Datasets:

Languages:
English
License:
barexam_qa / barexam_qa.py
zlucia's picture
Rename mbe.py to barexam_qa.py
1e2e160 verified
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import datasets
import pandas as pd
_CITATION = """"""
_DESCRIPTION = """"""
_HOMEPAGE = ""
_LICENSE = ""
_URLS = {
"qa": {
"train": "data/qa/train.csv",
"validation": "data/qa/validation.csv",
"test": "data/qa/test.csv",
"all": "data/qa/qa.csv",
},
"passages": {
"train": "data/passages/train.tsv",
"validation": "data/passages/validation.tsv",
"test": "data/passages/test.tsv",
"all": "data/passages/passages.tsv"
},
}
_CONFIGS = {}
_CONFIGS["qa"] = {
"description": "Answer bar exam questions",
"features": {
"idx": datasets.Value("string"),
"dataset": datasets.Value("string"),
"example_id": datasets.Value("string"),
"prompt_id": datasets.Value("string"),
"source": datasets.Value("string"),
"subject": datasets.Value("string"),
"question_number": datasets.Value("string"),
"prompt": datasets.Value("string"),
"question": datasets.Value("string"),
"choice_a": datasets.Value("string"),
"choice_b": datasets.Value("string"),
"choice_c": datasets.Value("string"),
"choice_d": datasets.Value("string"),
"answer": datasets.Value("string"),
"gold_passage": datasets.Value("string"),
"gold_idx": datasets.Value("string"),
},
"license": None,
}
_CONFIGS["passages"] = {
"description": "Passage corpus of bar exam question explanations, Wex definitions and primary sources, and caselaw",
"features": {
"idx": datasets.Value("string"),
"source": datasets.Value("string"),
"faiss_id": datasets.Value("string"),
"case_id": datasets.Value("string"),
"absolute_paragraph_id": datasets.Value("string"),
"opinion_id": datasets.Value("string"),
"relative_paragraph_id": datasets.Value("string"),
"text": datasets.Value("string"),
},
"license": None,
}
class BarExamQA(datasets.GeneratorBasedBuilder):
"""Legal retrieval/QA dataset for the multistate bar exam"""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name=task, version=datasets.Version("1.0.0"), description=task,
)
for task in _CONFIGS
]
def _info(self):
features = _CONFIGS[self.config.name]["features"]
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(features),
homepage=_HOMEPAGE,
citation=_CITATION,
license=_CONFIGS[self.config.name]["license"],
)
def _split_generators(self, dl_manager):
downloaded_file_dir = dl_manager.download_and_extract(_URLS[self.config.name])
splits = [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"fpath": downloaded_file_dir["train"],
"name": self.config.name,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"fpath": downloaded_file_dir["validation"],
"name": self.config.name,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"fpath": downloaded_file_dir["test"],
"name": self.config.name,
},
),
]
return splits
def _generate_examples(self, fpath, name):
"""Yields examples as (key, example) tuples."""
if name in ["qa"]:
data = pd.read_csv(fpath)
data = data.to_dict(orient="records")
for id_line, example in enumerate(data):
yield id_line, example
if name in ["passages"]:
data = pd.read_csv(fpath, sep='\t')
data = data.to_dict(orient="records")
for id_line, example in enumerate(data):
yield id_line, example