t;
PFC_ASSERT_PEDANTIC(c_.real>=0 && c_.real<=scalar_t(1) && c_.imag>=0 && c_.imag<=scalar_t(1));
return complex<T>(c_.real*c_.real*(scalar_t(3)-scalar_t(2)*c_.real),
c_.imag*c_.imag*(scalar_t(3)-scalar_t(2)*c_.imag));
} |
template<typename T>
PFC_INLINE complex<T> smootherstep(const complex<T> &c_)
{
// component-wise smootherstep function
typedef typename math<T>::scalar_t scalar_t;
PFC_ASSERT_PEDANTIC(c_.real>=0 && c_.real<=scalar_t(1) && c_.imag>=0 && c_.imag<=scalar_t(1));
return complex<T>(c_.real*c_.real*c_.real*(c_.real*(c_.real*scalar_t(6)-scalar_t(15))+scalar_t(10)),
c_.imag*c_.imag*c_.imag*(c_.imag*(c_.imag*scalar_t(6)-scalar_t(15))+scalar_t(10)));
} |
template<typename T>
PFC_INLINE complex<T> lerp(const complex<T> &c0_, const complex<T> &c1_, typename math<T>::scalar_t t_)
{
// linear complex interpolation. f(t=0)=c0, f(t=1)=c1
return complex<T>(c0_.real+(c1_.real-c0_.real)*t_, c0_.imag+(c1_.imag-c0_.imag)*t_);
} |
template<typename T>
PFC_INLINE complex<T> nlerp(const complex<T> &c0_, const complex<T> &c1_, typename math<T>::scalar_t t_)
{
// normalized linear complex interpolation. f(t=0)=c0/|c0|, f(t=1)=c1/|c1|
typedef typename math<T>::scalar_t scalar_t;
complex<T> c(c0_.real+(c1_.real-c0_.real)*t_, c0_.imag+(c1_.imag-c0_.imag)*t_);
scalar_t n2=c.real*c.real+c.imag*c.imag;
PFC_ASSERT_PEDANTIC(n2);
scalar_t rs=scalar_t(1)/std::sqrt(n2);
return complex<T>(c.real*rs, c.imag*rs);
} |
template<typename T>
PFC_INLINE complex<T> nlerp_z(const complex<T> &c0_, const complex<T> &c1_, typename math<T>::scalar_t t_)
{
// normalized linear complex interpolation. f(t=0)=c0/|c0|, f(t=1)=c1/|c1|. if interpolated |c|=0, return [0, 0]
typedef typename math<T>::scalar_t scalar_t;
complex<T> c(c0_.real+(c1_.real-c0_.real)*t_, c0_.imag+(c1_.imag-c0_.imag)*t_);
scalar_t rs=c.real*c.real+c.imag*c.imag;
if(!rs)
return complex<T>(0, 0);
rs=scalar_t(1)/std::sqrt(rs);
return complex<T>(c.real*rs, c.imag*rs);
} |
template<typename T, typename U>
PFC_INLINE complex<T> to_complex(const complex<U> &c_)
{
// convert between complex types
typedef typename math<T>::scalar_t scalar_t;
return complex<T>(scalar_t(c_.real), scalar_t(c_.imag));
} |
template<unsigned shuffle_, typename T>
PFC_INLINE complex<T> shuffle(const complex<T> &c_)
{
return priv::shuffle_complex_helper<shuffle_, T>::shuffle(c_);
} |