File size: 6,438 Bytes
a10de65
37831c2
 
a10de65
 
 
5759e63
a10de65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37831c2
a10de65
5759e63
a10de65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d504457
 
 
6ce6509
d504457
 
37831c2
a10de65
 
 
 
 
6ce6509
a10de65
 
 
 
 
 
 
6ce6509
 
a10de65
 
 
 
5759e63
a10de65
6ce6509
a10de65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136



import csv
import json
import os
import sys
import datasets


# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
TODO: Add citation here
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""



# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class GDDS(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("2.1.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="fake_news", version=VERSION, description="This part of my dataset covers a first domain"),
        datasets.BuilderConfig(name="job_scams", version=VERSION, description="This part of my dataset covers a second domain"),
        datasets.BuilderConfig(name="phishing", version=VERSION, description="This part of my dataset covers a second domain"),
        datasets.BuilderConfig(name="political_statements", version=VERSION, description="This part of my dataset covers a first domain"),
        datasets.BuilderConfig(name="product_reviews", version=VERSION, description="This part of my dataset covers a second domain"),
        datasets.BuilderConfig(name="sms", version=VERSION, description="This part of my dataset covers a second domain"),
        datasets.BuilderConfig(name="twitter_rumours", version=VERSION, description="This part of my dataset covers a first domain"),
    ]

    def _info(self):
        # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
        features = datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "label": datasets.ClassLabel(num_classes=2)
                    # These are the features of your dataset like images, labels ...
                }
            )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        urls = {
            "train": self.config.name+"/train.jsonl",
            "test": self.config.name+"/test.jsonl",
            "validation": self.config.name+"/validation.jsonl",
        }
        data_dir = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, self.config.name, "train.jsonl"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, self.config.name, "validation.jsonl"),
                    "split": "validation",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, self.config.name, "test.jsonl"),
                    "split": "test"
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
        with open(filepath, encoding="utf-8") as f:
            for key, row in enumerate(f):
                data = json.loads(row)
                yield key, {
                    "text": data["text"],
                    "label": "" if split == "test" else data["label"],
                }